

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

PC For Ecma use only

Minutes of the: Ecma TC39, ES3.1WG

held in: Phone conference

on: 04 September 2008

1 Roll call and logistics

1.1 Participants

Pratap Lakshman (Microsoft), Mark Miller (Google), Sam Ruby (IBM) and Allen Wirfs-Brock
(Microsoft)

2 Agenda

Decimal

What other changes do we expect between now and Redmond ? (based on that we need some
more writing/editing to happen).

3 Minutes

Decimal

typeof 1m should return “decimal”; not “number” - no distinction between new Decimal(’1m’)
and Decimal(’1m’); its typeof would still be “decimal” - ES3 has a clear separation between
primitive values and objects; Decimal seems to be a part of both - should 1m instanceof
Decimal return ‘true’ or ‘false’ ? - its should return ‘false’; same as 1m instanceof Number .

named methods of Decimal, should they be static or instance methods ? - if Decimal is going
to be a fully integrated type, put them on instances - also, look at the operators; operators
modeled as functions should go as static functions.

What other changes do we expect between now and Redmond ? (based on that we need
some more writing/editing to happen).

Use subset cautious needs to be revised - get rid of the subset term - more useful to leave in
the possibility that there are pragmas that change the meaning of a compilation uni t; for now
though we will have only one such pragma which would be the strict mode.

‘this’ coercion - the question is specific to strict mode; if a strict function that internally uses
“this” as an rvalue, what should happen when it is called as a function ? - we have 3 options:

(1) in an execution context in which ‘this’ is bound to null or undefined, evaluating ‘this’ as an
rvalue in strict code throws (in non-strict code it returns the global object, just as in ES3)

(2) if the strict function mentions ‘this’ freely, then an attempt to call it with ‘this’ bound to null
or undefined throws rather than entering the function

(3) no coercion is done at all - ‘this’ is bound to whatever it was bound to.

When invoked using a “Call” with a primitive, function gets entered with ‘this’ bound to the
corresponding wrapper; every time you get a new wrapper ! - where in spec language should
this be controlled ? - this can be done in call/apply, in function entry, or in the section
introducing strict mode - hardly seems containable in the spec for call/apply - checking on
function entry might require that every function prologue check if its ‘this’ is bound to a
primitive value - but, that tax needs to be borne only by strict code - regarding ‘this’ coercion,
what is the benefit to strict code again ? - the function simply obtain what the caller passed;
just like any other function parameters - keep wrapping in the spec in call/apply, and make it

Ecma/TC39/2008/081

http://www.ecma-international.org/

2

conditional on strictness of the function being called - what should happen to 1.foo() ? - coerce
only if foo is strict - but isn’t this a non mainline scenario ? - not really; it is common to
augment String and then invoke such methods through string literals.

Decision:

(1) All coercion from null/undefined to the global object gets migrated to section 11.1.1 in the
spec, and is made conditional on strictness.

(2) Wrapping of primitive values - raise this on the discuss lists

Meeting adjourned.

