
Implementation Loopholes In ECMAScript, 3rd Edition

ECMA-262

Section

Number

Section Name Section Text Cross Ref

to JScript

Deviations

Notes 8/16/07 Meeting with

Doug Crockford

Follow up

7.6 Identifiers "implementations may allow additional legal

identifier characters based on the category

assignment from later versions of Unicode"

Need to update to reflect

current state of Unicode

For ES 3.1 should adopt ES4

unicode proposal

(http://developer.mozilla.org/e

s4/proposals/update_unicode.

html) except for \uXXX\uXXX

pairs

I think we need some

further clarification of

the pairs exclusion. On

the surface the ES4 pairs

rule seems reasonable

but I believe the

objection is that it may

cause JSON

incompatabilities. Doug,

can you clarify??

7.8.5 Regular Expression Literals "An implementation may extend the regular

expression constructor's grammar, but it should

not extend the RegularExpressionBody and

RegularExpressionFlags productions or the

productions used by these productions."

7.8.5 Regular Expression Literals

/ Semantics

"If the call to new RegExp generates an error, an

implementation may, at its discretion, either

report the error immediately while scanning the

program, or it may defer the error until the regular

expression literal is evaluated in the course of

program execution"

 8.5 The Number Type "external code might be able to detect a difference

between various Non-a-Number values, but such

behaviour is implementation-dependent" Consider removing from ES3.1.

Implementation level

interaction with external code

seems to be beyond the scope

of this specification and hence

doesn't need to be mentioned.

 8.6.2 Internal Properties and

Methods

"Whether or not a native object can have a host

object as its [[Prototype]] depends on the

implementation."

lhansen
Sticky Note
The current Unicode proposal for ES4 is probably not quite right and will have to be reworked regardless. In addition to compatibility with JSON there is also the issue of compatibility with encodeURI/decodeURI.

lhansen
Sticky Note
The point of this text in ES3 is to prevent IE from doing exactly what it did: make some programs unparseable by introducing extensions (unescaped slash in character set) that leak into the surrounding language.

In ES4 the situation is different, we've extended the grammar. ES4 regexes can't be lexed by ES3 lexers.

lhansen
Sticky Note
In ES4, the error ought to be deferred until the literal is encountered during evaluation, since the literal can be used to create more than one RegExp object; the user expectation is that "something happens" when the literal is encountered, and an early error is probably not what's expected.

ECMA-262

Section

Number

Section Name Section Text Cross Ref

to JScript

Deviations

Notes 8/16/07 Meeting with

Doug Crockford

Follow up

 10.1.1 Function Objects "An implementation may also provide

implementation-dependent internal functions that

are not described in this specification. "

"Internal functions" are

implementation artifacts.

There isn't any particular

reason they need to be

documented.

Agreed

 11.2.3 Function Calls "Whether calling a host object can return a value

of type Reference is implementation-dependent."

f() = v ??? Do any IE host

objects do this?

 11.4.3 The typeof Operator typeof result for "host objects" is implementation

dependent

Should be

"implementation-

defined" rather than

"implementation-

dependent"?

Agreed

 12.6.4 The for-in Statement "The mechanics of enumerating the properties

(step 5 in the first algorithm, step 6 in the second)

is implementation dependent. The order of

enumeration is defined by the object."

2.2

13.2 Creating Function Objects "If there is more than one object E satisfying these

criteria, choose one at the implementation's

discretion." ; "13. At the implementation's

discretion, go to either step 2 or step 14." ; "Step 1

allows an implementation to optimise the

common case of a function A that has a nested

function B where B is not dependent on A. In this

case the implementation is allowed to reuse the

same object for B instead of creating a new one

every time A is called. Step 13 makes this

optimisation optional; an implementation that

chooses not to implement it will go to step 2." ;

plus additional vergabe about "joined" functions

We agreed that the concept of

"joined" function objects

should be eliminated from the

3.1 specification

lhansen
Sticky Note
It's important to document that the implementation is allowed to introduce new names, though.

lhansen
Sticky Note
IE used to have host objects that did this, according to Brendan.

ECMA-262

Section

Number

Section Name Section Text Cross Ref

to JScript

Deviations

Notes 8/16/07 Meeting with

Doug Crockford

Follow up

15 Native ECMAScript

Objects

"Unless otherwise specified in the description of a

particular function, if a function or constructor

described in this section is given more arguments

than the function is specified to allow, the

behaviour of the function or constructor is

undefined. In particular, an implementation is

permitted (but not required) to throw a TypeError

exception in this case."

Rather than saying "is

undefined" should say "is

implementation defined"

Agreed

15.1 The Global Object "The values of the [[Prototype]] and [[Class]]

properties of the global object are implementation-

dependent"

 15.1.2.2 parseInt (string , radix) "When radix is 0 or undefined and the string's

number begins with a 0 digit not followed by an x

or X, then the implementation may, at its

discretion, interpret the number either as being

octal or as being decimal. Implementations are

encouraged to interpret numbers in this case as

being decimal."

2.5

 15.1.2.2 parseInt (string , radix) ". (However, if R is 10 and Z contains more than 20

significant digits, every significant digit after the

20th may be replaced by a 0 digit, at the option of

the implementation; and if R is not 2, 4, 8, 10, 16,

or 32, then Result(16) may be an implementation-

dependent approximation to the mathematical

integer value that is represented by Z in radix-R

notation.)"

 15.2.2.1 new Object ([value]) "4. If the value is a host object, then actions are

taken and a result is returned in an

implementation-dependent manner that may

depend on the host object."

Should be

"implementation-

defined" rather than

"implementation-

dependent"?

Step 4 should be marked as

depricated. Implementations

should not define new

semantics based upon passing

a host object to the Object

constructor

lhansen
Sticky Note
Deprecation has no effect unless there's documentation that all important implementations just return the object here in all cases.

lhansen
Sticky Note
Language about octal is slated to be removed from ES4.

lhansen
Sticky Note
What we need here is more consistent language. Lesson for the ES4 work as well.

ECMA-262

Section

Number

Section Name Section Text Cross Ref

to JScript

Deviations

Notes 8/16/07 Meeting with

Doug Crockford

Follow up

 15.2.4.4 Object.prototype.

valueOf ()

"If the object is the result of calling the Object

constructor with a host object (section 15.2.2.1), it

is implementation-defined whether valueOf

returns its this value or another value such as the

host object originally passed to the constructor."

Should be deprecated along

with step 4 of 15.2.2.1

 15.3.4.2 Function.prototype.

toString ()

"An implementation-dependent representation of

the function is returned. This representation has

the syntax of a FunctionDeclaration. Note in

particular that the use and placement of white

space, line terminators, and semicolons within the

representation string is implementation-

dependent."

2.6 Should be

"implementation-

defined" rather than

"implementation-

dependent"?

Agreed

 15.4.4.3 Array.prototype.

toLocaleString ()

"a separator string that has been derived in an

implementation-defined locale-specific way"

2.7

 15.4.4.4-

15.4.4.13

Array.prototype.concat

Array.prototype.join

Array.prototype.pop

Array.prototype.push

Array.prototype.reverse

Array.prototype.shift

Array.prototype.slice

Array.prototype.sort

Array.prototype.splice

Array.prototype.unshift

"Whether the XXX function can be applied

successfully to a host object is implementation-

dependent."

Should be

"implementation-

defined" rather than

"implementation-

dependent"?

Agreed

 15.4.4.11 Array.prototype.sort "If comparefn is not undefined and is not a

consistent comparison function for the elements

of this array (see below), the behaviour of sort is

implementation-defined. " ;"If there exist integers i

and j and an object P such that all of the

conditions below are satisfied then the behaviour

of sort is implementation-defined:"

The default sort comparision

function should be more

clearly specified as a string

comparision. Consider using

ES4 verbage

Doug, do you know

what verbage we had in

mind. I can't find any.

lhansen
Sticky Note
Deprecation has little value unless you can show that it affects no implementations.

lhansen
Sticky Note
ES3 is at least unambiguous, IMO, but it is a little obscure. Another lesson for the ES4 work.

ECMA-262

Section

Number

Section Name Section Text Cross Ref

to JScript

Deviations

Notes 8/16/07 Meeting with

Doug Crockford

Follow up

 15.5.4.9 String.prototype.

localeCompare
"The two strings are compared in an

implementation-defined fashion. " ; "The actual

return values are left implementation-defined to

permit implementers to encode additional

information in the result value"

 15.5.4.11 String.prototype.replace $n: "If n>m, the result is implementation-defined."

; $nn: "If nn>m, the result is implementation-

defined"

Check what IE does, if it is

reasonable, make it the spec. If

not reasonable, consider

Firefox,etc.

 15.7.4.2 Number.prototype.toString "If radix is an integer from 2 to 36, but not 10, the

result is a string, the choice of which is

implementation-dependent."

Should be

"implementation-

defined" rather than

"implementation-

dependent"?

should define results for

radices 2-36

the real issue seems to

be relate to to the value

returned for non-integer

value with radices other

than 10. For example, IE

and FF produce different

results for (new

Number(1.234)).toString

(30). Do we really want

to define this or is it

better to maintain the

status quo?

 15.7.4.3 Number.prototype.

toLocaleString

"This function is implementation-dependent, and

it is permissible, but not encouraged, for it to

return the same thing as toString."

Should be

"implementation-

defined" rather than

"implementation-

dependent"?

Agreed

15.7.4.5-6 Number.prototype.toFixed

Number.prototype.

 toExponential

"An implementation is permitted to extend the

behaviour of XXX for values of fractionDigits less

than 0 or greater than 20. In this case XXX would

not necessarily throw RangeError for such values."

Need to determine if any of the

major implementations

actually do this and

characterize any variation

among implementations.

lhansen
Sticky Note
Seems best to keep this implementation defined; small implementations don't want to have to worry about this, and the utility of those representations is extremely limited anyhow.

ECMA-262

Section

Number

Section Name Section Text Cross Ref

to JScript

Deviations

Notes 8/16/07 Meeting with

Doug Crockford

Follow up

15.7.4.7 Number.prototype.

 toPrecision
"An implementation is permitted to extend the

behaviour of toPrecision for values of precision

less than 1 or greater than 21."

Need to determine if any of the

major implementations

actually do this and

characterize any variation

among implementations.

15.8.2 Function properties of

math object URL of fdlibm is obsolete.

Should be netlib.org/fdlibm

 15.9.1.8 Daylight Saving Time

Adjustment
"An implementation of ECMAScript is expected to

determine the daylight saving time algorithm" This sentence doesn't add

anything so it probably should

be deleted.

All of sections 15.9.1.X which

are attempting to specify the

semantics of the time/date

functions would benefit from a

careful ready and potential

cleanup.

15.9.1.14 TimeClip (time) "The point of step 3 is that an implementation is

permitted a choice of internal representations of

time values, for example as a 64-bit signed integer

or as a 64-bit floating-point value. Depending on

the implementation, this internal representation

may or may not distinguish 0 and +0"

This is an internal function.

Should probably force it to

return +0.

15.9.4.2 Date.parse (string) "the value produced by Date.parse is

implementation-dependent when given any string

value that could not be produced in that

implementation by the toString or toUTCString

method."

2.1 Should be

"implementation-

defined" rather than

"implementation-

dependent"?

Specify the de facto IE data

parsing syntax. Don't add ISO

parsing to this function;

instead add new ISO

parsing/generation functions.

 15.9.4.3 Date.UTC "When the UTC function is called with fewer than

two arguments, the behaviour is implementation-

dependent."

Should be

"implementation-

defined" rather than

"implementation-

dependent"?

Needs to specify ranges of

arguments. Should allow a

single argument (year)

lhansen
Sticky Note
Being fixed in ES4.

lhansen
Sticky Note
IE more limited than others. Adding extra ISO parsing function is pointless unless you're catering to customers who don't want to accept ISO dates.

lhansen
Sticky Note
The web depends on wraparounds (32 March becomes 1 April), alas.

ECMA-262

Section

Number

Section Name Section Text Cross Ref

to JScript

Deviations

Notes 8/16/07 Meeting with

Doug Crockford

Follow up

15.9.5.2 Date.prototype.toString "The contents of the string are implementation-

dependent, but are intended to represent the Date

in the current time zone in a convenient, human-

readable form"

2.1 Should be

"implementation-

defined" rather than

"implementation-

dependent"?

All date method definitions

need to have their argument

ranges specified.

15.9.5.3-7 Date.prototype.

 toDateString

Date.prototype.

 toTimeString

Date.prototype.

 toLocaleString

Date.prototype.

 toLocaleDateString

Date.prototype.

 toLocaleTimeString

"The contents of the string are implementation-

dependent, but are intended to represent the

“XXX” portion of the Date"

Should be

"implementation-

defined" rather than

"implementation-

dependent"?

Agreed

15.9.5.42 Date.prototype.

 toUTCString

"The contents of the string are implementation-

dependent, but are intended to represent the Date

in a convenient, human-readable form in UTC."

Should be

"implementation-

defined" rather than

"implementation-

dependent"? Agreed

 15.10.4.1 new RegExp(pattern,

flags)

"The source property of the newly constructed

object is set to an implementation-defined string

value in the form of a Pattern based on P."

Change RegExp.source

specification to now include

the outer /'s

 15.11.4.3 Error.prototype.message "The initial value of Error.prototype.message is an

implementation-defined string."

should be define to be the

empty string

 15.11.4.4 Error.prototype.toString "Returns an implementation defined string." change to follow mozilla

 15.11.7 NativeError Object

Structure

"and in the implementation-defined message

property of the prototype object."

15.11.7.10 NativeError.prototype.

 message

"The initial value of the message property of the

prototype for a given NativeError constructor is an

implementation-defined string."

16 Errors Various allowances for implementation dependent

erorr behavior (or lack there of) related to

implementation dependent extensions

lhansen
Sticky Note
The web depends on wraparound.

lhansen
Sticky Note
Unmotivated gratuitously incompatible change: all browsers, including MSIE, currently return a string without slashes, whether the object was created from a literal or via the constructor.

lhansen
Sticky Note
Opera has descriptive strings here -- seems useful.

lhansen
Sticky Note
Opera includes a backtrace in its message -- seems useful, but isn't compatible with Mozilla.

ECMA-262

Section

Number

Section Name Section Text Cross Ref

to JScript

Deviations

Notes 8/16/07 Meeting with

Doug Crockford

Follow up

 B.2 Additional Properties "Some implementations of ECMAScript have

included additional properties for some of the

standard native objects. This non-normative annex

suggests uniform semantics for such properties

without making the properties or their semantics

part of this standard."

