

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

 PC Document1 12/09/2017 13:28:00 For Ecma use only

Minutes of the: 3rd meeting of Ecma TC39

held in: Newton, MA, US

on: 15 - 18 April 2008

Chairman: Mr. John Neumann (Adobe/Microsoft)

Vice-Chairman: Vacancy

Secretary: Dr. Istvan Sebestyen (Ecma International)

Attending*: Mr. David Boloker (IBM), Mr. Jeff Dyer (Adobe), Mr. Brendan Eich
(Mozilla), Mr. Lars Hansen (Adobe), Mr. David Herman (Northeastern
University), Mr. Graydon Hoare (Mozilla), Mr. Adam Peller (IBM),
Mr. Chris Pine (Opera), Mr. John Resig (Mozilla), Mr. Mike Shaver
(Mozilla), Mr. Scott Unterberg (Mozilla), Mr. Allen Wirfs-Brock
(Microsoft), Mr. Jon Zeppieri (Boston University).

* at Thursday and Friday meetings

NOTE
Attendees for the first two days included representatives from Boston University, UC Irvine, Northeastern
University, Adobe, and Mozilla.

By phone: Mr. Mike Cowlishaw (IBM), Mr. Waldemar Horwat (Google).

1 Opening, welcome and roll call

1.1 Introductions

The meeting was opened by Mr. Neumann and all delegates were welcomed to the
meeting.

1.2 Host facilities

1.3 Dinner arrangements

To be announced. Hosted by Ecma-International.

1.4 Lunch

To be provided

2 Pre-meeting Technical Discussions (15 – 16)

A presentation on Trace Trees was given by Andreas Gal, Michael Franz, and Michael
Bebenita of University of California – Irvine. Focus was on reducing trace points by evaluating
code at merge points and guard points to see earliest point a tree branch can be merged,
reducing the subsequent number of leaves in the tree. A second part of presentation
examined bailout reduction and optimization.

There was later a discussion of plan for the week and the need to make progress on writing
final text for the draft. It was agreed to work towards this objective. Meeting adjourned for the
day and will pick up again on Wednesday.

Ecma/TC39/2008/021
Ecma/GA/2008/060

http://www.ecma-international.org/

2

The second day of meetings was a number of small groups discussing a set of different
subjects and advancing the state of the text of the first draft.

3 Adoption of the agenda

Approved as modified to include subjects from WIKI agenda.

4 Approval of the minutes of March 27 th & 28 th, 2008

The minutes are not yet available for review and approval. They will be approved at next
meeting of TC39.

5 ES 4 technical discussion

5.1 Review of draft specifications

5.2 Discussion of open design issues

o Decimal

Proposal presented by IBM and Microsoft, followed by significant discussion. It has been
recommended that this functionality be implemented to prove/disprove its viability before
adding to the standard. There appears to be solution that allows ES 4 to support Decimal in
a way that might allow ES 3.1 to support Decimal through the use of optional precision for
rounding. A write-up will be produced and floated to see if there is support to continue.
There appears to be general support with Opera, Google, IBM and Microsoft. ES 3.1 will be
able to provide this support through its library and a superset of ES 4 functionality
(operators).

Lars will send out a proposal for ES 4 that can be adopted for use in ES 3.1

o Names

Need to identify Namespace qualifiers. Problem is that there have been no responses to original
email description, and Lars believes that without email responses it will be difficult to discuss.
Problem is to make sure that compile-time evaluation is the same as run-time evaluation.
Example follows:

namespace A

namespace B

use namespace A, namespace B

A namespace ns

... ns::x ...

• What is the meaning of ns?

• So far, it is A::ns

• But what if another namespace ns is introduced

B namespace ns

• now ns::x above is ambiguous

• we want to make sure this is caught early

3

• what is proposed is that potential namespace (and type) names are reserved in subsequently

loaded programs

• this ensures the reference to ns::x doesn’t change meaning

• units might give programmers more control over the checking of collisions

var v = ns

Further discussion will occur online. If there is a proposal to change the way it works now it has
to be written up. Specification of what exists now in the RI needs to be done and will be done in
the forthcoming Specification.

o Packages

Statement of proposal to eliminate Packages follows:

At the last f2f Waldemar raised pertinent questions about
whether the desugaring of packages (in their current form)
into namespaces would work.

The answer appears to be, for the time being, no. One
important problem, for example, is that packages appear
to be scoped entities but are not. This fragment of code:

 package P {
 public var x
 }

means exactly the same thing as this fragment:

 package Q {
 }
 public var x

and that leads you into trouble when you start using
import. Consider a third package R:

 package R {
 external var x
 }

Now import R into P and Q and reference x:

 package P {
 import R.*;
 public var x;
 ... x ...
 }

 package Q {
 import R.*;
 ... x ...
 }
 public var x

4

Now the _intent_ of the reference in Q is clearly meant to be
to R.x, and the (outer) public::x should not be allowed to
change that intent (consider that public::x is introduced in
some later file, at a later time) while the most reasonable
behavior for P is that x references public::x (it's in the same
block as the reference, therefore "closer" or more obvious --
take your pick). The desired behavior is not the same in the
two cases, yet the two fragments mean the same thing.

It's possible to construct even more fun examples with lexically
nested import statements.

It may be possible to fix this by introducing arcane
restrictions (consider flagging the reference to x in P as
ambiguous) but not, probably, as a pure desugaring to
namespaces, and even then it's not clear how useful the
package abstraction would be.

As a consequence Jeff and I think we should remove packages
from ES4 for the time being, instead of embarking on a design
exercise without the benefit of practice. Concretely, we
propose the following:

 - the 'package', 'import', and 'external' keywords and forms
 are removed from the language along with the dotted-name
 syntax for packages

 - the notion of top-level blocks (which was only required
 to model the desugaring) is removed from the language

 - "use default namespace" is allowed anywhere at the top level
 of the program and at the top level of class blocks (and its
 effect extends to the end of the program or class or until
 a new "use default namespace" pragma is seen)

 - "use namespace" is allowed anywhere at the top level of any
 block (including program and class blocks) and its effect
 extends to the end of the program or block

 - the keyword 'internal' persists, but its value is now an
 unforgeable namespace that is private to the compilation unit
 (script, file, etc).

The net effect is simplification and actually better integrity,
since the file-private unforgeable namespace allows programs truly
to hide definitions in a file. (Our "local package" mechanism
provided something similar but that proposal appears to have fallen
by the wayside.)

The mechanisms proposed above are sufficient to emulate simple
packages a la Java. Consider an evaluator package that has a
statement evaluator in one file and an expression evaluator in
another:

 // file 1
 internal namespace PRIVATE = "eval private"
 internal namespace PUBLIC = "eval public"

5

 use namespace PRIVATE, namespace PUBLIC

 PUBLIC function evaluate(t)
 evalStmt(t)

 PRIVATE function evalStmt(t)
 ... evalExpr(t) ...

 // file 2

 internal namespace PRIVATE = "eval private"
 internal namespace PUBLIC = "eval public"
 use namespace PRIVATE, namespace PUBLIC

 PRIVATE function evalExpr(t)
 ... evalStmt(t) ...

 // file 3 (client)

 namespace EVAL = "eval public"
 use namespace EVAL // import EVAL.*

 print(evaluate(read()))

Perhaps, with some experience, a lightweight syntax could be
added to ES4 to make that kind of evaluation simpler, but that's
not what we're proposing at this time.

End proposal.

Feedback on the web has been positive to this proposal. There is a small group of programmers
on the web who like Packages so there may be some backlash from that group.

There were no objections to removing Packages from RI and Specification.

o other

• Review of features specs

Comment was made that most have been well written, but of late they have been poorly written

and semi-complete. It has been the intent to break things down into easily reviewed pieces.

Some features proposed for ES 3.1 need to be proposed for ES 4 since 3.1 is a subset of 4.

• Review of spec schedule

Basic schedule would call for mid-May availability of first draft document. Final review draft

in July with posting to Ecma Website, and sent to SC 22 for their information and review. Final

draft will be reviewed in late September. ES 3.1 is trying for the same schedule, but meeting

this schedule is a function of having sufficient resources to do the job. There are some issues

related to presentation within the document that are still under discussion.

Wiki page:

http://wiki.ecmascript.org/doku.php?id=meetings:es4wg_apr_17_2008

http://wiki.ecmascript.org/doku.php?id=meetings:es4wg_apr_17_2008

6

Group broke up into smaller groups to discuss specific issues. There was an ES 3.1 group in
addition to the two or three ES 4 groups.

6 ES 3.1 liaison/technical issues

ES 3.1 was tasked with reviewing their work and ensures that all features being planned are
also a part of the ES 4 work. This loop will be closed in the next couple of weeks.

7 Any other business

None

8 Date and place of the next meeting(s)

May 29-30 in San Francisco, CA (Full TC).

9 Closure

Meeting closed around 3:30 PM on Friday.

