
Strictness Scoping
Andreas Rossberg @ TC39, 2015/07/29

Context

● VMs need to do parsing & static checks in single pass
● ...without building an AST (lazy compilation)
● Backtracking is not an option (at least not for V8)

Easy in ES5

‘use sloppy’;
function f(x, x) { ‘use strict’ }

More difficult in ES6

‘use sloppy’;
function f(g = (o) => { with (o) {} }) { ‘use strict’ }

More difficult in ES6

‘use sloppy’;
function f(g = function(h) {
 { function h() {} } return h
}) {
 ‘use strict’
}

Much more difficult in ES6

● The directive can affect arbitrary code
● Nested arbitrarily deep
● Would need to defer any sort of mode-specific

decisions in the parser for code that occurs in
parameters

● With arrow functions, we do not even know (in time)
whether we are inside parameters

Even worse with arrows

‘use sloppy’;
let f = (g = () => { /* ? */ ... }, ...) => { ‘use strict’ }

Categories of mode specific logic

1. Mode-specific errors (e.g., ‘with’, ‘delete’, for-in, octals, ‘let’, variable
name validity, parameter conflicts)
=> Easy to defer, at least in principle, but may have measurable cost.

2. Special handling of eval (scoping, variable modes)
=> Not an issue, cannot depend on local directive in same parse

3. Actual divergence in parsing/scoping (e.g., Annex B function scoping,
parsing of `yield`)
=> Hairy, affect downstream decisions, would have to transitively
defer.

Analysis

● It’s a pain to implement
● It costs performance (parsing is a bottleneck!)
● ...for many programs not using the feature (e.g. ES5)
● Paints us into a corner (will affect any mode-related

design decision we ever going to make in the future)
● And all that for an edge case

Suggestion

Make it an error to have a ‘use strict’ directive
in a function with a non-simple parameter list.

Possible Variations
● Only an error when outer mode is not strict already

(refactoring trap?)
● Only when parameter list contains expressions

(too complicated a rule?)

