
 

 

 

 

 

 

 

Ecma International   Rue du Rhône 114   CH-1204 Geneva   T/F: +41 22 849 6000/01   www.ecma-international.org 
 

 FC   2006_03_16_TC39_TG1.doc    12/09/2017 10:00:00             For Ecma use only  

 

 

 

 

Minutes of the: Ecma TC39-TG1 

held in: Phone conference 

on: 26th April 2006 

 

Attendees 

• Jeff Dyer, Adobe Systems 

• Ed Smith, Adobe Systems 

• Brendan Eich, Mozilla Foundation 

• Graydon Hoare, Mozilla Foundation 

• Dave Herman, Northeastern University 

• Lars Thomas Hansen, Opera Software 

• Francis Cheng, Adobe Systems 

Agenda 

Note new meeting day of week for phone conferences.  

• type system 

• other hot topics 

Discussion 

• AS3 experimenting with Class <: Function 

• Type system 
o Review for people who were not at the face-to-face last week 
o Dave: type T = (A, B, C) – what if type A = function(int):int, B = function(String):String? 
o Lars: unions flatten, so they are less expressive than switch class already 
o Dave: still, unions can’t be pulled apart in all cases 
o Graydon: switch type (t:T) { case (a:A) {...} case (b:B) {...} } 
o Graydon: memoizing helps 
o Dave: runtime-only discrimination is very strange: 

▪ function(Object):specialInt <: A, so that matches A not B in T 
▪ so which match wins? closest, first in some order, ...? 

o Agreement this needs closer inspection, but it has advantages for structural typing 
o Dave mentions OCaml tagging all arms of its sums 
o Graydon: we’re doing that but tags come “for free” (modulo memoization) 
o Branding vs. nominal and structural rules 
o Lars: does Class <: Function make for trouble if we use branded structural types for nominal 

types? 
o Jeff: could model types as nominal, naming structural types by their shape 
o Dave: soundness at risk if static type and dynamic type system boundaries are blurred 

▪ Brendan/Graydon: not a risk here, runtime reflection not required by branded 
structural proposal 

▪ brandnames can be statically checked 

Ecma/TC39-TG1/2006/021 
 

http://www.ecma-international.org/
file:///C:/doku.php%3fid=clarification:type_system
file:///C:/doku.php%3fid=discussion:classes_as_structural_types_with_branding
file:///C:/doku.php%3fid=discussion:classes_as_structural_types_with_branding


 

2 

o More thought required 
o Lars: current union type proposal may be ill-conceived 

• Lars updated operators proposal, looks good 

• Lars made a Unicode counterproposal, seems inevitable 
o Brendan floated not stripping ZWJ/ZWNJ from strings and regexps 

• Let block proposal – remove the FunctionBody special body 

• Nullability: default value, definite analysis in constructor bodies, and all that 
o Ed: try-catch-finally makes for hardship beyond constructor case 
o Default values help this 
o Dave: recursive types? Lars: no recursive non-nullable types! 

▪ (It’s actually possible to have recursive non-nullable types provided that it is possible 
to create a self-referencing node to act as a sentinel – a fixed point.) 

o Ed points out non-nullable use-case for fields is as strong as for args 
▪ so non-nullability is well-motivated, we believe 
▪ do this by hand in other langs: init non-null in ctor, don’t check in methods over life 

of object 
▪ can we do better using the type system? 

o Dave: does super + default values make a loophole? Seems so 
o Seems UninitializedError is not a cop-out that’s as bad as NPE 

▪ it comes early 
▪ it points to faulting party 
▪ unlike a null that flows off into space and is dereferenced later 

o Ed: how about non-nullability helps static analysis, but null can flow through 
▪ and runtime checking still required – just for bogus constructor cases? 
▪ Graydon, others: see the practical benefit, but would prefer the type system handled 

this 
o Ed: what if we made non-nullable fields have to be specified as arguments, to require init? 

▪ Dave: pure functional style 
▪ Brendan: people do this (Crockford) – environments as objects 
▪ Can we make non-nullable fields require special form init in constructor? 

o Ed: minor correction 
▪ default value for Number is NaN, not 0 
▪ int default value is 0 

o Ed confirmed that we meant to eliminate dynamic as field qualifier (in builtin classes recent 

changes) 
▪ We did (yay!) 

 

file:///C:/doku.php%3fid=proposals:builtin_classes

