
John McCutchan (Google)
Peter Jensen (Intel)
Dan Gohman (Mozilla)
Abhijith Chatra (Microsoft)
Daniel Ehrenberg (Google)

SIMD.js Moving towards Stage 3



Agenda
● Developments Since Stage 2 Approval
● Notable design decisions
● Questions for the committee
● Implementation Status
● Specification Status



Developments Since Stage 2 Approval



Boolean vectors

● Previously, the result of SIMD.Float32x4.greaterThan was a SIMD.
Int32x4 vector, with -1/0 for true/false

● Now, new boolean vector types, e.g. SIMD.Bool32x4, represent boolean 
results and values

● Used for select and logic operations
● More efficiently implementable on some architectures
● Not simply Boolx4 because the registers in implementations may be 

represented differently based on width.



Unsigned operations

● Unsigned comparisons
● Unsigned saturating add/sub
● Unsigned extractLane
● No changes needed for constructor, replaceLane because coercion will 

wrap unsigned values to the appropriate signed value
● No separate unsigned type



Postponed features

● Float64x2--we couldn’t find an important use case with improved 
performance

● Int64x2--Not needed due to boolean vectors, and really not needed 
because Float64x2 is out

● selectBits--minimal utility due to select, and efficiently implementable in 
terms of other boolean operations



sumOfAbsoluteDifferences replacement

● widenedAbsoluteDifference, unsignedHorizontalSum, 
absoluteDifference

● Seeking implementation feedback: applications and benchmarks
● Replaces sumOfAbsoluteDifferences (slow on ARM)



Other spec changes

● Homoiconic toString()
○ SIMD.Float32x4(1, 2, 3, 4).toString() => “SIMD.Float32x4(1, 2, 3, 4)”

● Shift operations max out at 0/-1, rather than wrapping around
● Ops like reciprocalApproximation are loosely specified, like Math.sin
● Removed operations on DataView--TypedArray ops suffice
● Operations on subnormals may flush to 0, unlike ES scalars
● Various minor spec bug fixes



New reciprocalApproximation definition



Notable design decisions



Strong type check on lanes

● Lanes are required to be Int32s and not implicitly coerced



load and store operating on TypedArrays

● load and store take TypedArrays as arguments and permit array element 
type mismatch with SIMD type



Questions for the committee



Wrapper constructors

● Should wrapper constructors be explicitly [[Construct]]-able, like 
Number, or not, like Symbol?



Spec language “innovation” acceptable?

● Rest parameters
● SIMD as a spec meta-variable



Spec language “innovation” acceptable?

● Higher-order internal algorithms, including closures and infix ops



Spec language “innovation” acceptable?

● Refactor TypedArray spec language like SIMD.js numerical types, or the 
reverse?



Separate spec?



Implementation Status



Firefox implementation status

● In Firefox nightly:
● Float32x4 and Int32x4 entirely implemented and optimized in JavaScript 

(regular and asm.js) on x86 and x64.
● Missing boolean vectors
● Other SIMD types (Int16x8, Int8x16, Float64x2) partially implemented in 

the interpreter only (ergo not optimized). The newer APIs (SAD) haven't 
been implemented yet.

● All SIMD types are implemented as value objects, at the moment.



Microsoft Edge implementation status

● Majority of SIMD.*.* APIS supported.
● Some of the new APIS need to be implemented such as ExtractLane and 

ReplaceLane, and unsigned operations
● Asm.js optimization is complete (minus new api support).
● Non-asm.js optimization we plan to start soon.



V8 implementation status

● Intel object implementation will not be used for V8 and work has started 
to implement value types from scratch. Intel code generation may be 
rewritten to the new model.

● Bill Budge has added a Float32x4 type with correct value semantics and 
basic operations, without acceleration, behind a flag.



Specification Status



Specification Status

● SIMD.js Specification v0.7.2
● Updated polyfill and tests validate all operations, basic value semantics
● SIMD.js is ready for reviewers and and editor comments/signoff
● Hope to move to Stage 3 in the September meeting



Questions!



Spec, polyfill, tests and benchmarks repository
https://github.com/tc39/ecmascript_simd

Published Paper on Dart + JS prototype implementations
John McCutchan, Haitao Feng, Nicholas Matsakis, Zachary Anderson, Peter Jensen (2014) A SIMD Programming Model for Dart, JavaScript, and Other Dynamically Typed 
Scripting Languages, Proceedings of the 2014 Workshop on Programming models for SIMD/Vector processing

https://sites.google.com/site/wpmvp2014/paper_18.pdf

Published Paper: SIMD in JavaScript via C++ and Emscripten
Peter Jensen, Ivan Jibaja, Ningxin Hu, Dan Gohman, John McCutchan (2015)
Workshop on Programming Models for SIMD/Vector Processing - WPMVP'15
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx3cG12cDIwMTV8Z3g6NTkzYWE2OGNlNDAyMTRjOQ

HTML5 Developer Conference Presentation (May 2014)
http://peterjensen.github.io/html5-simd/html5-simd.html#/

SIMD documentation on MDN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SIMD

Wikipedia
http://en.wikipedia.org/wiki/SIMD

References



New subnormal behavior


