
 

 

 

 

 

 

 

Ecma International   Rue du Rhône 114   CH-1204 Geneva   T/F: +41 22 849 6000/01   www.ecma-international.org 
 

PC             For Ecma use only  

 

 

 

 

Minutes of the: Ecma TC39, ES3.1WG 

held in: Phone conference 

on: 21 October 2008 

1 Roll call and logistics 

1.1 Participants 

Mark Miller (Google) , Allen Wirfs-Brock (Microsoft), Pratap Lakshman (Microsoft) 

2 Agenda 

Scoping of ‘const’ and blocks-introduce-scope 
Updates required for the JSON section (contd. from last week)  
Should SubStatement be a part of LabelledStatement 

3 Minutes 

scoping ‘const’ 

scoping ‘const’ is not so much about how we write up the spec; there is a semantic definition 
problem - wanted const as applicable to vars and not on properties of objects with read 
barriers - but then what do we do about top level consts? - its base would be a special ‘object 
environment’ - const declaration treated as the creation of a property whose value was 
readonly - at the instantiation of the binding it would be set of ‘undefined’, ‘readonly’ and 
‘configurable’- but readonly does not create a read barrier - strict mode needs to behave 
differently - read barrier needs to be unconditional - objection to semantics requiring a read 
barrier (from a performance perspective) - actually, in ES-H we will want ‘let’ and ‘const’ to 
behave consistently - looks like the semantics are not representable cleanly as the semantics 
of a property - two options to address the use-before-initialize problem (a) “dynamic dead 
zone”: runtime read barrier (b) “static dead zone”: set of static rules that prevent the read -
before-initialization, and thereby removing the need for a read barrier - dynamic dead zone is 
practical, but static dead zone would be better - not sure if we have the time to nail down the 
rules in time for ES3.1 - so we have the option of either going with the dynamic dead zone, or 
pulling const out of ES3.1. 

on the base to a reference being null  

what should happen in strict mode when assigning to an unbound name (e.g. “foo = 8;”) where 
foo is unbound? - should this get bound to the global object? to window? - what should be the 
base for an unbound reference? - coming with the notion of an “environment record”, unbound 
names will have this as their base? - consider ‘foo’ as a top level var, as a property on window, 
and as used with out being declared; what are its bases in these cases? - if it is unbound, it 
base is null; for window.foo, the base is the base is the global object; for top level foo, the 
base is this environment record - what about the case when these are within a ‘with’ block? - 
same inside a ‘with’ block; doesn’t distinguish between environment records for ‘with’ and the 
global object - when foo is unbound, strict “foo = 8;” must throw - not sure what non-strict 
“delete foo;” must do - when top level foo is bound, foo() must call foo with undefined as the 
“this” value - when window.foo exists, window.foo() must call foo with window as the “this” 
value - if foo is a top level const or let, then we may decide that its scope is its program unit, 
but not make it a property of the global object; in any case, we can now postpone that last 
issue till ES-H - in non-strict mode, “foo = 8;” and “delete foo;” are ok.  

Ecma/TC39/2008/091 

http://www.ecma-international.org/


 

2 

Updates required for the JSON section (contd. from last week)  

Postponed to next meeting. 

Should SubStatement be a part of LabelledStatement  

Postponed to next meeting.  

Meeting adjourned. 


