
ECMA/TC39/97/32

i

MICROSOFT DESIGN PROPOSALS FOR THE

ECMASCRIPT 2.0 LANGUAGE SPECIFICATION

ECMA COMMITTEE #39
VERSION 0.1

JULY 10, 1997

ii

1 INTRODUCTION .. 1

2 DETAILS .. 2

2.1 CONVENTIONS AND SEMANTIC BUILDING BLOCKS ... 2
2.2 FEEDBACK ... 2

3 NEW OPERATORS... 3

3.1 EXTENSION OF PUNCTUATORS .. 3
3.2 EXTENSION OF EQUALITYEXPRESSION .. 3

4 NEW CONTROL FLOW CONSTRUCTS.. 5

4.1 EXTENSION OF STATEMENTS .. 5
4.2 EXTENSION OF THE COMPLETION TYPE ... 5
4.3 THE switch STATEMENT ... 5
4.4 LABELED STATEMENTS .. 6
4.5 THE break STATEMENT.. 7
4.6 THE continue STATEMENT... 7
4.7 EXTENSION OF ITERATION STATEMENTS.. 8
4.8 THE DO…WHILE STATEMENT .. 8

5 NEW EXECUTION CONTEXT FEATURES... 9

5.1 CALLER ... 9

6 REFERENCES ..10

1

1 INTRODUCTION

Vendors are continuing to innovate in areas that we have decided not to deal with for ECMAScript
1.0, and will ship these features before we will have an ECMAScript 2.0 standard. Microsoft seeks to
avoid a repetition of the behaviors that caused the current unfortunate situation -- multiple
incompatible implementations from multiple vendors, and no sensible language design in the end.
If all vendors are open about their plans, and solicit and use feedback from other committee members,
then this will not be a problem. We do not need to complete a formal standard before people ship
functionality, but we do need to have open discussion. If we do not do this, both the language and our
customers will suffer.
Microsoft encourages all vendors to work together in this manner. The first step is to contribute
detailed design proposals for ECMAScript 2.0 features. Our proposals are found in this document.

2

2 DETAILS

2.1 CONVENTIONS AND SEMANTIC BUILDING BLOCKS

This document follows the same conventions and semantic building blocks as the ECMAScript 1.0
specification, which is still in development.

2.2 FEEDBACK

Please send feedback regarding this document to Scott Wiltamuth (scottwil@microsoft.com).

3

3 NEW OPERATORS

3.1 EXTENSION OF PUNCTUATORS

Punctuators is extended to include === and !==.

Syntax

Punctuator :: one of
= > < == <= >=

!= , ! ~ ? :

. && || ++ -- +

- * / & | ^

% << >> >>> += -=

*= /= &= |= ^= %=

<<= >>= >>>= () {

} [] ; === !==

3.2 EXTENSION OF EQUALITYEXPRESSION

EqualityExpression is extended to include === and !==.

Syntax

EqualityExpression :
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression != RelationalExpression
EqualityExpression !== RelationalExpression

The production EqualityExpression: EqualityExpression === RelationalExpression is evaluated as
follows:
1. Evaluate EqualityExpression.
2. Call GetValue(Result(1)).
3. Evaluate RelationalExpression.
4. Call GetValue(Result(3)).
5. Perform the comparison Result(4) === Result(2). (See below.)
6. Return Result(5).

The production EqualityExpression: EqualityExpression!== RelationalExpression is evaluated as
follows:
1. Evaluate EqualityExpression.
2. Call GetValue(Result(1)).
3. Evaluate RelationalExpression.
4. Call GetValue(Result(3)).
5. Perform the comparison Result(4) === Result(2). (See below.)
6. If Result(5) is true, return false. Otherwise, return true.

4

The comparison x === y, where x and y are values, produces true or false. Such a comparison is
performed as follows:
1. If Type(x) is different from Type(y), return false.
2. If Type(x) is not Number, go to step 9.
3. If x is NaN, return false.
4. If y is NaN, return false.
5. If x is the same number value as y, return true.
6. If x is +0 and y is −−0, return true.
7. If x is −−0 and y is +0, return true.
8. Return false.
9. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same

length and same characters in corresponding positions). Otherwise, return false.
10. If Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.
11. Return true if x and y refer to the same object. Otherwise, return false.
12. Return false.

5

4 NEW CONTROL FLOW CONSTRUCTS

4.1 EXTENSION OF STATEMENTS

Statement is extended to include SwitchStatement and LabeledStatement.

Statement :
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabeledStatement
SwitchStatement

4.2 EXTENSION OF THE COMPLETION TYPE

The Completion type is extended in order to define labeled break and continue.
The original Completion type values, as specified in the first version of the standard, are:

• “normal completion”

• “normal completion after value V”

• “abrupt completion because of break”

• “abrupt completion after value V because of break”

• “abrupt completion because of continue”

• “abrupt completion after value V because of continue”

• “abrupt completion because of return V” where V is a value
 The new Completion type values are:

• “abrupt completion because of break with label I” where I is an identifier.

• “abrupt completion after value V because of break with label I” where I is an identifier.

• “abrupt completion because of continue with label I” where I is an identifier.

• “abrupt completion after value V because of continue with label I” where I is an identifier.

4.3 THE switch STATEMENT

Syntax

SwitchStatement :
switch (Expression) CaseBlock

CaseBlock :
{ CaseClausesopt }

6

{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses :
CaseClause

CaseClauses CaseClause

CaseClause :
case Expression : StatementListopt

DefaultClause :
default : StatementListopt

Semantics
The production SwitchStatement : switch (Expression) CaseBlock is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Evaluate CaseBlock, passing it Result(2) as a parameter.
4. If Result(3) is “abrupt completion because of break”, return “normal completion”.
5. If Result(3) is “abrupt completion after value V because of break”, return “normal completion

after value V”.
6. Return Result(3).
The production CaseBlock : { CaseClauses1 DefaultClause CaseClauses2 } is given an input
parameter, input, and is evaluated as follows:
1. Let A be the list of CaseClause items in CaseClauses1, in source text order.
2. For the next CaseClause in A, evaluate CaseClause. If there is no such CaseClause, go to step 7.
3. If input is not equal to Result(2), as defined by the !== operator, go to step 2.
4. Evaluate the StatementList of this CaseClause.
5. If Result(4) is an abrupt completion then return Result(4).
6. Go to step 13.
7. Let B be the list of CaseClause items in CaseClauses2, in source text order.
8. For the next CaseClause in B, evaluate CaseClause. If there is no such CaseClause, go to step 15.
9. If input is not equal to Result(8), as defined by the !== operator, go to step 8.
10. Evaluate the StatementList of this CaseClause.
11. If Result(10) is an abrupt completion then return Result(10).
12. Go to step 18.
13. For the next CaseClause in A, evaluate the StatementList of this CaseClause. If there is no such

CaseClause, go to step 15.
14. If Result(13) is an abrupt completion then return Result(13).
15. Execute the StatementList of DefaultClause.
16. If Result(15) is an abrupt completion then return Result(15).
17. Let B be the list of CaseClause items in CaseClauses2, in source text order.
18. For the next CaseClause in B, evaluate the StatementList of this CaseClause. If there is no such

CaseClause, return “normal completion”.
19. If Result(18) is an abrupt completion then return Result(18).
20. Go to step 18.
The production CaseClause : case Expression : StatementListopt is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return Result(2).
Note that evaluating CaseClause does not execute the associated StatementList. It simply evaluates the
Expression and the value, which the CaseBlock algorithm uses to determine which StatementList to
start executing.

7

4.4 LABELED STATEMENTS

Syntax

LabeledStatement :
Identifier : Statement

Semantics
A Statement may be prefixed by a label. Labeled statements are only used in conjunction with labeled
break and continue. ECMAScript has no goto statement.
An ECMAScript program is considered syntactically incorrect, and may not be executed at all, if it
contains a LabeledStatement that is enclosed by a LabeledStatement with the same Identifier label.
LabeledStatement is evaluated as:
1. Evaluate Statement.
2. If Result(1) is “abrupt completion because of break with label Ireturns ” and I is the same as

Identifier, then return “normal completion”.
3. If Result(1) is “abrupt completion after value V because of break with label I” and I is the same

as Identifier, then return “normal completion after value V”.
4. If Result(1) is “abrupt completion because of continue with label I” and I is the same as

Identifier, then go to step 7.
5. If Result(1) is “abrupt completion after value V because of continue with label I” and I is the

same as Identifier, then go to step 7.
6. Return Result(1).
7. Apply the continue operation to Statement.
8. Return Result(7).
Issue: The “Apply the continue operation to Statement.” needs to be defined in detail. It is not
possible to simple re-execute Statement, since a statement may carry context forward from the
execution that resulted in a continue. The context is different for each type of statement, so it will
be necessary to do work for each statement type with which continue can be employed.

4.5 THE break STATEMENT

Syntax

BreakStatement :
break [no LineTerminator here] Identifieropt ;

Semantics
The BreakStatement without the optional Identifier is as defined in the ECMAScript 1.0 standard.
When the identifier is present, it specifies a label that indicates the LabeledStatement to which the
break applies. This LabeledStatement is known as the break target.
A program is considered syntactically incorrect, and may not be executed at all, if any of the following
are true:

• It contains a break statement without the optional identifier, and the break statement is not
contained within at least one IterationStatement or SwitchStatement.

• It contains a break statement with the optional Identifier, where Identifier does not match the
Identifier label of an enclosing LabeledStatement.

The break statement with the optional Identifier is evaluated as:
1. Return “abrupt completion because of break with label Identifier”.

Issue: The ECMAScript 1.0 specification states “An ECMAScript program is considered syntactically
incorrect and may not be executed at all if it contains a break statement that is not within at least
one while or for statement.” This needs to be altered for several reasons. First, because the
statement as written applies only to a break statement without the optional Identifier. Second,
because we have added new IterationStatement types that should be included along with while and
for statements. Third, because we added SwitchStatement, and break can be used within a
SwitchStatement.

8

4.6 THE continue STATEMENT

Syntax

ContinueStatement :
continue [no LineTerminator here] Identifieropt ;

Semantics
The ContinueStatement without the optional Identifier is as defined in the ECMAScript 1.0 standard.
When the identifier is present, it specifies a label indicating the LabeledStatement to which the
continue applies. This LabeledStatement is known as the continue target.
A program is considered syntactically incorrect, and may not be executed at all, if either of the
following are true:
• The program contains a continue statement with the optional Identifier, where Identifier does

not match the Identifier label of an enclosing LabeledStatement.
• The Statement within the continue target is not an IterationStatement.

The continue statement with the optional Identifier is evaluated as:
1. Return “abrupt completion because of continue with label Identifier”.

Issue: The ECMAScript 1.0 specification says explicitly “An ECMAScript program is considered
syntactically incorrect and may not be executed at all if it contains a continue statement that is not
within at least one while or for statement.” This is a bit too specific, as it does not include the
IterationStatement types that are being added as part of the 2.0 specification. This sentence should be
changed to “An ECMAScript program is considered syntactically incorrect and may not be executed
at all if it contains a continue statement that is not within at least one IterationStatement.”

4.7 EXTENSION OF ITERATION STATEMENTS

IterationStatement is extended to include the do..while statement.

Syntax

IterationStatement :
do Statement while (Expression)
while (Expression) Statement
for (Expressionopt ; Expressionopt ; Expressionopt) Statement
for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement
for (LeftHandSideExpression in Expression) Statement
for (var Identifier Initializeropt in Expression) Statement

4.8 THE DO…WHILE STATEMENT

The production do Statement while (Expression) is evaluated as follows:
1. Let C be “normal completion”.
2. Evaluate Statement.
3. If Result(2) is a value completion, change C to be “normal completion after value V” where V is

the value carried by Result(2).
4. If Result(2) is a return completion, return Result(2).
5. If Result(2) is a break completion, go to step 10.
6. Evaluate Expression.
7. Call GetValue(Result(6)).
8. Call ToBoolean(Result(7)).
9. If Result(8) is true, go to step 2.
10. Return C;

9

5 NEW EXECUTION CONTEXT FEATURES

5.1 CALLER

Section 10.1.8 (“Arguments object”) defines what the arguments object. When control enters an
execution context for declared function code, anonymous code, or host code, an arguments object is
created and initialized according to the steps specified. The “caller” property is added by appending
the following step to the already-existing list:

• A property is created with name “caller” and property attributes { DontEnum }. The initial value
of this property is the caller’s activation. In the case that the current function was called from
global code, the caller property is given an initial value of null.

Issue: Need to allow the “foo.caller” usage as well, not just “arguments.caller”.

10

6 REFERENCES

ANSI X3.159-1989: American National Standard for Information Systems - Programming Language -
C, American National Standards Institute (1989).
Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley
Publishing Company 1996.

