
JSON,
ADsafe,
and Misty

Douglas Crockford

Yahoo!

JSON was the first safe subset

It starts with JavaScript array
literals and object literals, and

removes all behavior, yielding a
convenient data format.

http://www.JSON.org/

ADsafe

A system for safe web advertising.

http://www.ADsafe.org/

Static validation only,
no code rewriting.

No impact on performance.

JSLint is an ADsafe validator.

ADsafe
•  ADsafe is a JavaScript subset that adds

capability discipline by deleting features that
cause capability leakage.

•  No global variables or functions may be defined.
•  No global variables or functions can be

accessed except the ADSAFE object.
•  Use of the [] subscript operator is limited.
•  These words cannot be used: apply
arguments call callee caller
constructor eval prototype unwatch
valueOf watch

•  Words starting with _ cannot be used.

Impact on the programming model

•  Use of [] for subscripting is extremely
limited. ADSAFE.get(name) and
ADSAFE.set(name, value) must be
used instead. This can be annoying.

• this cannot be used because it can be
made to bind to the global object.

•  JavaScript is still quite useable without
this.

Constructor Recipe

1.  Make an object.
•  Object literal

•  new
•  Object.create
•  call another constructor

Constructor Recipe

1.  Make an object.
•  Object literal, new, Object.create, call

another constructor
2.  Define some variables and functions.

•  These become private members and
private methods of the new object.

Constructor Recipe

1.  Make an object.
•  Object literal, new, Object.create, call

another constructor
2.  Define some variables and functions.

•  These become private members.

3.  Augment the object with privileged
methods.

Constructor Recipe

1.  Make an object.
•  Object literal, new, Object.create, call

another constructor
2.  Define some variables and functions.

•  These become private members.

3.  Augment the object with privileged
methods.

4.  Return the object.

Step One

function myConstructor(x) {
 var that = otherMaker(x);
}

Step Two

function myConstructor(x) {
 var that = otherMaker(x);
 var secret = f(x);
}

Step Three

function myConstructor(x) {
 var that = otherMaker(x);
 var secret = f(x);
 that.priv = function () {
 ... secret x ...
 };
}

•  The methods should use neither this nor
that.

Step Four

function myConstructor(x) {
 var that = otherMaker(x);
 var secret = f(x);
 that.priv = function () {
 ... secret x ...
 };
 return that;
}

Objects made with this pattern
do not need hardening.
Object tampering does not cause

confusion.

ADsafe does not allow access
to Date or random

This is to allow human evaluation of ad
content with confidence that behavior
will not change in the future. This is for
ad quality and contractual compliance,

not for security.

ADsafe DOM Interface

•  Light weight.

•  JQuery-like.
•  Scope of queries is strictly limited to the

contents of a the widget's <div>.

•  Guest code cannot get direct access to
any DOM node.

Widget Template
<div id="ADSAFEID_">
 HTML content goes here.
<script>
"use strict";
ADSAFE.id("ADSAFEID_");
</script>
<script src="approvedlibrary.js"></script>
<script>
"use strict";
ADSAFE.go("ADSAFEID_", function (dom, lib) {
 Application initialization goes here.
});
</script>
</div>

Library Template
"use strict";

ADSAFE.lib("libraryname", function () {

 Create that library object

 return that;

});

•  The widget accesses the library object
with lib.libraryname.

ADsafe validation is not
destructive, so it can be

performed at any and every point
in the ad delivery pipeline.

It can even be done after
consumer delivery to test

compliance.

Multiple points of validation
provide greater confidence that

bad content will be blocked.

Dangers

•  There may still be undiscovered
weaknesses in ECMAScript and its many
implementations.

•  Those implementations are changing,
introducing new weaknesses.

•  The wrappers must be flawless.
•  We are still subject to XSS attacks.

Misty

An experimental object capability
language.

Goal: Correct every problem
in JavaScript

Reasonable people will disagree
on what the problems actually are.

Misty Objectives

•  Make the language easier for beginners.

•  Make the language unastonishing and low
cruft.

•  Make the language an object capability
language.

http://www.crockford.com/misty/

Syntax
•  := for assignment = for identity
•  + for addition & for concatenation
•  No semicolons. No blocks.

for i to length koda do

 if koda[i].id is null then

 raise 'misshapen'

 fi

od

No Global Object

•  Each compilation unit is a function body,
which gets the capability to return an
object that exposes an interface that can
be used by other compilation units.

•  Compilation units share a vat, so
communication is very fast. They can
directly invoke methods. They can share
object references.

Misty Object Hardening

•  The fix operator produces an immutable
reference. The original object is still mutable, but
it cannot be changed with the fixed reference.

 define frozen := fix my_object

•  frozen and my_object are references to the
same object, but the frozen reference is
attenuated.

 my_object.works := true

 frozen.works := false # raise 'fix'

Fixed References

•  A fixed reference cannot be used to
modify an object.

•  All references obtained with a fixed
reference will be fixed.

•  This avoids the ICE-9 problem.
•  Function values cannot be obtained with a

fixed reference. The functions can only be
invoked.

•  This prevents confusion.

Methods

•  A method can obtain a reference to the object of
interest with the $ operator.

•  A function that uses $ can only be called as a
method.

•  The $ operator can modify the object even if the
object was fixed.

$.status := true # succeeds

struct := $.struct # struct is fixed

return $ # returns fixed

$ could be viewed as a rights
amplification, but it is only

available to functions that are
added to the object before it is

fixed.

Simplicity

•  Very simple operation. Just fix
references before handing objects to
strange code.

•  Your own code is not inconvenienced by
fixing.

•  This level of simplicity is required for
successful adoption.

