ECMA/TC39/97/17 A

ECMASCRIPT LANGUAGE SPECIFICATION

ECMA CoOMMITTEE#39
VERSIONO.12

MARCH 12, 1997

Please send feedback regarding this document tasuy Steele (Guy.Steel e@east.sun.com).

LOVERVIEW ...ttt bbb Rt e bbbt et e s e e e n e b se e en e e e ene e e ennas 1

2NOTATIONAL CONVENTIONS.. .. .ottt ettt etes s tesete s sbesste s ssbesebessbesssessabesssessnsessnsessnns 2
2.1 SYNTACTIC ANDLEXICALGRAMMARScttiiiittiteeeiiteeeeeeirateeesseseeeesassbaeeesaastesseeessasseeessassteseesansssnesssnan 2
2.1.1 CoNteXI-Free GralMIMArS.........cociiie e et e etee e e st e e e e stte e e seaeee e s sabeeesensteeessseeesssteeesanseeesennenns 2
2.1.2 TRE LEXICAl GIaMIMAT......cceiiitieeeie e ittt eeeeeitteeeee e streesteeesateesaaeesabeesseeesabeesaseesabeesaseesabeesnseesareesnseesares 2
2.1.3 The NUMENiC SIrNG GraMIMar.........cccoveiieiieeiieeieseeseeseesteessessaeseesreesseesteestesssesaeessaesseessesssesnessnns 2
W) 1o Y = Yo (Lo] = a0 T S 2
2.1.5 Grammiar NOLALIONcciiiiiiie ettt ctte st streesee e sare e e te e s abeesaeeesabeesaseesabeesaseesaseesaseesabessnseesares 3
2.2 ALGORITHMECONVENTIONS. ... uutiiieiitieeeeiiteeeeeaeesareeeessaseeeeaeaateeeesaaassseeasasstsesesansssesassassssateesanssesessnssens 5
OIS O 101 = L i I G 6
G T SO PSSRSO PTRPR 6
A LEXICAL CONVENTIONS. ...ttt ettt et ste e tee st s et s sbe s sste s s ebessaessabessabessabessssessbessasessnbessnseesn 7
AL VNV HITE SPACE. .. it c i ctteee e ittt e e e ettt e et e e e e et et e e e e atee e e s eaeeeaeeseassteeeesasbaeaeeaasteeeesasssetaseesansteeeesannseeeesansaneeseesannens 7
4.2 LINE TERMINATORS.utttteeiitteeeeaiitteeesieasteeeesaasseeassasseeessaastrssssassssssesaasssssessnsssesstessasssssessassssssssnssenees 7
TG O 1Y 1 Y 1 = N TSPt 8
A o = \ T USRS 8
4.4.1 RESEIVEA WOIUS.......ccuviiiiiieciee ittt e ete ettt eeee e st e st e e shbeesaee e sabeeeaseesabeeeaeeesabeensseesaseessseesaseensneeses 8
O (= YT o o LTSS 9
4.4.3 FULUrE RESEINVE WOTTS.......uvieiiteeciie ittt stte ettt stte st e e sabe e etae e sateesaaeesaaeesaseesaseessseesabeensseessseensneeses 9
.5 IDENTIFIERS. . .tttieeiitteeeeietteeeeeaiteuseeeeessteeeeaasseeaesaasseseeeaaaasteeasassseeaesasbeneesasssneeaeeansbasessasseneesannssrneanannnns 9
2.6 PUNCTUATORS......cuttieeeiitttieeeeitteee e st e staeeeseaasteeaeaassseeasaastassesassassseeassastaseesassasseeaeasteeesaasssesessasssnnasasmnnes 10
T T 1= 7 I TSR RP 10
A7 1 NUI LITEIAIS ..o viiitieecie ettt ettt ettt e e e e st be e eae e e sbee e aeeesbeeebeeesbeeebeesbeesbesssbeesnbesebeesnrenan 10
4.7.2 BOOIEAN LITEIAIS.....cccviiiiieeeiee ettt et stte et s e e eaee e stee e aee e sbaeebeeesbeeebeeesbeesbeesbaesnbesebenensenan 10
A.7.3NUMEIIC LITEralS...oe e ittt ettt e e e e stee e te e e s beeebee e sbeeebeeesbeeenbessbaesnbesebenenrenan 10
S {10) (= = | P 12
4.8 AUTOMATICSEMICOLONINSERTION. ...uciiiiitieieeeiurteeesiiutaeeeessassseesssassesessasssesameesssssesessasssesessasssessannnns 15
LTI = 17
5.1 THE UNDEFINED T TY PE .oiiciitieieeeitiee e s sttt e st e e ettee e e s s tteeeeasatteeesseasasaeeeaeasseeeesasseesesssbasteeesannseeassssenansnn 17
LI I =\ VL 1N R 17
oG T I = = 1o L0 I =N N I = =SSP 17
B4 THEINUMBER TY PE.. . uttiiiiiiiiie e e eittee e s s ettt e e e et e e e e s st e e e e e st tereee e e aasseeaaeassseeesanseeeaseeaasseeeesannseneessnsrenannn 17
oI I I =L O =N =l I N = =R 18
5.5.1 Property AtFIDULES.......coui it b et b e s b b ne e e e 18
5.5.2 Internal Properties and MEthOGS..........ccooiririiiii e e 18
LA N [1= 1 [USSR 19
5.5.2.2 [[PUL]] cvuevrvvveeeereeseeeeestestsee s sesseseessestss s s s ss s sssanssnssssensssses st enses s st esass e ssss s sssnsansnnsesseneseneansnnsnnsanens 19
LA B =g 1 U 11 | OSSPSR 19
oW | b= TS o] o= Y | USSR 20

5.8 THE STRING TY PE it ittiieieitieie e eittee st e e e steeee s staaeeeasabteeaseasasaeeeaaastseeesaasseeeassseeeteeesenseeeesssteeeseansrenenns 20
5.7 THEINTERNALREFERENCE TYPE.......tiiiiiiiitie e iiiteee e s sttt e e s ettteeesesataeeeseassreeessanstaeeesennseeessanseneeseesnnens 20
7.1 GEIBASE.......eee ittt ettt et e e et s e et e b e e beesabe e e bee e be e e abee e be e aabee e beeabeeebeeabeeebeeeareeereean 20
5.7.2 GELPIOPEITYINAITIEcoteiieeteee ettt ettt b e b e be e e e e e e sae e saeesbe e b e enbesnnesreenneas 20
D73 GEIVAIUR.......cee ettt et s e et e st e e e be e s it e e s beesabe e sbeesabeesnbeesabessnbeesnbesebeesnreean 20
BT A PULVAIUE.......cceee ettt ettt et s e et e e st e e s beesab e e s beesabessbeesabeesnseesabessnbaesnbesebensnrenan 20

B TYPE CONVERSION..... oottt sttt ete sttt e ettt e s este s s teseabessbessatessabessseessabessabessabessnsessntessneeeas 21
6.1 TOPRIMITIVE ..uiitiitiiiiitiiiiiti sttt bbb bbb bbb bbb bbb 21
(I] =T T T =7 N RS STR 21
5.3 TONUNMBER.......cuutiiieiittieeeeeciee e et e e e ettt e e e e iate e e e s eaaseeeeeaeasseeae s sseeaaeastaeaeaanssssteeeaansteeessanneeeaesaateeeesasennnnens 22
6.3.1 ToNumber Applied t0 the SIFING TYPE....eo ettt e e ee e 22
O] N = = RS 23
6.5 TOINT32: (SIGNED32 BIT INTEGER) ..eeiutieteeeuteeteesteesteessmreesessseessessssssssessseesssmsassesssesssessssssssssssessesmmsens 23

6.6 TOUINT32: (UNSIGNED32 BIT INTEGER) ..c.veteueeteriestesieseesestesntesaeseeseesesteseeseeseesessesnsesaessenessessesseseesesnens 23

I A 0 5 1N R 24
6.7.1 ToString Applied t0 the NUMDEr TYPE.....c.oiiriirereere et 24
o3RS T 0 = = o RS 25
T EXECUTION CONTEXT S oottt sttt st sb et be bbbt eae e e e e et sbesbesaeene e e enean 26
7.1 DEFINITIONS . ¢ttt etteesteeestteesttrtesabeeesubeeesseeesabeeesaseesaesbeeeseeesabeeeasbeeeabeeesmseR e e emse e e smbeesabeeennneeesnneesennneenas 26
7. 1L FUNCHON ODJECES.....cuiitieeiiitereeteste ettt sttt ettt b e bbb st b e b s et st ene b e b e neebe st neeneas 26
7.1.2 Types Of EXECULADIE COUE.c.ciieeiiriirieiesie ettt sttt st s b b ene s 26
7.1.3Variable INSANtIAtiON.........coeeiieiiccee ettt e re e s s eebe e be e beenbesaseeaeesbeesreas 26
7.1.4 Scope Chain and Identifier RESOIULTON........cc.ciiirieiririeireseese s 27
7.1.5 GlODAI ODJECL.....cueeeeiitiieeiiste ettt b et sttt st b e bbb e bt b e b e b e bt b e eneas 27
7.1.6 ACHIVALION ODJECL.......eitiieeiiitirieiese ettt ettt b e st b e b et b e se b sbese bt b neeneas 28
T.0.7 LADEISIACKS. ...ttt et ettt s s s b e et e e be s e e eae e ebe e be e beeabeeareeaaesreesreas 28
78008 I 0= SR 28
7.1.9 ArgumentS OBJECL......ccuireiiiire et e ene 28
7.2 ENTERINGAN EXECUTIONCONTEXT c.utteteesuteseeeseeesteessessentessseessesssessssssnsessseessessssssnsesssessseessessnsesssnees 28
T.2.1 GlODAI COUEB.......oi ittt et et et s he e s be e sbeesbeebesaeesaeesbeeabeenbesabesabeeneesreesreas 29
T.22 EVAICOUE. ..ottt ettt ettt et et e et e s aae s hee s beesbe e beeabesaeesaeeebeebe e beenbeeabeeaaesraenreas 29
7.2.3 Function and ANONYMOUS COOE.........ccurueuiriirieierie sttt sttt st sttt s sbe s sbeseenens 29

T 24 HOSE COUE.ue ettt ettt ettt et et e et e et e saaesheesbeesbeesbeeabesasesaeesbeabeenbesabeeabesneesaeesbens 29
BEXPRESSIONSttt bbbt h et e b e b e s e e b e e he e bt et e e e e e se e b e sbeebeene e e s 30
8.1 PRIMARY EXPRESSIONS ... ceeitieitieitieieeteesireesesaneeenteesseesseessessssnsenseesseessesansesnsessseessessmnseensesssesssessneeans 30
S I 00 A 1 8 £ TS =YL o o S 30
8.1.2 1dentifier REFEIEINCE.c..e ittt bbbt ne s 30
8.1.3 LIteral REFEIEINCE. ... eoee ettt bbbt e et bbbt ne e e e 30
8.1.4 The GrouUPiNG OPEIALO......ccueiueeueeeerie e stesiereeee st e steseesbesse st e seese e beseesbesbesaeessessebesbesbesaesaeesseneeneas 30
8.2 POSTFIX EXPRESSIONS.cutteteeiueteteateesteaesiee s et aseaseesseesaeeassesseesseesaeesaseanseesbeesaeessesesneeseesseesnnesnneans 30
8.2.1 PrOPEITY ACCESSOIS ... ceueeureeureeuterieesteesteessesaseaessseesseasseaseaasesaeesseesbeeaseaaseaaessasesseasseasesnsesnnesseessens 31
8.2.2 Postfix Increment and Decrement OPEratorsS.coouverereriereere et seeeas 31
8.2.3 THE NEW OPEI ALKeeeeetereeierte sttt sttt sttt b e et b et b e st s bt s b e eb e st e st e b e s b et e b e st eneebenbeneens 32
8.2 4 FUNCHON CallS.....cceiiieiciiecteeteee ettt sttt ettt st e s b e sbe e sbeebesaseeaeesbeesbeenbeenbeeneesaeesanes 32
B.3 UNARY OPERATORS. ...cctteetteiuereteeteestesseseeaseasssassesssesssesaseentsesssessssssnseenseessesssessnsmsessesssesssesssssnseensenns 32
8.3.1 TNE ElELE OPEI L0c.ei ittt sttt sttt e b bt et re e e sbe b e sbe e st e se e s e beseesbesbesaeeneeneeneas 33
8.3.2 THE VOIT OPEIALONviieeiitirieieete sttt sttt et b et b e et b et s bbbt st et b b e st b et eneens 33
8.3.3 TN tYPEOT OPEIALOLcviititeeieeiee ettt b e bttt e bbb be et e ae e e et e sbesbesbesaeenee e eneas 33
8.3.4 Prefix Increment and Decrement OPEralorS........coeveeerereriereerie s seesiese e seesee e sre e seeeas 33
8.3.5UNArY + @Nd - OPEIALOIS.......cueitirieiirierieierte ettt sttt ettt b e et b bbbt b e b e e b e b ene b sbeneens 34
8.3.6 The BitwiSe NOT OPEIALON (=) «.eeevereereerteriereeiereesiesiestestesieeeeseesteseesbesse st eseeseesteseesbesaesseessesseneas 34
8.3.7 LogiCal NOT OPEIALOr (1) ceeuervirieerierieesierieiste sttt sttt st sb st b e s be st enas 34
8.4 MULTIPLICATIVEOPERATORS. ...ceuttiutteteeteesseesuessenssaseassesssessnssassesssessssessnssanseensesssesssesssessssmmensesssessnes 34
8.4.1 APPIYING the™ OPEIALOTcueiueeeieeiie ettt sttt et bbbt ae e et e sbe b e sae e eseeneeneas 35
8.4.2 APPIYING thE/ OPEIALOTceeueitireeierterieeete ettt b e bbbt bbb eaas 35
8.4.3 APPIYING thE Y0 OPEI IOeiueeuieeiie ettt sttt e e sb e bt st ae e e e besbesbesaesaeenee e eneas 35
8.5 ADDITIVEOPERATORS. ...t ettettesuttastasteesseaesseesssaseaseesseesaeeasssaseessessaessaseaaseabessaeessmsesneeseessessnnesnseans 36
8.5.1 The SUBLraction OPEr GO (=). ..uieerereerierieerie sttt b e b e st a e be b enas 36
8.6 BITWISESHIFT OPERATORS.....cuttttteteesteesseesetaesseesseasseessessnssanseessesssmessnsessseensesssessessnseensmsessesssessnseanes 37
8.6.1 The Left Shift OPErator (<<)ittt bbb enas 37
8.6.2 The Signed Right Shift OPErator (33) .iceiiieiiiie et 38
8.6.3 The Unsigned Right Shift OPErator (3>)....c.ccovecieiieiciseiee e 38
8.7 RELATIONALOPERATORSuttettteittesseeesteaeeammsessseeasesanseesseessesssesssssessesssessssesssesssesssesssemansssnsesssessessns 38
8.8 EQUALITYOPERATORScuutteiteeeitteeeteeesseresssesesseeassseeaaseeessesseaasesssssesssesesssssssssesstnsessssseesssesesssessns 39
8.9 BINARY BITWISEOPERATORS.cuttitteteeteesteessessinseesseessesssesssesasseessessssesssssanseensesssessseessessssmmensesssessnes 40
8.10 BINARY LOGICALOPERATORS. .. .ceiuttiutteuteeteestessseesassensesssesssesssssessesssemsssessnseessesnsessseessessssssmsesssessses 40
8.11 CONDITIONALOPERATOR(25) terterterteteueetestestesteseeisestesteseeseesessessesaesseseessesbesbesaessesessestesaessensessessessens 41
8.12 ASSIGNMENTOPERATORS.....cuttiitterteesteesseesetaesseesseessesssesanssanseessessssessnsessseensesssesssessnseensmsessesssessnsesnes 41
8.12.1 SIMPIE ASSIGNMENT () weveiterieeierteie ettt b et e e et b e b e b et e ae e e e besbesbesaeeaeenee e eneas 41

8.12.2 Compound ASSIGNMENT (0T) c.veeeriereerterierieeie sttt ste st see e be e sbesae st eae e e ebeseesbesaesneeneeseeeas 42

8.13 COMMA OPERATOR()) teuveeureeiteeiureaueeeseasseesisesssesssseasseesseessesssssssssesssesssessssssssesssesssesssemassesesssesssesnns 42
LS IS LI NI =AY N S 43
0.1 VARIABLESTATEMENT ..t tuttetteittestt et eteesiseesaessaeeesbeeabeesaeesaesassat e b e e saeesheesmneeabeesbeesaessraneeareenbeesreesnneans 43
0.2 EMPTY STATEMENT. .. .ttettiittesteeteesteesteeteeessseesseesseesaeesaeeeaseaeseesseesaeeaaseeabeebeesaeesanteeaseenbeesseesanesnneenseend 44
0.3 EXPRESSION STATEMENT ...t iuttetteittesteesusesseasssessaeesssesasessseesseassessssreasseesseesaeeessesssessseessenssnsesnsesssessseees 44
0.4 THE I STATEMENT. ...ttt ettt ettt ettt sttt ae e st b e e e sbe b e et st b e s ae e be s b e e aeeabesheeae e besebeeaeeseeebe e b e nbeeneennentas 44
O.5 I TERATION STATEMENT S ..t itteiteesueesuteeureasteeessessuetssseaaseesseesseaaseesanseeseesheesaeeaasesaseeaseessnsssasesnrenssessnnenns 45
9.5.1 ThEWhIIE STAEMENTeeiecieee et e et re e esa e e e beseesrenreeneeneenennees 45
O.5.2 TNETOI SLALEIMENT ...ttt e e bt bt e et e b bbbt enee e eneas 45
O9.5.3TheTOr..iN SALEMENT....c.ei e e e e et e sae e sreeneeneeneenees 46
9.6 THE CONLINUE STATEMENT: c..tteutetesteeseeeesteeseemseesseesseseesseessessssseessssssessessssssessssssessesssessessmmessessesseensesses 46
0.7 THE DIEAK STATEMENT ...ceitiiieieiteeteesiese e eesteeseeseesteeseeseessesseesssssseeseessesseessessesseessessesssasssessnssessenssennens 47
0.8 THE FEIUIN STATEMENT. ..eeutteteeittesteesteeteesireessessneeenseesseesseessesassnsenseesseesseeensesnsesssesssessmnseensesssesssessenans a7
0.9 THE WItN STATEMENT .ttt tteeeeie st ete st st e tesee e e eesseeseeseesseeseesereeseene e teeseeseensenneensessneesennsesseenseseenneenses 47
1O FUNCTION DEFINITION. ...ttt sttt st e e bbb i b e e e neese e besbesseeneenseneans 49
LT PROGRADM ..ttt b et h et s e e s b e s bt sheeb e e Rt e h e e e e s e beeheeh e eheehe et e b e nbesbe ke sbeebeeneennennens 50
12 NATIVE ECMASCRIPT OBJIECTS ... oottt sttt st b e s se s see bbb sbesaesneennens 51
12.1 THE GLOBALOBJIECT ...utteuteesteesteesteesseessreesseessesssesssesanssansesssessessesnsesssesnsesssessnssanseenssesssesssessnseensesnsens 51
12.1.1 Value Properties of the Global ODJECL...........cccvirrinire e 51
12.1.2 Function Properties of the Global ODJECL..........ccccciririiiereere e 51
T2.1.2. 0 @VAI(X).uereueereneeuereete sttt ee ettt bk bR R h R R b £ R R R R bRt n et a e r et nb e b
12.1.2.2 parselnt(string, radix)
12.1.2.3 PArSEFTOBL(SIITNG). .. vereeteeeierteieeteee ettt b et bttt b et b et e b et e et r et e et
12.1.2.4 €SCAPE(SLIING). ... vuevenerrereetirieieetee sttt sttt ne et nee s
12.1.2.5 UNESCAPE(SIING)- .. veveverereineetineeresreee ettt
12.1. 2.6 ISNAN(NUIMDET)....c.eeuiietiiteet ettt bbbt b e bbbtk se b et b et b et eb ettt nn bt e
12.1.2.7 ISFINITE(NUMDE)ceeeeteeeet bbbttt b et bbb n et nes
12.2 OBJIECT OBUJIECT S tteutieiteesueraneeesteessemessesssesanseassessseesaeesssssmnseessesssesssessssssssessseensesssnsesssessseesseessessseesnses
12.2.1 The OBJECE CONSITUCTONc..eiiiiiiiieiesie ettt ettt st bbb 51
12.2.1.1 NEW ODJECEIVAIUE). ... vttt sttt sttt b e bt s et bbb e b b anan 52
12.2.1.2 NBW OBJECH()...vvoveerveecveeeeesssessesisssssssessssssessssssssssssssssasssssssssssesssasssasssasssssssssasssanssasssesssanssasssssssmanssnns 52
12.2.2 Properties of the ObjeCt CONSLIUCLON..........coeirerieisiereee e 52
12.2.2.1 OB ECEPIOLOLYPE. ...cvereetieeteeteieet ettt sttt ettt bbbt b e bt e bt st b e bbb b st b et b et n et nee 52
12.2.2.2 ODJECEIENGINovoveeeeeeesee e ss s s ss s s st st ss s s ss s sss s s s anss st ssenssanssenss s seas 52
12.2.3 Properties of the Object Prototype ODJECL.........oociririireee e 52
12,23 L EOSEING() +-vervevereenereeeeientese sttt et ettt ettt b e sh et s bt b st b et nb e e bbbt b s b e R e e e bR Rt e st bt n et n e 52
RV 11 L OO 52
12.2.4 Properties of ODJECE INSIANCES.........coviiriiereisereee st 52
12.3 FUNCTIONOBIECTS. .. e euteeteesteesueeeseeensemesseesseesseesnsessssessesssesssnsesssessseessesssessnssanseensesessessssssnseensesnsesssens 52
12.3.1 The FUNCLION CONSLIUCLONeeiiieieieeeeeeeeeee e see et e e eeesae e sresre s e enae e e sesaesressesneeseeneensenes 52
12.3.2 Properties of the FUNCLION CONSLIUCLON..........ccuieieirierire e s 52
12.3.3 Properties of the Function Prototype ODJECL..........ccoviriiereiresese e 52
12.3.4 Properties of FUNCLION INSLANCES.........coeiiirieireneeese ettt st 52
i AN o Y N A @ =N =l o = TR 52
12.4.1 THE AITAY CONSIIUCTOL.......ecveieiiesiesteeeeeeeeseeeeseesee e saesseeeesaessessesaessessesseeseeseensesaesressesseesesnsensenes 52
12.4.1.1 new Array (itemO, ITEMIL, . .)ittt et e nn e enen 52
12.4.1.2 NEW ATTAY (LBt et e ek bbbt bbb e bt ettt b et bt e bt et e 53
L2 4. 1.3 NEW ATTAY () vereererreuesteneese ettt etttk e st b et b e seb e h e bt bbb bbbt b et e b et bt e b e b st b 53
12.4.2 Properties of the Array CONSITUCTON.........coiirrirerieenereeie ettt 53
12.4.2.0 ATTEY . PIOLOLYPE.....cveteteeteiterteet sttt sttt ettt es e e et s e s e et e b e s r e st e e bR e e b e ere e b e ebeenenbe e bt eneneeneneea 53
12.4.2.2 ATTAY JENGLN.. ...t b b Rr et bbbt et 53
12.4.3 Properties of the Array Prototype ODJECL...........cooreriririnerre e 53
L2 4.3 L EOSEING() +-vevevereerereeeetestesest ettt s ettt sttt et e bt s bt b st b et eb e e ke bbb e st b e R e e eh e bt e n bt n et s 53
RV 11) OO 53
12.4.3.3 JOIN(SEPAIGIOI). ... euveueteuireeseeteseetesiee st sttt s e st se st se st se ek et e bt e b e st e b e st eb e e b et e bt ne et et e b e s e bt e st nn e st e 53
L2434 FEVEISE(). v eveueeeeeete sttt ettt ettt sttt ekt b e bbb e b e bR bR s R kR R bRt e Rt b etk ene bt nn s b 54

128,35 SOM() e revvvveveeeeree e eeeeeeseeeeeeseseeseeesee s seseseoe s es s e s e e s eeeeeees 54

12.4.4 Properties of Array INSLANCES......c.ccciiiririieree ettt sttt st bbb 54
12841 [[PUL] cvvooveoeeeeeeeeeeeeseeeesees e eessseesees s esese s ee s ses s es s ee e ses s seesseesssesssesssnssssmeneesensees e 54
12842 1ENGN. ... eeee e es e 54

12.5 STRINGOBIECT S teuteuteiterieeresseesesritssee e sseesse s st sheeseeseesb e et s e b e ea s e s e eb e e e e beehe e s s ann e sae e resbeennenrenneenrenreas 55

12.5.1 The SIHNG FUNCHION. ..ottt bbb bbb 55
12.5. 1.1 SENGIVAIUE).ecveeeeeiteiete ettt b bbbt et ne ettt b e bt bt n e 55

12.5.2 The SIHNG CONSIIUCTOciviiiiirieieti sttt st sttt bbbt nb e 55
12.5.2.1 NEW SENGIVAIUE).....c.eetieetiiteiiteeeie ettt sttt b e bbbt b et e b e b e enan 55
12.5. 2.2 NEW SENG() -+t evereremerteieuesiett st sttt et st s et e e er e bt e bt se st b e e b e e e bt et st b st nb et b et b e s st b e st b 55

12.5.3 Properties of the SIriNg CONSITUCIONc.oriirerieerereee e e 55
12.5.3.1 SEING.PIOLOLYPE. . vttt ettt ettt ekt s bt s bt b e e bt s e bt ne st b et e bt b et e b et b et et e e b s 55
12.5.3.2 SENGLENGEN ...ttt bt 55

12.5.4 Properties of the String Prototype ObJECL..........covririririreree e 55
L1254, L EOSEING() +-vtrveuereenerreeetestesest ettt es ettt sttt e e bt s ehe b st b et sb e ek e e bt b e st b et R e e eb et s e e st bt n et e 55
12.5.4.2 VAIUBOF()vvoovveoeeeereeeseeeeseeseoeeeseesessssessssss s esessesoesses s eesssses e s s s ssesess s sessnssssessssessssnsssssssrmsnsessnssens 55
12.5.4.3 CRAIAT(OS). ... e evereeuesteiete sttt sttt etttk st bbbt seb e st e bt bbb e h s b et b et ne et bt e bt b st b b 55
12.5.4.4 indexOf (SearchString, POSITION)........curieirieirieiiieseees ettt 56
12.5.4.5 lastindexOf (SearchString, POSITION).cceiiiririeiireeerieeireee ettt b e 56
12.5.4.6 SPIT(SEPAIELON).c.veueeeuireesieteeete ettt ettt etttk s bbbt b et bk re bt ettt b et b e e bt et e 57
12.5.4.7 SUDSEFINGSIAT). ...t evevereeiiree ettt ettt b et eb ettt ettt b et b et ne et e 57
12.5.4.8 SUDSLIING(SLAT, ENA)....ccvieieiieeiiriee ittt br ettt 57
12.5.4.9 TOL OWEICESE.cveveteeieeieete ettt ettt ettt ettt r e et et R Rt ne e bRt s ae bt et ne s e bt et e e e nenr e 58
12.5.4. 10 TOUPPEICESE.c.veverereeeteite sttt ettt sr e s s e e e e R e s et s e e e R e Rt nb et e b e bt en e b e bt e neeee e e e e e e nen 58

12.5.5 Properties of SIriNg INSLANCES.........coviiirireree ettt st bbb 58
200 I = oo 11 TS 58

12.6 BOOLEANOBJIECTS ...ueitiiteeuresteeteessessessseessessesssassesseessessesse e sesaeaseeas e s st eanesaeese e s e sbreeseesreareenenresneenens 58

12.6.1 The BOOIEAN FUNCLION........ccuiieiesieie ettt ettt ne e e saesrenreeneesa e e eneenes 58
12.6.1.1 BOOIEAN(VAIUE) ...ttt etttk me et e ettt b et bt n et 58

12.6.2 The BOOIEAN CONSLIUCLOcveiieieseeeieeeeeeeeseeste e stesseeeeseeseessessessessesseeseessesseseessessesssesesnsensenes 58
12.6.2.1 NEW BOOIEAN(VEIUE).......c.eeviieiirieiitee ettt ba e et e b ene s 59
12.6.2.2 NEW BOOIBAN() ...ttt etttk bbbkt b et bt ne et 59

12.6.3 Properties of the Bool€an CONSLIUCLOL...........cccuierieerieire e 59
12.6.3.1 BOOIEAN.PIOLOLYPE. ...ttt sttt ettt eb et b e bbb e bt mr st a et nb e et e b b nennen 59
12.6.3.2 BOOIEANTENGN. ...ttt e 59

12.6.4 Properties of the Boolean Prototype ODJECL..........ccvviriniree e 59
12.6.4. L EOSEING() +-vtvevereerereeeetertesert ettt ss ettt sttt st b e bt s bt b st b e st eb e ek e e bt b e bbb e s eb s e st ne s e bt n et n e 59
12.6.4.2 VAIUBOF().voovveoeeeeeeeeeeeeeeeeseoeseeeesessesssssssssssseeessssoesses s eessssesssses s s ssesesssssesssssssessssessssesssssssrmsesensnssens 59

12.6.5 Properties of BOOIEAN INSLANCES.........coriririeririrereee et 59

12.7 NUMBER OBUIECTS e cutetterteeutesseeseessesiseessessesseessessesseesssabesss e sesseesseare s e enbeshesas e b et sneennesreareennesreennennens 59

02 0 R 1 o AN 1W = g ot o o S 59
12.7. 1.1 NUMBDEN(VAIUE). ...ttt ettt etttk bbbt btttk e bt ettt b e bt e bt et e 59

12.7.2 The NUMDEr CONSITUCLO.......cveiiieieieeeieeeeeiee e seeste e see e e e eeesee e saesressesseeseeseesessessessesneesesnsensenes 59
12.7.2.1 NEW NUMDEN(VAIUE).......eueetiieeiiteietee ettt ettt sttt h et bbbt et et e b e st 60
12.7.2.2 NEW NUMDET(). .tttk e bbbttt ettt b et b bt et e et 60

12.7.3 Properties of the NUMDEr CONSLIUCLON.........c.ccirerieirieriee et s 60
12.7.3. 1 NUMDEE . PIOLOLYPE ... ettt ettt b et b etttk b e bt ses et b et b e et n b e b e anen 60
12.7.3.2 NUMDELTENGEN. ...ttt b et b e bt e et e 60
12.7.3.3 NUMDBEr.MAX VALUE ..ottt sttt st be s seese et e s e e e s enseneanean 60
12.7.3. 4 NUMDBEIIMIN_VALUE ...ttt bre bt se e se e s esaeset e sensessensenteseeneen 60
12.7.3.5 NUMDBEIINGN......ccoiiiiieece ettt st te st e b teebeeb e ses e e teeseeneeseeseeneeneeseensensensans 60
12.7.3.6 NUMDBEr.NEGATIVE_INFINITY .ottt a e e snsenean 60
12.7.3.7 NUMDBEr . POSI TIVE_INFINITY .ottt nsesae st nsenne s 60

12.7.4 Properties of the Number Prototype ODJECL........c.ccvviiriiiree e 60
12,7 4. LEOSEING() +vtveuereenerteeetessese sttt s ettt se sttt b e eb s ebe e b e st b e st s b e e ek e e e b b ee st b et b e s eb e st st e e bttt n et s 60
12.7.4.2 VAIUBOF()vvoovveoeeeeereeeeeeeeeeeseoee e sesses s ssssesesses e s s ee s ee s esess s essssessssessssesssssssrmsesensnssens 61

12.7.5 Properties of NUMDEr INSLANCES..........coiiiiirrireree e e 61

12.8 THEIMATH OBUIECT .. cueeititeeieesteetee ettt e e sttt e e b s she s s r s bt e snesae s be e e e s bre e e e nneer e e e e nreeneenens 61

12.8.1 Value Properties of the Math ODJECL..........cooeiriiiinee e 61
R T St TR P USSR 61
R 20 2 T A O ST USSR 61
12.8.1.3LN2

12.8.1.4 LOG2E

T2.8. 1.5 LOGILOEcoeiuiiieeiteie ettt ettt r et b bt h bt h e h e bt b e st st e e s n e R e r e e n R nnnennenreene s 61
12.8.1.6 Pl
T2.8.0.7 SQRTL2. ..ottt et b e bt et bbbt b e e he e st eae e e e e e e s n e e e n e n e er e nn e re
T2.8.1.8 SORT 2.ttt b bt b et h s et s e e e Rt E R Rt R e R Rt Rt Re Rt E e ene et enean

12.8.2 Function Properties of the Math Object
L2.8.2.1 @0S(X).vueuevrenerereeterenereste st sttt bbbt re b bt bR e bRt £ bRt £ bRt e bkttt et b
12.8.2.2 @C0S(X) ..euveuerenerrerieiereeieseeesneeneeie e
12.8.2.3 @SIN(X)...evenerreeererieiireeeseeeesee et
L2.8. 2.2 @EBN(X). e veueerereenertesestesee i et sttt b et b et h et h et ek e bR R E R R e b £ Rt R bR R b e R e Rt atnr et e e b
12.8.2.5 atan2(y, x)
L2.8.2.8 COII(X): vttt etttk b b h bR R R bRk R b e R e n e Rr et et b e b
12.8.2.7 COS(X) vvervrmerveneenernenenns
12.8.2.8 XP(X):eveveneereneererienirneesiemesieseeie e
12.8.2.9 floor(x).
12.8.2.10 log(x)
T2.8.2. 11 MBX(X, Y)rrverereenereeneatensesessestsssesesses e et seesestes e be e aseaesehe b es e s e e st nb e s e e b e s eb b e Re b e R e e eR e e bt e bt b Re e 64
12.8.2.12 min(x, y)
12.8.2.13 pow(X, Y)
12.8.2.14 random()
12.8.2.105 FOUNO(X) et teveeveereeneeseeseeseeseeseeesesteseessessessestessesseseesnsessessssseesessesseesesssasessssesssnsensessensensessensensesssessessessens
L2.8.2.16 SIN(X)-euveuevrenenererteresereseesieseessasesesessssesesesesseseseesessesesesessssesenessssesesesstsessesentsssesenesssesesensaseesesanessssesanes
B2 T Ao () S
L2.8.2. 18 TAN(X) +.veuvrvrerenereteresereseetemseesestesesesesbebesesessebese e se s b b e st s e b b e Rt ee bbbt b bRt e b bRt E bRt ettt n e e b nn
12,9 DATE OBUIECTS. . ttteueertieteeeesteaseessseasesseessessesseessesaeeseeas e sese e s e seeeh e e s e b e eh e e ae e e b e e ane e b e ehe e e e nesneennenrenneennres
12.9.1 ThE DAt CONSLIUCTONecveeueeeiesiesieseeseeeseeieeteseesteseessesseeeesaeseessessesresseeseeneessensesaessessesseesessensenes 66
12.9.1.1 new Date(year, month, date, hours, MiNUELES, SECONAS)........ccvveieiireneiiieee e 66
12.9.1.2 new Date(year, month, date, hours, MINUEES)........cccooiieiiienesie e 66
12.9.1.3 new Date(year, month, date, NOUIS).........ccucirieieieieeesese et eeseens 66
12.9.1.4 new Date(year, MONH, JaY)........coiiiiiriiirietiie sttt se b 66
12.9.1.5 NEW DALE(TIMEV BIUE)......ccveeeeieeiireeeete ettt ettt ettt et et se b re e 66
12.9.1.6 NEW DALE(SIITNGV BIUE).......c.eruiieiirieiesteet ittt bbbttt s b b nnenens 66
12.9.0.7 NEW DEEE() ... vveueeteteieesieteie sttt ettt b ettt bbbt bbbt b etttk e bbb bt e 66
12.9.2 Properties of the Date CONSITUCTON.........ccuiiirirerieenieresie st 66
12.9.2.1 DAL PIOIOLYP. ...c.veveeereeetesre ettt es ettt sttt ettt ee s s s e e b e b e se e ne e e b e nrene s ane e en e enenb e bt eneeee e b e ene e e e e en 66
12.9.2.2 DAtEIONGLN. .. .cuiuiiieiee sttt b et 67
12.9.2.3 DBIEPAISE() corvuvererererreneneresteresessmresieseseseste et st bese st sesbente s ettt be st et b b e s et b b e bRt et b et e bRt bbb s e e 67
12.9.2.4 DAEUTC(). e vveueeieteneresieteteesiesaste sttt b e se bttt e st bt b b st e bRt ettt b e st sttt et b b st s et 67
12.9.3 Properties of the Date Prototype OBJECL..........ccoireirirrereree e 67
12,9, 3. L LOSEIING() +-vervevereenereeeetereeuest ettt st ettt bttt b e bt s bt b st b e st s b e ek e e bt bbbt R e bt e st e h bt n e 68
12.9.3.2 VAIUEODS().uvvvvenerieieieresesie etttk et skttt bbb bbbttt e e 68
12.9.3.3 getDate()

12.9.3.4 GEID@Y().-verevrererererieieieserieieine sttt ettt
12.9.3.5 GEIHOUIS(). ... vveveueeeeeetei ettt bbb bbb bbbt bt eb ettt e ne et
12.9.3.6 GELIMINULES() ...ttt ettt b et b bbbt et e et ettt b s bt bt e
12.9.3.7 GEIMONEN(). ..ttt b e bbb
12.9.3.8 GEESECONAS() .+ -vvervemerenerueriettree et sttt sttt b ettt sttt b e b e bbb e bt s eese et ne ettt b e e bt b st s
12.9.3.9 GEETIME(). 1.ttt ettt bbbkt b et bbbt era bbb b ettt b et n bbbt ne e
12.9.3.10 GELY EBI()..rvuveveneetereneresieteseseesestesese st b be st bt et be st s e st e bbb b b st bRt e bRt e bRt bRttt et
12.9.3.11 SEtD@E(AAYV BIUE).......cueviieeieiiiririeieie ettt ettt ettt bt net s bbbttt nbenn
12.9.3.12 SEtHOUIS(NOUISV @IUE)....... ..ttt sttt ettt bbb e nrene s
12.9.3.13 setMinuLES(MINUEESY Bl UE).........cuerieuirieiriiietesre ettt
12.9.3.14 setMonth(MONtAV EIUE).........c.eiuiiiiirieiriesreese et
12.9.3.15 setSeconds(SecondsV alue)
12.9.3.16 SELTIME(LIMEV BIUE).......ccviiieiieiirieeetet ettt ettt b e bt e ettt e bt e st b e b
12.9.3.17 SELY AN(YEAIV BIUE).......c.cvieeeieeii sttt ettt bbbttt ettt b et s b e re e 68
12.9.3.18 tOGM T SEIING(LIMEVAIUE).eveuiitiieiiiciereete ettt bbbttt et eben 68
12.9.3.19 toL OCAl €SHING(LIMEV @I UB)......c.eeuiieiirieiriieeie ettt ettt et nee b 68
12.9.4 Properties Of Date INSIANCES.........cciviireeieeesese et s eeaesees et seeseesee e saesresse e eseeneensenes 68

LB ERRORS ... e e 69
TAREFERENCES....... oo e s 70

APPENDIX A: OPEN ISSUES ..o e 71
A.1 BREAK AND CONTINUE LABEL STACKS....ccittiitiiteiteiesintesie st sesse sttt sse st s sse st st sas s essesre s 71

Vi

A.2 TOSTRINGAPPLIED TO ANUMBER TY PE .. uuuttittiiiieeiiieiiisssssemisseeeiresessssesssssssssssssessesessssssssssssssssssseeses 72

A 3 H+ AND = OPERATORS. ..ceeiiitteieeeetteeeeiitsrreteesessstesessaseeeesaasteseeaataassseeesassberessasssessssasssbesessasssessesassrnes 72
A4 INFINITY ANDNAN LITERALS ..ottt ittetiiitieitieetessstst e tesstessaesssesasbesstesssessssesssssstessaesssesssessssesssessessesans 72
AL STRINGINDEXES .. uteiiiiiteieeieiteeeeeesiteeessesstersesesssseessssbsseatessassssessaasbeseesaasssesessseasteseesasssssesssssneesssnsrens 72
A.6 CONVERSION BETWEENCHARACTERS ANDNUMERICALCODES......ueiiiiiiiieeeeeerreeeeeeeeveeeeeesnvresesenneens 72
APPENDI X B: PROPOSED EXTENSIONS.......ccoi ottt ettt et ettt s bbb te e e snas 73
Bl THE CLASSSTATEMENT «.eveteeteeseeteeeeeeeeteseeeeeseeesseseseseesseeeseeseessesseeaesesesseeeseeseaeesseseesereneeeseeneeeeeseens 73
B.2 THE TRY AND THROW STATEMENTS w..vvveeteeeeesteseessesseseesseseesssssesessssesssessesasesssssessesssssessesesssessssssesons 73
B.2.1 TRE Y STALEMENTcoorveeeecveeecee et seestes s s ss e s et s s st st sns st sensnssessnean 73
B.2.2 THE THIOW SEBEMENT ...ttt et ee e eeeseeeeteeeeeteeeeseeeeeeeeseeeeeeeeeeeseeeeseeeenseseneeseneeens 74
B3 THE DATE TY PE ¢ oot eeeeeeee ettt eeeetee et ee et et e e e e et et et e e eeee e e et et e e et et e e et e e et ee e s et et e ee et e s eeee et seeeeseeneeeasenan 74
23R T o T\ =TT 74
B.3.2 ToDate Applied t0 the SIHNG TYPE.....oiiieiieeeese ettt s 75

B IMPLICITTHIS ettt e et e et eee et eee e e ee e e s e ee e seee et eeeeseeeeaeeeeseeense s s mesaes e eesneesseeanaeeaneeeneemeeees 75
B .5 THE ST ST ATEMENT 2ottt ettt e et es et eeeeeseeeeseeeses s eseseseesesseeenseseseseemiesenseeeseseaneees 75
B.6 CONVERSIONFUNCTIONS.cutiiiiiiieeeeeiiteeeeseeeetreeessesbseeesessbeeessesstsseeasessteeeesansssesessassseseeesensssesessnsenes 76
B.7 ASSIGNMENTONLY OPERATOR(1=)L..uiiuiitiiierieeeieste st sieeie sttt st s sttt s bttt et 76
B.8 SEALING OF ANOBUIECTZ ... ctteieeeetteee e e eteeee et e seateeessesbaeeesassbaesesesaisssseaseabsesesensssesessasssstesesenssreeessnssnns 76
B.O THE ARGUMENTSKEYWORD'evteeeeeeeeetes e seesoeeseeseseesseeessessssessssessoessssessssessssesssssaseesssessmesssessseees 76
B.10 PREPROCESSOR.....ueeeiiiitteeeeeitreeesiiiateeeesasssesessassesssasssessssessssssessssassesessasssessmtesssssesessasssessssesssseesssns 77
B.11 THE DO.WHILESTATEMENT . ..tetiittieiitteeitteeeteresireeeessesesssessbeseassessasesssessesssssesssstessasesssnssesssmsessssseesans 77
S 2 ST NN 2 A O =l R 77
APPENDIX C: PEOPLE CONTAGCTS. ...ttt ettt ettt et st s ste e sve et sabesatssnaesbaesbeebesnsesnessanssnes 78
APPENDIX D: RESOLUTION HISTORY......oooiiiticie ettt et sttt et sts s snaesbaesbeesbesbesnnesaeesnas 79
[L N E N 220 STt S TSR 79
D 0 N AV 0 (oS 7= ot OSSPSR 79
D12 KEYWOITS....c.eeueetiieieieste ettt sttt sttt st st b s bbbt b e bbb et bt bbb e e e b s bt b e bbb ee 79
D.1.3 FULUr@ RESENVE WOITS........vieeeieieiie ettt ete st s e st sae s sbae s saae s sabe s saeeesnbessnseesneessnnessnnes 79
D.1.4 Octal And Hex ESCape SEQUENCE ISSUE.........oviuirierieierieresie sttt sttt st 79
I ST 0 40T (Y 79
D.1.6 HEX N TONUMDET........eiiitieitie ettt ettt e e st e e eee e st e s et e e sbt e s saae e sbbessasessabesssseesbeeesssessneessnseesnres 79
D.1.7 Attributes of Declared Functions and Built-in ODJELS..........cccocivenriinennenecseese e 79
D.1.8 The GroUpPiNG OPEN G0Ncceieeierierietestereeie sttt st seste st se st sbe et sbe et sbe e b sbe e b sbe e sbesae e sbe b e ees 79
D.1.9 Prefix Increment and DeCrement OPEralOrS.......covveererererereeesenese sttt s 80
D110 UNGIY PIUS.....cctiiteieitsie ettt sttt sttt st be et b e ettt bbbt et b et et b ettt 80
D.1.11 MUILIPliCALIVE OPEI BLOFS.....c.eeuerieietesiereeie sttt sttt sttt st sttt sttt bbb b b 80
D.1.12 AQQItIVE OPEIALOIS......eueeeiitereeiesiereete sttt st ettt sttt st be sttt s be et sbe e besbe e b s be e sbesbe e sbe st e es 80
D.1. 13 LEft SNt OPEIALOT....c..eeetiiterieiesiereeie ettt st st b et s b e bbb bbb 80
D.1.14 Binary BitWiSe OPEIralOrS.......ccevuerieirieriee sttt sttt st bbbt b 80
D.1.15 ConditioNal OPEIaIOr (2 ©) weoueseeereerereeieeieste ettt st e e s be e sbesbe st eeseebesaesbesbesaeeseeneeneenes 80
D.1.16 SIMPIE ASSIGNMENT. ...ttt b e bt it eese et e sbesbe s bt et e e e ssebesaeebesbesaeese e e aneenes 80
I O A 1 0 To Y (o T T TS = 1= 1= | 80
D.1.18 ThETEIUIN SLALEMIENL ... eeiitie ettt ettt et e e e re e s be e sre e sabe e sabeesabeesaseesabeesaseesabeesnseesares 80
D.1.19 NeW PropoSed EXLENSIONS..........cciiirireeeeie ettt ee st see b b e e se b e sbesbesae e e e e eneeses 81
D.2 JANUARY 24, 1997 ...ttt e e e e e ettt e e e ettt e e e e s e st e e e e e eaaseee e s saabeeeseassbereeeeesntaeeesannseeeesannnens 81
D.2.1 ENU Of SOUMCE....cuvieiitiectee ettt ettt et s e et e s be e st e e sabe e sabeesabeeeabeesabeeeaseesabeesnseesabessnseesars 81
D.2.2 FULUr@ RESENVE WOITS........vieiieeietie ettt ettt et s e s te e st e e ente e sabe s saneesabeesnneesabeesnreesares 81
D.2.3 WWNITE SPACE.ecueeieeiterteeieeieee ettt sttt s e e bbbt b e et e aeeee e besbeeb e e bt e ae e e e e e beseeebenbeeaeese e e entenes 81
D 0] 111011 | £ SR 81
DI S o (=0 (=t NP 81
D.2.6 NUMEIIC LITEIAIS.....ccctieiiee ettt ettt et et e et e e st be e s are e sab e e sabe e sabe e sabeesabeesnseesabeennseesares 81
DI s (] g To I = = S 81
D.2.8 AUtOMALiC SEMICOION INSEMTION......vieiciieiieeciee ettt ettt re e e e s re e sabe e sareesabeeenreesares 82
D.2.9 Property ALLITDULES.co.eiiieiie ettt bt eese b e b b aeese e e et ee 82
D.2.10 TOPTIMULIVE. ... uiiitee ettt ettt e et e st e e s b e e sabe e sabeesabeesabeesabeesaseesabeesaseesabeesnseesabessnseesars 82

vii

[20 5 R o\ [0 oo T TR 82

D.2.12 WHITE SPACE. ...ttt ettt sttt sttt sttt st b ettt b et b e st b e bbbt b e b et b s b et et b ettt 82
D.2.13 ToNumber Applied t0 the SIHNG TYPE......ciiiiirereere e e 82
D 2 o 1S 1 1 oo OSSPSR 82
D.2.15 Postfix Increment and Decrement OPEratorS........ccovereeerereeerereniesierese st 83
D.2.16 The tyPEOf OPEIALONo.eeeeitereetesie ettt ettt bbb et b e sttt b e 83
D.2.17 Prefix Increment and Decrement OPEralorS......c.ccvvvereeerereresenesesie st ees 83
D.2.18 MUILIPliCALIVE OPEI BLOIS.....c.eevirieeeiesieieie sttt sttt sttt st st st b e sttt b et be bbb 83
D.2.19 The SUBLFaCtion OPEIALOL.........ciirieirieriee ettt st st b e sttt a et sbe bbb 83
D.2.20 The SUBLFaCtioN OPEIALOL.......cciirieirierieie ettt ettt st et sttt st be bbb e 83
D.2.21 Applying the Additive OPErators (F, =) ..ot e 83
D.2.22 EQUAITLY OPEIBLONS...c.uieeeiitereetesieseete st sttt sttt sttt se bt sttt bbbt b e st ebe s be e et e st be st e 83
D.2.23 TOPIIMITIVE USAJE.......eeeiiitirieiesiereete sttt st s bbbt et sttt 83
D.2.24 Binary LOGICaAl OPEIatOrS......cuiuiieiirierieie et sttt sttt st st st ettt bbbt b 83
(D RCIN L N[U N 22 3 N 1 S 83
D.3.1 MUIILINECOMMENL.ctiietiitiieeiesie ettt sttt sttt st sttt bbbttt st s b et st 83
D.3.2 SNQ LIEIAIS.....ciuiieeiiierietiste sttt et et bbb et b e ettt 83
D.3.3 Automatic SEMiCOION INSEITION ..ottt bbb 83
DR g Toy W o= G Y] o= SO 84
D.3.5 Put With EXPliCit ACCESS MOUE........cciriiiiiiiieieit ettt 84
D.3.6 Put with ImMpliCit ACCESS MOUE.........ciiiiiciiiiereere et 84
DR A 1 0 T= S (T 0T 1Y o OSSPSR 84
D.3.8 TONUITIIET ...ttt bbb et ettt b et b e bbbt eb e bbb 84
D.3.9 ToNumber Applied to the SIFING TYPE.....ccv i e 84
[20 T 0 B I] 1 2 PR 84
DR 30 R 010 1 0 72O TSSO 85
D.3.12 Execution Contexts (VariableS)..........ooeiiirriiireieree s 85
D.3. 13 FUNCHION CAllS.....iiiiiiiiieiiite ettt et et bbb et b e st benb e 85
D.3.14 The tyPEOf OPEIALOL.......ccuiitieeieriereeie sttt sttt sttt sttt bbbt b e bbbt sb e bbb 85
D.3.15 APPIYING the %0 OPEFALON.....c.cciiieieiiiterieie ettt sttt st b e 85
D.3.16 The Addition OPErator (+)...ccviieeeeiieriee e se e e e re et se e st eere st e resbe e sesaenens 85
D.3.17 RelAtiONaAl OPErALOIS.....ccuiitireeierierieie sttt sttt sttt st st sttt st b e st b e bbbt st sbe e 85
D.3.18 Conditional OPEIator (:)...cccerereeerierieesiereee sttt st st b e sttt be e bbb e 85
D.3.19 Compound ASSIGNMENE (OPT) c.veeverrerierierieeierieste sttt e e se et sbe b st e e e e e besaesbesbesaeeseeneeneeses 85
D.4 FEBRUARY 21, 1997ooiiitiiieitietee ittt s e s ar e s sr e s ne 85
D.4.1 UniCOde ESCAPE SEOUENCES.......couiitirterieeiieeeie ettt sttt ee et e b bt e e e e be e sbesbesaeese e e et es 85
D.4.2 FULUrE RESEIVEO WOTTS........oeeeieiieeeiistee ettt e 85
D.4.3 AutomatiC SEMiCOlON INSEITION......ccciiriieiirereee e e e 85
D R g o U g o= Y o= TP URRSRP 86
D.4.5 NotImplicit and NotExplicit Property Attributes Deleted............coeverieiininiieeeeeee 86
D.4.6 TOINE32 @NA TOUINESZ......ccuiuiiriiieiirieie sttt b et ekt e bbb b b s 86
D.4.7 GroUPING OpPEIALON.......eiueeueeeeiertesteste et eteeieeteseestesbesaesee s e eseessesbesbesbesbeeseeseessebesaesbesbesaeeseesanseses 86
D.4.8 SNift EXPIESSIONS....cteiteiueeueeieie et sttt ettt ettt be bt b e et e e e se e besaesbe s b e e st eaeess e beseesbesbesaeese e s entenes 86
D.4.9 Conversion Rules for Relational OpEratorS.........cocooerereeiierienere et 86
D.4.10 & & AN || SEMANLICSecueeeiie ettt st b e s b bt e e et e e b e besaeese e e eneees 87
D.4.11 CoNditioNal OPEIALONccieeeeruerterierieeieeieeie ettt sttt e e s et sbesbesbe st e eese e besaesbesaesaeeseeseneeses 87
D.4.12 ASSIGNMENT OPEI BLOIS.eeueeuiereesterteeteeteeeetesee st st saesee et eeessesbesbesbesbeeaeeseessebesaesbesaesaeeseeeensenes 87
D.4.13 Syntax Of Class SALEMENL.......c.ccciie et e ae st e s e e s teeeesaeesaeesneeseenseens 87
D.4.14 Syntax Of Try SAEMENL.........eciieiece et e s e e sre e sreeeesnnesanesreereensenns 87
D.5 FEBRUARY 27, 1997 ... oottt e s ir e s sr s sr e s n e 87
D.5.1 Gramimar NOBIIONcceiiereiiere ettt r e bbb re e b r e n s 87
D.5.2 End of Medium Character 1S No Longer WhiteSpace..........coceeererererienieenere e 87
D.5.3Meaning Of NUIT LITEral........ccvciieieie ettt st e e e sneesneereenneens 87
D.5.4 Meaning of BOOIEAN LItEralS.........c.ciiueiieiieiiesie ettt ee e e e s neenreenneens 87
D.5.5Meaning of NUMEIC LItEralS.......ccviuiieeiie ettt e b neens 87
D.5.6 Automatic SEMiCOION INSEITION........ciirieiiiiereecsere e e e 88
D.5.7 THE NUMDET TYPB. ..ttt bbbttt e b bbbt et e st e beseesbesbeeaeese e e et ees 88
D.5.8 TOSIING ON NUMDEIS.......ooitieiecice et e e s te e s te e s te e e e sneesaeesneereenseens 88
D.5.9 NEOW OPEIALON ... ittt ettt e see et e e e s ae e s b e e be e beeasesseesseesbeesaeesesneesneesaeesneanseensenns 88

viii

D.5.10 DElELE OPEIALOT......cuiiuieetirterieiestereete sttt st sttt sttt st be et et sbe et st et b s b et et s be e sbe bt be b e ee 88

BT S =0 | ot S 89
D.5.12 & & AN || SEMANLICS . ..c.eitiitireeieriereeie ettt st st b e bbbt b et nb e 89
D.5.13 Separate Productions for Continue, Break, REtUMN..........cccovriivienesceeeree e 89
D.5.14 Dead Code Is Not Protected from Compile-Time ANalySiS........covovrerrinennenenene e 89
(DN N (ot ST K L O 89
D.6.1 Reformatted the Entir€ DOCUMENL.........ccveiieerise et e e e e st ne e s 89
D.6.2 Designed a Section Outline for Chapter L1.........coociviriininne e 89
D.6.3 Defined Math FUNCLIONS.........cccoiiiiiecieeiecec sttt ae s s e ese e e eneenes 89
DAY N = Lot T O AR 90
D.7.1 Added Definition of “ The Number Value for X.........cooveveveriniennseseceeereese s 90
D.7.2 atan and atan2 May Use Implementation-Dependent Values forp, efC.........ccccovvenerieniiinnnnene 90
D.7.3 Improved Discussion of Input Stream for Syntactic Grammar............coccecererereneneneseeneeie e 90
D.7.4 Improved Treatment of LineTerminator in Lexical Grammar..........c.ccoceeereneneneneneseeneeee e 90
D.7.5 Clarify Behavior of Unicode ESCape SEQUENCES.........coereeieriiriirieniesieree e 90
D.7.6 Add Careful Description of the String Value of a String Literal.........cocooeveiiiinnenccieee 90
D.7.7 Description of Identifiers REWOrded............ccoviiiiiiiiinee et e 90
D.7.8 Table of PUNCLUBLONS COITECIEU.civeeeiiirereeitstereete et 90
D.7.9 Improved Descriptions of ToINt32 and TOUINE32..........cooiiiiirinineneeeee e e 90
D.7.10 Changes to ToString Applied to the NUMbDEr TYPE......cooiiririiereeeee e 91
D.7.11 Revised Syntax for NewExpression and Member EXPression..........c.eeeeeerere e seseseseeneenee s 91
D.7.12 Clarify Multiplicative and Additive OpPerators..........ccceeeeerererenesereeee e 91
D.7.13 Addition Operator No Longer Gives Hint NUMDEL..........cccooiriiininineeee e 91
D.7.14 Correct Description of Relational Operators..........coeeeeierenerenieneseeee e 91
D.7.15 Assignment Operator LHS Must Be POSHiXEXPression...........covvevereeienenene e 91
D.7.16 ChangeS tO FOr-iN LOOPS......c.ciutaterteruirieieeiesiestestesuesieseeeessesbeseesresbesseeeeseeseesaesbessesaessesnsenseses 91
D.7.17 Break and Continue Must Occur within While or FOr LOOR.......c.ccvereeierenineseseseeeeeeee e 91
D.8 MARGCH 12, 1997ooiiiitireeeeieer st sre ettt b st srs e bbb e e s s e bt e bt s e s et e bt n e n e s e e enenne s 91
D.8.1 Added OVErVIEW ChaPLEL........cc.oiirierieiieeieeiee ettt sttt e et e b b aeese e e e e e 91
D.8.2 More Exposition about Internal Properties...........oieiereiereneie e e 91
(DR TR BT 1 (=Y O] o = PR 92
D.8.4 Array, Sring, Boolean, NUMDEr ODJECES.........cccciiiiiiieeceeceee et 92
D.8.5 MALh ODJECL.......c.eiteeeiiiteeeieete et e r e et r et r e r e r e n s 92
APPENDIX E: LALR(1) SYNTACTIC GRAMMAR ...ttt e 93

1 OVERVIEW

EM CA Script is an abject-oriented programming language for performing computations and
manipulating computational objects within a host environment. ECM A Script as defined here is not
intended to be computationally self-sufficient; indeed, thereare no provisions in this specification for
input of external data or output of computed results. Instead, it is expected that the computational
environment of an ECM A Script program will provide not only the objects and other facilities described
in this specification but also certain environment-specifibost objects, whose description and behavior
are beyond the scope of this specification except to indicate that they may provide certain properties
that can be accessed and certain functions that can be called from an ECM A Script program.

[Additional overview to be written, including a brief overview of the data types and a brief comparison
of ECMA Script to other programming languages. May need a disclaimer to the effect that this
introduction is intended as hel pful exposition and is not a part of the standard proper.]

2 NOTATIONAL CONVENTIONS

2.1 SYNTACTIC ANDLEXICAL GRAMMARS

This section describes the context-free grammars used in this specification to define the lexical and
syntactic structure of an ECM A Script program.

2.1.1 Context-Free Grammars

A context-free grammar consists of a number ofproductions. Each production has an abstract symbol
called anonterminal as itsleft-hand side, and a sequence of one or more nonterminal anderminal
symbols asitsright-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called tigmal symbol, a
given context-free grammar specifies danguage, namely, the (pehaps infinite) set of possible
sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the
seguence with aright-hand side of a production for which the nonterminal is the left-hand side.

2.1.2 The Lexical Grammar

A lexical grammar for ECMAScript is given in Chapter 3. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol
Input, that describe how sequences of Unicode characters are translated into a sequence of input
elements.

Input elements other than white space and comments form the terminal symbols for the syntactic
grammar for ECM A Script and are called ECM A Scriptokens. These tokens are the reserved words,
identifiers, literals, and punctuators of the ECM A Script language. Moreover, line terminators, athough
not considered to be tokens, also become part of the stream of input elements and guide the process of
automatic semicolon insertion. Simple white space and comments are simply discarded and do not
appear in the stream of input elements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two colons* " as separating
punctuation.

2.1.3 The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the
part of the lexical grammar having to do with numeric literals and has as its terminal symbols the
characters of the Unicode character set. This grammar appearsin Chapter 5.

Productions of the numeric string grammar are distinguished by having three colons® : ” as
punctuation.

2.1.4 The Syntactic Grammar

The syntactic grammar for ECMA Script is given in Chapters 7, 8, 9, and 10. This grammar has
ECMA Script tokens defined by the lexical grammar asits terminal symbols (see secti@l.2). It
defines a set of productions, starting from the goal symbadProgram, that describe how sequences of
tokens can form syntactically correct ECM A Script programs.

When a stream of Unicode charactersisto be parsed asan ECMA Script program, it isfirst converted to
astream of input elements by repeated application of the lexical grammar; this stream of input elements,
with one extraLineTerminator appended, is then parsed by a single application of the syntax grammar.

(The purpose of the extra appendedLineTerminator isto ensure that automatic semicolon insertion be
operative at the end of the program.) The program is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal hontermingrogram, with no tokens
left over.

Productions of the syntactic grammar are distinguished by having just one colon ¥ as punctuation.

The syntactic grammar as presented in Chapters 7, 8, 9, and 10 is actually not a complete account of
which token sequences are accepted as correct ECM A Script programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequence in certain places (such as before end-of-line characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if an end-of-
line character appearsin certain “awkward” places.

A LALR(1) version of the syntactic grammar is presented in Appendix E. Thisversion provides an
exact account of which token sequences are acceptable ECM A Script programs without needing special
rules about automatically adding semicolons or forbidding end-of-line characters. However, it is much
more complex than the grammar presented in Chapters 7, 8, 9, and 10.

2.1.5 Grammar Notation

Terminal symbols are shown irf i xed wi dt h font in the productions of all the grammars, and
throughout this specification whenever the text directly refersto such aterminal symbol. These are to
appear in a program exactly as written.

Nonterminal symbols are shown initalic type. The definition of a nonterminal isintroduced by the
name of the nonterminal being defined followed by one or more colons. (The number of colons
indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WithStatement :
with (Expression) Statement

states that the nonterminalWithStatement represents the tokenwi t h, followed by aleft parenthesis
token, followed by anExpression, followed by aright parenthesis token, followed by &atement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the
syntactic definition:

ArgumentList:
AssignmentExpression
ArgumentList , AssignmentExpression

states that anArgumentList may represent either a singleAssignmentExpressionor an ArgumentList,
followed by a comma, followed by amAssignmentExpression This definition of ArgumentListis
recursive that isto say, it is defined in terms of itself. The result is that aArgumentList may contain
any positive number of arguments. Such recursive definitions of nonterminals are common.

The subscripted suffix ‘opt”, which may appear after aterminal or nonterminal, indicates anptional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration:
Identifier Initializer,y

is aconvenient abbreviation for:

VariableDeclaration:
Identifier
Identifier Initializer

and that:

IterationStatement :
for (Expression, ; Expression, ; Expression,) Statement

is aconvenient abbreviation for:

IterationStatement :
for (; Expression, ; Expression,) Statement
for (Expression ; Expression, ; Expression,) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ; Expression,) Satement
for (; Expression ; Expression,) Statement
for (Expression ; ; Expression,) Statement

for (Expression ; Expression ; Expressiorn,y) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Satement

for (; ; Expression) Satement

for (; Expression;) Satement

for (; Expression ; Expression) Statement

for (Expression; ;) Satement

for (Expression ; ; Expression) Statement

for (Expression ; Expression ;) Satement

for (Expression ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic
grammar, it indicates that the production i restricted productiorn it may not be used if a
LineTerminator occurs in the input stream at the indicated position. For example, the production:

ReturnStatement :
return [noLineTerminator here] EXpPressionyy ;

indicates that the production may not be used if &ineTerminator occursin the program between the
r et ur n token and theExpression.

Unless the presence of aLineTerminator is forbidden by arestricted production, any number of
occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When the words “one of” follow the colon(s) in agrammar definition, they signify that each of the
terminal symbols on the following line or lines is an aternative definition. For example, the lexical
grammar for ECM A Script contains the production:

ZeroToThree:: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree::
0

1
2
3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be
amulticharacter token, it represents the sequence of characters that would make up such atoken.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:
Identifier ::
I dentifierNamebut not ReservedWord

means that the nonterminalldentifier may be replaced by any sequence of characters that could replace
I dentifier Nameprovided that the same sequence of characters could not replacReservedWord

Finally, afew nonterminal symbols are described by a descriptive phrase in roman type in cases where
it would be impractical to list all the alternatives:

SourceCharacter:
any Unicode character

2.2 ALGORITHM CONVENTIONS

We often use a numbered list to specify stepsin an algorithm. When the algorithm is to produce a value
as aresult, we use the directive “return x” to indicate that the result of the algorithm is the value of x
and that the algorithm should terminate. We use the notation Result(n) as short hand for “the result of
step n”. We also use Type(x) as short hand for “the type of x”. If an algorithm is defined to “generate a
runtime error”, execution of the algorithm (and any calling algorithms) is terminated and no result is
returned.

These algorithms are used to clarify semantics. In practice, there may be more efficient algorithms
available to implement a given feature.

3 SOURCE TEXT

3.1

ECM A Script source text is represented asa sequence of characters representable using thenicode
version 2.0 character encoding

SourceCharacter ::
any Unicode character

However, it is possible to represent every ECM A Script program using only ASCII characters (which
are equivalent to the first 128 Unicode characters). Non-ASCII Unicode characters may appear only
within comments and string literals; in both of those contents, any Unicode character may be expressed
as a Unicode escape sequence consisting of six ASCII characters, namelyu plus four hexadecimal
digits. Within a comment, such an escape sequence is effectively ignored as part of the comment; within
astring literal, the Unicode escape sequence contributes one character to the string value of the literal.

Note that ECM A Script differs from the Java programming language in the behavior of Unicode escape
seguences. In a Java program, if the Unicode escape sequenck uO00A, for example, appears to occur
within a single-line comment, it is interpreted as a line terminator (Unicode charact®i00A is line feed)
and therefore the next character is not part of the comment. Similarly, if the Unicode escape sequence
\ UOOOA occurs within a string literal in a Java program, it is likewise interpreted as a line terminator,
which is not allowed within a string literal—one must writen instead of \ UOOOA to cause aline feed
top be part of the string value of a string literal. In an ECM A Script program, a Unicode escape
seguence occurring within acomment is never interpreted and therefore cannot contrinute to
termination of the comment. Similarly, a Unicode escape sequence occurring within a string literal in an
ECMA Script program always contributes a character to the string value of the literal and is never
interpreted as aline terminator or as a quote mark that might terminate the string literal.

4 LEXICAL CONVENTIONS

The source text of a ECMA Script program is first converted into a sequence of tokens and white space.
A token is a sequence of characters that comprise alexical unit. The source text is scanned from left to
right, repeatedly taking the longest possible sequence of characters as the next token.

4.1 WHITE SPACE

White space characters are used to improve source text readability and to separate tokerfndivisible
lexical unitg from each other but are otherwise insignificant. White space may occur between any two
tokens, and may occur within strings (where they are considered significant characters forming part of
the literal string value)but cannot appear within any other kind of token.

The following characters are consideredo be white space:

Unicode Value Formal Name
\u0009 Tab <TAB>
\uO00B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SpP>
Syntax
WhiteSpace::

<TAB>

<VT>

<FF>

<SP>

4.2 LINE TERMINATORS

Line terminator characters, like whitespace characters, are used to improve source text readability and
to separate tokens(indivisible lexical unity from each other. Unlike whitespace characters, line
terminators have some influence over thdsehavior of the syntactic grammar. In general, line terminators
may occur between any two tokensput there are afew places where they are forbidden by the syntactic
grammar. A line terminator cannot occur withimny token (not even a string. Line terminators also
affect the process of automatic semicolon insertion (see sectiof).

The following characters are consideredo be line terminators

Unicode Value Name Formal Name
\uOOOA Line Feed <LF>
\u000D Carriage Return <CR>
Syntax
LineTerminator ::
<LF>
<CR>

4.3 COMMENTS

Description
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except laineTerminator character, and

because of the general rule that atoken is always aslong as possible, a single-line comment always
consists of all characters from the / marker to the end of the line. However, the.ineTerminator at the
end of the line is not considered to be part of the single-line comment; it is recognized separately by the
lexical grammar and becomes part of the stream of input elements for the syntactic grammar. This point
is very important, because it implies that the presence or absence of single-line comments does not
affect the process of automatic semicolon insertion (see sectiof).

Syntax
Comment ::

MultiLineComment
SingleLineComment

MultiLineComment::
/* MultiLineCommentChar g, * /

MultiLineCommentChars::
MultiLineNotAsteriskChar MultiLineCommentCharg;
* PostAsteriskCommentChar gy

PostAsteriskCommentChars::
MultiLineNotFawardSashChar MultiLineCommentChar g,

MultiLineNotAsteriskChar::
SourceCharacter but not asterisk* or <EQS>

MultiLineNotFowardSashChar::
SourceCharacter but not forward-slash/ or <EOS>

SingleLineComment::
/1 SingleLineCommentChar g

SingleLineCommentChars::
SingleLineCommentChar SingleLineCommentChar g,

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

4.4 TOKENS
Syntax

Token ::
ReservedWord
Identifier
Punctuator
Literal
EndOfSource

4.4.1 Reserved Words

Description
Reserved words cannot be used as identifiers.

ReservedWord::

Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

4.4.2 Keywords

The following keywords are in use in either the the Borland ECM A Script implementation, the Netscape
1.1 ECMA Script implementation, the Microsoft JScript implementation or all three.

Syntax
Keyword: one of

br eak conti nue delete el se
for function i f in
new return this t ypeof
var voi d whi | e with

4.4.3 Future Reserved Words

The following words are used as keywords in proposed extensions and are thus reserved to allow for the
adoption for those extensions.

Syntax
FutureReservedWord: one of
argunent s case catch cl ass
def aul t do ext ends finally
inmplicit i mport super switch
t hr ow try

4.5 IDENTIFIERS

Description

Anidentifier is acharacter sequence of unlimited length, where each character in the sequence must be
aletter, a decimal digit, an underscore (_) character, or adollar sign ($) character, and the first

character may not be a decimal digiECM A Script identifiers are case sensitive: identifiers whose
characters differ only in case areneverthelessconsideredto be distinct

Syntax

Identifier ::
IdentifierNamebut not ReservedWord

IdentifierName::
Identifier Letter
I dentifierName | dentifier Letter
| dentifierName Decimal Digit

Identifier Letter :: one of
a b cdef g h i |
A B CDETFGHI J
$

< 3
Z >
O o
T o
O
mq
n
_|I—P
cC c
< <
= =
N

k
K L

<<

N N

DecimalDigit:: one of
012345672829

4.6 PUNCTUATORS

Syntax
Punctuator :: one of

= > < == <= >=
| = , | ~ 2

&& I ++ -- +
- * / & A
% << >> >>> += -=
*= = &= | = N= (=
<<= >>= >>>= () {

4.7 LITERALS
Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
SringLiteral

4.7.1 Null Literals
Syntax

NullLiteral ::
nul |

Semantics
The value of the null literalnul | isthe sole value of the Null type, namelynull.

4.7.2 Boolean Literals

Syntax
BooleanLiteral ::
true
fal se
Semantics

The value of the Boolean literalt r ue isavalue of the Boolean type, namelytr ue.
The value of the Boolean literalf al se isavalue of the Boolean type, namelyfalse.

4.7.3 Numeric Literals
Syntax

NumericLiteral ::
IntegerLiteral
FloatingPointLiteral

10

IntegerLiteral ::
DecimallntegerLiteral
HexIntegerLiteral
OctallntegerLiteral

DecimalIntegerLiteral ::
0

NonZeroDigit DecimalDigitS,y

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

NonZeroDigit:: one of
1 2 3 4 5 6 7 8 9

HexIntegerLiteral ::
0Ox HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit :: one of
0 1 2 3 45 6 7 8 9 abc def ABTCDEF

OctallntegerLiteral ::
0 OctalDigit
OctalLiteral OctalDigit

OctalDigit:: one of
0 1 2 3 4 5 6 7

FloatingPointLiteral ::
DecimalIntegerLiteral. DecimalDigits,, ExponentPart;y
. DecimalDigits ExponentPart,
DecimallntegerLiteral ExponentPart

ExponentPart ::
Exponentindicator Signedinteger

Exponentindicator :: one of
e E

Signedinteger ::
DecimalDigits
+ Decimal Digits
- DecimalDigits

Semantics

A numeric literal stands for a value of the number type. Thisvalue is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded, using
|EEE 754 round-to-nearest mode , to a representable value of the number type.
For any productionA :: B whose right-hand side is a single nonterminal, the MV oA isthe MV of B.
The MV of DecimalLiteral :: O is positive zero.
The MV of DecimalLiteral :: NonZeroDigit Digitsis (the MV of NonZeroDigittimes 10" plus the
MV of Digits wheren is the number of charactersinDigits

The MV of DecimalDigits:: DecimalDigitsDecimalDigit is (the MV of Decimal Digitstimes 10)
plusthe MV of DecimalDigit.

The MV of DecimalDigit:: 0 or of HexDigit:: O or of OctalDigit:: O is positive zero.

11

The MV of DecimalDigit:: 1 or of NonZeroDigit:: 1 or of HexDigit:: 1 or of OctalDigit:: 1 is 1.
The MV of DecimalDigit:: 2 or of NonZeroDigit:: 2 or of HexDigit:: 2 or of OctalDigit:: 2 is 2.
The MV of DecimalDigit:: 3 or of NonZeroDigit:: 3 or of HexDigit:: 3 or of OctalDigit:: 3 is 3.
The MV of DecimalDigit:: 4 or of NonZeroDigit:: 4 or of HexDigit:: 4 or of OctalDigit:: 4 is4.
The MV of DecimalDigit:: 5 or of NonZeroDigit:: 5 or of HexDigit:: 5 or of OctalDigit:: 5 isb.
The MV of DecimalDigit:: 6 or of NonZeroDigit:: 6 or of HexDigit:: 6 or of OctalDigit:: 6 is6.
The MV of DecimalDigit:: 7 or of NonZeroDigit:: 7 or of HexDigit:: 7 or of OctalDigit:: 7 is7.
The MV of DecimalDigit:: 8 or of NonZeroDigit:: 8 or of HexDigit:: 8 or of OctalDigit:: 8 is 8.
The MV of DecimalDigit:: 9 or of NonZeroDigit:: 9 or of HexDigit:: 9 or of OctalDigit:: 9 is9.
The MV of HexDigit :: a or of HexDigit:: Ais 10.

The MV of HexDigit:: b or of HexDigit:: Bis 11.

The MV of HexDigit :: ¢ or of HexDigit:: Cis12.

The MV of HexDigit :: d or of HexDigit:: Dis 13.

The MV of HexDigit :: e or of HexDigit:: Eis 14.

The MV of HexDigit:: f or of HexDigit:: Fis 15.

The MV of HexIntegerLiteral:: Ox HexDigitisthe MV of HexDigit.

The MV of HexIntegerLiteral:: 0X HexDigitisthe MV of HexDigit.

The MV of HexIntegerLiteral:: HexIntegerLiteral HexDigitis (the MV of HexIntegerLiteral times
16) plus the MV of HexDigit.

The MV of OctallntegerLiteral:: 0 OctalDigitisthe MV of Octal Digit.

The MV of OctallntegerLiteral:: OctallntegerLiteral OctalDigit is (the MV of OctallntegerLiteral
times 8) plus the MV ofOctalDigit.

The MV of FloatingPointLiteral :: DecimallntegerLiteral. isthe MV of DecimallntegerLiteral.
The MV of FloatingPointLiteral :: DecimallntegerLiteral. DecimalDigitsisthe MV of

Decimal I ntegerLiteral plus (the MV of DecimalDigitstimes 10 "), wheren is the number of
characters inDecimalDigits.

The MV of FloatingPointLiteral :: DecimallntegerLiteral. ExponentPartisthe MV of

Decimal I nteger Literal times 1¢f, wheree is the MV of ExponentPart.

The MV of FloatingPointLiteral :: DecimallntegerLiteral. DecimalDigits ExponentPartis (the
MV of DecimalInteger Literal plus (the MV of DecimalDigitstimes 10 ")) times 1¢°, wheren is the
number of charactersinDecimalDigits and eisthe MV of ExponentPart.

The MV of FloatingPointLiteral ::. DecimalDigitsis the MV of DecimalDigitstimes 10", wheren
is the number of characters inDecimalDigits.

The MV of FloatingPointLiteral ::. DecimalDigits ExponentPart Decimal Digitsis the MV of

DecimalDigitstimes 107 ", wheren is the number of characters inDecimalDigits and eisthe MV of
ExponentPart.

The MV of FloatingPointLiteral :: DecimallntegerLiteral ExponentPartisthe MV of

Decimal I nteger Literal times 1&f, wheree isthe MV of ExponentPart.

The MV of ExponentPart :: Exponentindicator Signedintegeristhe MV of Signedinteger.

The MV of Sgnedinteger :: + DecimalDigitsisthe MV of Decimal Digits

The MV of Sgnedinteger :: - DecimalDigitsisthe negative of the MV ofDecimal Digits
Issue: this description, as it stands, does not take into account the resolution that only the first 19
significant digits or so need contribute to the calculated mathematical value. Thisstill needsto be

addressed. (It could be addressed in the grammar itself, but it would be too messy: a couple of hundred
productions!)

4.7.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape segquence.

Syntax

12

SringLiteral ::
“ DoubleStringChar acter g, *
* SngleStringCharacter s, ‘

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringChar acter g,

SingleStringCharacters ::
SingleStringCharacter SingleStringChar acter gy,

DoubleStringCharacter ::
SourceCharacter but not double-quote“ or backslash\ or LineTerminator
EscapeSequence

SingleStringCharacter ::
SourceCharacter but not single-quote‘ or backslash\ orLineTerminator
EscapeSeguence

EscapeSequence::
CharacterEscapeSequence
Octal EscapeSequence
HexEscapeSequence
UnicodeEscapeSegquence

Character EscapeSequence::
\ SingleEscapeCharacter
\ NonEscapeCharacter

SingleEscapeCharacter :: one of
‘ “ \ b f n r t

NonEscapeCharacter::
SourceCharacter but not SingleEscapeCharacter or OctalDigitor x or u or
LineTerminator

HexEscapeSequence::
\ x HexDigit HexDigit

Octal EscapeSequence::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

ZeroToThree:: one of
0 1 2 3

UnicodeEscapeSequence::
\ u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminaldHexDigit and OctalDigit are given in section4.7.3.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in
terms of character values (CV) contributed by the various parts of the string literal. As part of this
process, some characters within the string literal are interpeted as having a mathematical value (MV), as
described below or in section4.7.3
For any productionA :: B whose right-hand side is a single nonterminal, the SV of isthe SV of B.

The SV of SringLiteral :: " " isthe empty character sequence.

The SV of SringLiteral :: * ' isthe empty character sequence.

13

The SV of SringLiteral :: ” DoubleStringCharacters” isthe SV of DoubleStringCharacters

The SV of SringLiteral :: * SingleSringCharacters’ isthe SV of SingleSringCharacters

The SV of DoubleStringCharacters:: DoubleStringCharacter is a sequence of one character, the
CV of DoubleStringCharacter.

The SV of DoubleStringCharacters:: DoubleStringCharacter DoubleStringCharacte's isa
sequence of the CV of DoubleStringCharacter followed by all the charactersin the SV of
DoubleStringCharacte'sin order.

The SV of SingleStringCharacters:: SingleStringCharacter is a sequence of one character, the CV
of SngleStringCharacter.

The SV of SingleStringCharacters:: SngleSringCharacter SingleringCharacte's is a sequence
of the CV of SngleStringCharacter followed by all the charactersin the SV of
SngleStringCharactersin order.

The CV of DoubleStringCharacter :: SourceCharacter but not double-quote or backslash\ or
LineTerminator isthe SourceCharacter character itself.

The CV of SngleStringCharacter :: SourceCharacter but not double-quote“ or backslash\ or
LineTerminator is the SourceCharacter character itself.

The CV of Character EscapeSequence:: \ SingleEscapeCharacter is the Unicode character whose
Unicode value is determined by theSingleEscapeCharacter according to the following table:

Escape Sequence Unicode Value Name Symbol
\b \ u0008 backspace <BS>

\ t \ u0009 horizontal tab <HT>
\'n \uOOOA linefeed (new line) <LF>

\ f \u000C form feed <FF>
\r \u000D carriage return <CR>
\ \ u0022 double quote)

\ \ u0027 single quote ‘

\\ \ u005C backslash \

The CV of Character EscapeSequence:: \ NonEscapeCharacteristhe CV of the
NonEscapeCharacter.

The CV of NonEscapeCharacter :: SourceCharacter but not SngleEscapeCharacter or Octal Digit
or X or u or LineTerminator is the SourceCharacter character itself.

The CV of HexEscapeSeguence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.

The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of the OctalDigit.

The CV of OctalEscapeSequence:: \ OctalDigit OctalDigitis the Unicode character whose codeis
(8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctal Digit.

The CV of OctalEscapeSequence:: \ ZeroToThreeOctalDigit OctalDigit is the Unicode character
whose code is (64 (that is, §) timesthe MV of theZeroToThree) plus (8 timesthe MV of the first
OctalDigit) plusthe MV of the secondOctalDigit.

The MV of ZeroToThree:: O is positive zero.

The MV of ZeroToThree: 1 is 1.

The MV of ZeroToThree: 2 is2.

The MV of ZeroToThree: 3 is 3.

The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 18) timesthe MV of the firstHexDigit) plus (256 (that is,

16°) times the MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MV of the fourthHexDigit.

Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\ . The correct way to cause aline terminator character to be part of the string value of a string literal is
to use an escape sequence such a3 n or \ uOOOA.

14

4.8 AUTOMATIC SEMICOLONINSERTION

Description

Certain ECM A Script statementgempty statement, variable statement, expression statement,

cont i nue statement,br eak statement, andr et ur n statement) must each be terminated with a
semicolon. Such a semicolon may always appear explicitly in the source text. For convenience,
however, such semicolons may be omitted from the source text in certain situations. We describe such
situations by saying that semicolons are automatically inserted into the source code token stream in
those situations:

When, as the program is parsed from left to righta token (called theoffending token) is

encountered that is not allowed by any production of the grammar and the parser is not currently
parsing theheader of af or statement,then a semicolonis automatically insertedbefore the
offending tokenif one or more of the following conditionsis true

1. Theoffending token is separated from the previous token by at least onkineTerminator.

2. The offending token isEndOfSource

3. Theoffending tokenis} .

However, there is an additional overriding condition: a semicolon is never inserted automatically if
the semicolon would then be parsed as an empty statement.

When, as the program is parsed from left to righta token (called therestricted token) is
encountered that is allowed bysome production of the grammar, but the production is aestricted
production and the restricted token is separated from the previous token by at least one
LineTerminator, then there are two cases:

4. If the parser is not currently parsing theheader of af or statement, a semicolonis
automatically insertedbefore therestricted token.

5. If the parser iscurrently parsing theheader of af or statement, it isasyntax error.
These are al the restricted productions in the grammar:

ReturnStatement :
return [noLineTerminator here] EXpPressionyy ;

Member Expression:
Member Expression [no LineTerminator here] 1ncrementOper ator

CallExpression:
Member Expression [no LineTerminator here] Arguments
NewCallExpression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments

The practical effect of these restricted productionsis as follows:

1. Whenthetokenr et ur n is encountered anda LineTerminator is encountered before the next
token is encountered,a semicolonis automatically insertedafter the tokenr et ur n.

2. Whenthetoken++ or - - is encountered where the parser would treat it as a postfix operator,
and at least oneLineTerminator occurred between the preceding token and the-+ or - -
token, then a semicolon is automatically inserted before the+ or - - token.

3. When the token(is encountered where the parser would treat it as the first token of a
parenthesized Argumentslist, and at least oneLineTerminator occurred between the preceding
token and the(token, then a semicolon is automatically inserted before thé token.

The resulting practical advice to ECMA Script programmersis:
4. AnExpressioninar et ur n statement should start on the same line asthe et ur n token.
5. A postfix ++ or - - operator should appear on the same line as its operand.

6. The(that starts an argument list should be on the same line as the expression that indicates
the function to be called.

For example, the source

15

{12} 3

isnot avalid sentence in the ECMA Script grammareven with the automatic semicolon insertion rules
In contrast, the source

{1

2} 3
isalso not avalid ECM A Script sentence, but is transformed by automatic semicolon insertion into the
following:

{1

7251 3
which isavalid ECMA Script sentence.
The source

for (a; b

)
isnot avalid ECMA Script sentence and is not altered by automatic semicolon insertidrecause the
place where a semicolon is needed is within the header of for statement. Automatic semicolon
insertion never occurs within the header of & or statement.
The source

return

a+b
is transformed by automatic semicolon insertion into the following:

return,

a + b;
Note that the expressiona + b isnot treated as a value to be returned by the et ur n statement,
because aLineTerminator separates it from the tokenr et ur n.
The source

a=m>b

++C
is transformed by automatic semicolon insertion into the following:

a = b;

++C;

Note that the token++ is not treated as a postfix operator applying to the variabl®, because a
LineTerminator occurs betweenb and ++.
The source

if (a>b)

elsec=d

isnot avalid ECMA Script sentence and is not altered by automatic semicolon insertidoefore the
el se token, even though no production of the grammar applies at that point, because an automatically
inserted semicolon would then be parsed as an empty statement

16

5 TYPES

A valueis an entity that takes on one of seven types. There are six standard types and one internal type
called Reference. Values of typeReference are only used as intermediate results of expression
evaluation and cannot be stored to properties of objects.

5.1 THE UNDEFINED TYPE

The Undefined type has exactly one value, calledindefined. Any variable that has not been assigned a
value is of type undefined

5.2 THENULL TYPE
The Null type has exactly one value, calledull.

5.3 THEBOOLEANTYPE

The Boolean type represents alogical entity and consists of exactly two unique value@neis called
true and the other is calledfalse.

5.4 THENUMBERTYPE

The Number type has exactly 18437736874454810627that is, 2*- 2°*+3) values, representing the
double-precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-
Point Arithmetic, except that the 900719925474099((that is, 2°°- 2) distinct NaN values of the |IEEE
Standard are represented in ECM A Script as single speciaNaN value.

There are two other special values, calledPositive I nfinity and Negative I nfinity. The other
18437736874454810624 (that is, 2**- 2°%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive number thereis a
corresponding negative number having the same magnitude.

Note that there is both a positive zero and a negative zero.
The 18437736874454810622 (that is, 2*- 2°°- 2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2*- 2°%) of them are normalized, having the form
s xm x2°
wheresis+1 or - 1, mis a positive integer less than 2° but not less than 22, and eis an integerranging
from- 1074 to 971, inclusive.
The remaining 9007199254740990(that is, 2°°- 2) values are denormalized, having the form
s xm x2°
wheresis+1 or - 1, mis a positive integer less than %, and e is - 1074.

Note that all the positive and negative integers whose magnitude is no greater thart2are representable
in the Number type (indeed, the integer 0 has two representations, +0 and -0).

We say that afinite number has arodd significand if it is nonzero and the integerm used to express it
(in one of the two forms shown above) is odd. Otherwise we say that it has aeven significand

In this specification, the phrase “the number value for” wherex represents an exact nonzero real
mathematical quantity (which might even be an irrational number such @ means a number value
chosen in the following manner. Consider the set of all finite values of the Number type, with two
additional values added to it that are not representable in the Number type, namely*%* (which is+1 x
253 x2°™ and - 29%* (which is- 1 x2°% x297%). Choose the member of this set that is closest in value ta.

17

If two values of the set are equally close, then the one with an even significand is chosen; for this
purpose, the two extra values 2°%* and - 2'%%* are considered to have even significands. Finally, if 22
was chosen, replace it with positive infinity; if 2!°% was chosen, replace it with negative infinity; any
other chosen value is used unchanged. The result is the number value fot. (This procedure
corresponds exactly to the behavior of the IEEE 754 “round to nearest” mode.)

Some ECM A Script operators deal only with integers in the range2® through 2*- 1, inclusive, or in
the range 0 through 21, inclusive. These operators accept any value of the Number type but first
converts each such value to one of 3 integer values. See the descriptions of the Tolnt32 and ToUint32
operatorsin sections 5.5 andToUint32: (unsigned 32 bit integer)respectively.

5.5 .THE OBJECTTYPE

An Object is an unordered collection of properties.Each property consists of a name, avalue and a set
of attributes.

5.5.1 Property Attributes

A property can have zero or more attributes from the following set:

Attribute Descption

ReadOnly The property is aread-only property. Attempts to write to the property will be
ignored.

ErrorOnWrite This attribute has precedence over the ReadOnly attribute. Attempts to writeto
the property will result in aruntime error and the property will not be changed.

DontEnum The property is not included in the for-in enumeration. See the description of the

for-in statement in section The for..in Statement

DontDelete Attempts to delete the property will be ignored. See the description of the
del et e operator in sectionThedel et e Operator.

Interna Internal properties have no name and are not directly accessible viathe property
accessor operators. How these properties are accessed is implementation specific|
How and when some of these properties are used is specified by the language
specification.

5.5.2 Internal Properties and Methods

Internal properties and methods are not exposed in the language. For the purposes of this document, we
give them names enclosed in double square brackets[[]]. When an algorithm uses an internal property
of an object and the object does not implement the indicated internal property, aruntime error is
generated.

There are two types of access for exposed propertiesget and put, corresponding to retrieval and
assignment.

Native ECM A Script objects have an internal property called [[Prototype]]. The value of this property is
eithernul | or an object and is used for implementing inheritance. Properties of the [[Prototype]]

object are exposed as properties of the child object for the purposes of get access, but not for put

access.

The following table summarizes the internal propertiedefined by this specification

Property Parameters Description

[[Prototypel]] none The prototype of thigarent object.

[[Class]] none The kind of this object.

[[Valuel] none Internal state information associated with this object.

[[Get]] (PropertyName) Returns the value of the property.

[[Put]] (PropertyName, Value) Sets the specified property toValue.

[[CanPut]] (PropertyName, Value) Returns a boolean value indicating whether a [[Put]]
operation with the same arguments will succeed.

18

[[HasProperty]] | (PropertyName) Returns a boolean value indicating whether the object
already has a member with the given name.

[[DefaultValue] | (Hint) Returns the default value of the object, which should

] be a primitive value (not an object or reference).

[[Construct]] optional user provided (Constructor) Constructs an object. Invoked viathe
parameters new operator.

[[Cal]] optional user provided (Function) Executescode associated withthe object.
parameters Invoked via afunction call expression.

Every ECM A Script object must implement the [[Prototype]] and [[Class]] properties and the [[Get]] ,
[[Put]], and [[HasProperty]] methods, even host objects.

The value of the [[Prototype]] property must be either an object onull, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]]
property must eventually lead to aaull value).

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The
value of the [[Class]] property of a host object may be any value, even avalue used by a built-in object
for its[[Class]] property. Note that this specification does not provide any means for a program to
access the value of a[[Class]] property; it is used internally to distinguish different kinds of built-in
objects.

Every built-in object implements the [[Get]] , [[Put]], and [[HasProperty]] methods in the manner
described in sections5.5.2.1, 5.5.2.2, and 5.5.2.3, but host objects may implement these methods in any
manner; for example, one possiblity isthat [[Get]] and [[Put]] for a particular host object indeed fetch
and store property values but [[HasProperty]] always generates a runtime errekssumeO is an

ECMA Script object andP is a string.

5.5.2.1 [[Get]]

When the [[Get]] method ofO is called with property nameP, the following steps are taken:
1. If Odoesn't have a property with nameP, go to step 4.

Get the value of the property.

Return Result@).

If the [[Prototype]] of Oisnul | , returnundef i ned.

Call the [[Get]] method of [[Prototype]] with property name®.

Return Result®).

o0 Mwd

5.5.2.2 [[Put]]

When the [[Put]] method of O is called with propertyP and valueV, the following steps are taken:
Call the [[CanPut]] method of O with name P.

If Result(1) isfalse return.

If O doesn’t have a property with name P, go to steyb.

Set the value of the property to V.

Return.

Create a property with name P, set itsvalue to V and give it empty attributes.

Return.

No ok wNE

5.5.2.3 [[CanPut]]

The[[CanPuf]] method is usedonly by the [[Put] methad.

When the [[CanPut]] method of O is called with propertyP, the following steps are taken:
1. If O doesn’t have a property with name P, go to step 4.

If the property has the ErrorOnWrite attribute, generate a runtime error.

If the property has the ReadOnly attribute, return false.

If the [[Prototype]] of O isnull, return true.

Call the [[CanPut]] method of [[Prototype]] of O with property Name P.

Return Result(5).

ok wnN

19

5.5.2.4 [[HasProperty]]

When the [[HasProperty]] method ofO is called with property nameP, the following steps are taken:
1. If O hasaproperty with nameP, returnt r ue.

2. If the[[Prototype]] of Oisnul | , returnf al se.

3. Cal the [[HasProperty]] method of [[Prototype]] with property name.

4. Return Result@).

5.6 THE STRING TYPE

The String type consists of the set of all finite sequences of zero or more Unicode characters.
Note: The concatenation operator ¢), relational operators K, >, <=, >=) and equality operators €=,
I =) apply to thistype.

5.7 THE INTERNAL REFERENCE TYPE
The Internal Reference Typeisnot alanguage data type Isit only defined here for the purposes of
aiding this specification.
A Referenceis areference to an object’s property. AReference consists of two parts, thebase object
and the property name.
In defining the semantics of ECM A Script, the following methods are defined for internal operations:
GetBase(). Returns the base object component.
GetPropertyName(). Returns the propertyName component.
GetValue(). Returnsthe value of the indicated property.
PutValue(). Setstheindicated property to the indicated value.

Values of typeReference are only used as intermediate results of expression evaluation and cannot be
stored to properties of objects.

5.7.1 GetBase

1. If Type(V) is a Reference, return the base object component of V.
2. Generate aruntime error.

5.7.2 GetPropertyName

1. If Type(V) is a Reference, return the propertyName component of V.
2. Generate aruntime error.

5.7.3 GetValue

If Type(V) is not a Reference, return V.

Call GetBase(V).

If Result(2) is null, generate a runtime error.

Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.
Return Result(4).

agkrwbdpeE

5.7.4 PutValue

For valuesV and W, PutValueV, W) performs:

1. If type (V) isnot a Reference, generate aruntime error.

2. Call GetBase(V).

3. If Result(2) isnull, go to step 6.

4, Call the[[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W
for the value.

5. Return.

6. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name
and W for the value.

7. Return.

20

6 TYPE CONVERSION

The ECMA Script runtime system performs automatic type conversion as needed. To clarify the
semantics of certain constructsit is useful to define a set of conversion operators. These operators are
not a part of the language; they are defined here to aid the specification of the semantics of the
language. The conversion operators are polymorphic; that is, they can accept a value of any standard
type, but not of type Reference.

6.1 ToPRrRIMITIVE

The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The
operator ToPrimitive attempts to convert its value argument to a non-Object type. If an object is
capable of converting to more than one primitive type, it may use the optional hiftreferredTypeto
favor that type. Conversion occurs according to the following table:

Input Type Result

Undefined Return the input argument (no conversion)

Null Return the input argument (no conversion)

Boolean Return the input argument (no conversion)

Number Return the input argument (no conversion)

String Return the input argument (no conversion)

Object Return the default value of the Object. The default value of an object is retrieved

by calling the interal [[DefaultValue]] method of the object passing an optional
hint preferredType The behavior of the [[DefaultValue]] method is defined by this
specification for all native ECM A Script objects. If the return value is of type
Object or Reference, aruntime error is generated.

6.2 ToOBOOLEAN

The operator ToBoolean attempts to convert its argument to a value of type Boolean according to the

following table:

Input Type Result

Undefined fal se

Null fal se

Boolean Return the input argument (no conversion)

Number 0 -> false
NaN - false
1 0 and* NaN - true

String ="" > false (where "" denotes an enpty string)
1" > true

Object true

21

6.3 TONUMBER

The operator ToNumber attempts to convert its argument to a value of type Number according to the

following table:
Input Type Result
Undefined NaN
Null NaN
Boolean true > 1
false > 0
Number Return the input argument (no conversion)
String See grammer and discussion below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

6.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot

interpret the string then the result of ToNumber i&aN.

SringNumericLiteral:::
SirwhiteSpace,,; StrNumericLiteral StrwhiteSpace:

StrwhiteSpace:::
StrwhiteSpaceChar Str\WhiteSpacey

SrwhiteSpaceChar :::
<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>

StrNumericLiteral:::
StrintegerLiteral
SrFloatingPointLiteral

StrintegerLiteral :::

Signgy: Digitsyy
HexIntegerLiteral

HexlntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0 1. 2 3 45 6 7 8 9 a b c d e

f

A B C D E F

22

SrFloatingPointLiteral :::
Sgnyy Digits. Digits,y ExponentPartyy
Sgny. Digits ExponentParty
Sgne: Digits ExponentPart

ExponentPart :::
Exponentlndicator Signedinteger

ExponentIndicator ::: one of
e E

Sgnedinteger :::
Signg Digits

Sgn::: one of
+ -

6.4 TOINTEGER

The operator Tolnteger attempts to convert its argument to an integral numeric value. This operator
functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, return O(positive zero).

3. If Result(1) is xInfinity, return Result(1).

4. Compute sign(Result(1)) * floor(abs(Result(1))).

5. Return Result(4).

6.5 TOINT32: (SIGNED 32 BIT INTEGER)

The operator Tolnt32 converts its argument to one of % integer values in the range -3* through 2**-1,
inclusive. This operator functions as follows:

Call ToNumber on the input argument.

If Result(1) is NaN, Positive Infinity, or Negative Infinity, retur (positive zero).

Compute sign(Result(1)) * floor(abs(Result(1))).

If Result(3) is positive zero or negative zero, returrd (positive zero).

Compute Result(3) modulo 3% that is, a finite valuek of Number type with positive sign and less
than 2% in magnitude such the mathematical difference of Result(3) anklis mathematically exactly
divisible by 2.

6. If Result(5) is greater than or equal to 2%, return Result(5)-2*% otherwise return Resultf).

o~ wbdpE

Discussion:

Note that the Tolnt32 operation isidempotent: if applied to aresult that it produced, the second
application leaves that value unchanged.

Note also that Tolnt32(ToUint32(x)) isequal to Tolnt32(x) for all values of x.

(Itisto preserve this latter property that Positive Infinity and Negative Infinity are mapped to zero.)

6.6 TOUINT32: (UNSIGNED 32 BIT INTEGER)

1. The operator ToUint32 converts its argument to one of # integer valuesin the range 0 through
2%.1, inclusive. This operator functions as follows:Call ToNumber on the input argument.

If Result(1) is NaN, Positive Infinity, or Negative Infinity, retur (positive zero).

Compute sign(Result(1)) * floor(abs(Result(1))).

If Result(3) is positive zero or negative zero, returrd (positive zero).

Compute Result(3) modulo 32 that is, a finite valuek of Number type with positive sign and less
than 2% in magnitude such the mathematical difference of Result(3) anklis mathematically exactly
divisible by 2.

6. Return Resultb).

SLE N S AN

23

Discussion:
Note: Step6 isthe only difference between ToUint32 and Tolnt32.

Note that the ToUint32 operation is idempotent: if applied to aresult that it produced, the second
application leaves that value unchanged.

Note also that ToUint32(Tolnt32(x)) isequal to ToUint32(x) for all values of x.
(Itisto preserve this latter property that Positive Infinity and Negative Infinity are mapped to zero.)

6.7 TOSTRING

The operator ToString attempts to convert its argument to a value of type String according to the
following table:

Input Type Result
Undefined "undefi ned"
Null "nul | "
Boolean true > "true"
false > "fal se"
Number See discussion below.
String Return the input argument (no conversion)
Object Apply the following steps:

1. Call ToPrimitive(input argument, hint String).
2. Cadl ToString(Result(1)).
3. Return Result(2).

6.7.1 ToString Applied to the Number Type

The operator ToStringconverts a number to string format as follows:
If the argument is NaN, the result is the string NaN" .
If the argument is positive zero or negative zero, the result i50" .

Otherwise, the result is a string that represents the sign and magnitude (absolute value) of the
argument. If the sign is negative, the first character of theresult is”; if the sign is positive, no
sign character appears in the result. As for the magnituden:
If misinfinity, it is represented by the charactersi‘nf i ni t y”; thus, positive infinity
produces the result" | nfi ni t y" and negative infinity producesthe result- I nfi ni ty" .

If misan integer less than 13", then it is represented as that integer value in decimal form with
no leading zeroes and no decimal point.

If mis greater than or equal to 10° but less than 10, and is not an exact integer value, then it
is represented as the integer part (floor) ofm, in decimal form with no leading zeroes, followed
by adecimal point ‘. ’, followed by one or more decimal digits (see below) representing the
fractional part of m.

If mislessthan 10° or not less than 1G*, then it is represented in so-called "computerized
scientific notation." Letn be the unique integer such that 10 £ m< 10™*; then leta be the
mathematically exact quotient ofmand 10" so that 1 £ a < 10. The magnitude is then
represented as the integer part (floor) ofa, as a single decimal digit, followed by a decimal
point ‘. ', followed by one or more decimal digits (see below) representing the fractional part
of a, followed by the letter E', followed by a representation ofn as adecimal integer (first a
minus sign -’ if nis negative or nothing ofn is not negative, followed by the decimal
representation of the magnitude ofn with no leading zeros).

How many digits must be printed for the fractional part ofn or a? There must be at |east one digit;

beyond that, there must be as many, but only as many, more digits as are needed to uniquely distinguish

24

the argument value from all other representable numeric values. That is, suppose thatis the exact
mathematical value represented by the decimal representation produced by this method for afinite
nonzero argument ; thend must be the value of number type nearest tox; or if two values of the
Number type are equally close tax, then d must be one of them and the least significant bit ofl must be
0. A consequence of this specification is that ToString never produces trailing zero digits for a
fractional part.

Implementors of ECMA Script may find useful the paper and code written by David M. Gay for binary-
to-decimal conversion of floating-point numbers [Gay 1990].
6.8 TOOBJECT

The operator ToObject attempts to convert its argument to a value of type Object according to the
following table:

Input Type Result

Undefined generate aruntime error

Null generate a runtime error

Boolean Create anew Boolean object whose default value is the value of the boolean. See
the Native ECM A Script Objectssection for a description of the Boolean object.

Number Create anew Number object whose default value is the value of the number. See
the Native ECM A Script Objectssection for a description of the Number object.

String Create anew String object whose default value is the value of the string. See the
Native ECM A Script Objectssection for a description of the String object.

Object Return the input argument (no conversion)

25

7 EXECUTION CONTEXTS

When control istransferred to ECM A Script executable code, we say that control is entering an
execution context Active execution contexts logically form a stack. The top execution context on this
logical stack isthe running execution context.

7.1 DEFINITIONS

7.1.1 Function Objects

There are four types of function objects:
Declared functionsare defined in source text by a-unctionDeclaration

Anonymous functionsare created dynamically by using the built-ifrunct i on Object asa
constructor which we refer to as instantiating-unct i on.

Host functionsare created at the reguest of the host with source text supplied by the host. The
mechanism for their creation is implementation dependent. Host functions may have any subset of
the following attributes { ImplicitThis, ImplicitParents}. These attributes are described below.

Internal functionsare built-in objects of the language, such apar sel nt and Mat h. exp. These
functions do not contain executable code defined by the ECM A Script grammar, so are excluded
from this discussion of execution contexts.

7.1.2 Types of Executable Code

There are five types of executable ECM A Script source text:

Global codeis source text that is outside all function declarations. More precisely, the global code
of a particular ECM A ScriptProgram consists of all SourceElementsin the Program production
which come from theStatement definition.

Eval codeis the source text supplied to the built-ireval function. More precisely, if the
parameter to the built-ineval functionisastring, it istreated asan ECMA ScripProgram. The
eval code for a particular invocation ofeval isthe global code portion of the string parameter.

Function codeis source text that is inside a function declaration. More precisely, the function code
of a particular ECM A ScriptFunctionDeclaration consists of theBlock in the definition of
FunctionDeclaration

Anonymous codeis the source text supplied when instantiating-unct i on. More precisely, the
last parameter provided in an instantiation ofFunct i on is converted to a string and treated as the
StatementList of the Block of a FunctionDeclaration If more than one parameter is provided in an
instantiation of Funct i on, all parameters except the last one are converted to strings and
concatenated together, separated by commas. The resulting string is interpreted as the

Formal ParameterListof a FunctionDeclarationfor the SatementList defined by the last
parameter.

Host codeis the source text supplied by the host when creating a host function. The source text is
treated as theStatementL.ist of the Block of a FunctionDeclaration Depending on the
implementation, the host may also supply &ormalParameterList

7.1.3 Variable Instantiation

Every execution context has associated with it &ariable object Variables declared in the source text
are

26

added as properties of the variable object. For global and eval code, functions defined in the source text
are added as properties of the variable object. Function declarations in other types of code are not
allowed by the grammar. For function, anonymous and host code, parameters are added as properties of
the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on
the

type of code, but the remainder of the behavior is generic:

For each FunctionDeclarationin the code, in source text order, instantiate a declared function from
the FunctionDeclarationand create a property of the variable object whose name is the Identifier

in the FunctionDeclaration, whose value is the declared function and whose attributes are
determined by the type of code. If the variable object already has a property with this name, replace
its value and attributes.

For each formal parameter, as defined in thé-ormalParameterList create a property of the

variable object whose name is thd dentifier and whose attributes are determined by the type of
code. The values of the parameters are supplied by the caller. If the caller supplies fewer parameter
values than there are formal parameters, the extra formal parameters have valuendef i ned. If

two or more formal parameters share the same name, hence the same property, the corresponding
property is given the value that was supplied for the last parameter with this name. if the value of
this last parameter was not supplied by the caller, the value of the corresponding property is
undefi ned.

For each VariableDeclarationin the code, create a property of the variable object whose nameis
the Identifier in VariableDeclaration whose valueisundef i ned and whose attributes are
determined by the type of code. If there is already a property of the variable object with the name
of adeclared - variable, the value of the property and its attributes are not changed. Semantically,
this step must follow the creation of thd-unctionDeclarationand Formal Parameterlistproperties.
In particular, if adeclared variable has the same name as a declared function or formal parameter,
the variable declaration does not disturb the existing property.

7.1.4 Scope Chain and Identifier Resolution

Every execution context has associated with it its own acope chain. Thisislogically alist of objects
that are searched whenbinding an I dentifier. When control enters an execution context, the scope chain
is created and is populated with an initial set of objects, depending on the type of code. When control
|eaves the execution context, the scope chain is destroyed.

During execution, the scope chain of the execution context is affected only byithStatement When
execution enters awi t h block, the object specified in theni t h statement is added to the front of the
scope chain. When execution leaves a with block, whether normally or vialar eak or conti nue
statement, the object is removed from the scope chain. The object being removed will always be the
first object in the scope chain.

During execution, the syntactic productiorPrimaryExpression: Identifier is evaluated using the
following agorithm:

1. Get the next object in the scope chain. If thereisn't one, go to step 5.
2. Call the [[HasProperty]] method of Result(l), passing thédentifier as the property.

3. If Result(2) ist r ue, return avalue of type Reference whose base object is Result(l), property
name is the identifier.

4. Gotostepl.
5. Return avalue of type Reference whose base object iaul | and whoseproperty nameis
Identifier.

The result of binding an identifier is always a value of type Reference with its member name component
equal to the identifier string.
7.1.5 Global Object

Thereis auniqueglobal object which is created before control enters any execution context. Initially
the global object has the following properties:

Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

27

Additional host defined properties. This may include a property whose value is the global object
itself, for example window in HTML.

As control enters execution contexts, and as ECM A Script code is executed, additional properties may
be added to the global object and the initial properties may be changed.

7.1.6 Activation Object

When control enters an execution context for function code, anonymous code or host code, an object
called the activation object is created and associated with the execution context.he activation object
isinitialized with a single property with namar gurrent s and property attributes{ DontDelete}. The
initial value of this property is the arguments object described belowl he activation object isthen used
as the variable object for the purposes of variable instantiation.

The activation object is purely a specification mechanism. It isimpossible for an ECM A Script program
to access the activation object. It can access members of the activation object, but not the activation
object itself. When the call operation is applied to a Reference value whose base object is an activation
object, nul | isused asthet hi s value of the call.

7.1.7 LabelStacks

The definitions of the control flow statements use two logical stacks, tHareak |abel stackand the
continue label slack These are to facilitate the semantic definition of these statements and are not
intended to imply a particular implementation. Each execution context has its own label stacks, which
are created and initialized to empty when control enters the execution context When control leaves the
execution context, the label stacks are destroyed.

7.1.8 This

Thereisat hi s value associated with every active execution context. Thehi s value depends on the
caller and the type of code being executed and is determined when control enters the execution context.
Thet hi s value associated with an execution context isimmutable.

7.1.9 Arguments Obiject

When control enters an execution context for function, anonymous or host code, an arguments object is
created and initialized as follows:

a A property iscreated with namecal | ee and property attributes{ DontEnum }. The initial value
of this property is the function object being executed. This allows anonymous functions to be
recursive.

a A property is created with namd engt h and property attributes{ DontEnum }. The initial value
of this property is the number of actual parameter values supplied by the caller.

a For each non-negative integer, iarg, less than the value of theengt h property, a property is
created with name ToString(iarg) and property attributes { DontEnum }. Theinitial value of this
property is the value of the corresponding actual parameter supplied by the caller. The first actual
parameter value correspondsto iarg = 0, the second to iarg = 1 and so on. In the case when iarg is
less than the number of formal parameters for the function object, this property shares its value
with the corresponding property of the activation object. This means that changing this property
changes the corresponding property of the activation object and vice versa. The value sharing
mechanism depends on the implementation.

I ssue: Should the arguments object have a caller property?

7.2 ENTERING AN EXECUTION CONTEXT

When control enters an execution context, the scope chain is created and initialized, variable
instantiation is performed, the break |abel and continue label stacks are created and initialized to empty
and thet hi s valueis determined

Theinitialization of the scope chainvariable instantiation and the determination of thet hi s value
depend on the type of code being entered.

28

7.2.1 Global Code

The scope chain is created and initialized to contain the global object and no others.

Variable instantiation is performed using the global object as the variable object and using empty
property attributes.

Thet hi s valueisthe global object.

7.2.2 EvalCode

When control enters an execution context for eval code, the previous active execution context, referred
to asthecalling context, is used to determine the scope chainthe variable object and thet hi s value

If there is no calling context theninitializing the scope chain variable instantiation and determination

of thet hi s valueare performed just as for global code.

The scope chain isinitialized to contain the same objects, in the same order, as the calling context's
scope chain. This includes objects added to the calling context's scope chain bwithSatement.

Variable instantiation is performed using the calling context's variabl e object and using empty
property attributes.

Thet hi s valueisthe same asthet hi s value of the calling context.

7.2.3 Function and Anonymous Code

The scope chain isinitialized to contain the activation object followed by the global object.

Variable instantiation is performed using the activation object as the variable object and using
property attributes {, DontDelete}.

The caller providesthet hi s value. If thet hi s value provided by the caller is not an object
(including the case where it iswul |), then thet hi s value isthe global object.

7.2.4 Host Code

29

The scope chain isinitialized to contain the activation object asits first element.

If the host function has the ImplicitThis attribute, the this value is placed in the scope chain after
the activation object.

If the host function has the ImplicitParents attribute, a list of objects determined solely by the

t hi s value, isinserted in the scope chain after the activation object antlhi s object. Note that
thislist is determined at runtime by the hi s value. It isnot determined by any form of lexical
scoping.

The global object is placed in the scope chain after al other objects.

Variable instantiation is performed using the activation object as the variable object and using
attributes { DontEnum, DontDel ete}

Thet hi s valueisdetermined just as for function and anonymous code.

8 EXPRESSIONS

8.1 PRIMARY EXPRESSIONS
Syntax
PrimaryExpression:
this
Identifier

Literal
(Expression)

8.1.1 Thet hi s Keyword

Thet hi s keywordevaluates to thet hi s value of the execution context.

8.1.2 ldentifier Reference

An ldentifier is evaluated using the scoping rules statedn section Scope Chain and Identifier
ResolutionThe result of anldentifier is always a value of type Reference.

8.1.3 Literal Reference
A Literal is evaluated as described in sectiorLiterals

8.1.4 The Grouping Operator

The productionPrimaryExpression: (Expression) isevaluated as follows:
1. Evaluate Expression. This may be of type Reference.
2. Return Result().

8.2 POSTFIX EXPRESSIONS
Syntax

Member Expression:
PrimaryExpression
MemberExpression[Expression]
MemberExpression. ldentifier
Member Expression [no LineTerminator here] |ncrementOper ator
new Member Expression [no LineTerminator here] Arguments

IncrementOperator :
++

NewExpression:
Member Expression
new Newr Expression

30

CallExpression:
Member Expression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments
CallExpression[Expression]
CallExpression. Identifier
CallExpression [no LineTerminator here] 1ncrementOper ator

Arguments:

()
(ArgumentList)

ArgumentList:
AssignmentExpression
ArgumentList, AssignmentExpression

PostfixExpression:
NewExpression
CallExpression

The postfix increment operators and property accessor operatorf | and . appear in both the
Member Expressionand CallExpression productions. Generally we will refer to the productions
involving Member Expressionwith the understanding that the same remarks apply t€allExpression
Similarly, theCall Expression production includes three definitions involving thé\rguments non-
terminal. We will refer to the definition involvingcall Expression

8.2.1 Property Accessors
Properties are accessed by name, using either the dot notatioiMember Expression. |dentifier or the
bracket notationMemberExpression][Expression] .
The dot notation is transformed using the following syntactic conversion:
MemberExpression. |dentifier

is exactly equivalent to:

MemberExpression[<identifier-string>]
where <identifier-string> is a string literal containing the same sequence of characters as the identifier.
The productionMember Expression: MemberExpression|[Expression] isevaluated as follows:
Evaluate M emberExpression.
Call GetVaue(Result(1)).
Evaluate Expression.
Call GetVaue(Result(3)).
Call ToObject(Result(2)).
Call ToString(Result(4)).

Return a value of type Reference whose base object is Result(5), member name is Result(6) and
access mode is explicit.

No ok whE

8.2.2 Postfix Increment and Decrement Operators

The production Member Expression: Member Expression IncrementOperatoris evaluated as follows:

1. Evaluate MemberExpression.

2. Call GetVaue(Result(1)).

3. Cal ToNumber(Result(2)).

4. For ++, Result(4) is Result(3) increased by one. For --, Result(4) is Result(3) decreased by one. In
either case, if Result(3) isNaN or xInfinity, Result(4) is the same as Result(3).

Call PutVaue(Result(1), Result(4)).

Return Result(32).

o o

31

8.2.3 The new Operator

The production NewExpression: new MemberExpressionis evaluated as follows:

agkrwbdpE

o

7.

Evaluate MemberExpression.

Call GetVaue(Result(1)).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
Call the [[Construct]] method on Result(2), providingio arguments (that is, an empty list of
arguments).

If Type(Result(5) is not Object, generate a runtime error.

Return Result(5.

The production NewCallExpression: new Member Expression Argumentsis evaluated as follows:

1
2.
3.

© N UM

Evaluate M emberExpression.

Call GetValue(Result(1)).

For each AssignmentExpression in ArgumentList, in left to right order, evaluate
AssignmentExpression and call GetValue on the result. Keep all of these valuesin an internal list.
If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.

Call the [[Construct]] method on Result(2), providing the list generated in step 3 as the parameters.
If Type(Result(6)) is not Object, generate a runtime error.

Return Result(6).

8.2.4 Function Calls

The productionCallExpression: CallExpression Argumentsis evaluated as follows:

1
2.

© N O~ W

9.

Evaluate CallExpression.

For each AssignmentExpression in ArgumentList, in left to right order, evaluate
AssignmentExpression and call GetValue on the result. Keep all of these valuesin an internal list.
Call GetValue(Result(1)).

If Type(Result(3)) is not Object, generate a runtime error.

If Result(3) does not implement the internal [[Call]] method, generate aruntime error.

If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwis&esult(6) is null.

If Result(6) is an activation object, Result(7) iswll. Otherwise, Result(7) is the same as Result(6).
Call the [[Call]] method on Result(3), providing Resulf{) as the this value and providing the list
generated in step 2 as the parameters.

Return Result®).

Note: Result(8) will never be of type Reference for native ECM A Script objects. Whether an external
object can return a value of type Reference isimplementation dependent.

8.3 UNARY OPERATORS
Syntax

UnaryExpression:
PostfixExpression

del et e UnaryExpression

voi d UnaryExpression

t ypeof UnaryExpression
IncrementOperator UnaryExpression
+ UnaryExpression

- UnaryExpression

~ UnaryExpression

I UnaryExpression

32

8.3.1 The del et e Operator

The productionUnaryExpression: del et e UnaryExpressionis evaluated as follows:

Evaluate UnaryExpression.

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

If Type(Result(2)) is not Object return true

If Result(2) does not implement the internal [[Delete]] methgdyo to step 8.

Call the [[Delete]] method on Result(2), providing Result(3) as the property hame to del ete.
Return Result(6).

Call the [[HasProperty]] method on Result(2)), providing Result(3 as the property name to check
for.

9. If Result(8) istrue, return false.

10. Return true.

O N~ WDNE

8.3.2 The voi d Operator

The productionUnaryExpression: voi d UnaryExpressionis evaluated as follows:
1. Evaluate UnaryExpression.

2. Cal GetVaue(Result(1)).

3. Return undefined.

8.3.3 The t ypeof Operator

The productionUnaryExpression: t ypeof UnaryExpressionis evaluated as follows:

1. Evaluate UnaryExpression.

2. If Type(Result(1)) is Reference and GetBase(Result(1)) is null, return "undefined”.
3. Cdl GetValue(Result(1)).

4. Return astring determined by Type(Result(3)) according to the following table:

1. Type 1. Result
2. Undefined 2. "undefined"
3. Null 3. "object"
4. Boolean 4. "boolean"
5. Number 5. "number"
6. String 6. "string"
7. Object (nativeand | 7. "object"
doesn’t implement
[[Call]])
8. Object (nativeand | 8. "function"
implements
[[Call]])
9. Object (external) 9. unspecified

Issue: What does typeof return for external objects?

8.3.4 Prefix Increment and Decrement Operators

The productionUnaryExpression: IncrementOperator UnaryExpressionis evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. Cal ToNumber(Result(2)).

4. For ++, Result(4) is Result(3) increased by one. For --, Result(4) is Result(3) decreased by one. In
either case, if Result(3) isNaN or +Infinity, Result(4) is the same as Result(3).

Call PutValue(Result(1), Result(4)).

Return Result(4).

o o

33

8.3.5 Unary + and - Operators

The productionUnaryExpression: + UnaryExpressionis evaluated as follows:
1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. Cal ToNumber(Result(2)).

4. Return Result(3).

The productionUnaryExpression: - UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression.

Call GetVaue(Result(1)).

Call ToNumber(Result(2)).

If Result(3) is NaN, return NaN.

Negate Result(3).

Return Result(5).

S A N

8.3.6 The Bitwise NOT Operator (~)

The productionUnaryExpression: ~ UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call Tolnt32(Result(2)).

Apply bitwise complement to Result(3)The result is a signed 32-bit integer.
Return Result(4).

agkrwbdpE

8.3.7 Logical NOT Operator (!)

The productionUnaryExpression: ! UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, return false.

Return true.

ogrwNPE

8.4 MULTIPLICATIVEOPERATORS

Syntax
MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression* UnaryExpression
MultiplicativeExpression/ UnaryExpression
MultiplicativeExpression%UnaryExpression
Semantics

The production MultiplicativeExpression: MultiplicativeExpression @ UnaryExpressionwhere @
stands for one of the operators in the above definitions, is evaluated as follows:

Evaluate M ultiplicativeExpression.

Call GetVaue(Result(1)).

Evaluate UnaryExpression.

Call GetVaue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

No ok whNE

(74.1,7.4.2,74.3).
8. Return Result(7).

Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the discussions below

34

8.4.1 Applying the * Operator

The* operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECM A Script, because of finite precision.

The result of afloating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Multiplication of an infinity by a zero resultsin NaN.

Multiplication of an infinity by an infinity resultsian infinity. The sign is determined by the rule
aready stated above.

Multiplication of an infinity by afinite non-zero value resultsin asigned infinity. The signis
determined by the rule already stated above.

In the remaining cases, where neither an infinity or NaN isinvolved, the product is computed and
rounded to the nearest representable value using | EEE 754 round-to-nearest mode. If the magnitude
istoo large to represent, the result is then an infinity of appropriate sign. If the magnitude is too
small to represent, the result is then a zero of appropriate sign. The ECM A Script language requires
support of gradual underflow as defined by |EEE 754.

8.4.2 Applying the / Operator

The/ operator performs division, producing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECM A Script does not perform integer division. The
operands and result of all division operations are double-precision floating-point numbers. The result of
division is determined by the specification of IEEE 754 arithmetic:

If either operand is NaN, the result is NaN.

The sign of theresult is positive if both operands have the same sign, negative if the operands have
different signs.

Division of an infinity by an infinity resultsin NaN.

Divisionof an infinity bya zero results inan infinity. The sign is determined by the rule already
stated above.

Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined
by the rule already stated above.

Division of afinite value by an infinity resultsin zero.

Division of a zero by a zero resultsin NaN; division of zero by any other finite value resultsin
zero.

Division of anon-zero finite value by a zero results in asigned infinity. The sign is determined by
the rule already stated above.

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, the quotient is
computed and rounded to the nearest representable value using |EEE 754 round-to-nearest mode. If
the magnitude is too large to represent, we say the operation overflows; the result is then an infinity
of appropriate sign. If the magnitude is too small to represent, we say the operation underflows and
the result is zero. The ECM A Script language requires support of gradual underflow as defined by
|EEE 754.

8.4.3 Applying the %Operator

The binary %operator is said to yield the remainder of its operands from an implied division; the left
operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator
accepts only integral operands, but in ECM A Script, it also accepts floating-point operands.

The result of afloating-point remainder operation as computed by th&operator is not the same as the
"remainder" operation defined by IEEE 754. The IEEE 754 "remainder" operation computes the
remainder from arounding division, not atruncating division, and so its behavior is not analogous to

35

that of the usual integer remainder operator. Instead the ECM A Script language definéson floating-
point operations to behave in a manner analogous to that of the Java integer remainder operator; this
may be compared with the C library function fmod.

The result of a ECM A Script floating-point remainder operation is determined by the rules of IEEE
arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.
If the dividend is a zero and the divisor isfinite, the result ithe same as the dividend

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point
remainder r from adividend n and a divisor d is defined by the mathematical relationr=n- (d * q)
where g is an integer that is negative only if n/d is negative and positive only if n/d is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the true mathematical
quotient of nand d.

8.5 ADDITIVE OPERATORS
Syntax

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression+ MultiplicativeExpression
AdditiveExpression- MultiplicativeExpression

7.5.1 The Addition Operator (+)

The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression: AdditiveExpression+ MultiplicativeExpressionis evaluated as
follows:

1. Evaluate AdditiveExpression.

2. Call GetValue(Result(1)).

3. Evaluate MultiplicativeExpression.

4. Call GetVaue(Result(3)).

5. Call ToPrimitive(Result(2)).

6. Call ToPrimitive(Result(4)).

7. If Type(Result(5)) is String or Type(Result(6)) is String, go to step 13 Note that this step differs
from step 7 in the algorithm for the relational operators in usingr instead of and.)

8. Call ToNumber(Result(5)).

9. Call ToNumber(Result(6)).

10. If Result(8) or Result(9) is NaN, return NaN.

11. Apply the addition operation to Result(8) and Result(9). See the discussion below.
12. Return Result(11).

13. Call ToString(Result(5)).

14. Call ToString(Result(6)).

15. Concatenate Result(13) followed by Result(14).

16. Return Result(15).

8.5.1 The Subtraction Operator (-)

The production AdditiveExpression: AdditiveExpression- MultiplicativeExpressionis evaluated as
follows:

1. EvaluateAdditiveExpression.

2. Cal GetVaue(Result(1)).

3. Evaluate MultiplicativeExpression.

36

Call GetVaue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the subtraction operation to Result(5) and Result(6). See the discussion below (7.5.3).
Return Result(7).

© N oA

7.5.3 Applying the Additive Operators (+, -)

The + operator performs addition when applied to two operands of numeric type, producing the sum of
the operands. The- operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.
The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:
If either operand is NaN, the result is NaN.
The sum of two infinities of opposite signis NaN.
The sum of two infinities of the same sign is the infinity of that sign.
The sum of an infinity and afinite value is equal to the infinite operand.
The sum of twonegativezeros isnegativezero. The sum of two positive zeros, or of two zeros of
opposite sign, is positive zero.
The sum of a zero and a nonzero finite value is equal to the nonzero operand.
The sum of two nonzero finite values of the same magnitude and opposite sign @sitive zero.

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, and the operands
have the same sign or have different magnitudes, the sum is computed and rounded to the nearest
representable value using |EEE 754 round-to-nearest mode. If the magnitude istoo large to
represent, the operation overflows and the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the operation underflows and the result is zero. The

ECM A Script language requires support of gradual underflow as defined by |EEE 754.

The- operator performs subtraction when applied to two operands of humeric type producing the
difference of its operands; the left operand is the minuend and the right operand is the subtrahend.

Given numeric operandsa and b, it is always the case that a b produces the ssmeresult asat+ (-
b).

8.6 BITWISE SHIFT OPERATORS
Syntax

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression>> AdditiveExpression
ShiftExpression>>> AdditiveExpression

Discussion
The result of evaluating ShiftExpression is always truncated to 32 bits. If the result of evaluating

ShiftExpression produces a fractional component, the factional component is discarded. The result of
evaluating AdditiveExpresion is always truncated to five bits.

8.6.1 The Left Shift Operator (<<)

Performs a bitwise left shift operation on the left argument by the amount specified by the right
argument.

The production ShiftExpression: ShiftExpression<< AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression.

Call GetValue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

ogrwNPE

37

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
L eft shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

© 0N

8.6.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left argument by the amount specified by the
right argument.

The production ShiftExpression: ShiftExpression>> AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression.

Call GetVaue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is asigned 32 bit integer.

9. Return Result(8).

O N~ ®WDNPRE

8.6.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left argument by the amount specified by the
right argument.

The production ShiftExpression: ShiftExpression>>> AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression.

Call GetVaue(Result(1)).

Evaluate AdditiveExpression.

Call GetVaue(Result(3)).

Call ToUint32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 bit integer.

9. Return Result(8).

©NO O~ WDNE

8.7 RELATIONALOPERATORS
Syntax

Relational Expression:
ShiftExpression
Relational Expression< ShiftExpression
Relational Expression> ShiftExpression
Relational Expression<= ShiftExpression
Relational Expression>= ShiftExpression

Semantics
In the discussion below, the following special operators will be used:

Operator M eaning

Numeric@ Where @ represents one of the relational operators. The operands are of type
Number. Thisisthe standard | EEE operator with the provision that if either
operand isNaN, theresult isf al se.

Character@ Where @ represents one of the relational operators. The operands are of type

38

String. The operands are compared character by character lexicographically in th
unicode character set. |f the operands are of different length and all
corresponding characters up to the length of the shorter operand are the same, the

U

longer string is considered to be greater.

The production Relational Expression: Relational Expression @ ShiftExpression where @ represents
one of the relational operators, is evaluated as follows:

No ok whE

©

9.

10.
11.
12.
13.

Evaluate Relational Expression.

Call GetVaue(Result(1)).

Evaluate ShiftExpression.

Call GetVaue(Result(3)).

Call ToPrimitive(Result(2), hint Number).

Call ToPrimitive(Result(4), hint Number).

If Type(Result(5)) is Stringand Type(Result(6)) is String, go to stepl2. (Note that this step differs
from step 7 in the algorithm for the addition operator- in usingand instead of or.)
Call ToNumber(Result(5)).

Call ToNumber(Result(6)).

Apply Numeric@ to Result(8) and Result(9).

Return Result(10).

Apply Character@ to Resultb) and Result(6).

Return Result(12).

8.8 EQUALITYOPERATORS
Syntax

EqualityExpression:
Relational Expression
EqualityExpression== Relational Expression
EqualityExpression! = Relational Expression

The production EqualityExpression: EqualityExpression== Relational Expressionis evaluated as

follows:

1. Evauate EqualityExpression.

2. Call GetValue(Result(1)).

3. Evaluate Relational Expression.

4. Call GetVaue(Result(3)).

5. If Type(Result(2)) is differentfrom Type(Result(4)), go to step 12

6. If Type(Result(2)) is Undefined, return true.

7. If Type(Result(2)) is Null, return true.

8. If Type(Result(2)) is Number, apply Numeric== to Result(2) and Result(4) and return the result.

9. If Type(Result(2)) is String, apply Character==to Result(2) and Result(4) and return the result.

10. If Type(Result(2)) is Boolean, return true when Result(2) and Result(4) are both true or both false.
Otherwise return false.

11. Returntrueif Result(2) and Result(4)refer to the same object.Otherwise, returnfalse

12. If Result(2) is null and Result(4) is undefined, return true.

13. If Result(2) is undefined and Result(4) is null, return true.

14. If Type(Result(2)) is Number and Type(Result(4)) is String, return the result of the comparison
ToString(Result(2)) == Result(4).

15. If Type(Result(2)) is String and Type(Result(4)) is Number, return the result of the comparison
Result(2) == ToString(Result(4)).

16. Returnfalse

The production EqualityExpression: EqualityExpression! = Relational Expressionis evaluated as

follows:

1. Evaluate the production EqualityExpression-= Relational Expression.

2. If Result(1) ist r ue, returnf al se.

3. Returntrue.

39

Discussion

String comparison can beforced by"'" + a == "" + b.
Numeric comparison can beforcedbya — 0 == b — 0.
Boolean comparison can be forced byla == !b.

The equality operators maintain the following invariants:

1. A!=Bisequivaentto! (A==B).

2. A==Bisequivalent toB == A, except in the order of evaluation of A and B.
3. if A==BandB==C,=>A==C, assuming no side effects.

As no conversions are applied to the operands, equality is always transitive.

8.9 BINARY BITWISE OPERATORS
Syntax

BitwiseANDEXxpression:
EqualityExpression
BitwiseANDEXpression& EqualityExpression

BitwiseXORExpression:
BitwiseANDEXpression
BitwiseXORExpression™ BitwiseANDEXxpression

BitwiseOREXpression:
BitwiseXORExpression
BitwiseORExpression| BitwiseXOREXxpression

Semantics

The productionA : A @ B, where @ is one of the bitwise operators in the productions above, is
evaluated as follows:

Evaluate A.

Call GetVaue(Result(1)).

Evaluate B.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

O N h~wWDNPRE

8.10 BINARYLOGICAL OPERATORS
Syntax

Logical ANDEXxpression:
BitwiseORExpression
Logical ANDExpression&& BitwiseOREXxpression

Logical ORExpression:
Logical ANDExpression
Logical ORExpression| | Logical ANDExpression

Semantics

The production Logical ANDExpression: Logical ANDEXpression&& BitwiseOREXxpressionis
evaluated as follows:

1. Evaluate Logical ANDExpression.

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) isfalse, returnResult(2).

5. Evaluate BitwiseORExpression.
6. Call GetValue((Result(5)).
7. Return Result).

The production Logical ORExpression: LogicalORExpression| | Logical ANDEXxpressionis evaluated
asfollows:

1. Evaluate L ogical ORExpression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, returnResult(2).

Evaluate L ogical ANDExpression.

Call GetValue(Result(5)).

Return Result).

Nogakowd

8.11 CONDITIONALOPERATOR(?:)
Syntax

Conditional Expression:
Logical ORExpression
Logical ORExpression ? AssignmentExpression: AssignmentExpression

Semantics

The production Conditional Expression: Logical ORExpression? AssignmentExpression:
AssignmentExpressionis evaluated as follows:
Evaluate L ogical ORExpression.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 8.
Evaluatethe first AssignmentExpression.
Call GetVaue(Result(5)).

Return Result(6).

Evaluatethe second A ssignmentExpression.
. Cal GetVaue(Result(8)).

10. Return Result(9).

Issue: Add an explanation of how the grammar differs slightly from that of C and Java here.

©oOoNOOAWNE

8.12 ASSIGNMENTOPERATORS
Syntax

AssignmentExpression:
Conditional Expression
PostfixExpression AssignmentOperator AssignmentExpression

AssignmentOperator :: one of
= *= [= U += -= <<= >>= >>>= :/\:|:

8.12.1 Simple Assignment (=)

The production AssignmentExpression: PostfixExpression = AssignmentExpressionis evaluated as
follows:

1. EvaluatePostfixExpression.

2. Evauate AssignmentExpression.

3. Call GetVaue(Result(2)).

4. Call PutValugResult(1), Result(3)).

5. Return Result(3).

41

8.12.2 Compound Assignment (op=)

The production AssignmentExpression: PostfixExpression @= AssignmentExpression where @
represents one of operators indicated above, is evaluated as follows:

Eval uate PostfixExpression.

Call GetValue(Result(1)).

Evaluate A ssignmentExpression.

Call GetVaue(Result(2)).

Apply operator @ to Result(3) and Result(4).

Call PutVaugResult(1), Result(5)).

Return Result(5).

No gk whE

8.13 CoMMA OPERATOR(,)

Syntax
Expression:
AssignmentExpression
Expression, AssignmentExpression
Semantics

The production Expression: Expression, AssignmentExpressionis evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Evaluate AssignmentExpression.

Call GetValue(Result(3)).

Return Result(4).

ogrwNPE

42

O STATEMENTS

Syntax

Satement :
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakSatement
ReturnSatement
WithSatement

Block :
{ StatementListy }

SatementList:
Satement
SatementList Satement

Semantics

The production StatementList: StatementList Satementis evaluated as follows:
1. Evaluate StatementList.

2. Evauate Statement.

9.1 VARIABLESTATEMENT
Syntax

VariableStatement :
var VariableDeclarationList;

VariableDeclarationList:
VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclaration:
Identifier Initializeryy

Initializer :
= AssignmentExpression

Description

If the variable statement occurs inside & unctionDeclaration the variables are defined with function-
local scopein that function. Otherwise, they are defined with global scope, that is, they are created as
members of the global object as described in sectiorerror! Reference source not found.. Variables
are created when the execution scope is entered. ABlock does not define a new execution scope. Only
Programand FunctionDeclaration produce a new scope. Eval code and anonymous code also define a

43

new execution scope, but these are not an explicit part of the grammer of ECM A Script. Variables are
initialized to theundef i ned value when created. A variable with arinitializer is assigned the value
of its AssignmentExpressionwhen theVariableStatementis executed.

Semantics

The productionVariableStatement: var VariableDeclarationList; isevaluated as follows:
1. Evauate VariableDeclarationList.
2. Return.

The productionVariableDeclaractionList: VariableDeclarationList, VariableDeclarationis
evaluated as follows:

1. Evaluate VariableDeclarationList.

2. Evaluate VariableDeclaration.

3. Return.

The productionVariableDeclaration: Identifier = AssignmentExpressionis evaluated as follows:
Evaluateldentifier.

Evaluate AssignmentExpression.

Call GetVaue(Result(2)).

Call PutValue(Result(1), Result(3)).

Return.

agkrwbdpE

9.2 EMPTY STATEMENT
Syntax
EmptyStatement :

Semantics
The production EmptyStatement: ; is evaluatedby taking no action.

9.3 EXPRESSIONSTATEMENT
Syntax
ExpressionStatement :
Expression;

Semantics
The production ExpressionStatement: Expression; isevaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).

9.4 THE i f STATEMENT

Syntax
IfStatement :
i f (Expression) Statementel se Statement
i f (Expression) Statement
Semantics

The productionIfStatement : i f (Expression) Statement; el se Statement; is evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, goto step 7.

Evaluate Statement1.

Return.

S S N

7. Evaluate Statement2.

8. Return.

The productionIfStatement : i f (Expression) Satementis evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return.

Evaluate Statement.

Return.

o gk wbdpE

9.5 ITERATION STATEMENTS
Syntax

IterationStatement :
whi | e (Expression) Statement
for (Expression,; Expression,y; Expression,) Statement
for (var VariableDeclarationList; Expression,; Expression,) Statement
for (Expressioni n Expression) Statement
for (var ldentifier Initializeryy i N Expression) Statement

Description

These statements all define a“continue label” and a“break label” for use by an enclosabnt i nue or
br eak statement. For the purposes of this specification, alabel is a step number in an algorithm.
Continue labels are held in acontinue label stackand break labels are held in abreak label stack These
stacks are local to the current execution scope. To execute aont i nue or br eak statement,
execution control istransferred to the label specified by the top value of the corresponding label stack.
If an implementation of ECMA Script has distinct compile and execute phases, the label stacks need
only be maintained during compilation as the label that aont i nue or br eak statement jumpstois
not dependent on any runtime state.

The WithStatement affects both stacks for the purposes of clean up: to remove its object from the scope
chain.

In algorithms, we use “PushBreak(n)” as short hand for “ Push Step(n) on the break label stack”.
Similarly we use “PushContinue(n)”, “PopBreak(n)” and “PopContinue(n)” as short hand for the
obvious phrases. We use “JumpBreak” as short hand for “Transfer execution control to the position
indicated by the top label of the break label stack” and similarly for “ JumpContinue”.

9.5.1 The whi | e Statement

The productionIterationStatement: whi | e (Expression) Statementis evaluated as follows:
PushContinue(3).
PushBreak(9).

Evaluate Expression.

Call GetValue(Result(3)).
Call ToBoolean(Result(4)).
If Result(5) isfalse, goto 9.
Evaluate Statement.

Go to step 3.

. PopBreak(9).

10. PopContinue(3).

11. Return.

©oOoNO O~ WDNE

9.5.2 The f or Statement

The production|terationStatement: f or (Expression, ; Expression, ; Expressiorns) Statementis
evaluated as follows:
1. PushContinue(10).

45

PushBreak(13).

Evaluate Expressionl.

Call GetValue(Result(3)).

Evaluate Expression2.

Call GetValue(Result(5)).

Call ToBoolean(Result(6)).

If Result(7) isfalse, go to step 13.

Evaluate Statement.

Evaluate Expression3.

. Call GetValue(Result(10)).

Go to step 5.

PopBreak(13).

PopContinue(10).

15. Return.

If Expression, is omitted from the source text, steps 3 and 4 are omitted from execution. Expression,
is omitted from the source text, step 5 is omitted from execution and the result of step 5ig ue. If
Expression; is omitted from the source text, steps 10 and 11 are omitted from execution.

| ssue: define the var version.

© N A WN

Nl
dpwbdbrEFo

9.5.3 Thefor..in Statement

The productionIterationStatement: f or (Expression; i n Expression,) Statement is evaluated as

follows:

1. PushContinue(6).

2. PushBreak(11).

3. Evauate Expression2.

4. Cal GetVaue(Result(3)).

5. Call ToObject(Result(4)).

6. Get the name of the next property of Result(5) which doesn’t have the DontEnum attribute. If there
is no such property, go to step 11.

7. Evaluate Expressionl.

8. Cal PutVaue(Result(7), Result(6)).

9. Evaluate Statement.

10. Goto step 6.

11. PopBreak(11).

12. PopContinue(6).

13. Return.

The mechanics of enumerating the properties (step 6) is implementation dependent. The order of

enumeration is defined by the object. Properties of the object being enumerated may be deleted during

enumeration. If aproperty that has not yet been visited during enumeration is deleted, then it will not

be visited. If new properties are added to the object being enumerated during enumeration, the newly

added properties are not guaranteed to be visited in the active enumeration.

I ssue: define the var version.

Issue: Need to talk about enumerating properties of the prototype, and so on, recursively. Are shadowed
properties of the prototype(s) enumerated? (I hope not!)

9.6 THEconti nue STATEMENT

Syntax

ContinueStatement :
conti nue ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
containsacont i nue statement that is not within at least onehi | e or f or statement. The
cont i nue statement is evaluated as:

46

1. JumpContinue.

See section Iteration Statementsfor a description of the continue label stack and the JumpContinue
directive.

9.7 THEDbreak STATEMENT
Syntax

BreakStatement :
br eak ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
contains abr eak statement that is not within at least onehi | e or f or statement. Thebr eak
statement is evaluated as:

1. JumpBreak

See section Iteration Statementsfor a description of the break label stack and the JumpBreak directive.

9.8 THEreturn STATEMENT
Syntax

ReturnStatement :
return [noLineTerminator here] EXpPressionyy ;

Ther et ur n statement can only be used inside theBlock of a FunctionDeclaration It causes a
function to cease execution and return a value to the caller. IExpressionis omitted, the return valueis
theundef i ned value. Otherwise, the return value is the value oExpression.

9.9 THEW t h STATEMENT

Syntax

WithSatement :
wi t h (Expression) Statement

Description
The WithStatement affects the break label stack and continue label stack for clean up purposes only.
Semantics

The productionWithStatement: wi t h (Expression) Statementis evaluated as follows:
If the continue label stack is not empty, PushContinue(12).
If the break label stack is not empty, PushBreak(16).
Evaluate Expression.

Call GetVaue(Result(3)).

Call ToObject(Result(4)).

Add Result(5) to the front of the scope chain.

Evaluate Statement.

Remove Result(5) from the front of the scope chain.

If the break label stack is not empty, PopBreak(16).

If the continue label stack is not empty, PopContinue(12).
. Return.

Remove Result(5) from the front of the scope chain.

If the break label stack is not empty, PopBreak(16).
PopContinue(12).

JumpContinue.

Remove Result(5) from the front of the scope chain.
PopBreak(16).

If the continue label stack is not empty, PopContinue(12).
JumpBreak.

©oOoNO O~ WNE

PR R R RRRR R R
©Oo~NOUO MWD PEO

47

Discussion
Most of the complexity of this algorithm isto handle jumps out of thé/ithSatement Any jumps out of
the WithStatement must be trapped to remove the object from the scope chain.

48

10 FUNCTION DEFINITION

Syntax

FunctionDeclaration:
functi on Identifier (FormalParameterListy) Block

FormalParameterList:
Identifier
FormalParameterList, Identifier

Semantics

Defines a property of the global object whose name is thédentifier and whose value is a function
object with the given parameter list and statements. If the function definition is supplied text to the
eval function and the calling context has an activation object then the declared function is added to

the activation object.

49

11 PROGRAM

Syntax

Program:
Sour ceElements EndOfSource

SourceElements:
Sour ceElement
Sour ceElements Sour ceElement

SourceElement :
Statement
FunctionDefinition

50

12 NATIVE ECMASCRIPT OBJECTS

There are certain built-in objects available whenever an ECM A Script program begin execution. One,
the global object, isin the scope chain of the executing program. Others are accessible asinitial
properties of the global object.

Some objects are constructors: they are functions intended for use with theew operator. For each
built-in constructor, this specification describes the arguments required by that constructor function,
properties of the constructor object, properties of the prototype object of that constructor, and
properties of specific object instances returned by aew expression that invokes that constructor.

12.1 THE GLOBAL OBJECT

The global object does not have a [[Construct]] property; it is not possible to use the global object asa
constructor with thenew operator.

12.1.1 Value Properties of the Global Object
12.1.2 Function Properties of the Global Object
12.1.2.1 eval(x)

12.1.2.2 parselnt(string, radix)

12.1.2.3 parseFloat(string)

12.1.2.4 escape(string)

12.1.2.5 unescape(string)

12.1.2.6 isNaN(number)

Applies ToNumber to its argument, then returnsr ueif the result is NaN, and otherwise returngal se.

12.1.2.7 isFinite(number)

Applies ToNumber to its argument, then returngalse if the result is NaN, Positive Infinity, or Negative
Infinity, and otherwise returngrue.

12.2 OBJECT OBJECTS

12.2.1 The Object Constructor

When Qbj ect iscalled as part of anew expression, it is a constructor that creates an object.

51

12.2.1.1 new Object(value)
12.2.1.2 new Object()

12.2.2 Properties of the Object Constructor

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Object constructor has the following
property:

12.2.2.1 Object.prototype
Thevalue of Qbj ect . pr ot ot ype isthe built-in Object prototype object.

12.2.2.2 Object.length

Thel engt h property is1 to indicate the expected number of arguments to th€bj ect function.
Thel engt h property has the ReadOnly attribute.

12.2.3 Properties of the Object Prototype Object
12.2.3.1 toString()
12.2.3.2 valueOf()

12.2.4 Properties of Object Instances
12.3 FUNCTION OBJECTS

12.3.1 The Function Constructor

When Funct i on iscalled as part of anew expression, it is a constructor that creates an object.

12.3.2 Properties of the Function Constructor
12.3.3 Properties of the Function Prototype Object
12.3.4 Properties of Function Instances

12.4 ARRAY OBJECTS

Array objects give special treatment to a certain class of property names. A property nanke(in the
form of astring value) is anarray indexif and only if ToString(ToUint32pP)) is equal toP. Every
Array object has al engt h property whose value is always an integer with positive sign and less than
2%, It isalways the case that thd engt h property is numerically greater than the name of every
property whose name is an array index; whenever a property of an Array object is created or changed,
other properties are adjusted as necessary to maintain this invariant.

12.4.1 The Array Constructor

When Ar r ay is called as part of anew expression, it is a constructor that creates an object.
[Exposition on array constructors TBD]

12.4.1.1 new Array(item0O, item1, .. .)
The [[Class]] property of the newly constructed object isset t§ Arr ay" .

52

Thel engt h property of the newly constructed object is set to the number of arguments.

The O property of the newly constructed object is set tatem0O; the 1 property of the newly constructed
object is set toitem1; and, in general, for as many arguments as there are, thi property of the newly
constructed object is set to argumentk, where the first argument is considered to be argument number
0.

12.4.1.2 new Array(len)

The [[Class]] property of the newly constructed object isset t§ Arr ay" .

If the argumentlen is a number, then thel engt h property of the newly constructed object is set tden.
If the argumentlen is not a number, then thel engt h property of the newly constructed object is set to
1 and the O property of the newly constructed object is set tden.

12.4.1.3 new Array()

The [[Class]] property of the newly constructed object isset t§ Ar r ay” .
Thel engt h property of the newly constructed object is set to positive zero.

12.4.2 Properties of the Array Constructor

The value of theinternal [[Prototype]] property of the Array constructor isthe Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Array constructor has the following
property:

12.4.2.1 Array.prototype
Thevalue of Array. pr ot ot ype isthe built-in Array prototype object.

12.4.2.2 Array.length

Thel engt h property is1 to indicate the expected number of arguments to thér r ay function. (Of
course, it accepts more than one argument, because it accepts a variable number of arguments.)
Thel engt h property has the ReadOnly attribute.

12.4.3 Properties of the Array Prototype Object
The Array prototype object has its own internal [[Put]] method that keeps tHeengt h property of an
array instance up to date.

In following descriptions of functions that are properties of the Array prototype object, the phrase “this
Array object” refersto the object that isthe hi s value for the invocation of the function; it is an error
if t hi s doesnot refer to an object for which the value of the internal [[Class]] property is not
"Array".

12.4.3.1 toString()

The elements of the array are converted to strings, and these strings are then concatenated, separated by
comma characters. The result is the same asif the built-ipoi n method were called on this Array
object with no argument.

12.4.3.2 valueOf()

12.4.3.3 join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated by
occurrences of theseparator. If no separator is provided, asingle commais used as the separator.
When thej oi n methodis called withone argument separator, the following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]] property i$ Array" , generate a runtime error.

2. If separator is undefined or not supplied, letseparator be the single-character string', " .

53

Call ToString(separator).

If thel engt h property of this Array object i0, return an empty string value.

Call the [[Get]] method of this Array object with argumert.

If Result(6) isundefined or null, use an empty string value; otherwise, call ToString(Result(6)).
Let R be Result(7).

Letkbel.

If kequalsthel engt h property of this Array object, returnR.

Let Sbe a string value produced by concatenatingR and Result(3).

. Call the [[Get]] method of this Array object with argumerit.

If Result(11) isundefined or null, use an empty string value; otherwise, call ToString(Result(11)).
Let R be astring value produced by concatenatings and Result(12).

Increasek by 1.

Go to step 9.

12.4.3.4 reverse()

12.4.3.5 sort()

12.4.4 Properties of Array Instances

Array instances inherit properties from the Array prototype object and also have the following
properties.

12.4.4.1 [[Put]]

Array objects use avariation of the [[Put]] method used for other built-in ECM A Script objects.
AssumeA is an Array object and P is a string.
When the [[Put]] method of A is called with propertyP and valueV, the following steps are taken:

©o N A®wWDNPRE

el e
whNhkE o

14.
15.

Call the [[CanPut]] method ofA with name P.

If Result(1) isfalse return.

If A doesn’t have a property with nameP, go to step 7.

If Pis"l engt h" , goto step 12.

Set the value of propertyP of Ato V.

Go to step 8.

Create a property with nameP, set its value toV and give it empty attributes.
If P isnot an array index, return.

If ToUint32(P) isless than the value of thd engt h property of A, return.
Change the value of the engt h property of A to ToUint32(P)+1.

. Return.

Compute ToUint32{).

For every integerk that is less than the value of thd engt h property of A but not less than
Result(12), delete the property ofA that is named ToStringk), asif by using thedel et e operator
(see section8.3.1).

Set the value of propertyP of A to Result(12).

Return.

12.4.4.2 length

Thel engt h property of this Array object is always numerically greater than the name of every
property whose name is an array index.

Thel engt h property has the DontDelete attribute.

54

12.5 STRING OBJECTS

12.5.1 The String Function

When St ri ng is called as afunction rather than as a constructor, it performs atype conversion.

12.5.1.1 String(value)
Returns a string value (not a String object) computed by ToString(value).

12.5.2 The String Constructor

When St ri ng iscalled as part of anew expression, it is a constructor that creates an object.

12.5.2.1 new String(value)

The [[Class]] property of the newly constructed object issett§ St ri ng” .
The [[Value]] property of the newly constructed object is set to ToString(value).

12.5.2.2 new String()

The [[Class]] property of the newly constructed object issettd St ri ng” .
The [[Value]] property of the newly constructed object is set to an empty string value.

12.5.3 Properties of the String Constructor

The value of the internal [[Prototype]] property of the String constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the String constructor has the following
property:

12.5.3.1 String.prototype

Thevalue of St ri ng. pr ot ot ype isthe built-in String prototype object.

12.5.3.2 String.length

Thel engt h property is1 to indicate the expected number of argumentsto thé&t ri ng function.
Thel engt h property has the ReadOnly attribute.

12.5.4 Properties of the String Prototype Object

In following descriptions of functions that are properties of the String prototype object, the phrase “this
String object” refers to the object that isthe hi s value for the invocation of the function; it is an error
if t hi s doesnot refer to an object for which the value of the internal [[Class]] property is not
"String".Also, the phrase “this string value” refers to the string value represented by this String
object, that is, the value of the internal [[Value]] property of this String object.

12.5.4.1 toString()

Returns this string value. (Note that, for a String object, theoSt r i ng method happens to return the
same thing as theval ueOf method.)

12.5.4.2 valueOf()
Returns this string value.

12.5.4.3 charAt(pos)

Returns a string containing the character at positioposin this string. If there is no character at that
position, the result is an empty string. The result is a string value, not a String object.

55

Theresult of x. char At (pos) isequal to the result ofx. subst ri ng(pos, pos+1) exceptinthe
strange case wherepos is greater than- 1 but less thanO.

When thechar At methodis called withone argument pos, the following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]] property i$ St ri ng" , generate aruntime
error.

Call Tolnteger(start).

Compute the number of charactersin this string value.

If Result(2) islessthan O or is not less than Result(3), return an empty string value.

Returnastring of length 1, containing one character from this string value, namely the character at
position Result(2), where the first (leftmost) character in this string value is considered to be at
position 0, the next one at position 1, and so on.

agkrwbd

12.5.4.4 indexOf(searchString, position)

If the given searchString appears as a substring of this string value, at one or more positions that are at
or to the right of the specified position, then the index of the leftmost such position is returned;
otherwise- 1 isreturned. If position is undefined or not supplied, 0 is assumed, so asto search al of
this string value.

When thei ndexXf methodis called withtwo argumentssearchString and position, the following

steps are taken:

1. If thet hi s valueis not an object whose [[Class]] property i St ri ng" , generate aruntime
error.

2. Call ToString(searchString).

Call Tolnteger(position). (If position is undefined or not supplied, this step will produce the value

0).

Compute the number of characters in this string value.

Compute min(max(Result(3), 0), Result(4)).

Compute the number of charactersin the string that is Result(2).

Compute the smallest possible integek not smaller than Result(5) such thak+Result(6) is not

greater than Result(4), and for al integerg from O to Result(6), inclusive, the character at position

k+j of this string value is the same as the character at positionof Result(2); but if thereis no such

integer k, then compute the value- 1.

8. ReturnResult(7).

w

No ok

12.5.4.5 lastindexOf(searchString, position)

If the given searchString appears as a substring of this string value, at one or more positions that are at
or to the left of the specified position, then the index of the rightmost such position is returned;
otherwise- 1 isreturned. If position is undefined or not supplied, the length of this string valueis
assumed, so asto search all of this string value.

When thel ast | ndexX methodis called withtwo argumentssearchString and position, the
following steps are taken:

1. If thet hi s valueis not an object whose [[Class]] property i$ St ri ng" , generate aruntime
error.

Call ToString(searchString).

If positionis undefined or not supplied , use positive infinity; otherwise, call Tolnteggofsition).
Compute the number of charactersin this string value.

Compute min(max(Result(3), 0), Result(4)).

Compute the number of charactersin the string that is Result(2).

Compute the largest possible integekk not larger than Result(5) such thatk+Result(6) is not greater
than Result(4), and for all integerg from 0 to Result(6), inclusive, the character at positiok+j of
this string value is the same as the character at positiopof Result(2); but if there is no such integer
k, then compute the value- 1.

8. ReturnResult(7).

Nogkwbd

56

12.5.4.6 split(separator)

Returns an Array object into which substrings of this string value have been stored. The substrings are

determined by searching from Ieft to right for occurrences of the given separator; these occurrences are

not part of any substring in the returned array, but serve to divide up this string value. The separator

may be a string of any length.

Asaspecial case, if the separator isthe empty string, this string value is split up into individual

characters; the length of the result array equals the length of this string value, and each substring

contains one character.

If the separator is not supplied, then the result array contains just one string, which is this string value.

When thespl i t methodis called withone argument separator, the following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]] property i$ St ri ng" , generate aruntime
error.

2. Create anew Array object of lengttD and call it A.

If separator is undefined or not supplied, call the [[Put]] method of A witl® and this string value

as arguments, and then return A.

Call ToString(separator).

Compute the number of characters in this string value.

Compute the number of charactersin the string that is Result4).

LetpbeO.

Compute the smallest possible integek not smaller thanp such that k+Result(6) is not greater than

Result(5), and for all integerg from 0 to Result(6), inclusive, the character at positiok+j of this

string value is the same as the character at positiof of Result(2); but if there is no such integek,

then go to step 13.

9. Compute astring value equal to the substring of this string value, consisting of the characters at
positionsp through k- 1, inclusive.

10. Call the [[Put]] method of A withA. | engt h and Result(9) as arguments.

11. Letp be k+max(Result(6), 1). (The max operations handles the special case of an empty string.)

12. Goto step 8.

13. Compute a string value equal to the substring of this string value, consisting of the characters from
position p to the end of this string value.

14. Call the [[Put]] method of A withA. | engt h and Result(13) as arguments.

15. Return A.

w

© N O

12.5.4.7 substring(start)

Returns a substring of this string value, starting from character positiostart and running to the end of
this string value. The result is a string value, not a String object.

If the argument is NaN or negative, it is replaced with zero; if the argument is larger than the length of
this string, it is replaced with the length of this string.

When thesubst ri ng methodis called withone argumentstart, the following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]] property i$ St ri ng" , generate aruntime
error.

Call Tolnteger(start).

Compute the number of characters in the string that is the value of the [[Valu€]] property ofhi s.
Compute min(max(Result(2), 0), Result(3)).

Returna string whose length is the difference between Result(3) and Result(4), containing
characters from the string that is the value of the [[Valug]] property dfhi s, namely the characters
with indices Result(4) through Result(3) 1, in that order.

akrowd

12.5.4.8 substring(start, end)

Returns a substring of this String object, starting from character positiogtart and running to character
position end of the string value represented by this String object. The result isastring value, not a
String object.

57

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the
length of this string, it is replaced with the length of this string.

If startislarger thanend, they are swapped.

When thesubst ri ng methodis called withtwo argumentsstart and end, the following steps are
taken:

1. If thet hi s valueis not an object whose [[Class]] property i St ri ng" , generate aruntime
error.

Call Tolnteger(start).

Call Tolnteger end).

Compute the number of charactersin this string value.

Compute min(max(Result(2), 0), Result(4)).

Compute min(max(Result(3), 0), Result(4)).

Compute min(Result(5), Result(6))

Compute max(Result(5), Result(6))

Returna string whose length is the difference between Result(8) and Result(7), containing
characters from this string value, namely the characters with indices Result(7) through Result{(&),
in that order.

© N A WN

12.5.4.9 toLowerCase

Returns a string equal in length to the length of this string value. The result is a string value, not a String
object.

Every character of the result is equal to the corresponding character of this string value, unless that
character has a Unicode 2.0 lowercase equivalent, in which case the lowercase equivalent is used
instead.

12.5.4.10 toUpperCase

Returns a string equal in length to the length of this string value. The result is a string value, not a String
object.

Every character of the result is equal to the corresponding character of this string value, unless that
character has a Unicode 2.0 uppercase equivalent, in which case the uppercase equivalent is used
instead.

12.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and also have a[[Valu€]] property
and al engt h property.

The [[Value]] property is the string value represented by this String object.

12.5.5.1 length

The number of charactersin the String value represented by this String object.
Once a String object is created, this property is unchanging.

12.6 BOOLEANOBJECTS

12.6.1 The Boolean Function

When St ri ng is called as afunction rather than as a constructor, it performs a type conversion.

12.6.1.1 Boolean(value)

Returns a boolean value (not a Boolean object) computed by ToBoolean(value).

12.6.2 The Boolean Constructor

When Bool ean iscalled as part of anew expression, it is a constructor that creates an object.

58

12.6.2.1 new Boolean(value)

The [[Class]] property of the newly constructed Boolean object is set toBool ean” .
The [[Value]] property of the newly constructed Boolean object is set to ToBoolean(value).

12.6.2.2 new Boolean()

The [[Class]] property of the newly constructed Boolean object is set toBool ean” .
The [[Value]] property of the newly constructed Boolean object is set téalse.

12.6.3 Properties of the Boolean Constructor

The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Boolean constructor has the following
property:

12.6.3.1 Boolean.prototype

The value of Bool ean. pr ot ot ype isthe built-in Boolean prototype object.

12.6.3.2 Boolean.length

Thel engt h property is1 to indicate the expected number of arguments to thBool ean function.
Thel engt h property has the ReadOnly attribute.

12.6.4 Properties of the Boolean Prototype Object

In following descriptions of functions that are properties of the Boolean prototype object, the phrase
“this Boolean object” refers to the object that istheé hi s value for the invocation of the function; itis
an error if t hi s does not refer to an object for which the value of the internal [[Class]] property is not
" Bool ean" . Also, the phrase “this boolean value’ refers to the boolean value represented by this
Boolean object, that is, the value of the internal [[Value]] property of this Boolean object.

12.6.4.1 toString()

If this boolean valueistrue, then the string" t r ue" is returned. Otherwise, this boolean value must be
false, and therefore the string" f al se" isreturned.

12.6.4.2 valueOf()

Returns this boolean value.

12.6.5 Properties of Boolean Instances

Boolean instances have no special properties beyond those inherited from the Boolean prototype object.

12.7 NUMBER OBJECTS

12.7.1 The Number Function

When Nunber iscalled as a function rather than as a constructor, it performs atype conversion.

12.7.1.1 Number(value)

Returns a number value (not a Number object) computed by ToNumber(value).

12.7.2 The Number Constructor

When Nunber iscalled as part of anew expression, it is a constructor that creates an object.

59

12.7.2.1 new Number(value)

The [[Class]] property of the newly constructed object is set t§ Nunber " .
The [[Value]] property of the newly constructed object is set to ToNumber(value).

12.7.2.2 new Number()

The [[Class]] property of the newly constructed object is set t§ Nunber " .
The [[Value]] property of the newly constructed object is set to positive zero.

12.7.3 Properties of the Number Constructor

The value of the internal [[Prototype]] property of the Number constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Number constructor has the following
property:

12.7.3.1 Number.prototype

The value of Nunrber . pr ot ot ype isthe built-in Number prototype object.

12.7.3.2 Number.length

Thel engt h property is1 to indicate the expected number of arguments to thé&lunber function.
Thel engt h property has the ReadOnly attribute.

12.7.3.3 Number.MAX_VALUE

The value of Nunber . M N_VALUE isthe largest positive finite value of the number type, which is
approximately1. 7976931348623157e308 .

12.7.3.4 Number.MIN_VALUE

The value of Nunber . M N_VALUE isthe smallest positive nonzero value of the number type, which
is approximately5e- 324.

12.7.3.5 Number.NaN

The value of Nurber . NaN is NaN.

12.7.3.6 Number.NEGATIVE_INFINITY
The value of Nunber . NEGATI VE_I NFI NI TY isnegative infinity.

12.7.3.7 Number.POSITIVE_INFINITY
Thevalue of Nunber . POSI TI VE_| NFI NI TY is positive infinity.

12.7.4 Properties of the Number Prototype Object

In following descriptions of functions that are properties of the Number prototype object, the phrase
“this Number object” refersto the object that isthé hi s value for the invocation of the function; itis
an error if t hi s does not refer to an object for which the value of the internal [[Class]] property is not
"Nurber " . Also, the phrase “this number value” refers to the number value represented by this
Number object, that is, the value of the internal [[Value]] property of this Number object.

12.7.4.1 toString()

This number value is given as an argument to the ToString operator ; the resulting string valueis
returned.

60

12.7.4.2 valueOf()

Returns this number value.

12.7.5 Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype object.

12.8 THE MATH OBJECT

The Math object is merely a single object that has some named properties, some of which are functions.

The Math aobject does not have a[[Construct]] property; it is not possible to use the Math object asa
constructor with thenew operator.

Recall that, in this specification, the phrase “the number value fot” means “the value of number type,
not NaN but possibly infinite, that is closer than any other value of number type to the mathematical
valuex, but if x lies exactly halfway between two such values then the number value whose least
significant bit is 0 is chosen”.

12.8.1 Value Properties of the Math Object

12.8.1.1 E

The number value fore, the base of the natural logarithms, which is approximately
2.7182818284590452354 .

12.8.1.2 LN10

The number value for the natural logarithm of 10, which is approximatelg. 302585092994046 .

12.8.1.3 LN2
The number value for the natural logarithm of 2, which is approximatel§. 6931471805599453 .

12.8.1.4 LOGZ2E

The number value for the base-2 logarithm of, the base of the natural logarithms; thisvalueis
approximately1. 4426950408889634 . (Note that the value of Mat h. LOR2E is approximately the
reciprocal of the value of Mat h. LN2.)

12.8.1.5 LOGI10E

The number value for the base-2 logarithm of, the base of the natural logarithms; thisvalueis
approximately0. 4342944819032518 . (Note that the value of Mat h. LOR2E is approximately the
reciprocal of the value of Mat h. LN2.)

12.8.1.6 PI

The number value forp, the ratio of the circumference of acircle to its diameter, which is
approximately 3. 14159265358979323846 .

12.8.1.7 SQRT1_2

The number value for the square root of 1/2, which is approximatel®. 7071067811865476 . (Note
that the value of Mat h. SQRT1_2 isapproximately the reciprocal of the value oivat h. SQRT2.)

12.8.1.8 SQRT2
The number value for the square root of 2, which is approximatelyt. 4142135623730951 .

61

12.8.2 Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left-to-
right order if there is more than one) and then performs a computation on the resulting number value(s).

The behavior of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, and sqrt is not precisely
specified here. They are intended to compute approximations to the results of familiar mathematical
functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is
that an implementor should be able to use the same mathematical library for ECMA Script on a given
hardware platform that is available to C programmers on that platform. Nevertheless, this specification
recommends (though it does not require) the approximation algorithms for IEEE 754 arithmetic
contained inf dl i bm, the freely distributable mathematical library [XXXREF]. This specification also
requires specific results for certain argument values that represent boundary cases of interest.

12.8.2.1 abs(x)

Returns the absolute value of its argument; in general, the result has the same magnitude as the
argument but has positive sign.

If the argument isNaN, the result isNaN.

If the argument is- 0, the result is+0.

If theargumentis- I nfinity,theresultistinfinity.

12.8.2.2 acos(x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is
expressed in radians and ranges from +0 to $.

If the argument isNaN, the result isNaN.

If the argument is greater thanl, the result isNaN.

If the argument isless thart 1, the result isNaN.

If the argument is exactlyl, the result is+0.

12.8.2.3 asin(x)

Returns an implementation-dependent approximation to the arc sine of the argument. The result is
expressed in radians and ranges from- p/2 to +p/2.

If the argument isNaN, the result isNaN.

If the argument is greater thanl, the result isNaN.

If the argument isless than- 1, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, theresult is- 0.

12.8.2.4 atan(x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The result is
expressed in radians and ranges from- p/2 to +p/2.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- 0, the result is- 0.

If the argument is+l nf i ni ty, the result is an implementation-dependent approximation topf2.

If theargument is- | nfi ni ty, the result is an implementation-dependent approximation tep/2.

12.8.2.5 atan2(y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotiegt x of the
argumentsy and x, where the signs of the arguments are used to determine the quadrant of the result.
Note that it isintentional and traditional for the two-argument arc tangent function that the argument
namedy be first and the argument namedx be second. The result is expressed in radians and ranges
from- p to +p.

62

If either argument isNaN, the result isNaN.

If y>0 and x is+0, the result is an implementation-dependent approximation to p/2.
If y>0 and x is- 0, the result is an implementation-dependent approximation to p/2.
If y is+0 and x>0, the result is+0.

If y is+0 and x is+0, the result is+0.

Ify is+0 and x is- 0, the result is an implementati on-dependent approximation to p-
If y is+0 and x<0, the result is an implementation-dependent approximation to p-
Ify is- 0 and x>0, theresultis- 0.

Ifyis-0 andx is+0, theresult is- 0.

Ifyis-0andx is- 0, theresult is an implementation-dependent approximation te p.
If y is- 0 and x<0, the result is an implementation-dependent approximation te p.

If y<0 and x is+0, the result is an implementation-dependent approximation te p/2.
If y<0 and x is- 0, the result is an implementation-dependent approximation te p/2.
If y>0 andy isfiniteandx is+I nfi ni ty, theresult is+0.

If y>0 andy isfiniteandx is- I nfi ni ty, theresult if an implementation-dependent
approximation to .

If y<O andy isfiniteandx is+l nfinity,theresultis- 0.

If y<O andy isfiniteandx is- | nfi ni ty, the result is an implementation-dependent
approximation to - p.

Ify is+l nfinity andx isfinite, the result is an implementation-dependent approximation to
+p/2.

Ifyis-Infinity andx isfinite, theresult isan implementation-dependent approximation te
p/2.

Ifyis+Infinity andx is+l nfinity, theresultisanimplementation-dependent
approximation to /4.

Ifyis+Infinity andxis-Infinity,theresultisanimplementation-dependent
approximation to +3/4.

Ifyis-Infinity andx is+l nfinity,theresultisanimplementation-dependent
approximation to - p/4.

Ifyis-Infinity andxis-Infinity,theresultisanimplementation-dependent
approximation to - 3p/4.

12.8.2.6 ceil(x)

Returns the smallest (closest to negative infinity) number value that is not less than the argument and is
equal to amathematical integer. If the argument is already an integer, the result is the argument itself.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, theresult is- 0.

If theargument ist+l nfini ty,theresultis+ti nfinity.

If theargumentis- I nfinity,theresultis-Infinity.

If the argument is less thar0 but greater than- 1, theresult is- 0.
Thevaue of Mat h. cei | (x) isthesame asthevalueof- Mat h. f| oor (- x) .

12.8.2.7 cos(x)
Returns an implementation-dependent approximation to the cosine of the argument. The argument is
expressed in radians.
- If theargument isNaN, the result isNaN.
If the argument is+0, theresult isl.
If the argument is- O, theresult isl.
If the argument is+l nf i ni ty, theresultisNaN.
If theargument is- | nfi ni ty, theresultisNaN.

63

12.8.2.8 exp(x)

Returns an implementation-dependent approximation to the exponential function of the argumerd (
raised to the power of the argument, where is the base of the natural logarithms).

If the argument isNaN, the result isNaN.

If the argument is+0, theresult isl.

If the argument is- 0, theresult isl.

If theargument is+l nfini ty,theresultis+ti nfinity.

If theargument is- | nfi ni ty, theresultis+0.

12.8.2.9 floor(x)

Returns the greatest (closest to negative infinity) number value that is not greater than the argument and
isequal to amathematical integer. If the argument is already an integer, the result is the argument itself.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, theresult is- 0.

If theargument is+l nfinity,theresultis+tinfinity.

If theargumentis- I nfinity,theresultis-Infinity.

If the argument is greater thar0 but lessthan1, the result is+0.

Thevalue of Mat h. f1 oor (x) isthe same asthe value of- Mat h. cei | (-x) .

12.8.2.10 log(x)

Returns an implementation-dependent approximation to natural logarithm of the argument.
- If theargument isNaN, the result isNaN.

If the argument is less than 0, the result iNaN.

If the argument is+0 or - 0, theresultis- I nfinity.

If the argument isl, the result is+0.

If theargument is+l nfini ty,theresultis+ti nfinity.

12.8.2.11 max(x, y)

Returns the larger of the two arguments.

If either argument isNaN, the result isNaN.
If x>y, the result isx.

If y>x, theresultisy.

If X is+0 andy is+0, the result is+0.

If x is+0 andy is- 0, the result is+0.

If X is-0 andy is+0, the result is+0.

If X is-0 andy is- 0, theresult is- 0.

12.8.2.12 min(x, y)

Returns the smaller of the two arguments.
If either argument isNaN, the result isNaN.
If x<y, the result isx.
If y<x, theresultisy.
If X is+0 andy is+0, the result is+0.
If x is+0 andy is- 0, theresult is- 0.
If X is-0 andy is+0, theresult is- 0.
If X is-0 andy is- 0, theresult is- 0.

64

12.8.2.13 pow(x, Y)

Returns an implementation-dependent approximation to the result of raising to the powery.
If y isNaN, the result isNaN.
Ify is+0, theresultisl, evenifx isNaN.
Ifyis- 0, theresultisl, evenifx isNaN.
If x isNaN and y isnonzero, the result isNaN.
Ifabs(x)>1 and yis+Infinity,theresultistInfinity.
Ifabs(x)>1 and y is-Infinity,theresultis+0.
If abs(x)==1 and y is+I nfinity,theresultisNaN.
Ifabs(x)==1 and y is-I nfinity,theresultisNaN.
Ifabs(x) <1l and y is+I nfinity,theresultis+0.
Ifabs(x)<l and yis-Infinity,theresultistInfinity.
Ifxis+Infinity and y>0,theresultis+I nfinity.
Ifx is+I nfinity and y<O, theresultis+0.
Ifxis-Infinity and y>0 andy isan odd integer, theresultis I nfinity.
Ifxis-Infinity and y>0 andy isnot an odd integer, theresultistl nfinity.
Ifxis-Infinity and y<O andy isan odd integer, theresult is 0.
Ifxis-Infinity and y<O andy isnot an odd integer, the result is+0.
If x is+0 and y>0, the result is+0.
If x is+0 and y<O0, theresultis+I nfinity.
If x is- 0 and y>0 andy isan odd integer, the result is 0.
If x is- 0 and y>0 andy isnot an odd integer, the result ist0.
If x is- 0 and y<0 andy isan odd integer, theresultis I nfinity.
If x is- 0 and y<0 andy isnot an odd integer, theresultistl nfinity.
If x<0 and x isfinite andy isfinite andy is not an integer, the result isNaN.

12.8.2.14 random()

Returns a number value with positive sign, greater than or equal to O but less than 1, chosen randomly
or pseudorandomly with approximately uniform distribution over that range, using an implementation-
dependent algorithm or strategy. This function takes no arguments.

12.8.2.15 round(x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If two
integer number values are equally close to the argument, then the result is the number value that is
closer to positive infinity. If the argument is already an integer, the result is the argument itself.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- 0, the result is- 0.

If theargument istl nfinity,theresultis+I nfinity.

If theargument is- I nfinity,theresultis-Infinity.

If the argument is greater tharD but lessthan0. 5, the result is+0.

If the argument is less thanO but greater than or equal to- 0. 5, theresult is- 0.
The value of Mat h. r ound(x) isthe same asthe value ofivat h. f| oor (x+0. 5) . Note that
Mat h. round(3. 5) returns4, but Mat h. round(- 3. 5) returns- 3.

12.8.2.16 sin(x)

Returns an implementation-dependent approximation to the sine of the argument. The argument is
expressed in radians.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

65

If the argument is- O, theresult is- 0.
If theargumentistl nfinity or-Infinity,theresultisNaN.

12.8.2.17 sqrt(x)

Returns an implementation-dependent approximation to the square root of the argument.
If the argument isNaN, the result isNaN.
If the argument less than0, the result isNaN.
If the argument is+0, the result is+0.
If the argument is- O, theresult is- 0.
If theargument ist+l nfinity,theresultis+tinfinity.

12.8.2.18 tan(x)

Returns an implementation-dependent approximation to the tangent of the argument. The argument is
expressed in radians.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, theresult is- 0.

If theargumentistl nfinity or-Infinity,theresultisNaN.

12.9 DATE OBJECTS

12.9.1 The Date Constructor

When Dat e is called as part of anew expression, it is a constructor that creates an object.

12.9.1.1 new Date(year, month, date, hours, minutes, seconds)
12.9.1.2 new Date(year, month, date, hours, minutes)

12.9.1.3 new Date(year, month, date, hours)

12.9.1.4 new Date(year, month, day)

12.9.1.5 new Date(timeValue)

12.9.1.6 new Date(stringValue)

12.9.1.7 new Date()

The [[Class]] property of the newly constructed object is set t8 Dat e" .
The [[Value]] property of the newly constructed object is set to ???2.

12.9.2 Properties of the Date Constructor

The value of the internal [[Prototype]] property of the Date constructor is the Function prototype object.
Besides the internal [[Call]] and [[Construct]] properties, the Date constructor has the following
property:

12.9.2.1 Date.prototype
Thevalue of Dat e. pr ot ot ype isthe built-in Date prototype object.

66

12.9.2.2 Date.length

Thel engt h property is6 to indicate the expected number of arguments to th®at e function.
Thel engt h property has the ReadOnly attribute.

12.9.2.3 Date.parse()
The.

12.9.2.4 Date.UTC()
The.

12.9.3 Properties of the Date Prototype Object

In following descriptions of functions that are properties of the Date prototype object, the phrase “this
Date object” refersto the object that isthe hi s value for the invocation of the function; it isan error
if t hi s doesnot refer to an object for which the value of the internal [[Class]] property is not

" Dat e" . Also, the phrase “this time value” refers to the number value for the time represented by this
Date object, that is, the value of the internal [[Vaue]] property of this Date object.

67

12.93.1

12.9.3.2

12.9.3.3

12.9.3.4

12.9.3.5

12.9.3.6

12.9.3.7

12.9.3.8

12.9.3.9

12.9.3.10

12.9.3.11

12.9.3.12

12.9.3.13

12.9.3.14

12.9.3.15

12.9.3.16

12.9.3.17

12.9.3.18

12.9.3.19

toString()

valueOf()

getDate()

getDay()

getHours()

getMinutes()

getMonth()

getSeconds()

getTime()
getYear()
setDate(dayValue)
setHours(hoursValue)
setMinutes(minutesValue)
setMonth(monthValue)
setSeconds(SecondsValue)
setTime(timeValue)
setYear(yearValue)
toGMT String(timeValue)

toLocaleString(timeValue)

12.9.4 Properties of Date Instances

Date instances have no special properties beyond those inherited from the Date prototype object.

68

13 ERRORS

This specification specifies the last possible moment an error occurs. A given implementation may
generate errors sooner (e.g. at compile-time). Doing so may cause differencesin behavior among
implementations. Notably, if runtime errors become catchable in future versions, a given error would
not be catchable if an implementation generates the error at compile-time rather than runtime.

An ECMA Script compiler should detect errors at compile timein all code presented to it, even code
that detailed analysis might prove to be “dead” (never executed). A programmer should not rely on the
trick of placing codewithinan f (fal se) statement, for example, to try to suppress compile-time
error detection.

Issue: If acompiler can prove that a construct cannot execute without error under any circumstances,
then it may issue a compile-time error even though the construct might not be executed at all?

69

14 REFERENCES

ANSI X3.159-1989: American National Sandard for Information Systems - Programming Language -
C, American National Standards Institute (1989)

Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical
Analysis Manucript 90-10. AT& T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990.
Availableashtt p: //cm bel | -1 abs. coni cm cs/ doc/ 90/ 4- 10. ps. gz . Associated code
availableashttp: //cm bel | -1 abs. com netlib/fp/dtoa.c.gz andas
http://cmbell-labs.comnetlib/fp/g fm.c.gz andmay asobefound atthe various
net | i b mirror sites.

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification Addison Wesley
Publishing Company 1996.

David Ungar and Randall B. SmithSelf: The Power of Smplicity OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October, 1987.

70

APPENDIX A: OPEN ISSUES

A.1 BREAK AND CONTINUE LABEL STACKS

The break and continue label stacks and their associated machinery complicate the description of
control flow in ECM A Script Moreover, the current description does not give a clear account of how
JumpContinue discards the implicit control stacks that support the execution of the pseudocode
procedures in this document.

I would like to propose the rewriting of the behavior of statements into the style used in the Java
Language Specification, wherein one speaks of a statement as completing “normally” or “abruptly (for a
reason)”. The advantage of this descriptive strategy is that then there are no nonlocal transfers within
the pseudocode and all descriptions of control flow behavior are local.

As examples, here are accounts of thédr eak, conti nue, i f,andwhi | e statementsin this style,
which should illustrate al the relevant concepts:

The productionBreakSatement : br eak ; isevaluated asfollows:

1. Return“abrupt completion because of break”.

The productionContinueSatement : cont i nue ; isevaluated asfollows:
1. Return“abrupt completion because of continue”.

The productionIfStatement : i f (Expression) Statement; el se Statement, is evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, goto step 7.

Evaluate Statementl.

Return Result(5).

Evaluate Statement?2.

Return Result(7).

The productionIterationStatement: whi | e (Expression) Statementis evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(3).

Call ToBoolean(Result(3).

If Result(3) isfalse, go tostep 10.

Evaluate Statement.

If Result(5) is“abrupt completion because of break”, go to step 10.

If Result(5) is“abrupt completion because of continue”, go to step 1.

If Result(5) is“abrupt completion because of return of value V", return Result(5).
. Gotostep 3.

10. Return “normal completion”.

Note that the only change to the description of f isto return the results of substatement evaluation. On
the other hand, the description ofwhi | e has to take the various kinds of abrupt completion into
account. A break causes thenhi | e statement to complete normally; a continue is treated as if the
substatement had completed normally; and a return causes thehi | e statement to terminate
immediately and to propagate the return action.

THISWAS AGREED TO ON FEBRUARY 28 BUT STILL NEEDS TO BE DONE.

©NO O~ WDNE

©oOoNOOAWNE

71

A.2 TOSTRING APPLIED TO ANUMBER TYPE

Should the following additional constraint be added to ToString applied to a number type?

The decimal string produced must be as close in its mathematical value to the mathematical value of the
original number as any other decimal string with the same number of digits; and if two decimal strings
of the same minimal length would be equally close in value to the original number, then the decimal
string whose last digit is even should be chosen.

A.3 ++ AND -- OPERATORS

The increment operators need to be described more carefully in terms of IEEE 754 addition and
subtraction operations.

A.4 INFINITY ANDNAN LITERALS

| (Guy Steele) recommend that literaldNaN and | nf i ni t y be added to the language, and that
I nfinity berecognized when ToNumber is applied to a string (right now it produces NaN!). For
backward compatibility, the constructiorNunmber . NaN would have to continue to work.

A.5 STRING INDEXES

In the phone meeting of March 28, it was agreed that array indexes could run as high as2 2 (so that
the length could be expressed an an integer less than %). Array objects would apply ToUint32 to array
index arguments. It was then assumed that string indexes could be handled the same way.

However, the current behavior of String objects is that a negative string index to the substring method is
clipped to zero. Applying toUint32 first would change this behavior. | recommend that the String
methods apply just Tolnteger, not ToUint32, then clip.

A .6 CONVERSION BETWEENCHARACTERS ANDNUMERICAL CODES

On March 14, we will consider afinal proposal for two methods, one like thehar At method of

String objects but returning the numerical value of the character (or returning NaN ¢har At would
return an empty string), and the other taking a number and converting it to a one-character string (or an
empty string if the number is not avalid character value?).

72

APPENDIX B: PROPOSED EXTENSIONS

B.1 THE CLASS STATEMENT

Syntax

ClassDeclaration:
cl ass IdentifierFormal Parameter sy, ExtendsClause,, { ClassBody}

FormalParamete's :
(FormalParameter List)

FormalParameterList:
Identifier
FormalParameterList, Identifier

ExtendsClause:
ext ends ldentifier Actual Arguments,y

Actual Arguments:
(ExpressionListyy)

ClassBody::
Constructory, Methods,y

Constructor :
SatementList

Methods :
FunctionDefinition
Methods FunctionDefinition

Semantics
Similar to a function except:
The class name space is global but distinct from the global function name space.
The functions (methods) defined within a class definition are in a name space private to the class.

The inclusion of methods automatically creates one property in the constructed object for each
method defined.

Classes may not be called directly but rather can only be used via theew operator.

B.2 THE TRY AND THROVSTATEMENTS

B.2.1 Thetry Statement'

At ry statement executes ablock. If avalueisthrown and thery statement has one or morecat ch
clauses that can catch it, then control will be transfered to the first suobat ch clause. If thet ry
statement has af i nal | y clause, then thef i nal | y block of codeis executed no matter whether the

73

t ry block completes normally or abruptly and regardiess of whether aat ch clauseisfirst given
control.

TryStatement :
t ry Block Catches

t ry Block Catchesopt FinallyClause

Catches:
CatchClause

Catches CatchClause

CatchClause:
cat ch (FormalParameter) Block

FinallyClause:
finally Block

B.2.2 The Thr ow Statment®

A throw statement causes an exception to be thrown. The result is an immediate transfer of control that
may exit multiple statements and method invocations until atry statement isfound that catches the
thrown value. If no such try statement is found, then aruntime error is generated.

ThrowStatement:
t hr ow Expression

B.3 THE DATE TYPE!

The Date Typeis used to represent date and time. It isaJulian value on which certain operations such
as date arithmetic are defined Arithmetic operators, relational operators and equality operators apply to
this type'

Note 1: Of the three current ECM A Script implementations, only the Borland implementation currently
supports date operators. This featureisreally just a convenience that can be implemented with Date
Object methods. However, the same argument can be made for the String type.

Note 2: Of the three current ECM A Script implementations, only the Borland implementation currently
implements dates as Julian dates and thus dates before (January 1970). Without this representation,
dates are very limited in their usage (i.e. you cannot otherwise, represent arbitrary dates, for example
from existing databases)

B.3.1 ToDate!

The operator ToDate attempts to convert its argument to a value of subtype Date Object according to
the following table:

Input Type Result

Undefined Blank date value.

Null Blank date value.

Boolean Blank date value.

Number Blank date value.

String See discussion below.

Date Return the input argument (no conversion)

Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Date).
2. Call ToDate(Result(1)).

74

Return Result(2).

B.3.2 ToDate Applied to the String Type

I ssue; define this.

B.4 IMPLICIT THIS®

In function code where the function definition specifiesthenpl i ci t keyword, thet hi s objectis
placed in the scope chain immediately before the global object.

B.5 THESWi t ch STATEMENT" >

Syntax
SwvitchSatement :
swi tch (Expression) CaseBlock
CaseBlock:
{ CaseClauses,y }
{ CaseClauses,y DefaultClause CaseClauses,y }
CaseClauses:
CaseClause
CaseClauses CaseClause
CaseClause:
case Expression: StatementListyy
DefaultClause:
defaul t : StatementList,y
Semantics

The SwitchStatement adds a label to the break label stack, which is described in sectiorteration
Statements It also adds a label to the continue label stack for clean up purposes only.

The production SwitchStatement: swi t ch (Expression) CaseBlockis evaluated as follows:
If the continue label stack is not empty, PushContinue(9).

PushBreak(6).

Evaluate Expression.

Call GetVaue(Result(3)).

Evaluate CaseBlock, passing it Result(4) as a parameter.

PopBreak(6).

If the continue label stack is not empty, PopContinue(9).

Return.

. PopBreak(6).

10. PopContinue(9).

11. JumpContinue.

The productionCaseBlock: { CaseClauses DefaultClause CaseClauses } is given an input
parameter, input, and is evaluated as follows:

1. For the next CaseClause in CaseClausesl, in source text order, evaluate CaseClause. If thereis no
such CaseClause, go to step 6.

If input is not equal to Result(1) (as defined by the != operator), go to step 1.

Execute the StatementL ist of this CaseClause.

Execute the StatementL ist of each subsequent CaseClause in CaseClausesl.

Go to step 11.

©oNOoO A WNE

oarwbd

75

6. For the next CaseClause in CaseClauses2 , in source text order, evaluate CaseClause. If thereis no
such CaseClause, go to step 11.

7. If input is not equal to Result(6) (as defined by the != operator), go to step 6.

8. Execute the StatementList of this CaseClause.

9. Execute the StatementL st of each subsequent CaseClause in CaseClauses2.

10. Return.

11. Execute the StatementList of DefaultClause.

12. Execute the StatementList of each CaseClause in CaseClauses2.

13. Return.

If CaseClauses isomitted, steps 1 through 5 are omitted from execution. IDefaultClauseis omitted

(in which caseCaseClauses is also omitted), steps 11 and 12 are omitted from execution. If

CaseClauses isomitted, steps 6 through 10 and 12 are omitted from execution.

Typically there will be abr eak statement in one or moreStatementList, which will transfer execution

back to the break |abel for theSwitchSatement.

The production CaseClause: case Expression: StatementLisl,y is evaluated as follows:
1. EvaluateExpression.

2. Cal GetVaue(Result(1)).

3. Return Result(2).

Note that evaluatingCaseClausedoes not execute the associatedStatementList It simply evaluates the
Expression and returns the value, which theCaseBlock algorithm uses to determine whiclStatementList
to start executing.

B.6 CONVERSIONFUNCTIONS

The conversion functions, ToBoolean, ToNumber, Tolnteger, Tolnt32, ToUint32, ToString and
ToObject are global functions that operate as described in this document.

B.7 ASSIGNMENT-ONLY OPERATOR(:=)1

The assignment-only operator operates identically to the assignment operator<) except that if the
given Ivalue doesn’t already exist, prior to the statements execution, a runtime error is generated.

B.8 SEALING OF ANOBJECT2

A facility to prevent an object from being further expanded may be invoked at any time after an object
has been constructed. Thisis semantically the dynamic equivalent to the static Javafinal class modifier.
Thisfacility may be implemented as a method of the object, aglobal function, or, if tlid ass

statement is adopted, as a class modifier tal ass. Once an object has been sealed or finalized, any
attempt to add a new property to the object resultsin a runtime error.

B.9 THE ARGUMENTSKEYWORD®
Thear gunent s keyword refers to the arguments object. Within global codear gunent s returns
nul | . Within eval code,ar gunent s returns the same value as in the calling context.

Discussion:

Thisinterpretation of the "arguments” within a function body differs from existing practice but has two
important advantages over the current mechanism:

1. It can be much more efficiently implemented, especially in the case of recursive functions.

2. It eliminates some complex and confusing semantic issues that arise as aresult of the arguments to
an activation frame being accessible from a function object.

It solves scope resolution issues related to using arguments within a with block on an object that has an
arguments member, such as Math.

76

B.10 PREPROCESSOR

B.11 THE DO..WHILE STATEMENT

B.12 BINARY OBJECT

77

APPENDIX C: PEOPLE CONTACTS

Brendan Eich (brendan@netscape.com)
C. Rand McKinney (rand@netscape.com)

Donna Converse (converse@netscape.com)

Clayton Lewis (clayton@netscape.com)
Randy T. Solton (rsolton@wpo.borland.com)

Mike Gardner (mgardner@wpo.borland.com)
Shon Katzenberger (shonk@microsoft.com)
Robert Welland (robwell @microsoft.com)
Guy Steele (guy.steel e@east.sun.com)

78

APPENDIX D: RESOLUTION HISTORY

D.1 JANUARY 15, 1997

D.1.1 White Space
Updated theWhite Spacesection to include form feed and vertical tab as white space.

D.1.2 Keywords

Updated the Keywordssection to exclude those keywords related to proposed extensions. Also updated
this section to include thedel et e keyword which was missing.

D.1.3 Future Reserved Words

Update the Future Reserved Wordsto only include keywords related to proposed extensions. We
decided to remove words that had been only included as future reserved for Java compatibility
purposes.

D.1.4 Octal And Hex Escape Sequence Issue

Decided to support octal and hex notation. Since only two hex digits are used with hex notation, many
unicode characters cannot be represented thisway. Furthermore, we were not sure if the high 128
characters match up with unicode. (Removed open issue at bottom of section

String Literal9
The argument against was that these notations are redundant since any character can be represented

using the unicode escape sequence. The arguments for were that hex and octal notation are convenient
and simple and also that there is alanguage tradition to be upheld.

D.1.5 ToPrimitive
Removed the erroneous note stating that errors are never generated as aresult of calling ToPrimitive in
the ToPrimitivesection.

D.1.6 Hex in ToNumber

We decided to allow hex in ToNumber but not octal. Looking at it from the user input source point of
view, we decided that it was reasonable to use hex but not octal since it might be common to include
leading zeros in auser input field. Furthermore we did not believe that the ability to use octal in data
entry was desirable. (Removed open issue at the bottom of 5.3.1 ToNumber Applied to the String Type)

D.1.7 Attributes of Declared Functions and Built-in Objets
We decided that built-in objects will have attributes { DontEnum } and that variables declared in global
code will have empty attributes. (Updated the 6.1.1 Global Object section)

D.1.8 The Grouping Operator

We decided that the grouping operator would return the result of GetValue() so that the result is never
of type reference. (Updated theThe Grouping Operatorand removed the open issue at the bottom of
this section)

79

D.1.9 Prefix Increment and Decrement Operators

We decided to not to perform GetV alue to the return value and thus leave the algorithm asiis. (removed
the open issue at the bottom of thePrefix Increment and Decrement Operators

D.1.10 Unary Plus

We decided to leave the algorithm for unary plus alone and continue to call GetValue() and
ToNumber() after evaluating the unary expression which guarantees a numeric result as opposed to only
evaluating the unary expression which would not guarantee a numeric result. (Updated thénary +and

- Oper at or s section)

D.1.11 Multiplicative Operators

Updated step nine in theM ultiplicative Operatorssection to refer to three new sections 7.41, 7.42 and
7.43 which define the behavior of*, / and %

D.1.12 Additive Operators

Updated step 11 in 7.5.1 and step 10 in 7.5.2 to refer to a new section 7.5.3 which define the behavior
of +and-.

D.1.13 Left Shift Operator

We decided to leave the algorithm for left shift asis, which converts the left operand using Tolnt32
rather than ToUint32. Although an unsigned conversion might be arguably preferred, we decided to
continue to convert to signed, as we can always add a new operator (<<<) to accomplish an unsigned
shift. (Removed the open issue at the bottom off he Left Shift Operator (<<))

D.1.14 Binary Bitwise Operators

We decided to leave the algorithm for the binary bitwise operators asis, which uses signed conversion
on the GetValue of its operands. (Removed the open issue at the bottom oBinary Bitwise Operator$

D.1.15 Conditional Operator (? :)

We decided to leave the algorithm for the conditional operator asis, which performs a GetValue on the
result before returning. Current implementations do not do this. (Removed the open issue at the bottom
of Conditional Operator (?:))

D.1.16 Simple Assignment

We decided to leave the algorithm for simple assignment asis. (Removed the open issue at the bottom
of Simple Assignment (=))

D.1.17 The for. . i n Statement

We decided to impose no restrictions on Expressionl. (Removed the first open issue at the bottom of
Thefor..in Statement)

D.1.18 The return Statement

We decided to not generate an error if one return statement in afunction returns a value and another
return in the same function does not return a value. (Removed the first open issue at the bottom of the
Thereturn Statement The second issue at the bottom of this section has been moved tdhe CV of
CharacterEscapeSequence:: \ NonEscapeCharacteristhe CV of theNonEscapeCharacter.
- The CV of NonEscapeCharacter :: SourceCharacter but not SngleEscapeCharacter or OctalDigit
or x or u or LineTerminator is the SourceCharacter character itself.
The CV of HexEscapeSequence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.
The CV of Octal EscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of the OctalDigit.

80

The CV of Octal EscapeSequence:: \ OctalDigit OctalDigit is the Unicode character whose code is
(8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctal Digit.

The CV of Octal EscapeSequence:: \ ZeroToThreeOctalDigit OctalDigitis the Unicode character
whose code is (64 (that is, 82) timesthe MV of th&ZeroToThree) plus (8 timesthe MV of the first
OctalDigit) plusthe MV of the secondOctal Digit.

The MV of ZeroToThree:: O is positive zero.

The MV of ZeroToThree:: 1 is 1.

The MV of ZeroToThree:: 2 is 2.

The MV of ZeroToThree:: 3 is 3.

The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdlexDigit) plus (256 (that is,
162) times the MV of the secondHexDigit) plus (16 timesthe MV of the thirdHexDigit) plus the
MYV of the fourthHexDigit.

Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\ . The correct way to cause aline terminator character to be part of the string value of a string literal is
to use an escape sequence such ad n or \ UOOOA.

Automatic Semicolon Insertion

D.1.19 New Proposed Extensions
Sections B.10 Preprocessor, B.11 The do..while Statementand B.12 Binary Object were added.

D.2 JANUARY 24, 1997

D.2.1 End Of Source

Updated Error! Reference sour ce not found. section to describe the end of source token as logical
rather than physical \u0000 since strings may contain embedded \uO00O characters.

D.2.2 Future Reserved Words
Updated Future Reserved Wordssection to include the worddo and removed the footnotes indicating
the origin of the proposed keywords.

D.2.3 White Space

Updated White Spacesection. Updated the lexical production for SimpleWhiteSpace to include <V T>
and <FF> (already mentioned in the white table above).

D.2.4 Comments
Added new issue to 3.2 regarding nested comments.

D.2.5 Identifiers
Updated section 3.3.2 to correctly state what is an allowable first character in an identifier.

D.2.6 Numeric Literals
Updated section 3.3.4.3 Numeric Literals to disallow leading zeros in floating point literals.

D.2.7 String Literals

Updated the table describing the set of character escape charactersin section

String Literals to include a new column indicating the unicode value. Also added a new issueto the
end of this section.

8l

D.2.8 Automatic Semicolon Insertion

Added two new issues to the end ofThe CV of CharacterEscapeSequence:: \ NonEscapeCharacteris

the CV of theNonEscapeCharacter.

- The CV of NonEscapeCharacter :: SourceCharacter but not SngleEscapeCharacter or OctalDigit
or X or u or LineTerminator is the SourceCharacter character itself.

The CV of HexEscapeSeguence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.

The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of the OctalDigit.

The CV of OctalEscapeSequence:: \ OctalDigit OctalDigitis the Unicode character whose codeis
(8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctal Digit.

The CV of OctalEscapeSequence:: \ ZeroToThreeOctalDigit OctalDigit is the Unicode character
whose code is (64 (that is, 82) timesthe MV of th&eroToThree) plus (8 timesthe MV of the first
OctalDigit) plus the MV of the secondOctal Digit.

The MV of ZeroToThree:: O is positive zero.

The MV of ZeroToThree:: 1 is 1.

The MV of ZeroToThree:: 2 is 2.

The MV of ZeroToThree:: 3 is 3.

The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdiexDigit) plus (256 (that is,
162) times the MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MV of the fourthHexDigit.

Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\ . The correct way to cause aline terminator character to be part of the string value of astring literal is
to use an escape sequence such ad n or \ uOOOA.

Automatic Semicolon Insertion

D.2.9 Property Attributes
Renamed Permanent to DontDeletein the property attributes table in theProperty Attributessection.

D.2.10 ToPrimitive
Reworded sectionToPrimitiveto better describe the optional hintPreferredType

D.2.11 ToNumber

Updated sectionToNumber. Added Hint Number in call to ToPrimitive. Also added new issue to the
end of this section.

D.2.12 White Space

Updated sectionToNumber Applied to the String TypdJpdated the lexical production for
SimpleWhiteSpace to include <V T> and <FF>.

D.2.13 ToNumber Applied to the String Type

Updated section 5.3.1, ToNumber Applied to the String Type. Reworked lexical productionsto be
similar to those used in section,

Numeric Literals The difference between string numeric literals and numeric literalsis that string
numeric literals do not allow octal notation and do allow leading zeros.

D.2.14 ToString
Updated sectionToString. Added Hint String in call to ToPrimitive.

82

D.2.15 Postfix Increment and Decrement Operators

Updated sectionPostfix Increment and Decrement Operators Updated the algorithm to return
Result(3) (the result of converting ToNumber), rather than (Result(2).

D.2.16 The t ypeof operator

Added a new issue at the end of sectionT he typeof Cper at or .

D.2.17 Prefix Increment and Decrement Operators

Removed extraneous calls to ToPrimitive from the algorithm in sectioBRrefix Increment and
Decrement Operators

D.2.18 Multiplicative Operators

Remove step 7 in the algorithm in section 7.4 (either operand NaN) and added a new rule to 7.4.1 and
7.4.2 to reiterate what was in the old step.

D.2.19 The Subtraction Operator

Removed extraneous calls to ToPrimitive from the algorithm in section 7.5.2.

D.2.20 The Subtraction Operator

Remove the old step 9 in the algorithm in section 7.5.2 (either operand NaN) and added a new rule to
section 7.5.3 to reiterate what was in the old step.

D.2.21 Applying the Additive Operators (+, -)

Update the last rulein section 7.5.3 to clearly state that operands mentioned in the final sentence must
be numeric.

D.2.22 Equality Operators

Moved the Semantic discussion at the beginning of 7.8 to the discussion section at the end of 7.8

D.2.23 ToPrimitive Usage
Added issue at the end of sections 7.5.1 and 7,7.

D.2.24 Binary Logical Operators
Added issue at the end of 7.10.

D.3 JANUARY 31, 1997

D.3.1 MultiLineComment

Updated the lexical productionMultiLineCommentin section Comments to alow empty multi-line
comments. Also removed the issue at the end of this section regarding nested mutli-line comments. The
MultiLineComment production continues to disallow multi-line comments.

D.3.2 String Literals

Removed open issue at the end of section

String Literalswhich stated that the maximum string constant supported must be at least 32000
characters long.

D.3.3 Automatic Semicolon Insertion

Updated sectionThe CV of Character EscapeSequence:: \ NonEscapeCharacteristhe CV of the
NonEscapeCharacter.

83

The CV of NonEscapeCharacter :: SourceCharacter but not SingleEscapeCharacter or OctalDigit
or X or u or LineTerminator is the SourceCharacter character itself.

The CV of HexEscapeSeguence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.

The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of the OctalDigit.

The CV of OctalEscapeSequence:: \ OctalDigit OctalDigitis the Unicode character whose codeis
(8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctal Digit.

The CV of OctalEscapeSequence:: \ ZeroToThreeOctalDigit OctalDigit is the Unicode character
whose code is (64 (that is, 82) timesthe MV of th&eroToThree) plus (8 timesthe MV of the first
OctalDigit) plus the MV of the secondOctal Digit.

The MV of ZeroToThree:: O is positive zero.

The MV of ZeroToThree:: 1 is 1.

The MV of ZeroToThree:: 2 is 2.

The MV of ZeroToThree:: 3 is 3.

The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdexDigit) plus (256 (that is,

162) times the MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MYV of the fourthHexDigit.

Note that aLineTerminator character cannot appear in astring literal, even if preceded by a backslash
\ . The correct way to cause aline terminator character to be part of the string value of astring literal is
to use an escape sequence such a3 n or \ uOOOA.

Automatic Semicolon Insertionto include rules governing parsing theé or statement and dealing with
postfix ++ and postfix — tokens.

D.3.4 The Number Type
Updated the description in sectionT he Number Type

D.3.5 Put with Explicit Access Mode

Update section 4.5.2.3, Put with Explicit Access Mode to include looking in the prototype object for
access violations.

D.3.6 Put with Implicit Access Mode

Update section 4.5.2.4, Put with Implicit Access Mode to include looking in the prototype object for
access violations.

D.3.7 The String type
Updated the description in section 4.6, The String Type.

D.3.8 ToNumber
Updated section 5.3, ToNumber to return aNaN for an input type of Nul | .

D.3.9 ToNumber Applied to the String Type

Updated the lexical production for SimpleWhiteSpace in section 5.3.1 to include <CR> and <LF>. Also
updated the lexical productions StrFloatingPointLiteral anétrintegerLiteral to allow signs.

D.3.10 Tolnt32

Updated description in section 5.5, Tolnt32: (signed 32 hit integer) to tentatively use Guy’s Conversion
modulo 232 algorithm.

84

D.3.11 ToUint32

Updated description in sectionToUint32: (unsigned 32 bit integer)to tentatively use Guy’s Conversion
modulo 232 algorithm.

D.3.12 Execution Contexts (Variables)

Section 6 (Variables) replaced by new section (Execution Contexts).

D.3.13 Function Calls
Swapped steps 2 and 3 in section 7.2.4, Function Calls.

D.3.14 The t ypeof Operator

Updated the table in sectionThe typeof Oper at or to specify the result when the input typeisan
external object. Removed related open issue at the end of this section.

D.3.15 Applying the %Operator

Removed step 7 in the algorithm in section 7.4.(either operand NaN) and added a new ruleto 7.4.3 to
reiterate what was in the old step.

D.3.16 The Addition Operator (+)

Added the hint Number in the callsto ToPrimitive in section 7.5.1, The Addition Operator+().
Removed related open issue at the end of this section.

D.3.17 Relational Operators

Added the hint Number in the calls to ToPrimitive in section 7.7, Relational Operators. Removed
related open issue at the end of this section.

D.3.18 Conditional Operator (?:)

Updated the syntactic production, Conditional Expression, in sectio@onditional Operator (?:)

D.3.19 Compound Assignment (op=)
Swapped steps 2 and 3 in section 7.12.2, Compound Assignment ¢p=)

D.4 FEBRUARY 21, 1997

D.4.1 Unicode Escape Sequences

Rewrote sectionError! Reference sour ce not found. to reflect the restriction that non-ASCIl Unicode
characters may appear only within comments and string literals. Moved the description of Unicode
escape sequences to

String Literals

D.4.2 Future Reserved Words
Addedi nport andsuper to table inFuture Reserved Words

D.4.3 Automatic Semicolon Insertion

Rewrote the rules for semicolon insertion in sectioihe CV of Character EscapeSequence:: \
NonEscapeCharacteristhe CV of theNonEscapeCharacter.
The CV of NonEscapeCharacter :: SourceCharacter but not SingleEscapeCharacter or Octal Digit
or x or u or LineTerminator is the SourceCharacter character itself.
The CV of HexEscapeSequence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.

85

The CV of Octal EscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of the OctalDigit.

The CV of Octal EscapeSequence:: \ OctalDigit OctalDigit is the Unicode character whose code is
(8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctal Digit.

The CV of Octal EscapeSequence:: \ ZeroToThreeOctalDigit OctalDigitis the Unicode character
whose code is (64 (that is, 82) timesthe MV of th&ZeroToThree) plus (8 timesthe MV of the first
OctalDigit) plusthe MV of the secondOctal Digit.

The MV of ZeroToThree:: O is positive zero.

The MV of ZeroToThree:: 1 is 1.

The MV of ZeroToThree:: 2 is 2.

The MV of ZeroToThree:: 3 is 3.

The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdlexDigit) plus (256 (that is,
162) times the MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MYV of the fourthHexDigit.

Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\ . The correct way to cause aline terminator character to be part of the string value of a string literal is
to use an escape sequence such a3 n or \ UOOOA.

Automatic Semicolon Insertiorto incorporate the rule that a semicolon is not inserted if it would be
treated as an empty statement. Also, broke out the empty statement as a separate kind of statement for
expository purposes in section Empty Statement

D.4.4 The Number Type

Corrected formatting of formulae in sectiormhe Number Type

D.4.5 Notimplicit and NotExplicit Property Attributes Deleted

The NotImplicit and NotExplicit property attributes were deleted from the table in sectioRroperty
Attributes Many changes throughout the rest of chapter 4 to reflect this deletion. Also, the
[[TestPutExplicit]] helper method was renamed [[CanPut]].

D.4.6 Tolnt32 and ToUint32

Corrected formatting of formulae in sectiomolnt32: (signed 32 bit integer)and section ToUint32:
(unsigned 32 bit integer) Also, change the discarding of the fractional part to truncate toward zero
rather than using a simple floor operation.

Correct an error in the descriptions by adding a new step 4 to each one, which makes surethat if
theinput is negative zer o, the output is positive zero.
D.4.7 Grouping Operator

Delete step 2 from sectionThe Grouping Operator. Parentheses no longer force dereferencing.

D.4.8 Shift Expressions

Correct the grammar forShiftExpression by adding AdditiveExpressionas an alternative in section
Bitwise Shift Operators

D.4.9 Conversion Rules for Relational Operators

Updated description in section Relational Operatorsso that |exicographic string ordering is used only if
both operands become strings when converted to primitive type; if oneis a string and one is a number,
then numeric ordering isused. Thusrelational operators differ from the operator, which, if one
operand is a string and one is a number, performs string concatenation rather than addition.

86

D.4.10 && and || Semantics

Updated description in sectionBinary Logical Operatorsso that & and | | have PERL-like semantics;
that is, theresult of 1| | 2 is1, not true, and the result ofO| | "Hel | 0” is“Hel | 0" .

D.4.11 Conditional Operator

Updated sectionConditional Operator (?:) to reflect the change that the second and third
subexpressions should each beAssignmentExpression

D.4.12 Assignment Operators

Updated sectionAssignment Operatorsto reflect the change that the left-hand side of an assignment
should be aPostfixExpression Also change two occurrences in subsections of SetVal to PutValue.
D.4.13 Syntax of Class Statement

Updated sectionB.1 The Class Statement1to allow the parentheses in a class declaration to be optional.

D.4.14 Syntax of Try Statement

Updated sectionB.2.1 Thetry Statementl1to require the body of acat ch orfi nal | y clauseto be
aBlock.

D.5 FEBRUARY 27, 1997

D.5.1 Grammar Notation

Big rewrite of sectionSyntactic and LexicalGrammars to make the description of grammar notation
more detailed and rigorous. Is this okay? (Much of the text was borrowed, in form at |east, from the
Java Language Specification.) The notation is still a bit inconsistent throughout the document (example:
“except” versus “but not”), and should be made consistent within itself and with secti@yntactic and
Lexical Grammars.

Also decided to call out the grammar in Chapter 5 as a separate grammar and use triple colons on its
productions.

Restructured some of the grammar in Chapter 3 to make it a bit more readable. |sthis okay?

D.5.2 End of Medium Character Is No Longer WhiteSpace

Deleted character \u0019 (End of Medium) from the table in sectiokVhite Space and deleted <EOM>
as an alternative for SimpleWhiteSpace in that same section. Also deleted <EOM> as an alternative for
StrwhiteSpaceChar in sectionToNumber Applied to the String TypeThese changes reflect the

decision that neither \u0019 (End of Medium, mistakenly also referred to in previous drafts of this
document as *Z) nor \uOO1A (Substitute, which really is”~Z) shall be considered whitespace in an

ECMA Script program. It is expected that host environments will filter any ~Z character that might
occur at the end of the host environment’ s representation of an ECM A SCript program.

D.5.3 Meaning of Null Literal

Added to sectionNull Literalsa discussion of the meaning of anull literal.

D.5.4 Meaning of Boolean Literals

Added to sectionSemantics
The value of the null literalnul | isthe sole value of the Null type, namelynull.
Boolean Literalsa discussion of the meaning of a boolean literal.

D.5.5 Meaning of Numeric Literals
Added to section

87

Numeric Literalsa discussion of the meaning of a numeric literal. It does not yet address the restriction
to 19 significant digits. Is this the style of description we want?

D.5.6 Automatic Semicolon Insertion

Updated description of automatic semicolon insertion in sectioihe CV of Character EscapeSegquence
2\ NonEscapeCharacteristhe CV of theNonEscapeCharacter.
The CV of NonEscapeCharacter :: SourceCharacter but not SingleEscapeCharacter or Octal Digit
or X or u or LineTerminator is the SourceCharacter character itself.
The CV of HexEscapeSeguence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.
The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of the OctalDigit.
The CV of OctalEscapeSequence:: \ OctalDigit OctalDigitis the Unicode character whose codeis
(8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctal Digit.
The CV of OctalEscapeSequence:: \ ZeroToThreeOctalDigit OctalDigit is the Unicode character
whose code is (64 (that is, 82) timesthe MV of th&eroToThree) plus (8 timesthe MV of the first
OctalDigit) plus the MV of the secondOctal Digit.
The MV of ZeroToThree:: O is positive zero.
The MV of ZeroToThree:: 1 is 1.
The MV of ZeroToThree:: 2 is 2.
The MV of ZeroToThree:: 3 is 3.
The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdlexDigit) plus (256 (that is,
162) times the MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MYV of the fourthHexDigit.
Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\ . The correct way to cause aline terminator character to be part of the string value of astring literal is
to use an escape sequence such a3 n or \ uOOOA.

Automatic Semicolon Insertion Systematically replaced the word “injected” with “inserted”. Invented a
new theory of “restricted productions’ to explain in a general way why the parser inserts semicolonsin
places where there would otherwise be avalid parse without a semicolon. Added more examples and
advice. Also modified productions in section®ostfix Expressionsand Thereturn STATEMENT to

indicate the restrictions explicitly.

D.5.7 The Number Type
Updated sectionThe Number Typeto provide explanations of those large numbers as sums and
differences of powers of two.

D.5.8 ToString on Numbers

Updated sectionToString Applied to the Number Typéhave a draft specification of how this
conversion ought to be done. This needs to be reviewed. This version requires that, when the number
has a nonzero fractional part, the output must be correctly rounded and produce no more digits than
necessary for the fractional part. Added a bibliographic reference to the paper and code of David M.
Gay on this subject.

D.5.9 New Operator

Updated description in sectionThe new Qper at or to describe the case where no argument list is
provided. This needs to be reviewed.

D.5.10 Delete Operator

Updated description in sectionThe deleteQper at or to reflect decision that this operator shall return
aboolean value; the valuet r ue indicates that, after the operation, the object is guaranteed not to have
the specified property.

88

D.5.11 == Semantics

Updated sectionEquality Operatorsso that (a) nul | and undef i ned are considered equal, and (b)
when a number meets a string, the number is converted to a string and then string equality is used.

D.5.12 && and || Semantics

Updated description in sectionBinary Logical Operatorsto delete step 7 for eachoperator (the result of
this step was no longer used).

D.5.13 Separate Productions for Continue, Break, Return

To make certain kinds of cross-reference in the document simpler, | broke out the continue, break, and
return statements into separate grammatical productions, eliminating the production for
ControlFlowStatement (which was something of a misnomer anyway, and other statements also result in
(structured) control flow.

D.5.14 Dead Code Is Not Protected from Compile-Time Analysis
Added text to chapter 12 (Errors).

D.6 MARCH 6, 1997

D.6.1 Reformatted the Entire Document

| order to make future revisions easier and to take better advantage of the desktop-publishing
capabilities of Word, the entire document was reformatted using some newly defined Word styles.
Heading numbering was turned on to facilitate automatic numbering of headings in the main text
(sections of the appendices are still numbered manually, using new styles Appendix Heading 1,
Appendix Heading 2, and Appendix Heading 3). A new style Algorithm is used for algorithmic steps; in
some cases, the last step should be styled with AlgorithmL ast to provide extra vertical space after the
last step.

Added a style called M athSpecial Case (generates bullet lists for now).

The title page now uses styles Title and Subtitle, which were modified to use apropriate fonts and
paragraph spacing.

Extraneous tab characters and multiple spaces were deleted from all headings.

The paragraph spacing of Normal, the various headings, Algorithm, AlgorithmLast, SyntaxRule, and
SyntaxDefinition were adjusted so that the correct vertical space isinserted automatically. All blank
paragraphs in the document were del eted.

Theindex and all index entries were deleted. Sorry, but they were somehow interfering with other
formatting, and the index entries were terribly incomplete anyway. If we have time to do a good index,
entries can be added semi-systematically.

The document was divided into three of what Word calls “ sections” so that the pages of the Table of
Contents could be numbered with the customary roman numerals, with the main text starting on page 1.

All the revisions listed in this item were accepted and the change bars reset before the following items
were entered, so that all the changes of this item would not clutter the manuscript.
D.6.2 Designed a Section Outline for Chapter 11

Filled in nearly all necessary section headings for Chapter 1 for describing Object, Function, Array,
String, Boolean, Number, and Math and all their properties and methods. Added a fair amount of
boilerplate text.

D.6.3 Defined Math Functions

Added complete definitions for all propertiesin the Math object, following the example of C9X for the
treatment of |EEE 754 special cases.

89

D.7 MARCH 10, 1997

D.7.1 Added Definition of “The Number Value for x”

In section 5.4, the phrase “the number value forx” is now defined. It encapsulates the entire IEEE 754
process for converting any nonzero mathematical value to a representable value by using round-to-
nearest mode. This phraseis of great use in Chaptefi2 and elsewhere.

Also corrected two typos in this section: 1073 replaced by - 1074, and 2°° replaced by 22

D.7.2 atan and atan2 May Use Implementation-Dependent Values for p, etc.

It was decided at the phone meeting that whervat h. at an, for example, is supposed to returnp/2, it
need not return exactly one-half the initial value olvat h. pi , but may produce an approximation. The
motivation isto allow implementors the use of whatever C math library is present on the hardware
platform at hand, whether or not it conforms to the high quality standards of, for example, the C9X
proposal.

D.7.3 Improved Discussion of Input Stream for Syntactic Grammar

Text added to section2.1 to better explain the handling of whitespace, comments, and line terminators,
and the fact that line terminators become part of the input stream for the syntatic grammar. Also
corrected atypein section2.1.5 where the phrase ‘{no LineTerminator here]” had been inadvertently
omitted.

D.7.4 Improved Treatment of LineTerminator in Lexical Grammar

Eliminated the mythical <EOS> character. As aresult.ineEnd is not needed either. The trick is not to
include LineEnd (or LineTerminator) as part of the grammar of a single-line comment. This works out
better, because a single-line comment still runs to the end of the line (as dictated by the longest-token-
possible rule), but it doesn't swallow thé_ineTerminator, so it doesn’t affect automatic semicolon
insertion. (That the previous production did swallow th&ineTerminator was thus a bug.)

The section on whitespace has been divided into two sections, one okivhiteSpace (formerly called
SmplewWhiteSpace and one on Line Terminators.

THIS CHANGE REQUIRES REVIEW.

D.7.5 Clarify Behavior of Unicode Escape Sequences

In Chapter 3, clarify that a Unicode escape sequence such as \u000D does not produce a carriage return
that could end a single-line comment, for example.

D.7.6 Add Careful Description of the String Value of a String Literal

In imitation of the text already present describing the value of a numeric literal, text was added to
section4.7.4 to describe carefully the exact sequence of characters represented by a string literal. In the
process, missing productions forDoubleStringCharactersand SingleStringChar acter swere added, and
the redundant defintions of HexDigit and Octal Digit were removed. Also dealt with an open issue by
emphasizing that aLineTerminator may not appear within a string literal.

D.7.7 Description of ldentifiers Reworded

Improvements to the wording in sectior.5. Also repaired atypo (capitall replaced by lowercasel).

D.7.8 Table of Punctuators Corrected

Underscore replaced by + operator in table in sectior.6.

D.7.9 Improved Descriptions of Tolnt32 and ToUint32

Step 5 of the algorithmsin sections.5 and 6.6 have been clarified to use a mathematical description
rather than fragments of code .

90

D.7.10 Changes to ToString Applied to the Number Type

See section6.7.1. Negative zero now produces’ 0" ., not" - 0" .. Integers less than 1G° shall print
without decimal points. Values less than 1 but not less than I6 will not require scientific notation.
D.7.11 Revised Syntax for NewExpression and MemberExpression

Made the changes to section8.2 as suggested by Shon, eliminatingNewCall Expressionand providing a
pleasing symmetry in which the number ohew operators can exceed or fall short of the number of
argument lists.

D.7.12 Clarify Multiplicative and Additive Operators

In section8.4.1, describe the multiplication of infinity by infinity.

In section8.4.2, describe the division of infinity by zero.

In section8.4.3, better describe the remainder of a zero by a finite number.

In section 8.5, better describe the sum of two zeros and the sum of finite numbers of same magnitude

and opposite sign.

D.7.13 Addition Operator No Longer Gives Hint Number

When the addition operator+ calls ToPrimitive, it no longer gives hint Number. Note that all built-in
objects respond to ToPrimitive without a hint asif hint Number were given, so thius change affects only
external objects.

D.7.14 Correct Description of Relational Operators

Miscellaneous small corrections.

D.7.15 Assignment Operator LHS Must Be PostfixExpression

Change four occurrences ofUnaryExpressionto PostfixExpressionin section8.12.

D.7.16 Changes to For-in Loops

Without var , the expression beforei n must be aPostfixExpression (as for an assignment),
Withvar , an optional Initializer is permitted after theldentifier.

A For-1n loop enumerates not only properties of the given object itself, but also properties of its
prototype, and so on, recursively.

ISSUE: Are shadowed properties of the prototype enumerated?
D.7.17 Break and Continue Must Occur within While or For Loop

Added text to sections9.6 and 9.7 to requirebr eak and cont i nue to appear within loop statements.

D.8 MARCH 12, 1997

D.8.1 Added Overview Chapter
Added a chapter at the beginning as a placeholder for introductory exposition.

D.8.2 More Exposition about Internal Properties

Renamed section5.5.2 from “Property Access’ to the more general “Internal Propeties and M ethods”.

Added properties[[Clasg]], [[Vau€]], [[CanPut]], and [[DefaultV alue]] to the table so asto complete
thelist.

Added some discussion of these internal properties.

91

D.8.3 Date Obiject

Added the Date object to chapterl12 and method descriptions, etc.

D.8.4 Array, String, Boolean, Number Objects
Tons of work in chapter12 to add method descriptions, etc.

D.8.5 Math Obiject

Corrections to atan2 and floor.

92

APPENDIX E: LALR(1) SYNTACTIC GRAMMAR

Issue: To be supplied?

93

94

