Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
01 September 2008

Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
01 September 2008

Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
01 September 2008

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape)
and JScript (Microsoft). The language was invented by Brendan Eich at Netscapn d f i r st appeared i
Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft
starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. Wteeflition of this ECMA Standard was adopted by
the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under thé&rdaktprocedure, and approved as
international standard ISO/IEC 16262, in April 1998. TEBEMA General Assembly of June 1998 approved the
second edition of ECMA62 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second
edition are editorial in nature.

The third edition of the Standargncludes powerful regular expressions, better string handling, new control{ peleted: current document defines the
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor chang
in anticipation of forthconmg internationalisation facilities and future language growthe language documented by
the third edition has come to be known as ECMAScript 3 or ES3.

[Deleted: and

Work on the language is not complete. The technical committee is working on significant enhancemnkrisg
mechanisms for scripts to be created and used across the Internet, and tighter coordination with other standards bodies
such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum.

Deleted: This Standard has been adopted as 3rd Edif
ECMA-262 by the ECMA General Assembly in Decen
1999.

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
01 September 2008

1 Scope

2 Conformance

3 References

4 Overview

4.1 Web Scripting

Table of contents

4.2 Language Overview
4.2.1 Objects
4.2.2 Voluntary Usage Language Subsets

4.3 Definitions
4.3.1 Type
4.3.2 Primitive Value
4.3.3 Object
4.3.4 Constructor
4.3.5 Prototype
4.3.6 Native Object
4.3.7 Built-in Object
4.3.8 Host Object
4.3.9 Undefined Value
4.3.10 Undefined Type
4.3.11 Null Value
4.3.12 Null Type
4.3.13 Boolean Value
4.3.14 Boolean Type
4.3.15 Boolean Object
4.3.16 String Value
4.3.17 String Type
4.3.18 String Object
4.3.19 Number Value
4.3.20 Number Type
4.3.21 Number Object
4.3.22 Infinity
4.3.23 NaN
4.3.24 Function
4.3.25 Property
4.3.26 Method
4.3.27 Attribute
4.3.29 Own Property
4.3.28 Inherited Property
4.3.29 Built-in Method

5 Notational Conventions

5.1 Syntactic and Lexical Grammars
51.1 ContextFree Grammars
5.1.2 The Lexical and RegExp Grammars

01 September 2008

=

[y

O o000 0000 o0 0O gooooooooo o0 DMDAMDNMDDMWNDNDNDNEPRE

NN NN

6.

7

8

5.1.3

5.1.4

5.1.5
5.2

The Numeric String Grammar
The Syntactic Grammar
Grammar Notation

Algorithm Conventions

Source Text

Lexical Conventions

7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.9
7.9.1
7.9.2

Unicode FormatControl Characters
White Space
Line Terminators
Comments
Tokens

Reserved Words

Keywords

Future Reserved Words
Identifiers
Punctuators
Literals

Null Literals

Boolean Literals

Numeric Literals

String Literals

Regular Expression Literals
Automatic Semicolon Insertion

Rules of Automatic Semicolon Insertion
Examples of Automatic Semicolon Insertion

Types

8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.7
8.7.1
8.7.2
8.8
8.9

8.10 The Property Descriptor and Property Identifier Types

8.10.1
8.10.2
8.10.3
8.10.4
8.10.5

The Undefined Type
The Null Type
The Boolean Type
The String Type
The Number Type
The Object Type
Property Attributes
Internal Properties and Methods
The Reference Type
GetValue (V)
PutValue (V, W, Throw)
The List Type
The Completion Type

IsAccessorDescriptor (Degc
IsDataDescriptor (Desc)
IsGenericDescriptof Desc)
FromPropertyDescriptor (Desc)
ToPropertyDescriptor (Desc)

01 September 2008

10

11

12
12
12
13
14
15
15
15
15
15
17
17
17
17
17
19
22
23
23
24

25
25
25
25
25
26
27
27
28
33
33
34
34
34
34
35
35
35
35
36

9 Type Conversion and Testing

9.1
9.2
9.3
9.3.1
9.4
9.5
9.6
9.7
9.8
9.8.1
9.9
9.10

ToPrimitive
ToBoolean
ToNumber

ToNumber Applied to the String Type
Tolnteger
Tolnt32: (Signed 32 Bit Integer)
ToUint32: (Unsigned 32 Bit Integer)
ToUint16: (Unsigned 16 Bit Integer)
ToString

ToString Applied to the Number Type
ToObject
IsCallable

10 Execution Contexts

10.1 Definitions
10.1.1 Function Objects
10.1.2 Types of Executable Code
10.1.3 Environment Bindings Instantiation
10.1.4 Scope Chain and Identifier Resolution
10.1.5 Global Object
10.1.6 Activation Object
10.1.7 This
10.1.8 Arguments Object
10.2 Entering An Execution Context
10.2.1 Global Code
10.2.2 Eval Code
10.2.3 Function Code
10.2.4 Lexical Block Code
11 Expressions
11.1 Primary Expressions
11.1.1 Thethis Keyword
11.1.2 Identifier Reference
11.1.3 Literal Reference
11.1.4 Array Initialiser
11.1.5 Object Initialiser
11.1.6 The Grouping Operator
11.2 Left-Hand Side Expressions
11.2.1 Property Accessors
11.2.2 Thenew Operator
11.2.3 Function Calls
11.2.4 Argument Lists
11.2.5 Function Expressions
11.3 Postfix Expressions
11.3.1 Postfix Increment Operator
11.3.2 Postfix Decrement Operator

01 September 2008

36
36
37
37
37
40
40
40
41
41
41
42
43

43
43
43
43
44
45
45
46
46
46
47
47
47
47
47

48
48
48
48
48
48
49
51
51
52
53
53
53
54
54
54
54

11.4 Unary Operators
11.4.1 Thedelete Operator
11.4.2 Thevoid Operator
11.4.3 Thetypeof Operator
11.4.4 Prefix Increment Operator
11.4.5 Prefix Decrement Operator
11.4.6 Unary+ Operator
11.4.7 Unary- Operator
11.4.8 Bitwise NOT Operator ¢)
11.4.9 Logical NOT Operator {)
11.5 Multiplicative Operators
11.5.1 Applying the* Operator
11.5.2 Applying the/ Operator
11.5.3 Applying the%Operator
11.6 Additive Operators
11.6.1 The Addition operator ¢)
11.6.2 The Subtraction Operator-()

11.6.3 Applying the Additive Operators<, -) to Numbers

11.7 Bitwise Shift Operatcs
11.7.1 The Left Shift Operator €<)
11.7.2 The Signed Right Shift Operator¢)
11.7.3 The Unsigned Right Shift Operatoré>)
11.8 Relational Operators
11.8.1 The Lessthan Operator €)
11.8.2 The Greateithan Operator ¢)
11.8.3 The Lessthanor-equal Operator €=)
11.8.4 The Greateithanor-equal Operator $=)
11.8.5 The Abstract Relational Comparison Algthm
11.8.6 The instanceof operator
11.8.7 The in operator
11.9 Equality Operators
11.9.1 The Equals Operator%=)
11.9.2 The Doesnot-equals Operator I)
11.9.3 The Abstract Equatly Comparison Algorithm
11.9.4 The Strict Equals Operator{==
11.9.5 The Strict Doesnot-equal Operator (==
11.9.6 The Strict Equality Comparison Algohin
11.10 Binary Bitwise Operators
11.11 Binary Logical Operatay
11.12 Conditional Operator (?:)
11.13 Assignment Operators
11.13.1 Simple Assignment €)
11.13.2 Compound Assignmentdp=)
11.14 Comma Operator ()

01 September 2008

55
55
55
55
56
56
56
57
57
57
57
58
58
58
59
59
60
60
60
60
61
61
61
62
62
62
62
63
64
64
64
64
65
65
66
66
66
66
67
68
69
69
69
70

12 Statements 71
12.1 Block 71
12.1.1 Usage Subset cautious Restrictions 72
12.2 Variable statement 72
12.3 Empty Statement 73
12.4 Expression Statement 73
12.5 Theif Statement 74
12.6 Iteration Statements 74
12.6.1 Thedo-while Statement 74
12.6.2 Thewhile statement 75
12.6.3 Thefor Statement 75
12.6.4 Thefor -in Statement 76
12.7 Thecontinue Statement 77
12.8 Thebreak Statement 77
12.9 Thereturn Statement 77
12.10 Thewith Statement 78
12.10.1 Usage Subseautious Restrictions 78
12.11 Theswitch Statement 78
12.12 Labelled Statements 80
12.13 Thethrow statement 80
12.14 Thetry statement 81
12.15 Constant statement 81
13 Function Definition 82
13.1 Definitions 83
13.2 Creating Function Objects 83
13.2.1 [[Call]] 84
13.2.2 [[Construct]] 84
14 Program 85
15 Native ECMAScript Objects 87
15.1 The Global Object 87
15.1.1 Value Properties of the Global Object 88
15.1.2 Function Properties of the Global Object 88
15.1.3 URI Handling Function Properties 89
15.1.4 Constructor Propeies of the Global Object 94
15.1.5 Other Properties of the Global Object 94
15.2 Object Objects 94
15.2.1 The Object Constructor Called as a Function 94
15.2.2 The Object Constructor 95
15.2.3 Properties of the Object Constructor 95
15.2.4 Properties of the Object Prototype Object 98
15.2.5 Properties of Object Instances 99
15.3 Function Objects 99
15.3.1 The Function Constructor Called as a Function 99
15.3.2 The Function Constructor 100

01 September 2008

- Vi -

15.3.3 Properties of the Function Constructor
15.3.4 Properties of the Function Prototype Object
15.3.5 Properties of Function Instances

15.4 Array Objects
15.4.1 The Array Constructor Called as a Function
15.4.2 The Array Constructor
15.4.3 Properties of the Array Constructor
15.4.4 Properties of the Array Prototype Object
15.4.5 Properties of Array Instances

15.5 String Objects
15.5.1 The String Constructor Called as a Function
15.5.2 The String Constructor
15.5.3 Properties of the String Constructor
15.5.4 Properties of the StrinBrototype Object
15.5.5 Properties of String Instances

15.6 Boolean Objects
15.6.1 The Boolean Constructor Called as a Function
15.6.2 The Boolean Constructor
15.6.3 Properties of the Boolean Constructor
15.6.4 Properties of the Boolean Prototype Object
15.6.5 Properties of Boolean Instances

15.7 Number Objects
15.7.1 The Number Constructor Called as a Function
15.7.2 The Number Constructor
15.7.3 Properties of the Number Constructor
15.7.4 Properties of the Number Prototype Object
15.7.5 Properties of Number Instances

15.8 The Math Object
15.8.1 Value Properties of the Math Object
15.8.2 Function Properties of the Math Object

15.9 Date Objects
15.9.1 Overview of Date Objects and Definitions of Internal Operators
15.9.2 The Date Constructor Called as a Function
15.9.3 The Date Constructor
15.9.4 Properties of the Date Constructor
15.9.5 Properties of the Date Prototype Object
15.9.6 Properties of Date Instances

15.10 RegExp (Regular Expression) Objects
15.10.1 Patterns
15.10.2 Pattern Semantics
15.10.3 The RegExp Constructor Called as a Function
15.10.4 The RegExp Constructor
15.10.5 Properties of the RegExp Constructor
15.10.6 Properties of the RegExp Prototype Object
15.10.7 Properties of RegExp Instances

15.11 Error Objects
15.11.1 The Error Constructor Called as a Function

01 September 2008

100
101
102
102
103
103
103
104
119
119
119
119
120
120
128
129
129
129
129
129
130
130
130
130
130
131
134
134
134
135
140
140
144
145
145
146
152
153
153
155
166
166
167
167
168
169
169

- vii -

15.11.2 TheError Constructor
15.11.3 Properties of the Error Constructor
15.11.4 Properties of the Error Prototype Object
15.11.5 Properties of Error Instances
15.11.6 Native Error Types Used in This Standard
15.11.7 NativeError Object Structure

15.12 JSON
15.12.1 parse (text, reviver)
15.12.2 stringify (value, replacer, space)

15.13 Decimal

15.13.1 Overview of Decimal Objects and Definitions of Interr@perators
15.13.2 The Decimal Constructor Called as a Function

15.13.3 The Decimal Constructor

15.13.4 Properties of the Decimal constructor
15.13.5 Properties of the Decimal Prototype @bj
15.13.6 Properties of Decimal Instances

16 Errors

Annex A

Al Lexical Grammar

A.2 Number Conversions
A.3 Expressions

A.4 Statements

A.5 Functions and Programs
A.6 Universal Resource Identifier Character Classes
A.7 Regular Expressions
Annex B

Compatibility

B.1 Additional Syntax
B.1.1 Numeric Literals
B.1.2 String Literals

B.2 Additional Properties
B.2.1 escape (string)
B.2.2 unescape (string)
B.2.3 String.prototype.substr (start, length)
B.2.4 Date.prototype.getYear ()
B.2.5 Date.prototype.setYear (year)
B.2.6 Date.prototype.toGMTString ()

Annex C

01 September 2008

169
169
169
170
170
170
172
172
172
174
174
174
174
175
175
180

181

182

182

187

188

193

195

196

196

200

200

200
200
200

201
201
202
202
203
203
203

204

Usage Subsets
Cc.1 Thecautious Subset
Cc.1.1 Excluded Features
C.1.2 Additional Execution Exceptions

Annex D

Correction and Clarifications in Edition 3.1 with Possible Compatability Impact

Annex E

Additions and Changes in Edition 3.1 which Introduce Incompatabilities with Edition 3.

- viii -

01 September 2008

204
204
204
205

206

206

207

207

Scope
This Standard defines the ECMAScript scripting language.

Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall integratacters irconformance with the

Unicode Standard, VersigB.0 or later, and ISO/IEC 10646 with either UCS2 or UTF16 as the adopted [Deleted: 2.1

encoding form, implementation level 3. If the adopted ISO/IEC 10b646bset is not otherwise specified, it is
presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified,
presumed to be the UTE6 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, anc
values for those properties, for objects that are describ#dsrspecification.

A conforming implementation of ECMAScript is permitted to support program and regular expression synta
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted tc
support programsynt.a t hat makes use of the fAfuture reserved

References
ISO/IEC 9899:1996 Programming Language®, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 106461:1993 Information Technology Universal MultipleOctet Coded Character Set (UCS) plus
its amendments and corrigenda.

The Unicode Consortium. The Unicode Standard, Ver8i6n defined by: The Unicode Standard, Versi®@

Deleted: Unicode hc. (1996), The Unicode
Standard, Version 2.0. ISBN: £01-483459,

WUnicode Inc. (1998), Unicode Technical Rep#its: Unicode Normalization Forms. AddisonWesley Publishing Co., Menlo Park,
ANSI/IEEE Std 7541985: IEEE Standard for Binary FloatifRpint Arithmetic. Institute of Electrical and California.
Electronic Engineers, New York (1985). Deleted: Unicode Inc. (1998), Unicode
Technical Report #8: The Unicode Standard
. Version 2.1y
Overview

This section contains a narormative overview of the ECMAScript lgnage.

ECMAScript is an objeebriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to b
computationally selkufficient; indeed, there areorprovisions in this specification for input of external data
or output of computed results. Instead, it is expected that the computational environment of an ECMAScri
program will provide not only the objects and other facilities described in this ammh but also certain
environmenispecifichostobjects, whose description and behaviour are beyond the scope of this specificatiol
except to indicate that they may provide certain properties that can be accessed and certain functions that
be calledfrom an ECMAScript program.

A scripting languageis a programming language that is used to manipulate, customise, and automate tf
facilities of an existing system. In such systems, useful functionality is already available through a use¢
interface, and the scripting language is a mechanism for exptsatdunctionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes tl
capabilities of the scripting language. A scripting language is intended for use by both predessid non

professional programmers. To accommodate-pomfessional programmers, some aspects of the langaragy [Deleted: may be somewhat less strict

defined tobe tolerant of programmer mistakeslowever, such tolerance can easily result in programs

containing undiscovered errors that professional programmers would wish to discover and correg¢t. T
facilitate such error detection script can be explicitly declarel t o us e aubsecd the fulbfu s
ECMAScript language that provides enhanced error deteetsonell

ECMAScript was originally designed to beeb scripting languageproviding a mechanism to enliven Web
pages in browsers and to perform server computation as part of ab¥éeld clienserver architecture.

01 September 2008

4.1

4.2

ECMAScript can provide core scripting pabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languragesticular

Javd”, Self, and Schemas described in: [Deleted: and

* Gosling, James, Bill Joy and Guy Steele. The Javanguage Specification. Addison Wesley Publishing
Co., 1996.

®* Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Camie
Proceedings, pp. 22241, Orlando, FL, October 1987.

* |EEE Standard for the Scheme Programming Language. IEEE Std1R0(3

Web Scripting

A web browser provides an ECMAScript host environment for ci@de computation including, for
instance, bjects that represent windows, menus, qu@s, dialog boxes, text areas, anchors, frames, history,
cookies, and input/output. Further, the host environment provides a means to attach scripting code to events
such as change of focus, page and image loadingpading, error and abort, selection, form submission,

and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of
user interface elements and fixed and computed text and images. The scripting code is reaciare to
interaction and there is no need for a main program.

A web server provides a different host environment for seside computation including objects
representing requests, clients, and files; and mechanisms to lock and share data. By usingsimevaser
serverside scripting together, it is possible to distribute computation between the client and server while
providing a customised user interface for a \Wetsed application.

Each Web browser and server that supports ECMAScript supplies its owermasonment, completing the
ECMAScript execution environment.

Language Overview
The following is an informal overview of ECMAScriptnot all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is objectbased: basic language and host facilities are provided by objects, and an
ECMAScript program is a cluster of communicating objects. An ECMASooipiect is an unordered
collection ofpropertieseach with zero or morattributesthat determine how each propgrcan be usedl

Deleted: ReadOnly

ECMAScript code to change the value of the propégeys. Properties are containers that hold other [

Deleted: true

objects,primitive values or methods A primitive value is a member of one of the following baiittypes:
Undefined, Null, Boolean, Number, and String; an object is a member of the remaining biilttype [

Deleted: has no effect

Object; and a method is a function associated with arabyia a property.

ECMAScript defines a collection djuilt-in objectsthat round out the definition of ECMAScript entities.
These builtin objects include th&lobal object, theObject object, theFunction object, theArray object,
the String object, theBoolean object, theNumber object, theMath object, theDate object, theRegExp
object the JSON object, the Decimal object, and the Error object&rror, EvalError , RangeError,
ReferenceError, SyntaxError, TypeError andURIError .

ECMAScript also defines a set of built operators ECMAScript operators include various unary
operations, multiplicative operators, additive operators, bitwise shift operators, relational operator

Deleted: thatmay not be, strictly speakinfynctions
or methods

equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma
operator.

ECMAScript syntax intentionally resembles Java syntB&MAScript syntax is relaxed to enable it to
serve as an eagyp-use scripting laguage. For example, a variable is not required to have its type declared
nor are types associated with properties, and defined functions are not required to have their declarations
appear textually before calls to them.

4.2.1 Objects

ECMAScript does not contaiglasses such as those in C++, Smalltalk, or Java, but rather, supports{

Deleted: proper

constructorswhich create objects by executing code that allocates storage for the objects and initialises
all or part of them by assigning initial kees to their propertieéﬁ.\ll constructors are objects, but not all

01 September 2008

objects are construct¢rsEach constructor has property namedﬁprototype \(‘) that is used to| Comment [pL1]: Rationale:

implementprototypebased inheritanceandshared propertiesObjects are created by using constructors dCO"Sidef Wi”do‘;v-documem- 'lt izan ngeCt (type

H H . : " . n B B B oOCcumen S ou c 0o

in new expressions; for _examplaew String("A String") creates a new String object. Invoking a (1o s ST 6 G| it

constructor without usingnew has consequences that depend on the constructor. For example, : :

String("A String") prodices a primitive string, not an object. {C"mme”‘ [pL2]: From AWB:Need tomake
typography consistent.

Deleted: Prototype property

—

ECMAScript supportgrototypebased inheritanceEverypbject created by constructor has an implicit
reference(called theobj ect 6s) jpor ott lod ypal ue o fiprotiotype oOcpoopesty I u-¢
Furthermore, a prototype may have a fmrl implicit reference to its prototype, and so on; this is called
the prototype chainWhen a reference is made to a propéntan object, that reference is to the property

of that name in the first object in the prototype chain that contains a property of that name. In othe[
words, first the object mentioned directly is examined for such a property; if that object contains thu[Deleted: to the prototype

named property, that is the property to which the reference refers; if that object does not contain tr[Deleted: associated with its constructor
named property, the prototype for that object is examined next; and so on.

Deleted: constructor has an associated
prototype, and every

Deleted: that

In a classbased objeebriented language, in general, state is carried btaimces, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods ¢
carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a pattlar property that their prototype contains share that
property and its value. The following diagram illustrates this:

A)

] CF implicit prototype link
prototype LEF ,,,,,,,, | [Deleted: Cf,
P1 CFP1 explicit prototypeproperty ‘ [Deleted: link
o ... o, o of, I i JUR ;i
ql ql q1 q1 q1
g2 q2 q2 a2 q2

CF is a constructor (and also an object). Five objects have been created byewiegpressionscf;,

cf,, cfs, cfy, and ci. Each ofthese objects contains properties named gl and g2. The dashed line:
represent the implicit prototype relationship; so, for examplgd) sf pr ot og Vhe eonsirsctorC F
CF, has two properties itself, named P1 and P2, which are not visible,t@igFf,, cfs, cfy, or ck. The
property named CFP1 in GFs shared by ¢f cf,, cf;, cf;, and c§ (but not by CF), as are any properties
found in CFp&s ihampthat ard riot npmed flo 2y @r €FP&. Notice that there is no
implicit prototype lirk between CF an@F,.

Unlike classbased object languages, properties can be added to objects dynamically by assigning valu
to them. That is, constructors are not required to name or assign values to all or any of the construct
objectds properti es. coulhadd shnew shdred prepertyifda, gfs, efsicf,, andn e
cfs by assigning a new value to the propertyOR,.

4.2.2 Noluntary Usagelanguage Subsed Comment [pL3]: Needs to be reworked to
The ECMAScript Language recognizes the possibility that some users of the language may wish {1 harmoni zeo as strict
restrict their usage ofomefeatures available in the language. They might do so in the interesis of
security, to avoid what they consider to be error proméufies,to get better error checkingy for other
reasons of their choosing. In support of this possibility, ECMAScript defines the concapage

01 September 2008

subsetsof the language. A usage subset is simply a specified subset of the ECMAScript language. A
usagesubset may exclude specific syntactic and semantic features of the full ECMAScript language and
may identify additional error conditions that could be reported by throwing error exceptions in situations
that are not specified as errors by the full language

A usage subset is not intended as a means of enabling implementations of subsets of ECMAScript. To
conform to this specification, an ECMAScript implementation must implement the full language as
defined by this specification. Instead, a usage subssitriply a way for a user of the language to state

their intent to voluntarily restrict themselves so a well specified subset of the language. Implementations
of ECMAScript may treat such statements of intent as a request from a user that they would like the
implementation to help them ensure that they have actually adhered to the limitations of a subset. An
implementatiorshouldhonaur such a request by reporting violat.i
restrictions and by detecting any additionairor conditions and throwing the appropriate error
exception. Because usage subsets are selected at the level of a syntactic program unit they may only
impose restriction that would have local effect within such a syntactic program unit. They may not
redrict the ECMAScript semantics that must operate consistently across all program units.

With one exception, an ECMAScript program that is voduily limited to a usage subset and which
executes without err or u hbehave iégnticaly it exdristecwitiiost omamys t r i c
usage subset restrictions. The exception is any situation where the operation of such a program depends
upon the actual occurrence and subsequent handling of additional error conditions that are part of the
subset.

ECMAScript defines a single usage subset, nageatious which implementationsnust support to
be in compliance with this specification. Other usage subsets may be defined by future versions of the
ECMAScript language

4.3 Definitions
The following are informbdefinitions of key terms associated with ECMAScript.
4.3.1 Type
A typeis a set of data values.
4.3.2 Primitive Value

A primitive valueis a member of one of the typéndefined, Null, Boolean Number, or String. A
primitive value is a datum that is reygented directly at the lowest level of the language implementation.

4.3.3 Object

An objectis a member of the typ@bject. It is an unodered collection of properties. Deleted: Itis an unordered collection of propertie
each of which contains a primitive valuejeti, or
4.3.4 Constructor function. A function stored in a property of an obje
A constructor is a Function object that creates and initialises objeEts value of a castructord s called a method.
fiprototype O property is aprototype object that is used to implement inheritance and shared [Deleted: Each constructor has an associated
properties.

4.3.5 Prototype
A prototypeis an object used to implement structure, state, and behaviour inheritance in ECMAScript.
When a constructor creates an object, thgt ebc t implicitly r effigatogypec &®s t he
propertyf or t he purpose of resol vi ng fgpatotypee roprypertyeih e r { Deleted: associated prototype
be referenced by the program expressmmstructor .proto type , and properties added to an
objectds prototype are shared, through inherit a|£|

4.3.6 Native Object

A native objectis any object supplied by an ECMAScript implementation independent of the host
environment. Staratd native objects are defined in this specification. Some native objects arénbuilt
others may be constructed during the course of execution of an ECMAScript program.

4.3.7 Built-in Object

A built-in objectis any object supplied by an ECMAScript impientation, independent of the host
environment, which is present at the start of the execution of an ECMAScript program. Standaird built
objects are defined in this specification, and an ECMAScript implementation may specify and define

Deleted: associated prototype
T E

01 September 2008

4.3.8

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.15

4.3.16

4.3.17

4.3.18

4.319

4.3.20

4.3.21

others. Every buitin object is a native object built-in constructoris abuilt-in object that is also &
constructor.
Host Object

A host objectis any object supplied by the host environment to complete the execution environment o
ECMAScript. Any object that is not native is a host object.

Undefined Value
Theundefined valueis a primitive value used when a variable has not been assigveddea

Undefined Type
The typeUndefined has exactly one value, calleshdefined.

Null Value
Thenull value is a primitive value that represents the null, empty, or-existent reference.

Null Type
The typeNull has exactly one value, calledll.

Boolean Value
A boolean values a member of the typBooleanand is one of two unique valudsye andfalse

Boolean Type

The typeBoolean represents a logical entity and consists of exactly two unicaleeg. One is called
true and the other is callefalse.

Boolean Object

A Boolean objectis a member of the typ®bject and is an instance of the buitt Boolean object. That
is, a Boolean object is created by using the Boolean constructornewaexpression, supplying a
boolean as an argument. The resulting object has an implicit (unnamed) property that is the boolean.
Boolean object can be coerced to a boolean value.

String Value

A string valueis a member of the typ8tring and is a fite ordered sequence of zero or morehl6
unsigned integer values.

NOTE

Although each value usually represents a singlebltunit of UTR16 text, the language does not place
any restrictions or requirements on the values except that they-b& L&sgned integers.

String Type

The typeString is the set of all string values.

String Object

A String objectis a member of the typ®bject and is an instance of the built String object. That is, a
String object is created by using the Striognstructor in anew expression, supplying a string as an
argument. The resulting object has an implicit (unnamed) property that is the string. A String object ca
be coerced to a string value by calling the String constructor as a function (15.5.1).

Number Value

A number valueis a member of the typdumber and is a direct representation of a number.

Number Type

The typeNumber is a set of values representing numbers. In ECMAScript, the set of values represent
the doubleprecision 64bit for ma t | EEE 754 val ues -aMuwnmbuedrion g(NahNe)
positive infinity, and negative infinity.

Number Object

A Number objectis a member of the typ@bject and is an instance of the built Number object. That
is, a Number objedt created by using the Number constructor imes expression, supplying a number

01 September 2008

4.3.22

4.3.23

4.3.24

4.3.25

4.3.26

4.3.27

4.3.29

4.3.28

4.3.29

as an argument. The resulting object has an implicit (unnamed) property that is the number. A Number

object can be coerced to a number value by calling the Number cowstasca function (15.7.1).

Infinity

The primitive valuenfinity represents the positive infinite number value. This value is a member of the

Number type.
NaN

The primitive valueNaNr epr esent s t he
member of the Number type.

Function

s e t-a-Nu mbl eEr EOE ThiatvValueedsaar d = A N

A function is a member of the typ@®bject and is an instance of the built Functionobject In addition
to its named properties, a function contairsecutablecode and state that determine hawbehaves

when invoked.

Property

A forummay notbeavritt@rsin ECMASeriptma y

A propertyis an association between a name and a value. Depending upon the form of the property the
value may be either a data value (a primitive valueglgect, or a function) or a pair of functions.

Method

A methodis a function that is the value of a property.

Attribute

An attribute is an internal value that defines some characteristic of a property.

Own Property

An own property ofan object is a property that is directly defined by that object.

Inherited Property
An inherited propertyis a property of an object that is not one of its own properties but is a property

(either
Built-in Method

own

or

inherited)

of

t he

objectds

prototyp

A built-in methodis any method supplied by an ECMAScript implementation, independent of the host
environment, which is present at the start of the execution of an ECMAScript program. Standair built
methods are defined in this specificat, and an ECMAScript implementation may specify and define

others.

01 September 2008

5 Notational Conventions

5.1

5.1.1

5.1.2

5.1.3

5.1.4

Syntactic and Lexical Grammars

This section describes the contdrte grammars used in this specification to define the lexical and
syntactic structure ofraECMAScript program.

Context-Free Grammars

A contextfree grammarconsists of a number gfroductions Each production has an abstract symbol
called anonterminalas itsleft-hand side and a sequence of zero or more nonterminal &@nohinal
symbols as itsright-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, callgdatheymbal a given
contextfree grammar specifies language namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a rigr
hand side of a production for which the nonterminal is theHaftd side.

The Lexical and RegExp Grammars

A lexical grammarfor ECMAScript is given in clause 7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symk
InputElementDivor InputElementRegExpthat describe how sequences of Unicode characters are
translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntact
grammar for ECMAScript and are called E@Mcript tokens These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, althougt
not considered to be tokens, also become part of the stream of input elements and guide thefroces:
not appear in the stream of input elements for the syntactic grammpliul_.ineComment(that is, a
comment of *eWe® fremgmar @ étreesisspand mome hhan one line) is likewise simply
discarded if it contains no line terminator; but if MultiLineCommentcontains one or more line
terminators, then it is replaced by a single line terminator, which becomes part of the stream of inpi
elements for the syntactic grammar.

A RegExp grammafor ECMAScript is given in 15.10. This grammar also has as its terminal symbols
the characters of the Unicode character set. It defines a set of productions, starting from the goal syml
Pattern that decribe how sequences of Unicode characters are translated into regular expressic
patterns.

Producti ons of the Il exical and RegExp gr:atnmass
separating punctuation. The lexical and RegExp grammars share soduetpoas.

The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the pe
of the lexical grammar having to do with numeric literals and has as its terminal symbols the characte
of the Unicode character set. This grammar appears in 9.3.1.

Productions of t he numeric string gr ammard arse
punctuation.

The Syntactic Grammar

The syntactic grammarfor ECMAScript is given in clauses 11, 123 and 14. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set o
productions, starting from the goal symhb@togram that describe how sequences of tokens can form
syntactically correct ECMA&cript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted tc
stream of input elements by repeated application of the lexical grammar; this stream of input elements
then parsed by a single apgdtion of the syntax grammar. The program is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nontermi
Program with no tokens left over.

01 September 2008

Deleted:

785

Productions of the syntactic grammar aredisngui shed by hawi mre jpuntctame i ©

The syntactic grammar as presented in sectjinsl2, 13 and 14s actually not a complete account of [Deleted: 0, 0,0and0

which token sequences are accepted as correct ECMAScript programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequmEnin certain places (such as before line terminator characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if a terminator
character appears in certain fiawkwardo places.

5.1.5 Grammar Notation

Teminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown ifixed width font, both in the productions of the grammars and throughout
this specification whenever the text directly refers to sadierminal symbol. These are to appear in a
program exactly as written. All nonterminal characters specified in this way are to be understood as the
appropriate Unicode character from the ASCII range, as opposed to any dooikémg characters from
otherUnicode ranges.

Nonterminal symbols are shown italic type. The definition of a nonterminal is introduced by the name

of the nonterminal being defined followed by one or more colons. (The number of colons indicates to
which grammar the production bela®y One or more alternative rightand sides for the nonterminal
then follow on succeeding lines. For example, the syntactic definition:

WhileStatement Deleted: WithStatement

while (Expressior) Statement

Deleted: WithStatement

,,,,,,,,,,,,,,,,,,,,,, [Deleted: with
token, followed by arExpression followed by a right parenthesis token, followed bg@@tementThe %

Deleted: with

occurrences oExpressiorand Statemenare themselves nonterminals. As another example, the syntactic
definition:

ArgumentList

AssignmentExpression
ArgumentList, AssignmentExpression

states that arArgumentListmay represent either a singhssignmentExpressioar an ArgumentList
followed by a comma, followed by amssignmentExpressionThis definition of ArgumentListis
recursive that is, it is defined in terms of itself. The result is thatAagumentListmay contain any
positive number of arguments, separated by commas, where each emtguErpression is an
AssignmentExpressiosuch recursive definitions of nonterminals are common.

The subscrioptd,edwhiudh imayl appear after a tomionali nal
symbol The alternative containing the optional symbotually specifies two righhand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration:
Identifier Initialisery

is a convenient abbreviation for:

VariableDeclaration:
Identifier
Identifier Initialiser

and that:

IterationStatement
for (ExpressionNolg, ; Expressiog, ; Expressiog;) Statement

is a convenient abbreviation for:

IterationStatement
for (; Expressiog, ; Expressiop,) Statement
for (ExpressionNoln; Expressiop, ; Expressiog,) Statement

which in turn is an abbreviation for:

01 September 2008

IterationStatement
for (;; Expressiogy) Statement
for (; Expression; Expressiog,) Statement
for (ExpressionNoln; ; Expressiog,) Statement

for (ExpressionNoln; Expression; Expressiog,) Statement

which in turn is an abbreviation for:

IterationStatement

for (;;) Statement

for (;; Expression) Statement

for (; Expression;) Statement

for (; Expression; Expression) Statement

for (ExpressionNoln;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nontermindterationStatemenactually has eight alternative rightand sides.

I f t he [eppl0 aad gp dar s -hansl sidetoea produgtion, it indicates that the production's
right-hand side contains no terminals or nonterminals.

I f t h e [lopkhhéadezss€l0 flap pear s -hamd sitehod a prodgction, it indicates that the
productionmay not be used if the immediately following input terminal is a member of the geen
Thesetcan be written as a list of terminals enclosed in curly braces. For convenience, the set can also
written as a nonterminal, in which case it represengssit of all terminals to which that nonterminal
could expand. For example, given the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [lookaheads {1, 3,5, 7, 9}] DecimalDigits
DecimalDigit [lookaheade DecimalDigit]

matches either the letterfollowed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.

I f t h e h@uUneTansngorhdiep ap p ear s -hamd sidehoé a pradgction of the syntactic
grammar, it indicates that the production & restricted production it may not be used if a
LineTerminatoroccurs in the input stream at the indicated position. Fomgke, the production:

ReturnStatement
return [no LineTerminatothere] EXpreSSiOQm)

indicates that the production may not be used IfimeTerminatoroccurs in the program between the
return token and thé&xpression

Unless the presence of kineTermirator is forbidden by a restricted production, any number of
occurrences ofineTerminatormay appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When t heonevolr diisw thie colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

01 September 2008

- 10 -

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::, [Deleted: one of

1

Co~NoOUThWN

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be
a multicharacter token, it represents the sempeeof characters that would make up such a token.

The righthand side of a production may specify that certain expansions are not permitted by using the
phr abstemotdi and then indicating the expansions to be

Identfier ::

IdentifierNamebut not ReservedWord

means that the nonterminkdentifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not répdseevedWord

Finally, a fewnonterminal symbols are described by a descriptive phrase in roman type in cases where it
would be impractical to list all the alternatives:

SourceCharacter.

any Unicode character

Algorithm Conventions

The specification often uses a numbered lisspecify steps in an algorithm. These algorithms are used to
clarify semantics. In practice, there may be more efficient algorithms available to implement a given
feature.

When an algorithm is to produce x V & ltowirslieatesthatather e s u |
result of the algorithm is the value wfand that the algorithm should terminate. The notation Reguk(
used as short handnof.orTxyfiptehfe urseesdu lats osfh osxdtehpand f or At |

For clarity of expression, gbrithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labeled with lovase alphabetic characters and the
second level of substeps labelled with lower case roman numerals. If more than three levels are required
these rules repeat with the fourth level using numeric labels. For example:

Top-level step
Substep.

Substep
Subsubstep.
Subsubstep.
Subsubsubstep
Subsubsubsubstep

A step or substep may be written as a predicate that conditions its substeihés dase, the substeps are
only applied if the predicate i s tr ueisapreflicate thatisep o1
the negation of the preceding predicaetydollowddebpa a't t
parenthesized step or substep labehtiiés a predicate that is the negation of that labelled predicate.

01 September 2008

-11 -

A step my specify théerative application of its substeps.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and tht
mathematical functions defined later in this section should always be understood as computing exs
mathematical redts on mathematical real numbers, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model ffo@itihg
arithmetic include explicit steps, where necessary, to leantfinities and signed zero and to perform
rounding. If a mathematical operation or function is applied to a flogimigt number, it should be
understood as being applied to the exact mathematical value represented by that-floatingumber;

such afloating-point number must be finite, and if it # or —0 then the corresponding mathematical value

is simply 0.

The mathematical function abg(yields the absolute value &f which is—x if x is negative (less than zero)
and otherwise ix itself.

The mathematical function sigk(yields 1 ifx is positive and-1 if x is negative. The sign function is not
used in this standard for cases wheis zero.

T he n o kmadiloyiny iffust be finite and nonzero) computes a vddwé the same sign as(or zero)
such that ab&j < abs§) andx—k = q > y for some integeq.

The mathematical function floot) yields the largest integer (closest to positive infinity) that is not larger
thanx.

NOTE

floor(x) = x—(x modulo 1).

If an algorithm is definedtdt hr ow an exceptionbo, execution of t
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly dea
with the exception, using teg mi mrodwmgé&o.su@rhc e ss WidH

has been encountered the exception is no longer considered to have occurred.
Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, ver

Deleted: 2.1

ECMAScript implementations are not required tafpem any normalisation of text, or behave as though they
were performing normalisation of text, themselves.

SourceCharacter.
any Unicode character

ECMAScript source text can contain any of the Unicode characters. All Unicode white space characters &

Latin Unicode characters are allowed in identifiers, string literals, regular expression literalsnamé ras.

Deleted: , and all Unicode line/paragraph
separators

Throughout the rest of this document, the phrase
to a 16bit unsigned value used to represent a singlebit6unit of UTF1 6 t ext . The phr
character o0 wi |l | helaksstragtdingustia oo typogeaphécal urtitoepresented by a single Unicode

scalar value (which may be longer than 16 bits and thus may be represented by more than one code poi
This only refers to entities represented by single Unicode scalar valwescomponents of a combining
character sequence are stildl individual AUni code
sequence as a single character.

In string literals, regular expression literals and identifiers, any character (coadg pwy also be expressed

as a Unicode escape sequence consisting of six characters, namplys four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal
regular expresen literal, the Unicode escape sequence contributes one character to the value of the liter:
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE 1

01 September 2008

-12 -

Al t hough this document someti mesn mefiehartctaerdt wanéai
the 16bit unsigned integer that is the UTE6 encoding of that character, there is actually no transformation

because a fAcharactero within a f s-bitunsiggedvalus. actual |y

NOTE 2

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequeng@00A, for example, occurs within a singlmme comment, it

is interpreted as a line terminator (Unicode charact0A is line feed) and therefore the next character is

not part of the comment. Similarly, if the Unicode escape sequar@@0A occurs within a &ing literal in a

Java program, it is likewise interpreted as a line terminator, which is not allowed within a string ditenal

must write\ n instead of\ uOOOA to cause a line feed to be part of the string value of a string literal. In an
ECMAScript prgram, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contribsite character to the string value of the
literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions
The source text of an ECMAScript program is first converted into a sequenio@uif elements, which are
either tokens, line terminators, comments, or white space. The source text is scanned from left to right,
repeatedly taking the longest possible sequence of characters as the next input element.
There are two goal symbols for thexical grammar. ThénputElementDivsymbol is used in those syntactic
grammar contexts where a division/)(or divisionassignment /€) operator is permitted. The
InputElementRegExpymbol is used in other syntactic grammar contexts.
Note that contexts ést in the syntactic grammar where both a division arf@egularExpressionLiteraare
permitted by the syntactic grammar; however, since the lexical grammar usdaptit&lementDivgoal
symbol in such cases, the opening slash is not recognised as stant@gylar expression literal in such a
context. As a workaround, one may enclose the regular expression literal in parentheses.
Syntax
InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token

7.1

7.2

RegularExpressionLiteral

Unicode Format-Control Characters

The Unicode format ont r ol characters (i.e., the characters
Database such asEFT-TO-RIGHT MARK Or RIGHT-TO-LEFT MARK) are control codesised to control the
formatting of a range of text in the absence of higleeel protocols for this (such as mauwk languages).

It is useful to allow these in source text to facilitate editing and display.

The format control characteysaybe usé jn identifiers, within comments, and within string literals and [Deleted: can occur

regular expression literals Deleted: anywhere in the source text of an

H ECMAScript program. These characters are remov
White Space from the source text before applying the lexical
White space characters aused to improve source text readability and to separate tokens (indivisible| grammar. Since these characters are removed bef
lexical units) from each other, but are otherwise insignificant. White space may occur between any t processing string and regular expression literals, o

el . . L . must use aJnicode escape sequence (see 7.6) to
tokens, and may occur within strings (where they are considered signitibardcters forming part of the include a Unicode formatontrol character inside a

literal string value), but cannot appear within any other kind of token. string or regular expression literal

01 September 2008

- 13-

The following characters are considered to be white space:

Code Point Value Name Formal Name

\ u0009 Tab <TAB>

\ u000B Vertical Tab <VT>

\ u000C FormFeed <FF>

\ u0020 Space <SP>

\ u0085 Next Line <NEL>

\ UOOAO No-break space <NBSP>

\ u200B Zero width space <ZWSP>

\ UFEFF Byte Order Mark <BOM>

Ot her cat eg Any other Unicode <Usp>
Aspace sepa

ECMAScript implementations must recognize afl the white space characters defined in Unicode 3.0.
Later editions of the Unicode Standard may define other white space characters. ECMAScrif
implementations may recognize white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace:
<TAB>
<VT>
<FF>
<SP>
<NEL> |
<NBSP>
<ZWSP>
<BOM>
<UspP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and
separate tokens (indivisible lexical units) from each otltwever, unlike white space characters, line

terminators have some influence over the behaviour of the syntactic grammar. In general, line terminatc
may occur between any two tokens, but there are a few places where they are forbidden by the syntac

grammar. A line terminator cannot occur within any tokexcept that line terminators that are preceded|by [Deleted: not even a string

an escape sequence may occur within a string literal tokieme terminators also affect the process pf

automatic semicolon insertia.9). [Deleted: 7.8.5

Line terminators are included in the set of white space characters that are matchedshglabe in regular
expressions.

The following characters are considered to be line terminators:

Code Point Value Name Formal Name
\ uOOOA Line Feed <LF>
\ u000D Carriage Return <CR>
\ u2028 Line separator <LS>
\ u2029 Paragraph separator <PS>

01 September 2008

14 -

Only the characters in the above table aeated as line terminators. Other new line or line breaking
characters are treated as white space but not agdinénators.The character sequence <CR><LF>
is treated as a single line terminator.

Syntax

LineTerminator.:
<LF>
<CR>
<LS>
<PS>
<CR><LF>

7.4 Comments
Description

Comments can be either single or muliltie. Multi-line comments cannot nest.

Because a singiBne comment can contain any character exceptn@Terminatorcharacter, and because
of the general rule that a token is always as long as possible, a-Bmgleomment always consists of all
characters from th# marker to the end ahe line. However, théineTerminatorat the end of the line is
not considered to be part of the sindjlee comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. Thisipeety important,
because it implies that the presence or absence of dinglecomments does not affect the process of
automatic semicolon insertion (7.9).

Comments behave like white space and are discarded except thd#uitinineCommentcontains aine
terminator character, then the entire comment is considered td_bee&erminatorfor purposes of parsing
by the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:
/* MultiLineCommentChagsg; */

MultiLineCommaetChars::
MultiLineNotAsteriskChar MultiLineCommentChgys
* PostAsteriskCommentChaggs

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChags

MultiLineNotAsteriskChar:
SourceCharactebut not asterisk*

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not forward-slash/ or asterisk*

SingleLineComment
/I SingleLineCommentChays

SingleLineCommentChars
SingleLineCommentChaingleLineCommentChags

SingleLineCommentChar
SourceCharactebut not LineTerminator

01 September 2008

7.5

Syntax
Token:

- 15-

Tokens

Reservedword

Identifier ‘
IdentifierNamé

Punctuator

NumericLiteral

StringLiteral

7.5.1

Syntax

Reserved Words
Description

Reserved words cannot be used as identifiers.

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.5.2

Syntax

Keywords

The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript

programs.

Keyword:: one of

7.5.3

Syntax

Jpreak else new _var |
case finally return void

catch for switch while

continue function this with

default if throw debugger |

delete in try const ‘
do instanceof typeof

Future Reserved Words

The following words are used as keywords in proposed extensions and are thegséoved to allow for
the possibility of future adoption of those extensions.

FutureReservedWord one of

7.6

abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
. goto private transient ‘
. implements | protected volatile
double import public
Identifiers
Description

Identifiers are interpreted according to the grammar given in Section 5.16 gfrticede standard, with|

some small modifications. This grammar is based on both normative and informative character categori

specified by the Unicod8tandard The characters in the specified categories in ver3iorf the Unicode
standard must be treated as in those categories by all conforming ECMAScript implementations

01 September 2008

Comment [pL4]: From AWB:
ReservedWord and Identifier can be deleted as
are |dentifierNames.

[Deleted: Break

Comment [pL5]: Specify that its normative
semantics is simply a noopyt advise in an anne
that it causes a breakpoint when run under a
debugger.

Comment [pL6]: From AWB:

Does it get defined as a statement or as somett
that can occur in an
as a figetteroproperty
the sare thing without reserving it.

Deleted: const

Comment [pL7]: This table needs to be repac

to get rid of the holes.

Deleted: upcoming version 3.0 of the

Deleted: standard

f
[Deleted: debugger
(
[
[Deleted: 2.1

Deleted: ; however, conforming ECMAScri
implementations may allow additional legal
identifier characters based on the category
assignment from later versis of Unicode

- 16 -

This standard specifiegpecific character additionhe dollar sign$) and the underscore (_) are permitted
anywhere in an identifigr.

Deleted: one departure from the grammar given ir
Unicode standard

Unicode escape sequences are also permitted in identifiers, where they contribute a single character to
identifier, as computed by the CV of thénicodeEscapeSequendsee 7.8.4). Thd preceding the

Deleted: The dollar sign is intended for use only i
mechanically generated code.

UnicodeEscapeSequenaes not contribute a character to the identifier.UAicodeEscapeSequence
cannot be used to put a character into an identifier that would otherwise be illegal. In other words, if a
UnicodeEscapeSequensequence were replaced by UsicodeEscapeSequesis CV, the result must still

be a validldentifier that has the exact same sequence of characters as the oldgimidier.

Two identifiers that are canonically equivalent according to the Unicode standandtagual unless they
are represented by ehexact same sequence of code points (in other words, conforming ECMAScript

implementations are only required to do bitwise comparison on identifiers). The intent is that the incoming
source text has been converted to normalised form C before it reaehesntipiler.

ECMAScript implementations may recognize identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in

Unicode 3.0.

Syntax
Identifier ::
IdentifierNamebut not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodeLetter
$

\ UnicodeEscapeSequence

IdentifierPart ::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
\ UnicodeEscapeSequence

UnicodeLetter

any <character in the Unicode categories fAUppercase |

AModi fier letter (Lm)o, fAOther |l etter (Lo)o, or fiLette
UnicodeCombiningMark

anycharacter n t he Uni codepaategomaerk fMohpo or ACombining sp.
UnicodeDigit

any character in the Unicode category fdADeci mal number
UnicodeConnectorPunctuation

any character in the Unicode category fAConnector punct

UnicodeEscapeSequence
see 7.8.4.

HexDigit:: one of
0123456789abcdefABCDETF

01 September 2008

-17 -

7.7 Punctuators

Syntax
Punctuator:: one of
{ } () []
, y < > <=
>= == 1= === |I==
+ - * % ++ -
<< >> >>> & | N
! ~ && I ?
= += -= *= %= <<=
>>= >>>= &= |: A=

DivPunctuator:: one of
/=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.8.1 Null Literals

Syntax
NullLiteral ::
null

Semantics

The value of the null literatull is the sole value of the Null type, nameilyll.

7.8.2 Boolean Literals

Syntax

BooleanLiteral:
true
false

Semantics
The value of the Boolean litertue is a value of the Boolean type, nameélye.
The value of the Boolean literédlse is a value of the Boolean type, namédyse.

7.8.3 Numeric Literals
Syntax
NumericLiteral::

DecimallLiteral
HexlIntegerLiteral

DecimallLiteral::
DecimalintegerLiteral DecimalDigits, ExponentPag;
. DecimalDigits ExponentPay
DecimalintegerLiteal ExponentPag,

01 September 2008

- 18-

DecimalintegerLiterat:
0
NonZeroDigit DecimalDigitg;

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
Exponetindicator Signedinteger

Exponentindicator: one of
e E

SignedInteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

The source character immediately following NumericLiteral must not be anldentifierStart or
DecimalDigit

NOTE
For example:

3in
is an error and not the two input elemetandin.

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical vale (MV) is derived from the literal; second, this mathematical value is rounded as
described below.

The MV of NumericLiteral:: DecimalLiteralis the MV ofDecimalLiteral

The MV of NumericLiteral:: HexIntegerLiterais the MV ofHexIntegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral is the MV ofDecimalintegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral DecimalDigitsis the MV of DecimallntegerLiteralplus
(the MV of DecimalDigitstimes 10"), wheren is the number of charactersirecimalDigit.

The MV of DecimalLiteral:: DecimallntegerLiteral ExponentParis the MV of DecimallntegerLiterakimes
1C°, whereeis the MV of ExponentPart

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigts ExponentPartis (the MV of
DecimallntegerLiteralplus (the MV ofDecimalDigitstimes 10") times 16, wheren is the number of
characters ifDecimalDigits andeis the MV of ExponentPart

The MV of DecimalLiteral::. DecimalDigitsis the MV of DecimalDgits times 16", wheren is the number of
characters ifDecimalDigits.

The MV of DecimalLiteral::. DecimalDigits ExponentPais the MV of DecimalDigitstimes 16", wheren is
the number of characters ecimalDigits andeis the MV ofExponentPart

01 September 2008

7.8.4

Syntax

- 19-

The MV of DecimalLiteral:: DecimallntegerLiterais the MV of DecimallntegerLiteral

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPais the MV of DecimalintegerLiteraltimes
10°, whereeis the MV of ExponentPart

The MV of DecimallntegerLtieral :: 0 is 0.

The MV of DecimalintegerLiteral:: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10) plus
the MV of DecimalDigits wheren is the number of charactersrecimalDigits

: DecimalDigitis the MV of DecimalDigit

: DecimalDigitsDecimalDigitis (the MV ofDecimalDigitstimes 10) plus the MV of

The MV of DecimalDigits:
The MV of DecimalDigits:

DecimalDigit

The MV of ExponentPart:
The MV of Signedinteger:
The MV of Signedinteger:
The MV of Signedinteger:

The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::

a or of HexDigit ::
b or of HexDigit ::
c or of HexDigit ::
d or of HexDigit :
e or of HexDigit ::
The MV of HexDigit:: f or of HexDigit ::

Exponentindicator Signedintegirthe MV ofSignedinteger
DecimalOgits is the MV of DecimalDigits

+ DecimalDigitsis the MV of DecimalDigits

- DecimalDigitsis the negative of the MV ddecimalDigits
0 or of HexDigit:: 0 is 0.

1 or of NonZeroDigit:
2 or of NonZeroDigit:
3 or of NonZeroDigit:
4 or of NonZeroDigit:
5 or of NonZeroDigit:
6 or of NonZeroDigit:
7 or of NonZeroDigit:
8 or of NonZeroDigit:
9 or of NonZeroDigit:
Ais 10.
Bis 11.
Cis 12.
Dis 13.
Eis 14.
Fis 15.

: 1 or of HexDigit:: 1 is 1.
: 2 or of HexDigit:: 2 is 2.
: 3 or of HexDigit:: 3 is 3.
: 4 or of HexDigit:: 4 is 4.
: 5 or of HexDigit:: 5 is 5.
: 6 or of HexDigit:: 6 is 6.
: 7 or of HexDigit:: 7 is 7.
: 8 or of HexDigit:: 8 is 8.
: 9 or of HexDigit:: 9 is 9.

The MV of HexIntegerLieral :: Ox HexDigitis the MV ofHexDigit
The MV of HexIntegerLiterak: 0X HexDigitis the MV ofHexDigit
The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV of HexIntegerLiteraltimes 16) plus the

MV of HexDigit

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Numb
type. If the MV is 0, then the rounded value+8; otherwise, the rounded value must the number
value for the MV (in the sense defined in 8.5),agd the literal is ®ecimallLiteraland the literal has
more than 20 significant digits, in which case the number value may be either the number value for tt
MV of a literal produced by replacing each significant digit after the 20th withdégit or thenumber
value for the MV of a literal produced by replacing each significant digit after the 20th Withgit and

then incrementing the literal at the 20th significant digit position. A digsigsificantif it is not part of

an ExponentPariand

itisnotO; or

there is a nonzero digit to its left and there is a nonzero digit, not iBxpenentPartto its right.

String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may
represented bgn escape sequenckll Unicode characters may appear literally in a string literal excgpt

for the closing quote character, backslash, carriage return, and line feed. Any character may appear in
form of an escape sequence.

01 September 2008

-20-

StringLiteral::
" DoubleStringCharactegs; "
' SingleStringCharactegs '

DoubleStringCharacters
DoubleStringCharacteDoubleStringCharactegg

SingleStringCharacters
SingleStringCharacte8ingleStringCharacters

DoubleStringCharacter.

SourceCharactebut not double-quote” or backslash or LineTerminator

\ EscapeSequence
LineContinuation

SingleStringCharacter.

SourceCharactebut not singlequote' or backslash or LineTerminator

\ EscapeSequence
LineContinuation

LineContinuatiorn:
\' [LineTerminatdr

EscapeSequence
CharacterEscapeSequence
0 [lookaheadz DecimalDigif
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of
" bfnrtv

NonEscapeCharacte:
SourceCharactebut not EscapeCharacteor LineTerminator

EscapeCharacter.
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence
x HexDigit HexDigit

UnicodeEscapeSequence
u HexDigit HexDigit HexDigit HexDigit

The definitions of the nontermindlexDigit is given in section 7.8.3SourceCharacteis described in

sections 2 and 6.

Comment [pL8]: From DEC:
Do we really want to do this?

[Comment [pL9]: 4/4 browsers support this.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in

terms of character valueCV) contributed by the various parts of the string literal. As part of this

process, some characters within the string literal are interpreted as having a mathematical value (MV), as

described below or in section 7.8.3.

The SV ofStringLiteral:: ™ is the empty character sequence.

01 September 2008

- 21 -

The SV ofStringLiteral:: " is the empty character sequence.

The SV ofStringLiteral:: " DoubleStringCharacter’ is the SV ofDoubleStringCharacters

The SV ofStringLiteral:: ' SingleStringCharacters is the SV ofSingleStringCharacters

The SV of DoubleStringCharacters: DoubleStringCharactelis a sequence of one character, the CV of
DoubleStringCharacter

The SV ofDoubleStringCharacters DoubleStringCharacteDoubleStringCharacters a sequence of the CV
of DoubleStringCharactefollowed by all the characters in the SV@bubleStringCharacters order.

The SV of SingleStringCharacters: SingleStringCharactelis a sequence of one character, the CV of
SingleStringCharacter

The SV ofSingleStringCharacters SingleStringCharactegingleStringCharacters a sequence of the CV of
SingleStringCharactefollowed by all the characters in the SVSihgleStringCharacteris order.

The SV ofLineContinuatiort: \ LineTerminatoris the empty character sequence

The CV of DoubleStringCharacter:: SourceCharacterbut not doublequote " or backslash\ or
LineTerminatoris theSourceCharactecharacter itself.

The CV ofDoubleStringCharacter. \ EscapeSequenégthe CV of theEscapeSequence

The CV ofSingleStringCharacter. SourceCharactebut not singlequote' or backslash or LineTerminator
is theSourceCharactecharacter itself.

The CV ofSingleStringCharacter. \ EscapeSequendgthe CV of theEscapeSequence

The CV ofEscapeSequenceCharacterEscapeSequeniethe CV of theCharacterEscapeSequence

The CV ofEscapeSequence0 [lookaheade DecimalDigifis @ <NUL> character (Unicode value 0000).

The CV ofEscapeSequenceHexEscapeSequentsethe CV of theHexEscapeSequence

The CV ofEs@apeSequence UnicodeEscapeSequenisghe CV of thdJnicodeEscapeSequence

The CV of CharacterEscapeSequence SingleEscapeCharactes the character whose code point value is
determined by th8ingleEscapeCharactexccording to the following table:

Escape Sequence Code Point Value Name Symbol

\b \ u0008 backspace <BS>
\'t \ ud009 horizontal tab <HT>
\n \ uOOOA line feed (new line) <LF>
\'v \ uo00B vertical tab <VT>
\ f \ uoooC form feed <FF>
\'r \ uo00D carriage return <CR>
\" \ u0022 double quote "

\! \ u0027 single quote '

\\ \ u005C backslash \

The CV ofCharacterEscapeSequenceNonEscapeCharactés the CV of theNonEscapeCharacter

The CV of NonEscapeCharacter: SourceCharactetbut not EscapeCharacteor LineTerminatoris the
SourceCharactecharacter itself.

The CV ofHexEscapeSequencex HexDigit HexDigitis the character whose code point value is (16 times the
MV of the firstHexDigit) plus the MV of the secoridexDigit

The CV of UnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the character whose code
point value is (4096 (that is, J&imes the MV of the firsHexDigit) plus (256 (that is, B times the MV of
the secondHexDigit) plus (16 times the MV of the thitdexDigif) plus the MV of the fourttdexDigit

NOTE

A 'LineTerminator' character cannot appear in a string litergkcept wherpreceded by a backslas\hnL [Deleted: even if
asa OLineContinuationd to pr odTheeorréecthveay te causeya lingh a

terminator character to be part of the string value of a string literal is to use an escape sequence such i

\'n or\ uOOOA.

01 September 2008

7.8.5

Syntax

RRegularExpressionLiteral

-22 -

Regular Expression Literals

A regular expression literal is an input element that is condedea RegExp object (section 15.&ch [

Deleted: when it is scanned

time the literal is evaluatéd’wo regular expression literals in a program evaluate to regular expression
objects that never compare as= to each other even if the two literals' contents are identical. A RegExp
object may also be created at runtime mgw RegExp (section 15.10.4) or calling th®egExp
constructor as a function (section 15.10.3).

Comment [pL10]: From AWB:

Because of this change RegularExpressionLiteral argt
should be moved to sectidd.1. However, | am not
actually proposing we do so.

The productions below describe the syntax for a regular expression literal and are used by the in
element scanner to find the end of the regular expression literal. The strings of characters comprising
RegularExpressionBodyand the RegularExpressionFlagsare passed uninterpreted to the regular

Deleted: The object is created before evaluation
the containing program or function begins. Evalua
of the literal produces a reference to that object; it
not aeate a new object.

expression constructor, which interprets them according to its own, more stringent grammar. An
implementation may extend the regular expression constructor's grammar, but it should not lestend t
RegularExpressionBodynd RegularExpressionFlagproductions or the productions used by these
productions.

| RegularExpressionBody RegularExpressionFlags

Comment [pL11]: All browser currently support
[}/ and /(.(/ as regexp literals so need to fix grammar

RegularExpressionBody
RegularExpressionFirstChd&egulaExpressionChars

RegularExpressionChars
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar
NonTerminatoibut not * or\ or/
BackslashSequence

RegularExpressionChar
NonTerminatobut not\ or/
BackslashSequence

BackslahSequence

\ NonTerminator

NonTerminator:
SourceCharactebut not LineTerminator

RegularExpressionFlags
[empty]
RegularExpressionFlags IdentifierPart

Deleted: stands for

Deleted: Object

Deleted: constructor is called with twarguments
Pattern and Flags and t

Deleted: result

Deleted: becomes the value of the
RegularExpressionLiteral

Y Y

NOTE

Deleted: If

Regular expression literals may not be empty; instead of representing an empty regular expressidg
literal, the characters// start a singleline comment. To specify an empty regular expression, use
1(?:)/

Semantics

A regular expression litergtvaluates taa value of thgRegExptype. This value is determined in two
steps: first, the characters comprising the regular expressi®egularExpressionBodyand

RegularExpressionFlagproduction expansions are collected uninterpreted into twingstrPattern and
Flags, respectively. Themach time the literal is evaluates new object is created as if the expression

Comment [pL12]: Note that both IE and FF detect €
(testcase below).

<script>
var falsy = function(){return 0}();
re = /[/]/;
alert(re);
if (falsy) {
re2 = /(/;
alert(re2);

</script>

new RegExp (Pattern, Flags) where RegExps the standard butith constructor with that name, [

Deleted: s

Jhe newly constructed objedbecomes the value of the RegularExpressionLijelifajhe call tonew/
RegExp would generatgan errorl’;he error must be reported while scanning the probram

Deleted: an implementation may, at its digtion,
either report the error immediately while scanning
program, or it may defer the error until the regular
expression literal is evaluated in the course of proi
execution

01 September 2008

7.9

7.9.1

- 23-

Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statermehtile
statementcontinue statementbreak statementreturn statement, andhrow statement) must be
terminated with semicolons. Such semicadomay always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. The
situations are described by saying that semicolons are automatically inserted into the sourtakeonde
stream in those situations.

Rules of Automatic Semicolon Insertion

* When, as the program is parsed from left to right, a token (calledfterding tokenis encountered
that is not allowed by any production of the grammar, then a semicolant@natically inserted
before the offending token if one or more of the following conditions is true:

1. The offending token is separated from the previous token by at leastimgiBerminator
2. The offending token i$.

* When, as the program is parsed fronit léo right, the end of the input stream of tokens is
encountered and the parser is unable to parse the input token stream as a single compl
ECMAScript Program then a semicolon is automatically inserted at the end of the input stream.

* When, as the pragm is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production isestricted productiorand the token would be the
first token for a terminal or nonterminal immediately following the annotatrino LiheTerminator
herep wi thin the restricted production (and thei
the restricted token is separated from the previous token by at leadtimeiBerminator then a
semicolon is automatically insed before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is neve
inserted automatically if the semicolon would then be parsed as an empty statement or if that semicol
would become one ohe two semicolons in the header ofoa statement (section 12.6.3).

NOTE
These are the only restricted productions in the grammar:
PostfixExpression
LeftHandSideExpressiofno LineTerminatomere] ++
LeftHandSideExpressioino LineTerminatothere] --

ContinueStatement
continue [no LineTerminatotere] Identifiery, ;

BreakStatement
break [no LineTerminatothere] Identifieryy ;

ReturnStatement
return [no LineTerminatothere] EXpressiogy;

ThrowStatement
throw [no LineTerminatothere] Expression

The practical effect of these restricted productions is as follows:

* When a++ or -- token is encountered where the parser would treat it as a postfix operator, and a
least oneLineTerminatoroccurred between the preceding token and theor -- token, then a
semicolon is automatically inserted before thieor -- token.

* When acontinue , break , return , or throw token is encountered andLlaneTerminatoris
encountered before the next token, a semicolon is automatically inserted afteoritieue
break , return , orthrow token.

The resulting practical advice to ECMAScript programmers is:

* A postfix ++ or-- operator should appear on the same line as its operand.

01 September 2008

7.9.1.1

7.9.2

- 24 -

* An Expressionin areturn or throw statement should start on the same linehesréturn or
throw token.

* A label in abreak or continue statement should be on the same line as hiheak or
continue token.

Usage Subsetautious Restrictions

lA Programthat containscautious in its set of usage subsets or is evaluated withirexecution
context that is subset restricted to tbautious subset does not perform automatic semicolon

insertion. Where the above rules would insert a semicolon, instead a syntax error is dletected. Comment [pL13]: Needs to be removed.
Examples of Automatic Semicolon Insertion Modify as follows:
Thesource In strict mode, it shall be an error if semicolon insertior

results in unreachable code following a ratu

{12}3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules.
In contrast, the source

{1

2}3
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

2313
which is a valid ECMAScript sentence.
The source

for (a; b

)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header dba statement. Automatic semiawoi insertion never inserts one
of the two semicolons in the header ofoa statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a+b;

NOTE
The expressiom + b is not treated as a value to be reted by thereturn statement, because a
‘LineTerminator' separates it from the tokesturn

The source
a=b
++C
is transformed by automatic semicolon insertion into the following:

a=b;
++C;

NOTE

01 September 2008

- 25-

The tokent++ is not treated as a postfix operator applgito the variableb, because a ‘LineTerminator’
occurs betweeb and ++.

The source
if @>Db)
elsec=d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion befelsethe
token, even though no production of the gramiaaplies at that point, because an automatically inserted
semicolon would then be parsed as an empty statement.

The source
a=b+c
(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that beg
the ®cond line can be interpreted as an argument list for a function call:
a=b+c(d + e).print()
In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea

the programmer to provide an explicit semicolortret end of the preceding statement rather than to rely
on automatic semicolon insertion.

Types

[Deleted: nine

,,,,,,,,,,,,,,,,,,,,,,,, [Deleted: nine

type Reference, List, and Completion are used only as intermediate results of expression evaluation ¢
cannot be stored as properties of objects. [Deleted: and

The Undefined Type

The Undefined type has exactly one value, calledlefined. Any variable that has not been assigned a
value has the valuendefined.

The Null Type
The Null type has exactly one value, calledl.

The Boolean Type
The Boolean type represents a loajientity having two values, callécue andfalse

The String Type

The String type is the set of all finite ordered sequences of zero or mebé LBsigned integer values
(el ement so) . The String type i sarumeny&CMABdriptprogsamd t
in which case each element in the string is treated as a code point value (see section 6). Each elemer
regarded as occupying a position within the sequence. These positions are indexed with nonnegati
integers. The firselement (if any) is at position 0, the next element (if any) at position 1, and so on. The
length of a string is the number of elements (i.e-bitévalues) within it. The empty string has length zero
and therefore contains no elements.

When a string comtins actual textual data, each element is considered to be a singt&8JdiHt. Whether

or not this is the actual storage format of a String, the characters within a String are numbered as thou
they were represented using UIB. All operations on Strigs (except as otherwise stated) treat them as
sequences of undifferentiated -b& unsigned integers; they do not ensure the resulting string is in
normalised form, nor do they ensure languagesitive results.

NOTE

The rationale behind these decisionssw@ keep the implementation of Strings as simple and-high
performing as possible. The intent is that textual data coming into the execution environment from outsic
(e.g., user input, text read from a file or received over the network, etc.) be convertédicode
Normalised Form C before the running program sees it. Usually this would occur at the same time incomir

01 September 2008

8.5

- 26-

text is converted from its original character encoding to Unicode (and would impose no additional
overhead). Since it is recommended thatM&Script source code be in Normalised Form C, string literals

are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not
contain any Unicode escape sequences.

The Number Type

The Number type has exactly 18#/86874454810627 (that is®*22°%+3) values, representing the double
precision 64bit format IEEE 754 values as specified in the IEEE Standard for Binary FleBbimg
Arithmetic, except that the 9007199254740990 (thati%2) di s t-a-Mwcrhb eaiNés bf the IEEE
Standard are represented in ECMAScript as a single spbi@hl value. (Note that theéNaN value is
produced by the program expressiN@aN, assuming that the globally defined variaiNaN has not been
altered by program execution.) In sommeplementations, external code might be able to detect a difference
between various Nea-Number values, but such behaviour is implementatiependent; to ECMAScript
code, all NaN values are indistinguishable from each other.

There are two other speciadlues, callegositive Infinity andnegative Infinity. For brevity, these values
are also referred to for expository purposes by the symboland—w«, respectively. (Note that these two
infinite number values are produced by the program expressibris nity (or simply Infinity) and

- Infinity , assuming that the globally defined variabidinity has not been altered by program
execution.)

The other 18437736874454810624 (that {%-2°%) values are called the finite numbers. Half of these are
positive nunbers and half are negative numbers; for every finite positive number there is a corresponding
negative number having the same magnitude.

Note that there is both positive zeroand anegative zero For brevity, these values are also referred to for
exposibry purposes by the symbotd and -0, respectively. (Note that these two zero number values are
produced by the program expressiceis (or simply0) and- 0.)

The 18437736874454810622 (that i§+2°*-2) finite nonzero values are of two kinds:
18428729675200069632 (that i$/2°%) of them are normalised, having the form

sxmx2°
wheresis +1 or—1, mis a positive integer less thai®but not less than®3, ande is an integer ranging
from —1074 to 971, inclusive.
The remaining 90071992548990 (that is, -2) values are denormalised, having the form

sxmx2°
wheresis +1 or—1, mis a positive integer less thar?2andeis —1074.

Note that all the positive and negative integers whose magnitude is no greatePtham r2presentable in
the Number type (indeed, the integer 0 has two representatiorend- 0).

A finite number has awdd significandif it is nonzero and the integen used to express it (in one of the
two forms shown above) is odd. Otherwise, it hageen significand

I'n this specification, t hxé w he repesentsi anhexact manzebboereal v a |
mathematical quantity (which might even be an irrational number suéf means a number value chosen

in the following manner. Consider the set of all finite values of the Number type—@itemoved and with

two additional values added to it that are not representable in the Number type, n&fedytiich is +1%

258 x 2971 and-21°2* (which is—1 * 2°% x 2°7%, Choose the member of this set that is closest in value to

If two values of the set are equally close, then the one with an even significand is chosen; for this purpose,
the two extra values'?* and—-2'°%* are considered to have even significands. Finally,¥2was chosen,

replace it with+o; if —2'°**was chosen, replace it witho; if +0 was chosen, replace it witkD if and only

if xis less than zero; any other chosen value is used unchanged. Thesrélselhumber value fox. (This
procedure corresponds exactly to the behaviour of t

Some ECMAScript operators deal only with integers in the rar@jé through 3'-1, inclusive, or in the
range O through %-1, inclusive. These operators accept any value of the Number type but first convert

01 September 2008

8.6

8.6.1

- 27 -

each such value to one of*anteger values. See the descriptions of the Tolnt32 and ToUint32 operators in

sectiongd.5andQ.6, respectively.

The Object Type
An Object isa collection of propertiesEach propertyis either a named data property, a namedessor

property, or an internal property.
* A named data propertgssociates a name with a value and a set of boolean attributes.

®* A namedaccessorproperty associates a name with a getter method, a setter method, and a

booleanattributes.

* An internal propertyhas no name and is not directly accessible via the property accessor ope
Internal properties exist purely f@pecificationpurposes. Howand when some of these properties 4

used is specified by the language specification below.

Property Attributes

Attributes are used in this specification to define and explain the state of nawwgertpes.A named

data property associates a name with the follovattgbutes

Table 1 Attributes of a Named Data Property

Attribute Name Value Description
Domain
[[Value]] any The value retrieved by reading the property.
[[Consj] Uninitialized | Used only for the implementation of properties created i
or Initialized | ConstantDeclarationlf present, the value is one of the t
symbolic valuedJninitialized or Initialized .

[[Writ able]] boolean If true, attempts by ECMAScript code to assign the
propertydés value will suc
to be reaebnly.

[[Enumerable]] | boolean If true, the property will be enumerated by a-ifior
enumeration (section 12.6.4). Otherwise, theperty is said
to be norenumerable.

[[Configurablg] | boolean If true, attempts to delete the properthange the property

to being an accessor propeny,change its attributes will
succeed. See the description of the delete operator in sq
11.4.1, and the reflective Object methods.

A namedaccessoproperty associates a name with the followattibutes

Table 2 Attributes of a Named AccessorProperty

Attribute Name

Value Domain Description

[[Getter]] functionor undefined | A method that to be called each time the property
read, to retrieve the current value of the property.
[[Setter]] functionor undefined | A method to be called each time the property is

property

assigned to, in order wefine the current value of th

[[Enumerable]]

boolean

If true, the property is to be enumerated by airfior

is saidto be norenumerable.

enumeration (section 12.6.4). Otherwise, the prop|

set ¢

ators
re

01 September 2008

Deleted: 0

—r

Deleted: 0

Deleted: an unordered

Deleted: consists of a name, a value and
of attributes.

Comment [pL14]: From AWB:
Explore replacing by absence of [[Value]] prope

8.6.2

- 28-

[[Configurablg] | boolean If true, attempts to delete the properthange the
property to a data propertgr change its attributes
will succeed. Otherwise, the property is said to be
sealed. See the description of the delete operator
section 11.4.1, and the reflective Object methods

v ‘ Deleted: A property can have zero or more attrib
If the value of an attribute is netplicitly specified for a named property, the default value as defined in from the following sef|
the following table is sed: 1

Attribute (.
Table 3 Default Attribute Values
Attribute Default Value
Name
[[Value]] undefined
[[Const]] Unspecified
[[Getter]] undefined
[[Setter]] undefined
[[Writable]] true
[[Enumerable]] | true
[[Configurabld] f[rue] Comment [pL15]: From AWB:
Need to consider if these defaults need to change to

accommodate defineProperty defaults.

Property descriptors, defined gection 8.10, are internal types used within this specificabatescribe
manipulations of property attributes.

Internal Properties and Methods

Internal properties and methods are not part of the language. They are defined by this specification
purely for expository purposes. An implementation of ECMAScript must behave as if it produced and
operated upon internal properties in the manner described here. For the purposes of this document, the
names of internal properties are enclosed in double sduamekets [[]]. When an algorithm uses an
internal property of an object and the object does not implement the indicated internal property, a
TypeError exception is thrown.

There are two types of access for normal @oternal) properties:get and put, corresponding to
retrieval and assignment, respectively.

All ECMAScript objects have an internal property called [[Prototype]]. The value of this property is[Deleted: Native
either null or an object and is used for implementing inheritandamed data mpertiesof the [
[[Prototype]] objectare inherited dre visible as properties of the child objefdr the purposes of get
access, but not for put acceséamedaccessormproperties are inherited for both get access and put
access.

Deleted: Properties

The following table sumirises the internal properties used by this specificatian are applicable to
all ECMAScript objects The description indicates their behaviour fdf ECMAScript objects unless [Deleted: native
stated otherwise in this document for particular types of ECMASwlgects. In particular, Array
objects have a slightly different implementation of th&hjjowablé’ut]] method (see 15.4.5.19nd
String objects have a different implementation of the [[GetOwnProperty]] metHodt objects may
implement these internal rtteods with any implementatiedependent behaviour, or it may be that a host
object implements only some internal methods and not others.

01 September 2008

-29-
Property ParametersY Result Description
[[Prototype]] none The prototype of this objedtdust benull or an Object.
[[Class]] none A string value indicating the kind of this object.
[[PrimitiveValue]] none Internal state information associated with this object
[[Extensible]] none If true, own properties may be added to the object.
[[Get]] (PropertyNamgY any Returns the value of theamedproperty.
[[GetOwnProperty]] (PropertyNamgY Returns the Property Descriptor of the named owr|
undefinedor Property property of this object, arndefined if absent.
Descriptor
[[GetProperty]] (PropertyNamgY Returnsthe Property Descriptorof the named propert]
undefinedor Property of this object, oundefined if absent.
Descriptor
[[Put]] (PropertyNameValug Sets the specifiedamedproperty toValue
[[CanPut]] (PropertyNamgY boolean | Returns a boolean value indicating whether a [[P
operation withPropertyNamesan be performed [Deleted: will succeed
[[HasProperty]] (PropertyNamgY boolean | Returns a boolean value indicating whether the ok
already has aropertywith the givername. [Deleted: member
[[Delete]] (PropertyNameThrow) Y. Removes the specifiedamed ownproperty from the
boolean object.
[[DefaultValue]] (Hint) ¥ any Returns a default value for the object, which shoulg
a primitive value (not an object or reference).
[[DefineOwnProperty]] | (PropertyName, Desc, Creates or alters the named own property to have
Throw) state describedby a Property DescriptofThrow flag
controls failure handling
[[ThrowablePut]] (PropertyName, Value, Sets the specified named propertyaue Throwflag
Throw) controls failure handling.
[[Construct]] (a list of argument values Constructs an object. Invoked via thew operator.
provided by the callery Objects that implement this internal method eaded
Object [constructorb Comment [pL16]: Divide the table into two; o
[[Call]] (a list of argument values | Executes code associated with the object. Invoked Y is properties of all objects, and the other is prop
provided by the callgry function call expression. Objects that implement it TRy 1o @Iy SIS Gl
any or nothing internal method are callddnctions
[[HasInstance]] (Valug Y boolean Returns a boolean value indicating whethéalue
delegates behaviour to this object. Of the naj
ECMAScript objects, only Function objects implemg
[[HasInstance]].
[[Scope]] Jnone A scope chain that defines teavironment in which & [De|eted; None
Function object is executed.
[[Match]] (String Index) Y Tests for a regular expression match and returr
MatchResult MatchResult value (see section 15.10.2.1).

Every object (including host objects) must implement ffRrototype]] [[Class]], and [[Extensible]]

internal dataproperties and the [[Get]][[GetProperty]], [[GetOwnProperty]][[DefineOwnProperty]],

[[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValuelhternal methods. (Note, however
that the [[DefaultValue]] method may, for some objects, simply throhy@eError exception.)

[Deleted: and

The value of the [[Prototype]] property must be either an objecatudlr, and every [[Prototype]] chain
must have finite length (that is, starting from any objeetursively accessing the [[Prototype]] property
must eventually lead to aull value). Whether or not a native object can have a host object as its
[[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this speation for every kind of builin object. The
value of the [[Class]] property of a host object may be any value, even a value used byia blbjéct

for its [[Class]] property. The value of a [[Class]] property is used internally to distinguish differe
kinds of builtin objects. Note that this specification does not provide any means for a program to acces
that value except througBbject.prototype.toString (see 15.2.4.2).

01 September 2008

-30-

For native objects the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delg¢tand [[DefaultValue]]
methods behave as described in described in 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, 8.6.2.5 and 8.6.2.6,
respectively, except that Array objects have a slightly different implementation of the [[Put]] method
(see 15.4.5.1). Host objectsay implement these methods in any manner unless specified otherwise; for
example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store
property values but [[HasProperty]] always generdtdse.

In the following algorithm descriptions, assun@ is an ECMAScript object P is a string Descis an [Deleted: a native
internal property description record, afitirowis a boolearflag| [Deleted: _and
8.6.2.1 [[Get]] (P) {Comment [pL17]): Need to make consistent with abt
When the [[Get]] method ob is called with property name, thefollowing steps are taken: table(s).
1. Call the [[GetProperty]] method d with property nameP.
2. If Result(1) isundefined, returnundefined.
3. If Result(1).[[Const]] isUninitialized throw aReferenceError exception.
4. |If IsDataDescriptoiResult(1) is true, returnResult(1)[[Value]].
5. Otherwise, IsAccessorDescriptor(Result(1)) must be trygyebResult(1][Getter]].
6. If Result®) is undefined, returnundefined.
7. Call the[[Call]] method ofResult(4)providing O as thethis value and providingio arguments.
8. ReturnResultp).
8.6.22 [[Put]] (P, V) Deleted: fOdoesndt have aPp
. g . - go to Step 4L
[[Put]] is primarily us_ed in .the ;peC|flcatlon of builh methods.Algorithms Fhat require explicit Get the value of the property.
control over the handling of invalid property stafeouldcall [[ThrowablePut]] directly Return Result(2).
When the [[Put]] method oD is called with property’ and valueV, the following steps are taken: ggh,ﬁ,ﬁf['[‘g‘;{]pﬂ]egfd'f)?ﬁ','j'rgfg‘t‘;;:]”]“v‘j{;ﬁ%‘ﬂpe,
1. Call the [[ThrowablePut]] method d® with arguments®, V, andfalse. gimslesult(sﬁ
2. Return
Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (15.4.5.1). Deleted: <#>Call the [[CanPut]] method d with
nameP.{
B8.6.2.3 [[CanPut]] (P) <#>If Result(1) isfalse, returny
When the [[CanPut]] method @ is called with propertypameP, the following steps are taken: <t#>|f6(1?d oesndét have aPmgoto
step)
1. Call the [[GetOwnProperty]] method of O withrgumentP. ;fﬁ%;gﬁ;;ﬁenzftTﬁaﬁg’upiny‘bThe attributes
2. If Result(1) is noundefined, then <#>Returny
a. |If IsAccessorDescriptor(Result(1)) teue, thenreturntrue. <#>Create a property with nanfe set its value t&/
b. Otherwise, Result(1) must be a DataDescriptor so return the value of i‘;‘:gé‘(ﬁrﬁ;mp‘yam'b”‘as'
Result(l).[[Writable]] Note, however, that iD is an Array object, it has a
3. Get the internal [[Prototype]] property &f. more elaborate [[Put]] method (15.4.51L).
4. If Result@) is null, then returrthe value of the [[Extensible]] property Gf. - -
) Deleted: The [[CanPut]] method d only b
5. Call the [[GetProperty]] method d®esult@) with propertynameP. [[Ej]]emethoﬁ,{[anbut]] method is used only by
6. If Result®) isundefined, returnthe value of the [[Extensible]] property 6f. Deleted: 110d ~ h b
7. |If IsAccessorDescriptor(Resuf) is true, thenreturntrue. ggteotestép‘ﬂ cesnot ave anl
8. Else, Result(5must be a DataDescriptor If the property has the ReadOnly attribute, refaise
a. If the [[Extensible]] property o0 is false, returnfalse. Returntrue. _
b. Else returrthe value of Result(5).[[Writable]] If the [[Prototype]] ofOis null, returntrue.f
Call the [[CanPut]] method of [[Prototype]] &f with
B8.6.2.4 [[HasProperty]] (P) property name.{
. . . Return Result(5).
When the [[HasProperty]] method &fis called with property name, the following steps are taken: [F—
eleted: <
1. Callthe [[GetProperty]] method of O with property name -
. . Deleted: If O has a property with nanf® returntrue.|
2. If Result(1) is undefined, then return false. If the [[Prototype]] ofO is null, returnfalse |
3. Else returntrue. Call the [[HasProperty]] method of [[Prototype]] w
v property namé.q
Return Result(3).
8.62.5 [[Delete]] (P, Throw)

When the [[Delete]] method o® is called with property nam® and thebooleanflag Throw, the
following steps are taken:

1. Call the [[GetOwnProperty]] method @ with property name.

Deleted:

fOdoesndt have a Ppetumtpue.
If the property has the DontDelete attribute, retur
false

Remove the property with nanfefrom O.1
Returntrue.

01 September 2008

-31-

2. If Result(1) isundefined, then returrtrue.

3. If Result@).[[Configurabld] is true, then
a. Remove the own property with narRefrom O.
b. Returntrue.

4. Else if Throw, then throwa TypeError exception

5. Returnfalse

8.6.2.6 [[DefaultValue]] (hint)
When the [[DefaultValue]] method d@ is called with hint String, the following steps are taken:

Call the [[Get]] method of objedD with argument toString .

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), witD as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of objedd with argument Valu eOf".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), wit® as thethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw aTypeError exception.

=

CoNOGOR~WON

When the [[DefaultValue]] method @ is called with hint Number, the following steps are taken:

Call the [[Get]] method of objedd with argument'valueOf"

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), wit® as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of objedD with argument'toString"

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), witD as thethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw aTypeError exception.

COoNOOR~WONE

When the [[DefaultValue]] method oD is called with no hint, then it behaves as if the hint were
Number, unles® is a Date object (see 15.9), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a
host object implements its own [[DefaultValue]] method, it must enghed its [[DefaultValue]]
method can return only primitive values.

8.6.2.7 [[GetProperty]] (P)
When the [[GetProperty]] method &f is called with property name, the following steps are taken:
Call the [[GetOwnProperty]] method & with property namé®.
If Result(1) is noundefined, return Result(1).
If the [[Prototype]] ofO is null, returnundefined.
Call the [[GetProperty]] method of [[Prototype]] with property nafe
Return Result(4).
8.6.2.8 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] method & is called with property namP, the following steps are
taken:

aghrwbE

1. If Odoes 6have an own property with nanfe returnundefined.
2. OtherwiseO has an own property with nanke so return @ropertyDescriptor describingts
current attribute state.

Note, however, that ifO is a Stringobject it has a more elaborate [[GetOwnProperty]] method
(15.5.5.2).
8.6.29 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithmt he t er m A R dfjTarow i® truen ehanntisrowfia TypeError
exception, otherwise retur

01 September 2008

-32-

When the [[DefineOwnProperty]] method & is called withproperty nameP, propertydescriptor
Desc and boolean flaghrow, the followingsteps are taken:

1. Call the [[GetOwnProperty]] method @ with property namé®.
2. Get the [[Extensible]] internal property @f.
3. If Result(1) isundefined and Result(2) isrue, then
a. If IsGenericDescriptoidesq or IsDataDescriptofjesq is true, then
i. Create an own data property nanfedf objectO whose state ithat described by
Desc If the value of an attribute field dyescis the valueUnspecified, the
corresponding attribute of the newly created property gets its default Vathe.
Descincludes a [[Const]] attribute whose value is Unspecified, do not create a
[[Const]] attribute for the property.
b. Else,Descmust be a accessor property descriptor so,
i. Create an own accessor property narRexf objectO whose state is that
described byDesc If the value of an attribute field descis the value
Unspecified the corresponding attribute of the newly created property gets its
default value.
c. Return.
Else If Result(1) izindefined and Result(2) ifalse, then Reject.

akr

Return, if the valuefoevery field inDescis eitherUnspecifiedor is the&ame valu{eas the [COmmem [pL18]:

Need to define or clarify.

corresponding field in Result(1).
6. If Desc.[[Const]] is noUUnspecified then
a. Reject, if Result(1).[[Const]] ifnspecifiedbecause [[Const]] must Epecified when a
Const propertys created.
b. Reject, if Result(1).[[Const]] isnitialized and Desc.[[Const]] i¥)ninitialized because
[[Const]] cannot make that state transition.

7. If the [[Configurabld] field of Result(1) isfalsethen
a. Reject, if the [Configurabld] field of Descis tru e.
b. Reject, if the [[Enumerable]] field of Result(1) abescare theBoolean negation of each
other.
8. If IsGenericDescriptoiesq is true, then no further validation is required.
9. Else, if IsDataDescriptor(Result(1)) and IsDataDescrifegq havedifferent results, then

a. Reject, if the [Configurabld] field of Result(1) isfalse.
b. If IsDataDescriptor(Result(1)) isue, then
i. Convert the property nameRiof objectO to from a data property to an accessor
property. Preserve the existing valuesofthe nver t ed propertyos
[[Configurabléd] and [[Enumerable]] attributes and set the the rest of the
propertyo6s attributes to their default v
c. Else,
i. Convert the property name®of objectO to from an accessor property to an data
property. Preserve theiexst i ng values of the converte:
[[Configurabld] and [[Enumerable]] attributes and set the the rest of the
propertyds attributes to their default v
10. Else, if IsDataDescriptor(Result(1)) and IsDataDescrifdegq are bothtrue, then
a. If the [[Configurabld] field of Result(1) isfalse, then
I. Reject, if the [[Writable]] field of Result(1) ifalse and the [[Writble]] field of
Descis true.
ii. If the [[Writable]] field of Result(1) ifalse, then
1. Reject, if the [[Value]] field ofDescis notUnspecifiedand is a different
value than the [[Value]] field of Result(1).
b. else, the [Configurabld] field of Result(1) istrue, soany change is acceptable.
11. Else, IsAccessorDescriptor(Result(1)) and IsAccessorDescripésq are bothtrue so,
a. If the [[Configurabld] field of Result(1) isfalse, then
i. Reject, if the [[Setter]] field oDescis notUnspecifiedand is a different value
than the [[Setter]] field of Result(1).
ii. Reject, if the [[Getter]] field oDescis notUnspecifiedand is a different vale
than the [[Getter]] field of Result(1).
12. For each attribute field ddescthat does not have the valukspecified set the correspondingly
named attribute of the property nameaf objectO to the value of the field.

01 September 2008

- 33-

13. Return.

8.6.210 [[[ThrowablePut]] (P, V, Throw) Comment [pL19]: From AWB:

8.7

When the [[ThrowablePut]] method & is called with propertyP, valueV, andboolean flagThrow

. Consider renaming to ThrowingPut.
the following steps are taken:

1. Call the[[GetOwnPropert})} method ofO with argument.
2. If Result(1) is noundefined, then
a. If Result(1).[[Corst]] is notUnspecified then throw eReferenceError exception.
3. Call the [[CanPut]] method oD with argumentP.
4. If Result@) is false, then
a. If Throw istrue, then throwa TypeError exception
b. Else return.
5. |If IsDataDescriptor(Result)) is true, then
a. Set the [[Value]] attribute of property of O to V.
b. Return.
6. Call the [[GetProperty]] method @ with argumentP.
7. If IsAccessorDescriptoResult(l)) is true, then
a. GetResut(1).[[Setter]].
b. If Result(7a) is notundefined, then
i. Callthe [[Call]] method ofResult{a) providing O as thethis value and
providingV as the sole argument

c. Return.

8. Create a named data property nanRedn objectO whose attributes are:
a. [[value]]:V,
b. [[Writable]]: true,

Enumerable]]:true,
Configurablg]: true.

[
c. [
d. [
9. Return.

=

Note, however, that ifO is an Array objectit has a more elaborate [[ThrowablePut]] meth
(15.4.5.1).

The Reference Type (Deleted: 1

8.7.1

The internal Reference type is not a language data tyfteis defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upc
references in the manner described here. However, a value of Rgperenceis used only as an
intermediateresult of expression evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behaviour of such operatasleds , typeof , and the
assignment operators. For example, the-hefihd operand of an dgament is expected to produce a
reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis
the syntactic form of the leftand operand of an assignment operator, but for one difficulty: function calls
are permitted to return referenca“ihis possibility is admitted purely for the sake of host objb@r twother |
reason not to use a syntactic case analysis is that it would be lengthy and awkward, affecting many parts
the specification.)

Comment [pL20]: We wanted to remove this
but have decided to leave it in as this could
potentially break web apphtions.

Deleted: No built-in ECMAScript function
defined by this specification returns a referer
and there is no provision for a usigfined
function to return a refereac(

Deleted:)

Another use of the Reference type is to explain the determination dfithealue for a function call.

A Referenee is a reference to a property of an object. A Reference consists of two componeriasé¢he
objectand theproperty name.

The following abstract operations are used in this specification to access the components of references:

* GetBase(V). Returns the tmsbject component of the reference V.
* GetPropertyName(V). Returns the property name component of the reference V.

The following abstract operations are used in this specification to operate on references:

GetValue (V)

1. If Type(V) is not Reference, retu.
2. Call GetBaseX).
3. If Result(2) isnull, throw aReferenceError exception.

01 September 2008

-34-

4. Call the [[Get]] method of Result(2), passing GetPropertyNamé&fr the property name.
5. Return Result(4).

8.7.2 PutValue (V, W, Throw)

1. If Type(V) is not Reference, throwReferenceError exception.
2. Call GetBaseY).
3. If Result(2) isnull, then
a. If Throwistrue, then throw eReferenceError exception.
b. Call the [[ThrowablePut]] method for the global object, passing GetPropertyNarfaa(the
property rame,W for the value, andalsefor the Throwflag.
c. Return

a. Call the [[ThrowablePut]] method of Result(2), passing GetPropertyNé)rfe(the property
name,W for the value, and hrow for the Throw flag.

b. Return.

8.8 The List Type Deleted: <#>If Type(V) is not Reference, throw :
The internal Li_st type is nqt a language da_ta typlé is defined_ by_ this specification purely for expository Sﬁg;?gﬁgg;g&?pwﬂ
purposes. An implementation of ECMAScript must behavef dsproduced and operated upon List values <#>If Result(2) isnull, go to step @
in the manner described here. However, a value of the List type is used only as an intermediate result <#>Call the [[Put]] method of Result(2), passing
expression evaluation and cannot be stored as the value of a variable or property. gi‘i;‘l’f;"wamw for the property namandW fo
The List type is usedot explain the evaluation of argument lists (see 11.2.40ew expressions and in iﬁi@eﬁ‘{h"” putll method for the alobal obiect
function calls. Values of the List type are simply ordered sequences of values. These sequences may bg passiﬁgBe?P[Eo;e]Jt;?\lear:ao ?orr theegp?o;egyjsgﬁqe
any length. andW for the valuef

<#>Returnf

8.9 The Completion Type

The internal Completion type isot a language data typelt is defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
Completion values in the manner described here. However, a value of the Compfptais used only as

an intermediate result of statement evaluation and cannot be stored as the value of a variable or property.

The Completion type is used to explain the behaviour of statembrésl(, continue , return and
throw) that perform nonlocalransfers of control. Values of the Completion type are triples of the form
(type value targef), wheretype is one ofnormal, break, continue, return, or throw, value is any
ECMAScript value oempty, andtargetis any ECMAScript identifier oempty.

Thet er m fiabrupt completiond refersnotmal. any compl eti on

8.10 The Property Descriptorand Property Identifier Types

The internal Property Descriptor and Property Identifier types are not language data types. They are defined
by this specification purely for expository purposes. An implementation of ECMAScript must behave as if

it produced and operated upon Property Descriptor and Property Identifier values in the manner described
here. However, values of these types are used onbnastermediate result of expression evaluation and
cannot be stored as the value of a variable or property.

The Property Descriptor type is used to explain the manipulation and reification of named property
attributes. Values of the Property Descriptopty ar e records composed of name
name is an attribute name and its value is a corresponding attribute value. In addition, any field may have
the value Unspecified. Unspecified is a unique distinguished value that is only usegefcification

purposes in conjunction with property descriptor fields. It cannot be stored as the value of a variable or
property.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upahe exisénce or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]], or [[Writable]] and at least one of the those fields has a value other than
Unspecified. A accessor property descriptor is one thaludes any fields named either [[Getter]], or
[[Setter]] and at least one of the those fields has a value otherlhspecified Any property descriptor

may have fields named [[Enumerable]], an€{hfigurabld]. The domain of values for each field ibe

possible values of the correspondingly named attribute and the Waspecified

01 September 2008

8.101

8.102

8.103

8.104

- 35-

For notational conenience within this specification, an object litedéde syntax can be used to define
property descriptor value. For example, Property Deschfualue]]: 42, [[Writable]]: false,

[[Configurablg]: true} defines a data property descriptor. The order of listing fields names is
significant and any fields that are not explicitly listed have the value Unspecified.

In specification text and algithms, dot notation may be used to refer to a specific field of a Prop
Descriptor. For exampl e, i f D is a property d
named [[Value]]o.

The Property Identier type is used to associate a pnapeame with a Property Descriptor. Values of th
Property Identifier type are pairs of the form (name, descriptor), where name is a string and descrip)
Property Desaptor value.

The following abstract operations are used in this specificatiaperate upon Property Descriptor valueg

IsAccessorDescriptor (Desc)

When the internalsAccessorDescriptofunction is calledwith property descriptorDescthe following
steps are taken:

1. If Descis undefined, thenreturnfalse
2. If Desc|[[Gettet] and Desc[[Settef] both have the valu&inspecified then returrfalse
3. Returntrue.

IsDataDescriptor (Desc)

When the internalsDataDescriptofunction is calledwith propertydescriptorDescthe following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If Desc[[Valug]] and Desc[[Writable]] both have the valuenspecified then returrfalse
3. Returntrue.

IsGenericDescriptor (Desc)

When the internalsGenericDescriptofunction is calledwith property descriptorDescthe following
steps are taken:

1. If Descis undefined, thenreturnfalse
2. If calling IsAccessorDescriptddesg and IsDataDescriptdiesq bothreturnfalse then returrirue.
3. Returnfalse

FromPropertyDescriptor (Desc)

When the internaFromPropertyDescriptofunction is calledwith propertydescriptorDescthe following
steps are takenthe following steps are taken:

1. If Descis undefined, then returrundefined.
2. Create a new object as if by the expressiew Object() whereObject is thestandard builin constructor
with that name.
3. If IsDataDescriptofDesq is true, then
a. If the value ofDesc[[Value]] is notUnspecifiedthen

i. Call the [[Put]] method of Result(2)
b. El'se, Call the [[Put]] met hodndefhedResul t
c. If the value ofDesc[[Writable]] is notUnspecifiedthen

i. Call the [[Put]] method of mMess[ivdluell 2)

d. Else, Callthe [[Put]] methodof&Rs ul t (2) wi th ar fasement s 0
4. If IsAccessorDescriptoB{esq is true, then
a. If the value ofDesc[[Getter]] is notUnspecifiedthen
i. Call the [[Put]] method of Result(2)
b. Else, Callthe [[Put]] method f Resul t (2) wi t hundefingdu ment s
c. Ifthe value ofDesc[[Setter]] is notUnspecifiedthen

i. Call the [[Put]] method of Result(2)
d Else, Call the [[Put]] met hodndeffhedResul t
5. If the value ofDesc[[Enumerable]] is noUnspecifiedthen
a. Call the [[Put]] method of ReDBResc[Malged.) wi

D

not

erty
S C

or is

N

- <

6. Else, Callthe [[Put]] method f Resul t (2) with afagauments fAenum

01 September 2008

8.105

9.1

7.

8.

- 36 -

If the value ofDesc[[Configurabld] is not Unspecifiedthen

a Call the [[Put]] met hocdnfiguibler eaest][Value])

Return Result(2).

ToPropertyDescriptor (Desc)
When the internalroPropertyDescriptofunction is calledwith objectDescObj the following steps are

taken:

agpLONE

12.
13.

14.

16.

17.

If Descis undefined, then returrundefined.
Call ToObjectPesq.
Create a new Property Descriptor all of whose fields have the aispecified

Cal l the [[HasPropertyl]] met hod of Result (2)

If Result(4) is true, then
a. Call the [[Get]] method oDescwi t h fienumer abl eo.
b. Call ToBoolean(Result(5a)).
c. Set the [[Enumerable]] field of Result(3) to Result(5b).

Callthe[[Has Property]] me t h o dcordiduralil@ s ul t (2)

If Result(6) is true, then
a. Call the [[Get]] method oResult(2)with argumentficonfigurable .
b. Call ToBoolean(Result(7a)).
c. Set the [Configurabld] field of Result(3) to Result(7b)

Callthe[[Has Property]] met hod of Result (2)

If Result(8) is true, then
a. Call the [[Get]] method oResult(2)with argumentivalued .
b. Set the [[Value]] field of Result(3) to Resul&

. Call the [[HasProperty]] method of Result(2) with argumte A wr i t abl eo.
. If Result(10) is true, then

a. Call the [[Get]] method oResult(2)with argumentfiwritabled .

b. Call ToBoolean(Result(11a)).

c. Setthe [[Writable]] field of Result(3) to Result(11b).
Call the [[HasProperty]] method of Result(2) with argumény et t er 0 .
If Result(12) is true, then

a. Call the [[Get]] method oResult(2)with argumentfigetten .

b. Call IsCallable(Result(13a))

c. If Result(13b) isfalseand Result(13a) is natndefined, then throw arypeError exception

d. Set the [[Getter]] field of Resultj3o Result(13b).

Cal l the [[HasPropertyl]] met hod of Result (2)
. If Result(10) is true, then

a. Call the [[Get]] method oResult(2)with argumentfisetted .
b. Call IsCallable(Result(15a))

c. If Result(15b) isfalseand Result(15a) is natndefined, then throw arypeError exception

d. Set the [[Setter]] field of Result(3) to Result(15b).

If either Result(3).[[Getter]] or Result(3).[[Setter]] have a vahiker thanUnspecified then
a. If either Result(3).[[Value]] or Result(3).[[Writable]] have a value other thiarspecified

then throw arypeError exception.
Return Result(3).

Type Conversionand Testing

The ECMAScript runtime system performs automatic type conversion as neededrifp ttle semantics of

ar

Wi

certain constructs it is useful to define a set of conversion operators. These operators are not a part of the
language; they are defined here to aid the specification of the semantics of the language. The conversion

operators are ggmorphic; that is, they can accept a value of any standard type, but not of type Reference,

List, Completion or PropertyDescriptofthe internal types).

ToPrimitive

The operator ToPrimitive takes a Value argument and an optional arguinefe@rredlype The operator
ToPrimitive converts its value argument to a f@bject type. If an object is capable of converting to more
than one primitive type, it may use the optional HmeferredTypeto favour that type. Conversion occurs

according to the follwing table:

01 September 2008

Deleted:

or

-37-

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the inpatgument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is retriey
calling the internal [[DefaultValue]] method of the object, passing thémg
hint PreferredType The behaviour of the [[DefaultValue]] method is defined
this specification for all native ECMAScript objects (8.6.2.6).

9.2 ToBoolean
The operator ToBoolean converts its argument to a value of type Boolean accordingditothimg table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result ifalseif the argument is-0, -0, or NaN; otherwise the result tsue.

String The result idalseif the argument is the empty string (its length is zero); othen|
the result idrue.

Object true

9.3 ToNumber
The operator ToNumber converts its argument to a value of type Number according to the following table:

Input Type Result
Undefined NaN
Null +0
Boolean The result isl if the argument igrue. The result is+0 if the argument ifalse
Number The result equals the input argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Call ToPrimitive(inputargument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar canno
interpret the string as an expansionsafingNumericLiteral then the result of ToNumber iaN.

StringNumericLiterat::
StrWhiteSpacg:
StrWhiteSpagg, StrNumericLiteral StrWhiteSpage

01 September 2008

- 38 -

StrWhiteSpace:
StrWhiteSpaceChar StrWhiteSpgce

StrwhiteSpaceChar:
WhiteSpace
JLineTerminator

StrNumericLiteral::
StrDecimalLiteral
HexlIntegerLiteral

StrDecimalLiteral:::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiterat:
Infinity
DedmalDigits. DecimalDigits,: ExponentPag
. DecimalDigits ExponentPay
DecimalDigits ExponentPayg;

DecimalDigits:::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of
0123456789

ExponentPart::
Exponentindicator $inedinteger

Exponentindicator:: one of
e E

Signedinteger::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0123456789abcdefAB CDEF

Some differences should be noted between the syntaxSifiagNumericLiteraland aNumericLiteral
(see 7.8.3):

* A StringNumericLiteralmay be preceded and/or followed by white space and/or line terminators.
* A StringNumericLiterakhat is decimhmay have any number of leadifigdigits.

* A StringNumericLiteralthat is decimal may be preceded-byr - to indicate its sign.

* A StringNumericLiteralthat is empty or contains only white space is convertetDto

The conversion of a string to a numbexiwe is similar overall to the determination of the number value
for a numeric literal (see 7.8.3), but some of the details are different, so the process for converting a

string numeric literal to a value of Number type is given here in full. This valwetermined in two

01 September 2008

Deleted: <TAB>
<SP>

<NBSP>

<FF>

<VT>

<CR>

<LF>

<LS>

<PS>

Deleted: <USP>

-39-

steps: first, a mathematical value (MV) is derived from the string numeric literal; second, this
mathematical value is rounded as described below.

* The MV of StringNumericLiteral:: [empty]is O.

¢ The MV of StringNumericLiteral:: StrWhieSpacas 0.

* The MV of StringNumericLiteral:: StrWhiteSpacg: StrNumericLiteral StrWhiteSpaggis the MV
of StrNumericLitera) no matter whether white space is present or not.

* The MV of StrNumericLiteral::: StrDecimalLiteralis the MV of StrDecimalliteral.

* The MV of StrNumericLiteral::: HexIntegerLiteralis the MV ofHexIntegerLiteral

* The MV of StrDecimalLiteral :: StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral

* The MV of StrDecimallLiteral:: + StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral

* The MV of StrDecimalLiteral:: - StrUnsignedDecimalLiteralis the negative of the MV of
StrUnsignedDecimalLiteral(Note that if the MV ofStrUnsignedDecimalLiterails 0, the negative of
this MV is also 0. The roundg rule described below handles the conversion of this sign less
mathematical zero to a floatifmpint +0 or —0 as appropriate.)

* The MV of StrUnsignedDecimalLiteral: Infinity is 10'°°%° (a value so large that it will round to
+00).

* The MV of StrUnsigned@cimalLiteral:: DecimalDigits is the MV of DecimalDigits

* The MV of StrUnsignedDecimalLiteral: DecimalDigits DecimalDigitsis the MV of the first
DecimalDigits plus (the MV of the secon®ecimalDigitstimes 10"), wheren is the number of
charactersr the secondecimalDigits.

The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentParis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigits DecimalDigits ExponentPaiis (the MV of the first
DecimalDigitsplus (the MV of the seconBecimalDigitstimes 10") times 16, wheren is the number of
characters in the secobcimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat . DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is
the number of characters DecimalDigits.

The MV of StrUnsignedDecimalLiterat. DecimalDigits ExponentParts the MV of DecimalDigits times
107", wheren is the number of charactersecimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigitsis the MV of DecimalDigits

The MV of StrUnsignedDecimalLiterat DecimalDigitsExponentParis the MV of DecimalDigitstimes 16,
whereeis the MV ofExponentPart

The MV of DecimalDigits::: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV
of DecimalDigit

The MV of ExponentPart:: Exponentindicator SignedintegisrtheMV of Signedinteger

The MV of Signedinteger:: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: - DecimalDigitsis the negative of the MV ddecimalDigits

The MV of DecimalDigit::: 0 or of HexDigit::: 0 is 0.

The MV of DecimalDigit::: 1 or of HexDigit::: 1is 1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

The MV of DecimalDigit::: 3 or of HexDigit::: 3is 3.

The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

The MV of DecimalDigit::: 5 or of HexDigit::: 5 is 5.

The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV of DecimalDigit::: 9 or of HexDigit::: 9is 9.

The MV of HexDigit ::: a or of HexDigit::: Ais 10.

The MV of HexDigit ::: b or of HexDigit::: Bis 11.

01 September 2008

9.4

9.5

9.6

- 40 -

The MV of HexDigit ::: ¢ or of HexDigit::: Cis 12.
The MV of HexDigit ::: d or of HexDigit::: Dis 13.
The MV of HexDigit::: e or of HexDigit::: Eis 14.
The MV of HexDigit::: f or of HexDigit::: Fis 15.
The MV of HexIntegerLiterat:: Ox HexDigitis the MV ofHexDigit
The MV of HexIntegerLiteral:: 0X HexDigitis the MV ofHexDigit

The MV of HexIntegerLiteral::: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteratimes 16) plus the
MV of HexDigit

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, therhé rounded value is +0 unless the first non white space character in
the string nuheria Wwhiehalcaiss —@ Btherwise, the doended vaduk u e
must be the number value for the MV (in the sense defined in 8.5), unless thé iliteltades a
StrUnsignedDecimalLiteradnd the literal has more than 20 significant digits, in which case the number
value may be either the number value for the MV of a literal produced by replacing each significant digit
after the 20th with a 0 digit othe number value for the MV of a literal produced by replacing each
significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A
digit is significantif it is not part of anExponentPar&and

itis not0; or
there is a nonzero digit to its left and there is a nonzero digit, not iBxpenentPartto its right.

Tolnteger

The operator Tolnteger converts its argument to an integral numeric value. This operator functions as
follows:

Call ToNumber on the put argument.

If Result(1) isNaN, return+0.

If Result(1) is+0, -0, +o0, or —oo, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

Tolnt32: (Signed 32 Bit Integer)

The operator Tolnt32 converts its argument to on@%finteger values in the range2®! through 31,
inclusive. This operator functions as follows:

agrwNE

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, —0, +e0, or—oo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3modulo 22 that is, a finite integer value k of Number type with positive sign and
less than % in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 2.

5. If Result(4) is greater than or equal t& 2eturn Result(4) 2°%, otherwise return Result(4).

NOTE
Given the above definition of ToInt32:

The Tolnt32 operation is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

Tolnt32(ToUint32(x)) is equal tdoInt32(x) for all values of x. (It is to preserve this latter property thatand —«o
are mapped to +0.)

TolInt32 maps-0 to +0.

ToUint32: (Unsigned 32 Bit Integer)

The operator ToUint32 converts its argument to one %fiteger values in the rang@ through 31,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.
2. If Result(1) isNaN, +0, -0, +w, or —c, return +0.

01 September 2008

- 41 -

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo®2 that is, a finite integevalue k of Number type with positive sign and
less than % in magnitude such the mathematical difference of Result(3) and k is mathematically ar
integer multiple of 2

5. Return Result(4).

NOTE
Given the above definition of ToUInt32:

Step 5 is the onlgifference between ToUint32 and Tolnt32.

The ToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves that valu
unchanged.

ToUint32(TolInt32(x)) is equal to ToUint32(x) for all values of x. (It is to presé#riselatter property that +oand -«
are mapped to +0.)

ToUint32 maps-0 to +0.

9.7 ToUintl6: (Unsigned 16 Bit Integer)

The operator ToUint16 converts its argument to one ‘Sfiteger values in the range 0 through-2,
inclusive. This operator functisnas follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, -0, +w0, or —eo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo'2 that is, a finite integer valule of Number type with positive sign and
less than # in magnitude such the mathematical difference of Result(3)kaisdmathematically an
integer multiple of 2.

5. Return Result(4).

NOTE
Given the above definition of ToUint16:

The substitution of*2 for 2°2in step 4 is the only difference between ToUint32 and ToUint16.
ToUint1l6 maps-0 to +0.

9.8 ToString
The operator ToString converts its argument to a value of type String according to the following table:

Input Type Result

Undefined "undefined"

Null “null”

Boolean If the argument isrue, then the result i&rue”
If the argument ifalse then the result i¥alse"

Number See note below.

String Return the input argument (no conversion)

Object Apply the following steps:

1. Call ToPrimitive(inputargument, hint String).
2. Call ToString(Result(1)).
3. Return Result(2).

9.8.1 ToString Applied to the Number Type
The operator ToString converts a numhbeto string format as follows:

1. If mis NaN, return the stringNaN" .

01 September 2008

42 -

If mis +0 or -0, return the string0" .
If mis less than zero, return the string concatenation of the striigand ToStringtm).
If mis infinity, return the strindInfinity"
. Otherwise, len, k, ands be integers such that> 1, 107! < s < 1, the number valueof s < 10"* is
m, andk is as small as possible. Note that the number of digits in the decimal representatios, of
thatsis not divisible by 10, and that the least significant digis & not necessarily uniquely
determined by these criteria.
6. If k<n<21, return the string consisting of tkaligits of the decimal representation of s (in order,
with no leading zeroes), followed bykoccur rences db.the character 0
7. 1f 0 < n= 21, return the string consisting of the most significadigits of the decimal representation
of s, foll owed by.6a dfeoclilnoawe dp otiyndigitadef the decmaal ni n g
representation aof.
8. If 6<n<0, return the string06corfwildtoiweg ddfydtah e ech ama:
followed by-noccurrences b, t hel t bldigitofthe decitnal
representation aof.
9. Otherwise, ifk = 1, return the string consisting of the single digispfollowed by lowercase
char aeét ef o061 owed +byomra mi w8 sascscipopgr dd nrg-lis positiwvehoe t h e r
negative, followed by the decimal representation of the integenabjs(with no leading zeros).
10.Return the string consisting of the most significant digit of the decimal representation of s, followed
by a dec ma | point 6.6, f ol tldigits of thd debimal rephesentatomods, ni ng k
foll owed by the | owercase charact er —606 eadc, c ofrod il nogw et
whether 1 is positive or negative, followed by the decimal egEntation of the integer abs(r)
(with no leading zeros).

aswN

NOTE
The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

If X is any number value other tha#®), thenToNumber(ToString(x)) is exactly the same number value as x.
The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

For implementations that provide more accurate conversions than required by the rules @bigvrecommended
that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such thatlk 10 <s < 10¢, the number value for s 10" *is m, and k is

as small as possible. If there are multiplessibilities for s, choose the value of s for which0"* is closest in

value to m. If there are two such possible values of s, choose the one that is even. Note that k is the number of
digits in the decimal representation of s and that s is nosiiie by 10.

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for-turdagimal
conversion of floatingpoint numbers:

Gay, David M. Correctly Rounded Binafyecimal and DecimaBinary Conversions. Numerical Analysis
Manuscript 9010. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as

http://cm.bell - labs.com/cm/cs/doc/90/4 -10.ps.gz . Associated code available as
http://cm.bell - labs.com/netlib/fp/dtoa.c.gz andas http://cm.bell -
labs.com/ne tlib/fp/g_fmt.c.gz and may also be found at the variowstlib ~ mirror sites.

ToObject

The operator ToObject converts its argument to a value of type Object according to the following table:

01 September 2008

Input Type Result

Undefined Throw aTypeError exception.

Null Throw aTypeError exception.

Boolean Create a new Boolean object whogerfinitiveVValug] property is set to the valu [Deleted: value
of the boolean. See 15.6 for a description of Boolean objects.

Number Create a new Number object whog@r[fnitiveValud] property is set to the valu [Deleted: value
of the number. See 15.7 for a description of Number objects.

String Create a new String object whosBifnitiveValud] property is set to the value ([Deleted: value

9.10

10

10.1

- 43 -

the string. See 15.5 for a description of String objects.

Object The result is the input argument (no conversion).
IsCallable
The operatorisCallable determines if its argument is a callable function Object according to the follo
table:

Input Type Result

Undefined Returnfalse

Null Returnfalse

Boolean Returnfalse

Number Returnfalse

String Returnfalse

Object If the argumentobject implements the internal [[Call]] method retutnue,

otherwise returifialse

Execution Contexts
When control is transferred to ECMAScript executable code, cordrehtering arexecution contextActive

ng

execution contexts logically form a stack. The top execution context on this logical stack is the runnin

execution context.

Definitions

10.1.1 Function Objects

There are two types of Function objects:

Program functions are defined in source text biyuactionDeclarationor created dynamically either by
using aFunctionExpressiomr by using the buiin Function object as a constructor.

Internal functions are buiin objects of the language, such asarselnt and Math.exp . An

implementation may also provide implementatiependent internal functions that are not described
in this specification. These functions do notcessarilycontain executable code defined by the

10.1.2 Types of Executable Code

There ar¢five types of ECMAScript executable code: |

Global codeis source text that is treated as an ECMAScRpogram The global code of a particular
Programdoes not include any source text that is parsed as parfbdfck or a FunctionBodyexcept
thatit does include the code of anjariableDeclarationthat is parsed as part of suctBbock or as
part of aBlock nestedat any level within such aBlock

Eval codeis the source text supplied to the bdiiiteval function. More precisely, if the parameter to

the builtin eval function is a string, it is treated as an ECMAScrybgram The eval code for a
particular invocation okeval is the global code portion of the string parametére eval code for a
particular invocation okval does not include any source text that is parsed as parBtdck or a

FunctionBodyexcept thait does include the code of aMariableDeclarationthatis parsed as part of
such aBlockor as part of 8locknested at any level within suchBiock

Function codeis source text that is parsed as part dfumctionBody,I'he function codeof a particular
FunctionBodydoes not include any source text that is parsed as partBddck or a FunctionBody
except thait does include the code ohw VariableDeclarationthat is parsed as part of suctBlck
or as part of 8locknested at any level within suchBiock

Function codealso denotes the source text supplied when using the-inuRunction object as a
constructor. More precisely, thadt parameter provided to tRenction constructor is converted to

01 September 2008

[

Deleted: so

[

Deleted: three

[

Deleted: FunctionBody

Deleted: Thefunction codeof a particular
FunctionBodydoes not include any source
that is parsed as part of a nestehctionBod)

- 44 -

a string and treated as tirnctionBody If more than one parameter is provided to Euection
constructor, all parameters except the last one are converted to strings and concateedhed, to
separated by commas. The resulting string is interpreted asFohemalParameterListfor the
FunctionBodydefined by the last parameter. Thenction codefor a particular instantiation of a
Function does not include any source text that is parsed as part of a rfastetionBody The
function codefor a particular instantiation of Bunction does not include any source text that is
parsed as part of @lock or a FunctionBody except thatit does inclde the code of any
VariableDeclarationthat is parsed as part of suctBbock or as part of @lock nested at any level
within such aBlock

Lexical Block codds the source code that that is parsed asStaementLisbf a Block The lexical
block codeof a particularStatementListioes not include any source text that is parsed as part of a
nestedFunctionBody.

10.1.21 Applying Usage Subsets to Executable code

10.1.3

Eachoccurence of one of these types of code may be restricted to use a defined cfutheetomplete
ECMAScript language

* Global code is unrestricted unless the Program that defines the code includes
UseSubsetDirective

* Eval code inheritdhe restrictions othe executioncontext in which the eval operator appears,
but its execution context may be further restrici@dhe Program that defines the eval code
includes aUseSubsetDirectivdn that case, the restrictions of the execution context are the union
of the restrictions of the inherited execution context and th&riotions specified by the
UseSubsetDirectiveSuch a unioning of restrictions is the equivalent of inteisgdhe specified
usage subsets

* Function code made by evaluating-anctionDeclarationor aFunctionExpressionfunction code
supplied as the lasargument to the Function constructor, and lexical block cod@ldrit the
restrictions of the execution context in whitte evaluation occurs

Environment Bindings Instantiation
Every execution context has associated with gnaironmentobject.for all kinds of execution contexts,

Deleted: Variable

Deleted: variable

global code, eval code, and function code variables declarettheinsource text are also added as
properties of the environment objedtor function code, parameters are added as properties of the
environmengpbject.

Deleted: Variables

Deleted: variable

Deleted: variable

o
o
=
o
@
o
5
=3
8
5
<1
—
c
=
o
o
o
>
o
o
I
o
o
=
®
o
=5
-
5
o
1%
o
c
=
o
o
-
@
x
=
o
=
o
N
=%
o
)
o
@
o

°
=
o

S
o)
3
o
%
3
o
S

hel
=3

=
[
o
b
T
o
=

S

Which object is used as thevironmentpbject and what attributes are used for tmeperties depends [Deleted: variable
on the type of code, but the remainder of the behaviour is generic. On entering an execution context, the
properties are bound to tl@vironmenfpbject in the following order: [Deleted: variable

For function code: for each formal parameter, asraaf in theFormalParameterList create anamed
data property of theenvironmentobject whose name is thilentifier and whose attributes are [Deleted: variable
determined by the type of code. The values of the parameters are supplied by the caller as arguments
to [[Call]]. If the caller supplies fewer parameter values than there are formal parameters, the extra
formal parameters have valumdefined. |f two or more formal parameters share the same name,
hence the same property, the corresponding property is gienalue that was supplied for the last
parameter with this narméf the value of this last parameter was not supplied by the caller, the value
of the corresponding property isdefined.

Comment [pL21]: From AWB:
Should duplicate formal parameter names be restricte
the cautious subset?

For lexical block code: if the lexical block has any blogarametescreatefor each block parametex Deleted: eachFunctionDeclaratiorin the code, in
named datgroperty of theenvironmentobject whose namevalue, are determined by evaluation source text order
context of the Block and whose attributes are Yi[ritable]]: true, [[Enumerable]]: false, [Deleted: variable

[[Configurable fals€]]}. Only a TryStatementreates lexical block contexts with block parameters.

For all of the FunctionDeclaration and ConstantDeclarationin the code perform the following
algorithnmy Semantically, this step must follow the creation BérmalParameterListor block Deleted: is theldenifier in the
parameteproperties FunctlonDecIarat!onwhose \{alue is the result)

: returned by creating a Function object as describ

13, and whose attributes are determined by the t

1. LetCTXbe the current execution context and its associated environment object. code. If the variable object already has a property

this name, replace its valaad attributes

01 September 2008

For execution contexts that are not lexical blocksFor each VariableDeclaration or

10.1.3.1

10.1.4

10.15

- 45 -

For eachFunctionDeclarationand ConstantDeclarationD in the code in source code order,
a. LetN be theldentifierin D.
b. If Dis aConstantDeclaratiorthen

i. If CTXalready contains a property namiddthrow aSyntaxError exception.

ii. Create a named data propertyGi Xwhose name i8I, whose [[Const]] attributesi
Unitialized, whose [[Writable]] attribute isalse, and whose value is set to
undefined.

c. If Dis aFunctionDeclarationthen
i. If CTXalready contains a property namidthen
1. If CTXis the execution context ofBlock, throw a SyntaxError exception.
2. If the existing property has a [[Const]] attribute, thro@yntaxError
exception otherwise the value and attributes of the existing property will be
replaced by the actions of step 2cii below.

ii. Create a named data propertyGii X whose name i8l and whosevalue is the result

returned by creating a Function object as described in 13.
d. Otherattributes of the named data property are determined by the type of code

VariableDeclaationNolnin the code(including VariableDeclarationscontained within Blocks that
are within the codeg)create a property of thenvironmentobject whose name is tHdentifier in the
VariableDeclarationor VariableDeclarationNoln whose value isindefined and whose attributes
are determined by the type of code. If there is already a property afntfieonmeniobje ith the
name of a declared variablend the property has a [[Const]] attribute throwSgnt
excepton, otherwise the value of theexisting property and its attributes are not changgd.
Semantically, this step must follow the creation of tleormalParameterList and the

FunctionDeclarationand ConstantDeclaratiorproperties. In particular, if a declaredriable has the

same name as a declared function or formal parameter, the variable declaration does not disturb 1

existing property.

Usage Subset Restrictions
When defined within an execution context subset restricted tedh&ous subset, a function may
not have two or more formal parameters thave thesame nameAn attempt to create auch a

function with conflicting parameters names will fail, either statically, if expressed ag a

FunctionDeclarationor FunctionExpressionor dynamically by throwinga SyntaxError exception
if expressed in a call to tifeunction constructor.

Scope Chain and Identifier Resolution
Every execution context has associated with it a scope chain. A scope chain is a list of objects that ¢
seartied when evaluating afdentifier. When control enters an execution context, a scope chain is
created and populated with an initial set of objects, depending on the type of code. During executic
within an execution context, the scope chain of the execuwtantext is affected only bglocks, with
statements (see 12.10) acatch clauses (see 12.14).

During execution, the syntactic productidPrimaryExpression: Identifier is evaluated using the
following algorithm:

4.
5. Return a value of type Reference whose base objeutlis and whose property name is the

Deleted: variable

Deleted: variable

1. Get the next object in the scope chdirthere isn't one, go to step 5.
2.
3. If Result(2) istrue, return a value of type Reference whose base object is Result(1) and whose

Call the [[HasProperty]] method of Result(1), passingldentifier as the propertyame

property name is thilentifier.
Goto step 1.

Identifier.

The result of evaluating an identifier is always a value of type Reference with its member nam
component equal to the identifier string.

Global Object
There is a uniqueglobal object(15.1), which is created before control enters any execution context.
Initially the global object has the following properties:

01 September 2008

10.1.6

- 46 -

Standard builin objects such as Math, String, Date, parselptc] These havehttributes [(comment [pL22]: Need a normative list.

([Enumerable]]:falsey. Comment [pL23]: From AWB:

Additional host defined properties. This may include a property whose value is the global object itself It would desirable to also make this [[Writable]]: false,
for example, in the HTML document object model thindow property of the global objeds the [[E'eX'ble]] false but that may be too incompatable of &
global object itself. Y

Deleted: Built-in
As control enters execution contexts, and as ECMAScript code is executed, additional properties may[Deleted: DontEnum
added to the global object and the initial properties may be changed.

Activation Object

When control enters an exe@ut context for function coder a lexical block an object called the
activation object is created and associated with the execution context.

If the execution context is for function cogée activation object is initialised with a property with name [Deleted: The

arguments and attributes {[[Writable]]: true, [[Enumerable]]:false, [[Configurabld]: false}. The [
initial value of this property is the arguments object described below.

Deleted: DontDelete

The activation object is then used as grevironmentobject for the purposes gnvironment bindings [Deleted: variable
instantiation.

Deleted: variable

The activation object is purely a specification mechanism. It is impossible for an ECMAScript program
to access the activation object. It can access members of the activation objenptlihe activation

object itself. When the call operation is applied to a Reference value whose base object is an activation
object,null is used as ththis value of the call.

10.1.6.1 Usage Subset cautious Restrictions

10.1.7

10.1.8

For functions defined within an execution subset restricted tocthgious subsetthe activaion
object is only initializedw t h an fargument so \rrperna p eorntsy fiafr tuhnee
its body In which caset hear § u me nt s 0s intialived eithtattributes {[[Writable]] false
[[Enumerable]]:false, [[Configurabld]: false}.

This

There is ahis value associated with every active execution context.tfitsevalue depends on the caller
and the type of code being executaad is determined when control enters the execution context. The{

Comment [pL24]: From AWB:
fimentions freelyo needs

Comment [pL25]: ALP says: Deviations dog2.4 rais
concern over the representation of arguments.toString
ES4 specifies Object.prototype.toString() here (see
incompatibilities.pd§3.4.

Comment [pL26): This chage is still creating
controversy from the ES4 designers.

Deleted: Object

this value associated with an execution context is immutable.

Arguments Object

When control enters an execution context for function code, an arguments object is ¢seatedbove)
and initialised as follows:

Deleted: Object

Deleted: 2

The value of the internal [[Prototype]] property of the arguments object is the orlg[,,,,,,, prototype,
object, the one that is the initial valuedfray .prototype (see 1%4.3.1).

The value of the internal [[Class]] property"i®bject” .

A property is created with the nansenstructor and attributes { [[Writable]]true, [[Enumerable]]:
false, [[Configurabld]: true}. The initial value of this property is the standard builtin fuont
namedObject.A property is created with nantmallee and property attributes f[Writable]]: halsé
[[Enumerable]]: false [[Configurablé]: ffalsel} The initial value of this property is the Function

Comment [pL27]: From AWB:
This appears to be an observable change from ES3. |
OK?

Comment [pL28]: From AWB:
This appears to be an observable change from ES3. I
OK?

[Deleted: DontEnum

object being executed. This allowsonymous functions to be recursive. Comment [pL29]: ~ From AWB:
A property is created with namength and property attributes J[Enumerabl§: false }. The initial S eifier iilniEs s B2 gres i o ealtes
value of this property is the number of actual parameter values supplied by the caller. [Deleted: DontEnum

[For each nomegadive integer,arg, less than the value of tHength property, a property is created
with name ToStringfrg) and property attributes {[[Writable]]: frud, [[Enumerable]]: false
[[Configurabld]: falsg}. The initial value of this property is the value of the corresponding actual
parameter supplied by the caller. The first actual parameter value correspaargs=®, the second Comment [pL31]: From AWB:
to arg = 1, and so on. In the case wharyg is less than the number of foahparameters for the IislsialchangelESSHISIEORY
Function object this property shares its value with the corresponding property of the actlvatlor[Deleted: DontEnum
object. This means that changing this property changes the corresponding property of the activati(o ment [PL32l: From AWB:

object and vice Veréa There are two better alternatives for defining this
algorithmicly. Either define is parameter property as 2
getter/setter pair or provided an alternative definition c
[[TrhowablePut]] in ternal property.

Comment [pL30]: From AWB:
| assume tht it must be writable for backwards
compatability.

01 September 2008

10.1.8.1

10.2

- 47 -

Usage Subsetautious Restrictions

For functions defined within an execution subset restricted tocthdious

object is only createif the function[me ntions far [gniteleodyt s o freely

If a arguments object is createdcallee property is not created.

The arguments object does not share properties with the activation object. Changing the val

arguments object property does not change the value of the corresponding activation object p

and vice versa.

Entering An Execution Context

subset, an argument

e of
opel

Every function and constructor call enters a new execution context, even if a function is calling itsel

recursively.Every evalution of aBlock enters enters a new execution context which is exited when
block evaluation compltes.Every return exits an execution context. A thrown exception, if not cau

may also exit one or more execution contexts.

L

When control enters an execution context, the scope chain is created and initjatfisednment bindings|
instantiaton is performed, and thdis value is determined.

The initialisation of the scope chain, variable instantiation, and the determination tfishealue depend

on
10.2.1

the type of code being entered.

Global Code
The scope chain is created and initiatige contain the global object and no others.

Environment bindingsnstantiation is performed using the global object asgheronmentobject and

10.2.2

10.2.2.1 Usage Subsetautious

If either the execution context for the eval code or the execution context in which the eval op|
subset, the eval code cannot instantiate variab

10.2.3

Thethis value is the global object.

Eval Code

the
ht,

N

When control enters an execution context for eval code, the previous active execution context, referr

to as thecalling context is used to determine the scope chain,gheironmentobject, and thehis value.
If there is no calling context, then initialising the scope chaimyironment bindingsnstantiation, and
determination of thé¢his value are performed just as for global code.

[
(

The scope chain is initialiseto contain the same objects, in the same order, as the calling context's

scope chain. This includes objects added to the calling context's scope chaodkg with
statements andatch clauses.

Environment bindinggnstantiation is performed using the calling contegtisironmenfpbject and using

theproperty attributeg [[Writable]]: true [[Enumerable]]true, [[Configurabld]: true}.
Thethis value is the same as thi@s value of the calling coext.

Restrictions

was executed is subset restricted to ¢heatious
functions, or constants in the lexical context of its eval operator.

Instead, a nevenvironmentobject iscreated anhppended t o the head
chain and thaenvironmentobjectis used forenvironment bindingastantiationof the eval code.

Function Code

of

eratc

es,

The scope chain is initialised to contain the activation object followed by the objects in the scope chai

stored in the [[Scope]] property of the Function object.

Environment bindingsnstantiation is performed using the activation object asgiméronmentobject

10.2.4

The caller provides ththis value,

Lexical Block Code

A new activation object is created for use as the environment object. The cltajpeis initialised to
contain the new activation object followed by

01 September 2008

t

f

Comment [pL33]:
fimentions

From AWB:

freelyo nee

Deleted: variable

Deleted: Variable

Deleted: variable

Deleted: DontDelete

Deleted: variable

Deleted: variable

Deleted: Variable

Deleted: variable

Deleted: empty

(

Deleted: Variable

Deleted: variable

Deleted: DontDelete

Deleted: If the this value provided by the
caller is not an objectir(cluding the case wh
itis null), then thethis value is the global
object.

- 48 -

Environment bindings instantiation is performed using the new object as the environment object and
using property attributes Writable]]: false, [[Enumerable]]: false, onfigurabld]: false }.

Thethis value is the same as tlies value of the previously current context.

11 Expressions

11.1
Syntax

Primary Expressions

PrimaryExpression

this

Identifier
Literal
ArrayLiteral
ObjectLiteral
(Expression

11.1.1

The this Keyword
Thethis keyword evaluates to thdis value of the execution context.

11.1.1.1 Usage Subsetautious Restrictions

If this is evaluated within an execution context that is subset restricted toathi®us subset and
thethis value isnull or undefined, then thethis expression throws ReferenceError exception.

11.1.2 Identifier Reference
An ldentifier is evaluated using the scoping rules stated in 10.1.4. The result of evaluatidgnaifier
is always a value of type Reference.
11.1.3 Literal Reference
A Literal is evaluated as described in 7.8.
11.1.4 Array Initialiser
An array initialiser is an expression describing the initialisation of an Array object, written in a form of a
literal. It is alist of zero or more expressions, each of which represents an array element, enclosed in
square brackets. The elements need not be literals; they are evaluated each time the array initialiser is
evaluated.
Array elements may be elided at the beginning,dtedr end of the element list. Whenever a comma in
the element list is not preceded by AssignmentExpressiofi.e., a comma at the beginning or after
another comma), the missing array element contributes to the length of the Array and increasexthe inde
of subsequent elements. Elided array elements are not dehfned.element is elided at the end of an
array, that element does not contribute to the length of the lArray Comment [pL34]: From AWB:
This really should be sp
Syntax already.
ArrayLiteral :
[Elisiongy]

[ElementList]
[ElementList Elisiongy]

ElementList
Elision,y; AssignmentExpression
ElementList Elision,,; AssignmentExpression

Elision:

Elision,

Semantics

The productionArrayLiteral : [Elisiony,] is evaluated as follows:

01 September 2008

11.1.5

Syntax

- 49 -

1. Create a newbjectas if by the expressionew Array() where Array s the standard buiin
constructor with that name

2. EvaluateElision; if not present, use the numeric value zero.

3. Call the [[Put]] method of Result(1) with argumentgngth " and Result(2).

4. Return Result(1).

The productionArrayLiteral : [ElementList] is evaluated as follows:

1. EvaluateElementList
2. Return Result(1).

The productionArrayLiteral : [ElementList, Elisiony,] is evaluated as follows:

EvaluateElementList

EvaluateElision; if not present, use the numeric value zero.

Call the [[Get]] method of Result(1) with argumerength .

Call the [[Put]] method of Result(1) with argumentength " and (Result(2)+Result(3)).
Return Result(1).

agrLNE

The productionElementList Elisiony, AssignmentExpressiois evaluated as follows:

1. Create a newbjectas if by the expressiomew Array() where Array is the standard buiin
constructor with that name

EvaluateElision; if not present, use the numeric value zero.

EvaluateAssignmentExpression

Call GetValue(Result(3)).

Call the [Put]] method of Result(1) with arguments Result(2) and Result(4).

Return Result(1)

coukrnun

The productionElementList ElementList, Elisiony, AssignmentExpressiois evaluated as follows:

EvaluateElementList

EvaluateElision; if not present, use the numewalue zero.
EvaluateAssignmentExpression

Call GetValue(Result(3)).

Call the [[Get]] method of Result(1) with argumenength

Call the [[Put]] method of Result(1) with arguments (Result(2)+Result(5)) and Result(4).
Return Result(1)

NogrwNE

The productionElision: , is evaluatedas follows:
1. Return the numeric value

The productionElision: Elision, is evaluated as follows:

EvaluateElision.
2. Return (Result(1)+1).

NOTE:

The use of [[Put]] rather than [[ThrowablePut]] in this section is intenticaslthere are no situation

where these [[Put]] operations should fail.

Object Initialiser

[Deleted: array

‘ [Deleted: array

An object initialiser is an expression describing the initialisation of an Object, written in a form
resembling a literal. It is a list of zero or more paifpmperty names and associated values, enclosed in
curly braces. The values need not be literals; they are evaluated each time the object initialiser

evaluated.

01 September 2008

-50-

ObjectLiteral:

{}
{ PropertyNameAndValueLis}
{ PropertyNameAndValueList }

PropertyNameAndValueList
PropertyAssignment [Deleted: PropertyName AssignmentExpression
PropertyNameAndValueList PropertyAssignment

[Deleted: PropertyName AssignmentExpression

PropertyAssignment
PropertyName AssignmentExpression
get PropertyNamg) { FunctionBody}
setPropertyName PropertySetParameterLi$t{ FunctionBody}

PropertyName
IdentifieName
StringLiteral
NumericLiteral

PropertySetParameterList
Identifier

Semantics
The productionObjectLiteral: { } is evaluated as follows:

1. Create a new object as if by the expressiew Object() whereObject is the standard buin
construcor with that name
2. Return Result(1).

The productior ObjectLiteral: { PropertyNameAndValueLigt and{ PropertyNameAndValueList}
Areevaluated asollows: [Deleted: is

1. EvaluatePropertyNameAndValueList
2. Return Result(1);

The production
PropertyNameAndValueList PropertyAssignment [Deleted: PropertyName AssignmentExpression
is evaluated as follows:

1. Create a new object as if by the expressiew Object() whereObject is the standard buin
construcor with that name

2. EvaluatePropertyAssignment [Deleted: PropertyName
3. Callthe [[DefineOwnProperty]] method of Result(&jth arguments Result(2).name, [Deleted: <#>EvaluateAssignmentExpressiah
Result(2).descriptoffalse, :

Comment [pL35]: Object liteml property definition
should never cause [[DefineProperty]] to throw; so, fal
fine here.

4. Return Result(1).

The production
PropertyNameAndValueList PropertyNameAndValueLisiPropertyAssignment
is evaluated a®llows:

Deleted: GetValue(Rewlt(3))

Deleted: <#>Call the [[Put]] method of Result(1)
with arguments Result(ZndResult(4)1

1. EvaluatePropertyNameAndValuelList

2. EvaluatePropertyAssignment

3. Callthe [DefineOwnProperty]] method of Result(1) with argumefResult(2).name,
Result(2).descriptorfalse).

4. Return Result(1).

Deleted: PropertyName AssignmentExpression

Deleted: PropertyName

Deleted: <#>EvaluateAssignmentExpressidh
Deleted: GetValue(Result(3))

The productionPropertyAssignment PropertyName AssignmentExpresside evaluated as follows: Deleted: <#>Call the[[Put]] method of Result(1)

with arguments Result(ZndResult(4)1

— N

1. EvaluatePropertyName
2. EvaluateAssignmentExpression

01 September 2008

-51-

3. Call GetValue(Result(2)).

4. Create Property Descriptor{[[Value]]: Result(2), [[Writableftue, [[Enumerable]]itrue,
[[Configurablg]: true}

5. Return Property Identifer (Result(1), Result(4)).

The productionPropertyAssignmentget PropertyNamg) { FunctionBaly } is evaluated as follows:

1. EvaluatePropertyName

2. Create a new Function object as specified in 13.2 with an empty parameter list and body specifled b
FunctionBody Pass in the scope chain of the running execution context &ctpe

3. Create Property Descriptor{[[Getter]]: Result(2), [[Enumerabléjje, [[Configurabld]: true}

4. Return Property Identiér (Result(1), Resul8)).

The production PropertyAssignment setPropertyName(PropertySetParameterLigt{ FunctionBody}
is evaluated as follows:

1. EvaluatePropertyName

2. Create a new Function object as specified in 13.2 with parameters specified by
PropertySetParameterListnd body specified bifunctionBody Pass in the scope chain of the
running execution context as tiSeope

3. Create Property Descriptor{[[Setter]]: Result(2), [[Enumerablelle, [[Configurablg]: true}

4. Return Property Identiér (Result(1), Resul®)).

The productionPropertyName IdentifierName is evaluated as follows:

1. Form a string literal containing the same sequence of characters laehigéierName
2. Return Result(1).

The productionPropertyName StringLiteral is evaluated as follows:

1. Return the value of th8tringLiteral

The productionPropertyName Numerid.iteral is evaluated as follows:

1. Form the value of th&lumericLiteral
2. Return ToString(Result(1)).

11.1.6 The Grouping Operator
The productiorPrimaryExpression (Expression) is evaluated as follows:

1. EvaluateExpression This may be of type Reference.
2. Return Result(1).

NOTE
This algorithm does not apply GetValue to Result(1). The principal motivation for this is so that
operators such adelete andtypeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions
Syntax

MemberExpression
PrimaryExpression
FunctionExpression
MemberExpressioh Expression
MemberExpression IdentifieiName
new MemberExpressiomArguments

NewExpression

MemberExpression
new NewEXxpression

01 September 2008

-52-

CallExpression
MemberExpressiomArguments
CallExpression Arguments
CallExpressiorf Expressior
CallExpression IdentifieiName

Arguments
(ArgumentList)

ArgumentList
AssignmentExpression
ArgumentList AssignmentExpression

LeftHandSideExpressian
NewExpression
CallExpression

11.2.1 Property Accessors
Properties are accessed by name, using either the dot notation:
MemberExpression IdentifieiName
CallExpression IdentifiedName
or the bracket notation:
MemberExpressioh Expressior]
CallExpressiorf Expressior]
The dot notation iexplained by the following syntactic conversion:

MemberExpression IdentifieiName

is identical in its behaviour to

MemberExpressiop <identifier-namestring>]

and similarly

CallExpression IdentifieiName

is identical in its behaviour to

CallExpressior] <identifier-namestring>]

where <identifiernamestring> is a string literal containing the same sequence of characters as the
IdentifierName

The productiorMemberExpression MemberExpressiofi Expression is evaluated as follows:

EvaluateMemberExpressiaon

Call GetValue(Result(1)).

EvaluateExpression

Call GetValue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return a value of type Reference whose base object is Result(5) and whose property name is
Result(6).

NogrwnhpE

The produdbn CallExpression: CallExpression[Expression] is evaluated in exactly the same
manner, except that the contain@dllExpressions evaluated in step 1.

01 September 2008

11.2.2

11.2.3

11.2.4

- 53-

The new Operator
The productiorNewExpression new NewExpressioims evaluated as follows:

O WOWNPEFP

6.

. EvaluateNewExpression

. Call GetValue(Result(1)).

. If Type(Result(2)) is not Object, throwTypeError exception.

. If Result(2) does not implement the internal [[Construct]] method, thra@wpeeError exception.
. Call the [[Construct]] method on Result(2), piding no arguments (that is, an empty list of

arguments).
Return Result(5).

The productioMemberExpressionnew MemberExpression Argumentsevaluated as follows:

NogoswWNE

EvaluateMemberExpressian

Call GetValue(Result(1)).

EvaluateArguments producing annternal list of argument values (11.2.4).

If Type(Result(2)) is not Object, throwTypeError exception.

If Result(2) does not implement the internal [[Construct]] method, thr@wpeError exception.
Call the [[Construct]] method on Result(2), providitite list Result(3) as the argument values.
Return Result(6).

Function Calls
The productiorCallExpression MemberExpressioArgumentss evaluated as follows:

O~NO O~ WNRE

9.

. EvaluateMemberExpressian

. EvaluateArguments producing an internal list of argument vab (see 11.2.4).

. Call GetValue(Result(1)).

. If Type(Result(3)) is not Object, throwTypeError exception.

. If IsCallableResult(3) is false, throw aTypeError exception. |

. If Type(Result(1)) is Reference, RaH6) is GetBase(Result(1)). Otherwise, Result(6)udl .
. If Result(6) is an activation object, Result(7)nigll. Otherwise, Result(7) is the same as Result(6).
. Call the [[Call]] method on Result(3), providing Result(7) astthis value and providingtte list

Result(2) as the argument values.
Return Result(8).

The productionCallExpression: CallExpression Argumentss evaluated in exactly the same manner,
except that the containgdlallExpressions evaluated in step 1.

NOTE

[Result(S) will never be afype Reference if Result(3) is a native ECMAScript object. Whether calling a

host object can return a value of type Reference is implemen{deipendenh.

Argument Lists
The evaluation of an argument list produces an internal list of value8 @ge

The productioPArguments () is evaluated as follows:

1.

Return an empty internal list of values.

The productioPArguments (ArgumentList) is evaluated as follows:

1.
2.

EvaluateArgumentList
Return Result(1).

The productioPArgumentList AssignmentExgssion is evaluated as follows:

1.
2.
3.

EvaluateAssignmentExpression
Call GetValue(Result(1)).
Return an internal list whose sole item is Result(2).

The productioPArgumentList ArgumentList, AssignmentExpressiois evaluated as follows:

01 September 2008

Deleted: does not implement the internal
[[Call]] method

Comment [pL36]: We wanted to remove this
possibility but have not done so because this cc
break bridging to VBScript. Cannot afford to do
as VBScript is still used ithe intranet.

- 54 -

. EvaluateArgumentList

. EvaluateAssignmentExpression

. Call GetValue(Result(2)).

. Return an internal list whose length is one greater than the length of Result(1) and whose items are
the items of Result(1), in order, followed at the end by Result(3), which is the last item éwh
list.

A WNPE

11.2.5 Function Expressions
The productioriMemberExpression FunctionExpressioims evaluated as follows:

1. EvaluateFunctionExpression
2. Return Result(1).

11.3 Postfix Expressions
Syntax

PostfixExpression
LeftHandSideExpression
LeftHandSideExm@ssion [no LineTerminatomere] ++
LeftHandSideExpressiofno LineTerminatothere] --

11.3.1 Postfix Increment Operator
The productionPostfixExpression LeftHandSideExpressiofino LineTerminatorhere] ++ is evaluated as
follows:

1. EvaluateLeftHandSideExpression.

2. Call GetValue(Result(1)).

3. If Result@R) instanceofDecimal, then
a. Call the Decimal add method with arguments Result(2) and the decimal value 1m.
b. Call PutValue(Result(1), Result(3&glse).
c. Return Result(1).

4. Call ToNumber(Result(2)).

5. Add the valuel to Result#), using the same rules as for th@perator (see 11.6.3). [Deleted: 3
6. Call PutValue(Result(1), Resyhy, false). [Deleted: 4
7. Return Resulf). [Delotod: 3

11.3.1.1 Usage Subsetautious Restrictions
When a postfix increment operator occurs within an execution context that is subset restricted to the
cautious subset, itsLeftHandSidemust not be a referencéo a property with the attribute value
{[[Writable]]: false} nor to a norexistent property of an object whose [[Extensible]] property has the
valuefalse In these cases Bype Error e xception is thrown. This is accomplished by replacing
step 5 of the above algorithm with the following:

5. Call PutValue(Result(1), Re&(4), true).

11.3.2 Postfix Decrement Operator
The productionPostfixExpression LeftHandSideExpressionno LineTerminatorhere] -- is evaluated as
follows:

1. Evaluate LeftHandSideExpression.

2. Call GetValue(Result(1)).

3. If ResultQ) instanceofDecimal, then
a. Call the Decimal subtract method with arguments Result(2) and the decimal value 1m.
b. Call PutValue(Result(1), Result(3&glse).
c. Return Result(1).

4. Call ToNumber(Result(2)).

5. Subtract the valué from Result#), using the same rules as for th@perator {1.6.3). [Deleted: 3
6. Call Putvalue(Result(1), Resyt, false). [Deleted: 4
7. Return Resulf). [Delotod. 3

01 September 2008

- 55-

11.3.2.1 Usage Subsetautious Restrictions
The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.

11.4 Unary Operators
Syntax

UnaryExpression
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

11.4.1 Thedelete Operator
The productiorJnaryExpression delete UnaryExpressions evaluated as follows:

EvaluateUnaryExpression

If Type(Result(1)) is not Reference, returne.
Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

Call the [[Delete]] method on Result(3), providitigesut(4), false) as the arguments | [Deleted: as the property name to delete

ouprwNhE

Return Result(5).

11.4.1.1 Usage Subsetautious Restrictions

When adelete operator occurs within an execution context that is subset restricted to |the
cautious subset, itdUnaryExpresmn is further limited to being #MemberExpressianin addition,

if the property to be deleted is has the attribufgGonfigurablg]:false}, a TypeError exception

is thrown. This is accomplished by replacing step 5 of the above algorithm witbllidweing:

5. Call the [[Delete]] method on Result(3), providing (Resultt4)e) as the arguments.
11.4.2 Thevoid Operator
The productiorJnaryExpression void UnaryExpressions evaluated as follows:

1. EvaluateUnaryExpression
2. Call GetVvalue(Result(1)).
3. Returnundefined.

11.4.3 The typeof Operator
The productiorlJnaryExpression typeof UnaryExpressions evaluated as follows:

EvaluateUnaryExpression

If Type(Result(1)) is not Reference, go to step 4.

If GetBase(Result(1)) iaull, return"undefined"

Cadl GetValue(Result(1)).

Return a string determined by Type(Result(4)) according to the following table:

agrwNPE

01 September 2008

11.4.4

- 56 -

Type Result
Undefined "undefined"
Null "object”
Boolean "boolean"
Number "number"”
String "string"

Object (native and "object”

doesndt

[[Calll])

Object (native and "function”

implements [[Call]])

Object (host)

Implementatiordependent

Prefix Increment Operator
The productioJnaryExpression ++ UnaryExpressions evaluated as follows:
1.

2.
3.

No oA

Evaluate UnaryExpression.

Call GetValue(Result(1)).

If Result(2)instanceofDecimal, then
a. Call the Decimal add method with arguments Result(2) and the decimal value 1m.
b. Call PutValue(Result(1), Result(3dglse).

c. Return Result(1).

Return Resulff).

11.4.4.1 Usage Subsetautious

11.4.5

11.45.1

11.4.6

Prefix Decrement Operator
The productiorlJnaryExpression --
1.

2.
.

Noar

The same restrictions apply as specified in section 11.3.1.1 for the postfix increpszator.

Call ToNumber(Result(2)).

Restrictions

Evaluate UnaryExpression.

Call GetValue(Result(1)).

If Result(2)instanceoDecimal, then
a. Call the Decimal subtract method wieihguments Result(2) and the decimal value 1m.
b. Call PutValue(Result(1), Result(3dglse).

c. Return Result(3a).

Usage Subsetautious

The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.

Unary + Operator
The unary + operator converts its operand to Nuntiyee.

The productionJnaryExpression + UnaryExpressions evaluated as follows:

Call ToNumber(Result(2)).
Subtract the valué from Result#), using the same rules as for th@perator (see 11.6.3).
Call PutValue(Result(1)Resultf), false).

Restrictions

Evaluate UnaryExpression.
Call GetValue(Result(1)).
If Result(2)instanceofDecimal, then

a. Return Result(2).

Return Resuly).

Call ToNumber(Result(2)).

01 September 2008

UnaryExpressions evaluated as follows:

Deleted: 3

Deleted: 4

N

Deleted: 4

Deleted: 3

Deleted: 4

Deleted: 4

Deleted: 3

-57-

11.4.7 Unary - Operator

The unary- operator converts its operand to Number type and then negates it. Note that ne@ating
produces-0, and negating0 producestO.

The productiorlJnaryExpression - UnaryExpressions evaluated as follows:

1. Evaluate UnaryExpression.

2. Cdl GetValue(Result(1)).

3. If Result(2)instanceoDecimal, then
a. Call the Decimal negate method with argument Result(2).
b. Return Result(3a).

4. Call ToNumber(Result(2)).

5. If Result#) is NaN, returnNaN. ([Deleted: 3
6. Negate Resulf); that is, compute a number with the samagnitude but opposite sign. [Deleted: 3
7. Return Resulf).

,,,,,,,,,,,, [Deleted: 5

11.4.8 Bitwise NOT Operator (~)
The productioJnaryExpression ~ UnaryExpressions evaluated as follows:

EvaluateUnaryExpression

Call GetValue(Result(1)).

Call ToInt32(Result(2)).

Apply bitwise complerant to Result(3). The result is a signedidiRinteger.
Return Result(4).

abrwdPE

11.4.9 Logical NOT Operator (!)
The productiorlJnaryExpression ! UnaryExpressions evaluated as follows:

EvaluateUnaryExpression
Call GetValue(Result(1)).
Call ToBoolean(Result(2)).

If Result(3) istrue, returnfalse.
Returntrue.

arwbhE

11.5 Multiplicative Operators
Syntax

MultiplicativeExpression
UnaryExpression
MultiplicativeExpressiorf UnaryExpression
MultiplicativeExpressiort UnaryExpression
MultiplicativeExpression%UnaryExpression

Semantics

The productionMultiplicativeExpression MultiplicativeExpression @ UnaryExpressiowhere @ stands
for one of the operators in the above definitions, is evaluated as follows:

Evaluate MultiplicativeExpression.
Call GetValue(Result(1)).
Evaluate UnaryExpression.
Call GetValue(Result(3)).
If Result(2)instanceoDecimal and Result(4nstanceofDecimal, then
a. Call the corresponding Decimal method (multiply, divide, remainder) with argumests|tR)
and Resuly).
b. Return Result(5a).
Call ToNumber(Result(2)).

aghrwdE

Deleted: 5

©oNo

Call ToNumber(Result(4)). [
Apply the specified operation (*, /, or %) to Resg)jt@nd Resulf{). See the notes below (11.5.1, |

11.5.2, 11.5.8 (Deleted: 6

9. Return Resulg). | [Deleted: 7

01 September 2008

11.5.1

11.5.2

11.5.3

- 58 -

Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floatingoint multiplication is governed by the rules ofHE 754 doubleprecision
arithmetic:

If either operand iNaN, the result ifNaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Multiplication of an infinity by a zero results iHaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule
already stated above.

Multiplication of an infinity by a finite norzero value results in a signed infinity. The sign is determined
by the rule alreadgtated above.

In the remaining cases, where neither an infinity or NaN is involved, the product is computed and
rounded to the nearest representable value using IEEE 754-tourahrest mode. If the magnitude is
too large to represent, the result is treminfinity of appropriate sign. If the magnitude is too small
to represent, the result is then a zero of appropriate sign. The ECMAScript language requires support
of gradual underflow as defined by IEEE 754.

Applying the / Operator

The / operatorperforms division, producing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECMAScript does not perform integer division. The
operands and result of all division operations are dopbéeision floatingpoint numbers. The result of
division is determined by the specification of IEEE 754 arithmetic:

If either operand idNaN, the result isNaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different sgns.

Division of an infinity by an infinity results ilNaN.

Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated
above.

Division of an infinity by a noreero finite value results in a signed infinitfhe sign is determined by
the rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated
above.

Division of a zero by a zero results NaN; division of zero by any other finitealue results in zero,
with the sign determined by the rule already stated above.

Division of a nonzero finite value by a zero results in a signed infinity. The sign is determined by the
rule already stated above.

In the remaining cases, where neither iafinity, nor a zero, norNaN is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754c-oeadest mode. If
the magnitude is too large to represent, the operation overflows; the result is then an infinity of
appropriate sign. If the magnitude is too small to represent, the operation underflows and the result is
a zero of the appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

Applying the %Operator
The % operator yields the remainder of its operands from an implied division; the left operand is the
dividend and the right operand is the divisor.

NOTE
In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts
floating-point operands.

The result of a floatingoint remainder operation as computed by ¥heperator is not the same as the
Afremainderd operation defined by | EEE 754. The

01 September 2008

11.6
Syntax

-59-

remainder from a rounding division, nattruncating division, and so its behaviour is not analogous to
that of the usual integer remainder operator. Instead the ECMAScript language défomefioating
point operations to behave in a manner analogous to that of the Java integer remainder; dperanay

be compared with the C library function fmod.

The result of a ECMAScript floatingoint remainder operation is determined by the rules of IEEE
arithmetic:

If either operand idNaN, the result isNaN.

The sign of the result equals the signtloé dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the reswtai.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is finite, the resuthessame as the dividend.

In the remaining cases, where neither an infinity, nor a zero,Nat is involved, the floatingpoint

remainder r from a dividend n and a divisor d is defined by the mathematical relatiornr(¢ hq)
where g is an integer &t is negative only if n/d is negative and positive only if n/d is positive, and

whose magnitude is as large as possible without exceeding the magnitude of the true mathematis

quotient of n and d.

Additive Operators

AdditiveExpression
MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

11.6.1

The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The productionAdditiveExpression AdditiveExpressiont MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression.

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetValue(Result(3)).

If Result(2)instanceoDecimal and Result(dinstanceofDecimal, then
a. Apply the Decimal add method to Res@)t@nd Resuly).
b. Return Result(5a).

Call ToPrimitive(Result(2)).

Call ToPrimitive(Result(4)).

gips 0 N =

©oNO

a. Call ToString(Result(6)).
b. Call ToString(Result(7)).
c. Concatenate Result(8a) followed by Result(8b).
d. Return Result(8c).
9. Call ToNumber(Resulg)).
10. Call ToNumber(Resulff)).
11. Apply the addition operation to Res#j(and Resul{{0). See the note below (11.6.3).
12. Return Resulf(1).

NOTE

No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects excep
Date objects handle the absence of a hint as if the hint Number were given; Date objects handle tf

absence of a hint as if the hint String wereesn. Host objects may handle the absence of a hint in some
other manner.

01 September 2008

Deleted: 5

Deleted: 6

Deleted: go to step 12. (Note that thégep
differs from step 3 in the comparison algor
for the relational operators, by using or ins
of and.)

Deleted:

Deleted:

Deleted:

O 00| | o,

Deleted:

O/

Deleted: 10

Deleted: <#>Call ToString(Result(5)J.
<#>Call ToString(Result(6)y.
<#>Concatenate Result(12) followed by
Result(13)f

<#>Return Result(14Y.

- 60 -

11.6.2 The Subtraction Operator (-)

The productionAdditiveExpression. AdditiveExpression MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression.

Call GeWvalue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetValue(Result(3)).

If Result(2)instanceoDecimal and Result(4nstanceofDecimal, then
a. Apply the Decimal subtract method to Result(2) and Re&ult(
b. Return Result(5b).

agrwhE

6. Call ToNumber(Result(2)).

7. Call ToNumber(Result(4)).

8. Apply the subtraction operation to Resg)t@nd Resulf{). See the note below (11.6.3). [Deleted: 5

9. ReturnResul. [Deleted: 6
11.6.3 Applying the Additive Operators (+, -) to Numbers [Deleted: 7

The + operator performs addition when applied to two operasfdsumeric type, producing the sum of
the operands. The operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.
The result of an addition is determined using thies of IEEE 754 doubtlerecision arithmetic:

If either operand idNaN, the result idNaN.

The sum of two infinities of opposite signNaN.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite valug equal to the infinite operand.

The sum of two negative zeros+§€. The sum of two positive zeros, or of two zeros of opposite sign, is
+0.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite $i@n is

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands have
the same sign or have different magnitudes, the sum is computddrocamded to the nearest
representable value using IEEE 754 roun¢éhearest mode. If the magnitude is too large to represent,
the operation overflows and the result is then an infinity of appropriate sign. The ECMAScript
language requires support of gradwnderflow as defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the
difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given
numeric operanda andb, it is always the case that b produces the same resultas(i b) .

11.7 Bitwise Shift Operators
Syntax
ShiftExpression
AdditiveExpression
ShiftExpressior< AdditiveExpression

ShiftExpressior> AdditiveExpression
ShiftExpressior>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)
Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.
The productiorShiftExpression ShiftExpressiork< AdditiveExpressiois evaluated as follos:

1. EvaluateShiftExpression
2. Call GetValue(Result(1)).
3. EvaluateAdditiveExpression
4. Call GetValue(Result(3)).

01 September 2008

-61-

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

©PNoG

11.7.2 The Signed Right Shift Operator (>>)

Performs a sigifilling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The productiorShiftExpression ShiftExpressior> AdditiveExpressiois evaluated as follows:

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Resul(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sigrextending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is a signed 32 bit integer.

9. Return Result(8).

Noh~wNE

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zerdilling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The productiorShiftExpression ShiftExpressior>> AdditiveExpressioms evaluated as follows:

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToUint32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compasalt(6) & Ox1F.

Perform zerefilling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 bit integer.

Return Result(8).

NGO AONE

@

11.8 Relational Operators |
Syntax

RelationalExpression
ShiftExpression
RdationalExpressiorx ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressiomstanceof ShiftExpression
RelationalExpressiom ShiftExpression

RelationalEyressionNoln
ShiftExpression
RelationalExpressionNold ShiftExpression
RelationalExpressionNoln ShiftExpression
RelationalExpressionNolr= ShiftExpression
RelationalExpressionNolr= ShiftExpression
RelationalExpressionNolimstanceof ShiftExpression

01 September 2008

[

Deleted:

114

-62-

NOTE
The 'Noln' variants are needed to avoid confusingitheoperator in a relational expression with thie
operator in afor statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the rfeilations
named by the operator holds between its two operands.

The RelationalExpressionNolproductions are evaluated in the same manner afRéh@tionalExpression
productions except that the contain&elationalExpressionNolns evaluated instead of the comted
RelationalExpression

11.8.1 The Lessthan Operator (<)
The productiorRelationalExpression RelationalExpressior ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

If Result(2)instanceofDecimal and Result(dnstanceofDecimal, then
a. If Decimal.isNaN(Result(2) or Decimal.isNaNResult(4), returnfalse.
b. Call the Decimal compare method with arguments Re&uétid Resuly).
c. If Result(5a) <0, then returrirue, otherwise returrialse.

6. Perform the comparison Result(2) < Result(4). (see 11.8.5)

agrwdE

7. If Resultf) is undefined, returnfalse. Otherwise, return Resufy. [Deleted: 5

11.8.2 The Greater-than Operator (>) [Deleted: 5

The productiorRelationalExpression RdationalExpressiorr> ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.
Call GetValue(Result(1)).
Evaluate ShiftExpression.
Call GetValue(Result(3)).
If Result(2)instanceofDecimal and Result(dnstanceofDecimal, then
a. If Decimal.isNaN(Result(2)or Decimal.isNaN(Result(4yeturnfalse.
b. Call the Decimal compare method widhguments Resulj and Resuly).
c. If Result(5a) > 0, then returmue, otherwise returralse.
6. Perform the comparison Result(4) < Result{@)h LeftFirstequal tofalse. (see 11.8.5).

agrwbheE

7. If Result@) isundefined, returnfalse. Otherwise, return Resufi). [Deleted: 5

11.8.3 The Lessthan-or-equal Operator (<=) [Deleted: 5

The productiorRelationalExpression RelationalExpressior= ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.
Call GetValue(Result(1)).
Evaluate ShiftExpression.
Call GetValue(Result(3)).
If Result(2)instanceoDecimal and Result(4nstanceofDecimal, then
a. If Decimal.isNaN(Result(2)) or Decimal.isNaN(Result(4)) retéatse.
b. Call the Decimal compare method with arguments Re3utifd Resuly).
c. If Result(5a) <= 0, then returmue, otherwise returralse.
6. Perform the comparison Result(4) < Result@)h LeftFirstequal tofalse. (see 11.8.5).

agrpwNE

7. If Result) is true or undefined, returnfalse. Otherwise, returtrue. [Deleted: 5

11.8.4 The Greater-than-or-equal Operator (>=)

The productiorRelationalExpression RelationalExpressior= ShiftExpressions evaluated as follows:
1. Evaluate RelationalExpression.
Call GetValue(Result(1)).

2.
3. Evaluae ShiftExpression.
4. Call GetValue(Result(3)).

01 September 2008

11.8.5

- 63 -

5. If Result(2)instanceofDecimal and Result(4nstanceoDecimal, tren
a. |If Decimal.isNaN(Result(2)) or Decimal.isNaN(Result(4)) retéatse.
b. Call the Decimal compare method with arguments Re3uét(d Resuly).
c. If Result(5a) >= 0, then returtnue, otherwise returrialse.

6. Perform the comparison Result(2) < Result(4). (see 11.8.5).

7. If Result@) is true or undefined, returnfalse. Otherwise, returitrue. |

The Abstract Relational Comparison Algorithm

The omparisonx <y, wherex andy are values, producdsue, false, or undefined (which indicates that
at least one operand MaN). In addition tox andy the algorithm takes a booledlag named_eftFirst as
a parameter. The flag is used to control the oidevhich operations with potentially visible si@dfects
are performed upomx andy. It is necessary because ECMAScript specifies left to right evaluatio
expressions. The default value loéftFirstis true and indicates that the paramenter corresponds to g
expression that occurs to the left of th@arameters corresponding expressibdnLeftFirst is false, the
reverse is the case and operations must be performedyupsiorex. Such a comparison is performed g
follows:

1. If theLeftFirstflag is true, then
a. Letpxbe the result of callingoPrimitive(x, hint Number).

[Deleted:

of

Deleted: Call

b. Letpybe the result of callingoPrimitive(y, hint Number).
2. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Letpybe the result of calling ToPrimitivg(hint Number).
b. Letpxbe the result of calling ToPrimitive(hint Number).
3. If Type(px) is Stringlod Type(py) is String, go to step 1§Note that this step differs from step 7 in
the algorithm for the addition operaterin usingandinstead ofor.)
4.)Jetnxbe the result of callingoNumberpx). Because opx andpy are primitive values evaluation
order is not important.
Let ny be the result of callinfoNumbegpy).
If nxis NaN, returnundefined.
If nyis NaN, returnundefined.

Deleted: Call

Comment [pL37]: See Deviations doc item 2.

Deleted:

Result(1)

Deleted:

and

Deleted:

Result(2)

Deleted:

Call

Deleted:

Result(1)

Deleted:

Call ToNumber

NOTE

[
[
(
/A
[
[
(
(
[
If nxandny are the same number value, retfiatse.) [Deleted: Result(?)

9. If pxis +0andyyis —0, returnfalse. (Deleted: Result(4)

10. If nxis —0 andnyis +0, returnfalse [Deleted: Result(5)

11. If nxis +eo, returnfalse. [Deleted: Result)

12. If ny,is +o, returntrue.

13. If ny,is —oo, returnfalse. (Deleted: Resul(s)

14. If nxis —o, returntrue. [Deleted: Result(4)

15. If the mathematical value gfx s less than the mathematical valuengfd note that these [Deleted: Result(5)
mathematical values are both finite and not both @eeturntrue. Otherwise, returmalse.

16. If pyis a prefix ofpx, returnfalse. (A string valuep is a prefix of string valug if g can be the result | [Deleted: Resulti4
of concatenating and some other string Note that any string is a prefix of itself, because r may\be [Deleted: Result(5)
the empty string.) (Deleted: Result(a)

17. If pxis a prefix ofpy, returntrue. J (" Deletes: Resu®)

18. Let k be the smallestonnegative integer such that the character at positieithin ,p,x,qsﬁd,l,f,f,e[en,t, ,,,,,,, .
from the character at positidawithin py. (There must be suchka for neither string is a prefix of th [Deleted: Result(5)
other.) [Deleted: Result(4)

19. Let m be the integer that is the code poualue for the character at positi&rwithin px. - ‘ [Deleted: Result(@)

20. Let n be the integer that is the code point value for the character at positithin py. - .

21. If m< n, returntrue. Otherwise, returtialse. [Deleted: Result(5)

Deleted: Result(2

The comparison of strings uses a simigeicographic ordering on sequences of code point value values. [- <

There is no attempt to use the more complex, semantically oriented definitions of character or strin[Deleted: Result(1)

equality and collating order defined in the Unicode specification. Therefore stringsathatanonically [Deleted: Result(1)

equal according to the Unicode standard could test as unequal. In effect this algorithm assumes th{ Deleted: Result(2)
both strings are already in normalised form. [Deleted: Result(1)
[Deleted: Result(2)
[Deleted: Result(1)
[Deleted: Result(2)

01 September 2008

- 64 -

11.8.6 The instanceof operator

The productionRelationalExpressianRelationalExpressionsta nceof ShiftExpressions evaluated
as follows:

EvaluateRelationalExpression

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwTeypeError exception.

If Result(4) does not have a [[HasInstaf] method, throw &ypeError exception.
Call the [[HasInstance]] method of Result(4) with parameter Result(2).

Return Result(7).

ONoGOrwWNE

11.8.7 The in operator
The productiorRelationalExpression RelationalExpressioin ShiftExpressions evaluated as follows:

EvaluateRelationalExpression

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwTaypeError exception.

Call ToString(Result(2)).

Call the [[HasProperty]] method of Result(4) with paramétesult(6).
Return Result(7).

ONoGOrWONE

11.9 Equality Operators
Syntax

EqualityExpression
RelationalExpression
EqualityExpressior= RelationalExpression
EqualityExpressiot= RelationalExpression
EqualityExpressior== RelationalExpression
EqualityExpressiot== RelationalExpression

EqualityExpressionNoln
RelationalExpressionNoln
EqualityExpressionNols= RelationalExpressionNoln
EqualityExpressionNoli+ RelationalExpressionNoln
EqualityExpressionNolr== RelationalExpressionNoln
EqualityExpressionNoltr= RelatonalExpressionNoln

Semantics

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The EqualityExpressionNolrproductions are evaluated in the samanner as th&qualityExpression
productions except that the containgdualityExpressionNolandRelationalExpressionNolare evaluated
instead of the containequalityExpressiormndRelationalExpressionrespectively.

11.9.1 The Equals Operator (==

The production EqualityExpression: EqualityExpression== RelationalExpressionis evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) Result(2). (see 11.9.3).

arwbpE

01 September 2008

- 65 -

6. Return Result(5).

11.9.2 The Doesnot-equals Operator (I=)

The production EqualityExpression: EqualityExpression!= RelationalExpressionis evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRdationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
If Result(5) istrue, returnfalse. Otherwise, returirue.

cuhrwhpE

11.9.3 The Abstract Equality Comparison Algorithm

The comparisonx ==y, wherex and y are values, producesrue or false. Such a comparison is
performed as follows:

If Type(x) is different from Type{), go to step 14.

If Type(x) is Undefined, returtirue.

If Type(x) is Null, returntrue.

If x instanceofDecimaland yinstanceofDecimal then
a. |If Decimal.isNaN(x) or Decimal.isNaN(y) retuffalse.
b. Return the result of Decimal.compareTo(X, y) ==

pONPE

If Type(x) is not Number, gotostep2. ([Deleted: 11

If yis NaN, returnfalse.
. If xis the same number value gsreturntrue.

9. If xis+0andy is -0, returntrue.

10. If xis—0 andy is +0, returntrue.

11. Returnfalse.

12. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, fiadgan

13. If Type(X) is Boolean, returtrue if x andy are bothtrue or bothfalse. Otherwise, returfialse.

5.
6. If xis NaN, returnfalse.
7
8

14. Returntrue if x andy refer to the same objgdDtherwise, returfialse. | Deleted: or if they refer to objects joined
15. If xis null andy is undefined, returntrue. each other (see 13.1.2)

16. If xis undefined andy is null, returntrue.
17. If Type(x) is Number and Typey) is String, |
return the result of the comparisar= ToNumbery).
18. If Type(x) is String and Typs/) is Number,
return the result of the comparis@oNumberg) ==y.
19. If Type(x) is Boolean, return the result of the comparison ToNum@er£ y.
20. If Type(y) is Boolean, return the result of the comparigser= ToNumbery).
21. If Type(x) is either String or Number and Typg({s Object,
return the result of the comparisarr= ToPrimitive(y).
22. If Type(x) is Object and Typej is either String or Number,
return the result of the comparison ToPrimitixe€=y.
23. Returnfalse.
NOTE
Given the above definition of equality:

String comparison cabe forced by!" +a==""+b
Numeric comparison can be forced tay:- 0 == - 0.
Boolean comparison can be forced bg:== b

The equality operators maintain the following invariants:
Al= Bis equivalent td(A ==B).

A== Bis equivalent td == A, except in the order of evaluation AfandB.

01 September 2008

- 66 -

The equality operator is not always transitive. For example, there might be two distinct String objects,
each representing the same string value; each String object would be considered equal to the string
value by the== operator, but the two String objects would not be equal to each other.

Comparison of strings uses a simple equality test on sequences of code point value values. There is no
attempt to use the more complex, semantically oriented definitioshasficter or string equality and
collating order defined in the Unicode 2.0 specification. Therefore strings that are canonically equal
according to the Unicode standard could test as unequal. In effect this algorithm assumes that both
strings are alreadyn normalised form.

11.9.4 The Strict Equals Operator (===
The productionEqualityExpression: EqualityExpression=== RelationalExpressionis evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
Return Result(5).

oakrwbpE

11.9.5 The Strict Doesnot-equal Operator (!==)

The productionEqualityExpression: EqualityExpression!==RelationalExpressions evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
If Result(5) istrue, returnfalse. Otherwise, returirue.

orwNE

11.9.6 The Strict Equality Comparison Algorithm

The comparisonx ===y, wherex and y are values, producesue or false. Such a comparison is
performed as follows:

If Type(X) is different from Typey), returnfalse.

If Type(x) is Undefined, returtrue.

If Type(x) is Null, returntrue.

If Type(x) is not Number, go to step 11.

If X is NaN, returnfalse.

If yis NaN, returnfalse.

If xis the same number value gsreturntrue.

If xis +0 andy is —0, returntrue.

. If xis —0 andy is +0, returntrue.

0. Returnfalse.

1. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions); otherwise, fadgsen

12. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse; otherwise returnfalse.
13. If x instnaceof Decimal, then

a. |If Decimal.isNaN(x) or Decimal.isNaN(y) then retufalse.

b. Return the result of Decimal.compare(x, y) == 0.

R B © 0N O RERD -

14. Returntrue if x andy refer to the same objedDtherwise, returtialse.

Deleted: or if they refer to objects joined to eacl
other (sed 3.1.2)

11.10 Binary Bitwise Operators
Syntax

BitwiseANDEXxpression
EqualityExpression
BitwiseANDEXxpressio& EqualityExpression

01 September 2008

- 67 -

BitwiseANDEXxpressionNoIn
EqualityExpressionNoln
BitwiseANDEXxpressionNol& EqualityExpressionNoln

BitwiseXOREXxpression
BitwiseANDEXxpression
Bitwise XORExpressioh BitwiseANDEXxpression

BitwiseXORExpressionNotn
BitwiseANDExpressionNoln
BitwiseXORExpressionNomBitwiseANDExpressionNoln

BitwiseORExpression
BitwiseXORExpression
BitwiseORExpressioh BitwiseXOREXxpression

BitwiseORExpressionNotn
BitwiseXORExpressionNoln
BitwiseORExpressionNoln BitwiseXORExpressionNoln

Semantics

The productionA: A @ B where @ is one of the bitwise operators in the productions above, is evaluatec
as follows:

EvaluateA.

Call GetValue(Result(1)).

EvaluateB.

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToInt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

ONoOAWNE

11.11 Binary Logical Operators
Syntax
LogicalANDEXxpression

BitwiseOREXxpression
LogicalANDEXxpressio&& BitwiseORExpression

LogicalANDExpressionNoln
BitwiseORExpressionNoln
LogicalANDExpressionNol&& BitwiseORExpressionNoln

LogicalORExpression
LogicalANDEXxpression
LogicalORExpressiofj LogicalANDExpression

LogicalORExpressionNoln
LogicalANDExpressionNoln
LogicalORExpressionNoljj LogicalANDExpressionNoln
Semantics

The productionLogical ANDExpression LogicalANDExpressior&& BitwiseORExpressiors evaluated as
follows:

1. EvaluateLogical ANDExpression
2. Call GetValue(Result(1)).

01 September 2008

- 68 -

Call ToBoolean(Result(2)).

If Result(3) isfalse, return Result(2).
EvaluateBitwiseORExpressian

Call GetValue(Result(5)).

Return Result(6).

Nooksw

The productionLogicalORExpression LogicalORExpession|| LogicalANDExpressioris evaluated as
follows:

EvaluateLogical ORExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, return Result(2).
EvaluateLogical ANDExpression
Call GetValue(Result(5)).

Return Result(6).

NookwbE

The LogicalANDExpressionNolrand LogicalORExpressionNolproductions are evaluated in the same
manner as the.ogicalANDExpressiorand LogicalORExpressiorproductions except that the contained
LogicalANDExpressionNoln BitwiseORExpressionNolnand LogicalOREpressionNoln are evaluated
instead of the contained.ogical ANDExpression BitwiseORExpressionand LogicalORExpression
respectively.

NOTE
The value produced by && or || operator is not necessarily of type Boolean. The value produced will
always be thealue of one of the two operand expressions.

11.12 Conditional Operator (?:)
Syntax

ConditionalExpression
Logical ORExpression
LogicalORExpressior? AssignmentExpressionAssignmentExpression

ConditionalExpressionNoln
LogicalORExpressionNoln
LogicalORExpressionNoln? AssignmentExpressionAssignmentExpressionNoln

Semantics

The productiorConditionalExpression LogicalORExpressiof? AssignmentExpressian
AssignmentExpressias evaluated as follows:

EvaluateLogical ORExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 8.

Evaluate the firsAssignmentExpression
Call GetValue(Result(5)).

Return Result(6).

Evaluate the seconéissignmentExpression
Call GetValue(Result(8)).

0. Return Result(9).

PBoo~Nooh~wdE

The ConditionalExpressionNolproduction is evaluated in the same manner asCitveditionalExpression
production except that the contained.ogicalORExpressionNoln AssignmentExpressionand
AssignmentExpressionNolnare evaluated instead of the containddogicalORExpression first
AssignmentExpressicand secondssignmentExpressiomespectively.

NOTE

01 September 2008

- 69 -

The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java,
which each allow the second subexpression to be ameEgn but restrict the third expression to be a
ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment
expression to be governed by either arm of a conditional and to eliminate the confusing and fairly usele:
case of a comma expression as the centre expression.

11.13 Assignment Operators
Syntax

AssignmentExpression
ConditionalExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoin
ConditionalExpressionNoln
LeftHand®leExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperatarone of
= *= /= %= += -= <<= >>= >>>= &= A= =

Semantics

The AssignmentExpressionNoproductions are evaluated in the same manner adsbignmentExpression
productions except that the contain€@bnditionalExpressionNoln and AssignmentExpressionNaie
evaluated instead of the contain€dnditionalExpressiomnd AssignmentExpressipmespectively.

11.13.1 Simple Assignment (=)

The productionAssignmentExmssion: LeftHandSideExpression AssignmentExpressiois evaluated
as follows:

EvaluatelLeftHandSideExpression
EvaluateAssignmentExpression

Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3plse).
Return Result(3).

agrwbE

11.13.1.1 Usage Subsetautious Restrictions

When a simple assignmentoccurs within an execution context that is subset restricted to |the
cautious subset, itsLeftHandSidemust not evaluate to a Reference to a property of the Global

Object. If it does aReferenceError exception is thrown. The.eftHandSidealso may not be a
referenceto a property with the attribute value {[[Writablef@ise} nor to a norexistent property of
an object whose [[Extensible]] property has the vdhise. In these casesBypeError excepton is

thrown. This is accomplished by replacing step 5 of the above algorithm with the following:

5. Call PutValue(Result(1), Result(3yue).

11.13.2 Compound Assignment (op=)

The productionAssignmentExpressionLeftHandSideExpression @ AssignmentExpressipmwhere @
represents one of the operators indicated above, is evaluated as follows:

EvaluateLeftHandSideExpression

Call GetValue(Result(1)).

EvaluateAssignmentExpression

Call GetValue(Result(3)).

Apply operator @ to Result(2) anceBult(4).

Call PutvValue(Result(1), Result(5klse). |
Return Result(5).

NogorwNE

11.13.2.1 Usage Subsetautious Restrictions
The same restrictions apply as specified in 11.13.1.1 except that the algorithm change is:

01 September 2008

-70-

6. Call PutValue(Result(1), Result(5yue).

11.14 Comma Operator (,)
Syntax

Expression
AssignmentExpression
Expression AssignmentExpression

ExpressionNoln
AssignmentExpressionNoln
ExpressionNoln AssignmentExpressionNoln

Semantics
The productiorExpression Expression AssignmentExpressids evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression
Call GetValue(Result(3)).
Return Result(4).

agrwNE

The ExpressionNolmproduction is evaluated in the same manner asEttessionproduction except that
the mntained ExpressionNolnand AssignmentExpressionNolare evaluated instead of the contained
Expressiorand AssignmentExpressipmespectively.

01 September 2008

12 Statements
Syntax

Statement
SutStatement
ConstantStatement
VariableStatement
FunctionDeclaration

SutStatement
Block

IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement

Semantics

A Statementanbe part of aLabelledStatementwhich itself can be part of bhabelledStatementand so on.

- 71 -

The |l abels introduced this
semantics of individual statements.LAbelledStatemerttas no semantic meaning other than the introduction

of a label to alabel set The label set of afterationStatemenbr a SwitchStatemeninitially contains the
single elemenempty. The label set of any other statement is initially empty.

12.1 Block
Syntax
Block:

{ StatementLig; }

StatementList
Statement
StatementList Statement

Semantics

The productiorBlock: { } is evaluated as follows:

1. Return formal, empty, empty).

way

The productiorBlock: { StatementLis} is evaluated as follows:

1. Establish a nevexical lock execution context using any contextually supplied block parameters

2. EvaluateStatementListising thenew execution context

3. Exit the execution context established in step 1, restoring the previous execution context

4. Return Resul).

NOTE 1

Note that if thee are no contextually supplied block parameters and&sthgementListoes not contain any|
ConstanStatementor FunctionDeclaration statements the creation of a new execution context may

skipped.
NOTE2

01 September 2008

be

[

Deleted: VariableStatement

Comment [pL38]: Note this means that

[

Vari abl eStatements -ca
bl ockso. This is a ch
Deleted: 1

-72 -

No matter how control leaves tleenbedded Block, whether normally or by some form of abrupt completion
or exception, th@xecution contexis always restored to its former state.

The productiorStatementList Statements evaluated as follows:

1. EvaluateStatement

2. If an exception waghrown, return throw, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were thrown.)

3. Return Result(1).

The productiorStatementList StatementList Statemeistevaluated as follows:

1. EvaluateStatementList

2. If Result(1) is arabrupt completion, return Result(1).

3. EvaluateStatement

4. If an exception was thrown, returthtow, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were thrown.)

If Result(3).value impty, letV = Result(1).value, otherweslet V = Result(3).value.

Return (Result(3).typey, Result(3).target).

oo

1211 Usage Subset cautious Restrictions

A VariableStatementvithin an execution context that is subset restricted tocthgious subset, may
not occur as theStatementLisbf a Block The occurrence of ¥ariableStatemenin such a contexmust
be treated as a syntax error.

12.2 Variable statement
Syntax

VariableStatement
var VariableDeclarationList

VariableDeclarationList
VariableDeclaration
VariableDeclarationList VariableDeclaration

VariableDeclarationListNoln
VariableDeclarationNoln
VariableDeclarationListNoln VariableDeclarationNoln

VariableDeclaration:
Identifier Initialiser,y

VariableDeclarationNoln
Identifier InitialiserNoln,

Initialiser :
= AssignnentExpression

InitialiserNoln :
= AssignmentExpressionNoln

Description

If the variable statement occurs insid&anctionDeclaration the variables are defined with functitocal
scope in that function, as described in s10.1.3. Otherwise, they are defithedlobal scope (that is, they
are created as members of the global object, as described in 10.1.3) using property attfibutese]]:

true, [[Enumerable]]:true, [[Configurablg]: false}. Variables are created when the execution scope is [Deleted: DontDelete

entered. A Block does not define a new execution scoper variables Only Program and
FunctionDeclarationproduce a new scop®r variables Variables are initialised taindefined when
created. A variale with an Initialiser is assigned the value of itAssignmentExpressiowhen the
VariableStatemenis executed, not when the variable is created.

01 September 2008

-73-

Semantics

The productiorvariableStatementvar VariableDeclarationList is evaluated as follows:

1. EvaluateVariableDeclarationList

2. Return formal, empty, empty).

The productiorvariableDeclarationList VariableDeclarationis evaluated as follows:

1. EvaluateVariableDeclaration

The productionVariableDeclarationList: VariableDeclarationList, VariableDeclarationis evaluated as
follows:

1. EvaluateVariableDeclarationList
2. EvaluateVariableDeclaration

The productiorvariableDeclaration: Identifieris evaluated as follows:

1. Return a string value containing the same sequence of characters asdentifer.

The productiorVariableDeclaration: Identifier Initialiseris evaluated as follows:

Evaluateldentifier as described in 11.1.2.

Evaluatelnitialiser.

Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3prlse).

Return a string value containing the same sequence of characters asdentifer.

aghrwdE

The productiorinitialiser : = AssignmentExpressids evaluated as follows:
1. EvaluateAssignmentExpression
2. Return Result(1).

The VariableDeclarationListNoln VariableDeclarationNoln and InitialiserNoln productions are evaluated
in the same manner as thariableDeclarationList VariableDeclarationand Initialiser productions except
that the contained VariableDeclarationListNoln VariableDeclarationNoln InitialiserNoln and
AssignmentExpressionNolnare evaluated instead of the containeWariableDeclarationList
VariableDeclaration Initialiser and AssignmentExpressipnespectively.

12.3 Empty Statement
Syntax

EmptyStatement
Semantics
The productiorEmptyStatement; is evaluated as follows:

1. Return formal, empty, empty).

12.4 Expression Statement
Syntax
ExpressionStatement

[lookaheadz {{, function 11 Expression

Note that anExpressionStatemerdannot start with an opening curly brace because that might make it
ambiguous with aBlock Also, anExpressionStatememannot start with théunction keyword because
that might make it ambiguous withFanctionDeclaration

Semantics

The productiorExpressionStatemen{lookaheadz {{, function }1 Expression is evaluated as follows:

01 September 2008

- 74 -

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return formal, Result(2),empty).

12.5 Theif Statement
Syntax

IfStatement
if (Expression SulStatementelse SulStatement
if (Expressiorn) SulStatement

Each else for which the choice of associatdéfl is ambiguous shall be associated with the nearest
possibleif that would otherwise have no correspondéige .

Semantics
‘ The productionfStatement if (Expression SulStatemenelse SulStatements evaluated as flows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 7.
Evaluate the firsSulStatement
Return Result(5).

Evaluate the secon8lutStatement
Return Result(7).

ONoGarwNE

‘ The productionfStatement if (Expression) SutStatements evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return formal, empty, empty).
EvaluateSutStatement

Return Result(5).

oarwNE

12.6 lteration Statements

An iteraion statement consists of leeader (which consists of a keyword and a parenthesised control
construct) and &ody(which consists of &tatement

Syntax

IterationStatement
do SulStatementwhile (Expressior);
while (Expressior) SulStatement
for (ExpressionNolgy; Expressiog,; Expressiog,) SulStatement
for (var VariableDeclarationListNoln Expressiog,; Expressiog,) SulStatement
for (LeftHandSideExpressian Expressior) SutStatement
for (var VariableDeclarationNolrin Expressior) SulStatement

12.6.1 Thedo-while Statement
‘ The productiordo SulStatementvhile (Expression); is evaluated as follows:

Let V = empty.

EvaluateSulStatement

If Result(2).value is nogémpty, letV = Result(2).value

If Result(2).type icontinue and Result(2).target is in the current label set, go to step 7.

If Result(2).type isreak and Result(2).target is in the current label set, retnomfal, V, empty).
If Result(2) is an abrupt completion, return Result(2).

EvaluateExpression

Call GetVdue(Result(7)).

oONoOG~WONE

01 September 2008

- 75-

9. Call ToBoolean(Result(8)).
10.1f Result(9) istrue, go to step 2.
11.Return formal, V, empty);

12.6.2 The while statement
The productiorterationStatement while (Expression SulStatements evaluated as follows:

LetV = empty.

EvaluateExpressia.

Call GetValue(Result(2)).

Call ToBoolean(Result(3)).

If Result(4) isfalse, return formal, V, empty).

EvaluateSulStatement |
If Result(6).value is noémpty, letV = Result(6).value.

If Result(6).type icontinue and Result(6).target is in the cant label set, go to 2.

If Result(6).type isreak and Result(6).target is in the current label set, retnomfal, V, empty).
10 If Result(6) is an abrupt completion, return Result(6).

11.Go to step 2.

CoNDURENE

12.6.3 The for Statement

The production IterationStatement: for (ExpressionNolg,: ; Expressiop, ; Expressiogy)
SulStatements evaluated as follows:

If ExpressionNoljis not present, go to step4. [Deleted: the firstExpression

EvaluateExpressionNoln

Call GetValue(Result(2)). (This value is not dse

LetV = empty.

If the first Expressions not present, go to step 10.

Evaluate the firsExpressio.

Call GetValue(Result(6)).

Call ToBoolean(Result(7)).

If Result(8) isfalse, go to step 19.

10.EvaluateSutStatement |
11.1f Result(10).value is noémpty, letV = Result(10).value

12.1f Result(10).type idreak and Result(10).target is in the current label set, go to step 19.
13.1f Result(10).type isontinue and Result(10).target is in the current label set, go to step 15.
14.1f Result(10) is an abrupt completioreturn Result(10).

15.1f the secondExpressions not present, go to step 5.

16.Evaluate the seconixpressio.

17.Call GetValue(Result(16). (This value is not used.)

18.Go to step 5.

19.Return flormal, V, empty).

CONOURWNE

The production IterationStatement: for (var VariableDedarationListNoln ; Expressiogy ;
Expressiop,) SulStatements evaluated as follows:

EvaluateVariableDeclarationListNoln

Let V = empty.

If the first Expressionis not present, go to step 8.
Evaluate the firsExpression

Call GetValue(Result(4)).

Call ToBoolean(Result(5)).

If Result(6) isfalse, go to stegl?7. ‘ [Deleted: 14
EvaluateSulStatement

If Result(8).value is noémpty, let V = Result(8).value.

10 If Result(8).type ishreak and Result(8).target is in the current label set, go to step 17.

11.1f Result(8).type iscontinue and Result(8).target is in the current label set, go to step 13.

12.1f Result(8) is an abrupt completion, return Result(8).

13.If the secondExpressions not present, go to step 3.

CONDURENE

01 September 2008

-76-

14.Evaluate the seconfixpression

15.Call GetValue(Result(14)). (Thisalue is not used.)
16.Go to step 3.

17.Return formal, V, empty).

12.6.4 Thefor -in Statement

The productioniterationStatement for (LeftHandSideExpressioim Expression) SulStatemenis
evaluated as follows:

. Evaluate theéexpression

. Call GetValue(Result(1)).

. If Result(2) isnull or undefined, return formal, V, empty).
. Call ToObject(Result(2)).

LetV = empty.

Deleted: t hat doesndt have

Deleted: 14
Deleted:

ourwNP

Deleted:
Deleted:
Deleted:

such property,gotost¢gyp.
. Evaluate thd_eftHandSideExpressionit may be evaluated repeatedly).

. Call PutValue(Resulf), Resultf), false).

. EvaluateSulStatement

10.1f Result().value is noempty, letV = Resultf).value.

11.1f ResultP).type isbreak and Resul).target is in the current label set, go to stép
12.1f Result().type iscontinue and Resulff).target is in the current label set, go to gfep

© 0~

Deleted:

||| |u|o

Deleted:

Deleted: 14

14.Go to sepb. Deleted:

15.Return pormal, V, empty).

Deleted:

The production lterationStatement: for (var VariableDeclarationNoln in Expression) Deleted:

SulStatements evaluated as follows:

Deleted:

Deleted:

[
[
(
(
(
[Deleted:
[
[
[
(
[

. EvaluateVariableDeclarationNoln
. EvaluateExpression

(
(
(
(
(
(
(
(
(
. Call GetValue(Result(2)). % Deleted: 4
(
(
(
(
(
(
(
(

|| ||

. If Result(3) isnull or undefined, return formal, V, empty). Deleted: t hat doesndt have
. Call ToObject(Result(3)).
Let V = empty.

Deleted: 15

NouAWNE

Deleted:

Deleted:

8. Evaluate Result(1) as if it were an Identifier; sep 7 from the previous algorith(ges, it may be
evaluated repeatedly).

9. Call PutValue(Resulfl), Result]), false).

10.EvaluateSulStatement

Deleted:

Deleted:
Deleted:

0
7
6
Deleted: 9
9
9
9

Deleted:

Deleted: 15

15.Go to stepy.

16 Ret [V er ¢ Deleted: 9
.Return formal, V, em .

d pty) Deleted: 9
IThe mechanics of enumerating the properties (fteép the first algorithm, steyy in the second) is Deleted: 6
implementation dependent. The order of enumeration is defined by the dlBiepertiesof the object Deleted: 8
being enumerated may be deleted during enumeration. If a property that has not yet been visited duri -
enumeration is deleted, then it will not be visited. If new properties are added to the object bein[Deleted: 8
enumerated during enumeration, thaevheadded properties are not guaranteed to be visited in the active [Deleted: 6
enumeration. [Deleted: 5

Enumerating the properties of an object includes enumerating properties of its prototype, and tr{ Deleted: 6
prototype of the prototype, and so on, recursively; but a property of atppetés not enumerated if it is Qe[S e G g
ishadowedo because some previous object in the enumeration order but there were too many issues wit

existing implementationthat optimize the representatio
arrays.

01 September 2008

- 77 -

12.6.4.1 Usage Subsetautious Restrictions

The same restrictianapply as specified in section 11.13.1.1 except that theritthgo change for the
first algorithm is:

7. Call PutValue(Result(6), Result(5yue).
The change for the second algorithm is:
8. Call PutValue(Result(6), Result(Syue)

12.7 The continue Statement
Syntax

ContinueStatement
continue [noLineTerminatothere] ldentifieryy ;
Semantics
A program is considered syntactically incorrect if either of the following are true:

The program contains eontinue statement without the option&dentifier, which is not nested, directly
or indirectly (but not crossing functidmoundaries), within afterationStatement

The program contains @ontinue statement with the optionadlentifier, whereldentifier does not appear
in the label set of an enclosing (but not crossing function bounddtezajionStatement

A ContinueStatmentwithout anldentifieris evaluated as follows:

1. Return €ontinue, empty, empty).

A ContinueStatementith the optionaldentifier is evaluated as follows:

1. Return €ontinue, empty, Identifier).

12.8 The break Statement
Syntax

BreakStatement
break [noLineTerminatothere] Identifieryy ;
Semantics
A program is considered syntactically incorrect if either of the following are true:

The program contains lareak statement without the option&dientifier, which is not nested, directly or
indirectly (but notcrossing function boundaries), within #erationStatemenor a SwitchStatement

The program contains lareak statement with the optionadientifier, whereldentifier does not appear in
the label set of an enclosing (but not crossing function bounda8tasg¢ment

A BreakStatemenwithout anldentifier is evaluated as follows:
1. Return preak, empty, empty).

A BreakStatemenwith anldentifieris evaluated as follows:

1. Return preak, empty, ldentifier).

12.9 Thereturn Statement
Syntax

ReturnStatement
return [no LineTerminatohere] EXpI’eSSiOBm)

Semantics

01 September 2008

-78-

An ECMAScript program is considered syntactically incorrect if it containstarn statement that is not
within a FunctionBody A return statement causes a function to cease execution and retalnato the
caller. If Expressionis omitted, the return value isndefined. Otherwise, the return value is the value of
Expression

The productiorReturnStatementreturn [no LineTerminatorhere] Expressiogy; is evaluated as:

If the Expressions notpresent, returnréturn, undefined, empty).
EvaluateExpression

Call GetValue(Result(2)).

Return ¢eturn, Result(3),empty).

tall e

12.10 The with Statement
Syntax
WithStatement
‘ with (Expressior) SutStatement
Description

The with statement adds a computetject to the front of the scope chain of the current execution
context, then executes a statement with this augmented scope chain, then restores the scope chain.

Semantics

‘ The productiorWithStatement with (Expression) SulStatements evaluated as fdws:

1. EvaluateExpression

2. Call GetValue(Result(1)).

3. Call ToObject(Result(2)).

4. Add Result(3) to the front of the scope chain.

5. EvaluateSulStatementising the augmented scope chain from step 4.

6. Let C be Result(5). If an exception was thrown in step 5ddie throw, V, empty), whereV is the
exception. (Execution now proceeds as if no exception were thrown.)

7. Remove Result(3) from the front of the scope chain.

8. ReturnC.

NOTE

| No matter how control leaves the embeddediStatement’, whether normally or Ispme form of abrupt
completion or exception, the scope chain is always restored to its former state.

12.10.1 Usage Subsetautious Restrictions
An execution context that is subset restricted to teutious subset, may not execute a
WithStatementThe occurence of aWithStatemenin such a context should be treated as a syntax error.
12.11 The switch Statement
Syntax

SwitchStatement
switch (Expressior) CaseBlock

CaseBlock
{ CaseClauseg }
{ CaseClausgg; DefaultClause CaseClausgs

CaseClauses
CaseClause
CaseClauses CaseClause

CaseClause
case Expression StatementLig;

01 September 2008

-79-

DefaultClause
default : StatementLig;

Semantics
The productiorSwitchStatementswitch (Expressiorn) CaseBlocks evaluated as follows:

1. EvaluateExpression

2. Call GeWvalue(Result(1)).

3. EvaluateCaseBlockpassing it Result(2) as a parameter.

4. If Result(3).type is break and Result(3).target is in the current label set, retunorrhal,
Result(3).valueempty).

5. Return Result(3).

The production CaseBlocK :CaseClausgg } is given an input parameteénput, and is evaluated as follows:

. LetV=-empty.

. Let Abe the list of CaseClause items in source text order.

. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 16.
. EvaluateC.

. If inputis not equal to Result(4) as defined by te operator, then go to step 3.

. If C does not have a StatementList, then go to step 10.

. EvaluateC6s St at emeRhetherssult. and | et

. If Ris an abrupt completion, then retd®n

. LetV=Ruvalue.

10. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 16.
11. If C does not have a StatementList, then go to step 10.

12. EvaluateC6 s St at e meRbetherssult. and | et

13. If Rvalue is noempty, then letV = Rvalue.

14. If Ris an abrupt completion, then retuRtype,V, Rtarget).

15. Go to step 10.

16. Return formal, V, empty).

The production CaseBlocK : CaseClausgg DefaultClause CaseClaugg$ is given an input parameténput, and
is evaluated as follows:

1. LetV=empty.

2. Let Abe the list of CaseClause items in the first CaseClauses, in source text order.
3. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 11.
4. EvaluateC.

5. If inputis not equal to Result(4) as defined by the operator, then go to step 3.

6

7

8

9

O©CoO~NOOUDWNE

. If C does not have a StatementList, then go to step 20.
. EvaluateC6s St at e meRHbethérssult. and | et
. If Ris an abrupt completion, then reti®n
. LetV=Ruvalue.
10. Go to step 20.
11. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
12. Let C be the next CaseClauseBnlf there is no such CaseClause, then go to step 26.
13. EvaluateC.
14. If inputis na equal to Result(13) as defined by the operator, then go to step 12.
15. If C does not have a StatementList, then go to step 31.
16. EvaluateCb s St at e meRbetherssult. and | et
17. If Ris an abrupt completion, then retuRn
18. LetV =R.value.
19. Go to step 31.
20. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 26.
21. If Cdoes not have a StatementList, then go to step 20.
22. EvaluateC6 s St at e meRbethérssult. and | et
23. If Rvalue isnotempty, then letV = R.value.
24. If Ris an abrupt completion, then retuRt¢pe,V, Rtarget).
25. Go to step 20.

01 September 2008

12.12 Labelled Statements

Syntax

LabelledStatement
Identifier: Statement

12.13 The throw statement

Syntax

- 80 -

26. If the DefaultClause does not have a StatementList, then go to step 30.

27.Eval uate the Default CRbethesresdls St atementlList and | et
28. If Rvalue is noempty, then letV = R.value.

29. If Ris an abrupt completion, then retuftype,V, Rtarget).

30. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
31. Let C be the next CaseClauseBnlf there is no such CaseClause, then go to step 37.
32. If Cdoes not have a StatementList, then go to step 31.

33. EvaluateC6 s St at e meRbethérssult. and | et

34. If Rvalue is noempty, then letV = R.value.

35. If Ris an abrupt completion, then retuft¢pe,V, Rtarget).

36. Go to step 31.

. Return ormal, V, empty).

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return Result(2).

NOTE

Evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Express
and returns the value, which the CaseBlock algorithm uses to determine which StatementList to ste
executing.

Semantics

A Statementmay be prefixed by a label. Labelled statements are only used in conjunction with labelled
break andcontinue statements. ECMAScript has goto statement.

An ECMAScript program is considered syntactically onect if it contains d.abelledStatementhat is
enclosed by & abelledStatemenwith the samddentifier as label. This does not apply to labels appearing
within the body of &unctionDeclarationthat is nested, directly or indirectly, within a labellg@tement.

The productionldentifier : Statemenis evaluated by addintdentifier to the label set oStatementand
then evaluatingStatement If the LabelledStatemenitself has a norempty label set, these labels are also
added to the label set Statenentbefore evaluating it. If the result of evaluatiSgatements (break, V, L)
wherelL is equal toldentifier, the production results imérmal, V, empty).

Prior to the evaluation of habelledStatementhe containedtatements regarded as possessing an empty
label set, except if it is amterationStatementor a SwitchStatementin which case it is regarded as
possessing a label set consisting of the single elereemity.

Deleted: The productiorCaseBlock { CaseClause
DefaultClause CaseClausgss given an input
parameterinput, and is evaluated as folloWs:
<#t>Let Abe the list ofCaseClauséems in the first
CaseClausesn source text ordef.
<#>For the nexCaseClausén A, evaluate
CaseClauself there is no sucltaseClausego to ste
71
<#>If inputis not equal to Result(2), as defined by
I=="operator, go to spe2
<#>Evaluate th&StatementLisof this CaseClausd
<#>If Result(4) is an abrupt completion then retur
Result(4)1
<#>Go to step 13
<#>Let B be the list ofCaseClauséems in the seco
CaseClausesn source text ordef.
<#>For the nexCaseClausén B, evaluate
Ca=Clauself there is no sucaseClausego to ste
159
<#>If inputis not equal to Result(8), as defined by
I=="operator, go to step®B.
<#>Evaluate th&StatementLisdf this CaseClausd
<#>If Result(10) is an abrupt completion then retu
Result(10y
<#>Go to stepl8y
<#>For the nexCaseClausén A, evaluate the
StatementLisof this CaseClauself there is no such
CaseClausgego to step 15.
<#>If Result(13) is an abrupt completion then retu
Result(13)f
<#>Execute theéStatementLisdf DefaultClause]
<#>If Result(15) is anlarupt completion then returr
Result(15y
<#>Let B be the list ofCaseClauséems in the seco
CaseClausgsn source text ordef.
<#>For the nexCaseClausén B, evaluate the
StatementLisof this CaseClauself there is no such
CaseClausgreturn formal, empty, empty).{
<#>If Result(18) is an abrupt completion then retu
Result(18)
<#>Go to step 18.

ThrowStatement
thr ow [no LineTerminatorhere] EXpI’eSSiOﬂ;

Semantics
The productionThrowStatementthrow [no LineTerminatorhere] Expression is evaluated as:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return throw, Result(2),empty).

01 September 2008

-81-

12.14 Thetry statement
Syntax
TryStatement

try Block Catch

try Block Finally

try Block Catch Finally

Catch:
catch (Identifier) Block

Finally :
finally Block

Description

The try statement encloses a block of code in which an exceptional condition can occur, such as
runtime error 0 a throw statement. Theatch clause provides the exceptitrandling code. When a

catch clause catches an exception)dentifieris bound to that exception.

iSemantic

The productionlryStatement try Block Catchis evaluated as follows:

1. EvaluateBlock

2. If Result(1).type is nothrow, return Result(1).
3. EvaluateCatchwith parameter Result(1).

4. Return Result(3).

The productiorTryStatement try BlockFinally is evaluated as follows:

1. EvaluateBlock

2. EvaluateFinally.

3. If Result(2) typeis normal, return Result(1).
4. Return Result(2).

The productioriTryStatement try Block CatchFinally is evaluated as follows:

EvaluateBlock

Let C = Result(1).

If Result(1).type is nothrow, go to step 6.
EvaluateCatchwith parameter Result(1).
EvaluateFinally.

If Result(6).type isnormal, returnC.
Return Result(6).

ONoGarLON P
1_
®
J£4
O
I
Py
@
0
c
=
=
N
Nt

The productionCatch: catch (Identifier) Blockis evaluated as follows:

1. LetC be the parameter that has been passed to this production.

2. EvaluateBlockwith a block parameter whose name is Identifier and whose valQs/édug
3. Return Resulf).

The productiorFinally : finally Blockis evaluated as follows:

1. EvaluateBlock
2. Return Result(1).

12.15 Constant statement
Syntax

01 September 2008

Comment [pL40]: Work still needs to be done
give catch blocks real lexical scoping.

Deleted: If Result(4).types notnormal,

Deleted: Create a new object as if by the
expressiomew Object() .1

<#>Create a property in the object Result(2
The property's name ldentifier, value is
C.value, and attributes are {dbtDelete }1
<#>Add Result(2) to the front of the scope
chain{

<#>EvaluateBlock

Remove Result(2) from the front of the sco
chain

Deleted: 5

-82-

ConstantStatement
const ConstantDeclarationList

ConstantDeclarationList
ConstantDeclaration
ConstantDeclarationList ConstantDeclaration

ConstantDeclaration
Identifier Initialiser

13
Syntax

Description

If the constant statement occudsrectly inside aFunctionDeclaration the constants are defined with
function-local scope in that function, as described in s10.1.3. If a constant statement occurs Bisidle a

the constants are defined with blekdcal scope. Otherwise, they are defined with global scope (that is,

they are created as members of the global object, as described in 10.1.3) using property attributes {
[[Writable]]: false, [[Enumerable]]: true, [[Configurablg]: false }. Constants are created when the
execution scope is entered. Constants have no value when created. A constant is assigned the value of the
AssignmentExpressiom f linitiafiser when theConstantStatemens executed, not when the constant is
created Any attempts to access the value of a constant before it is assigned a value or to write to a constant
throws a ReferenceError exception.

Semantics
The productionConstantStatementconst ConstantDeclarationList is evaluated as follows:

1. EvaluateConstanDeclarationList
2. Return formal, empty, empty).

The productiorConstantDeclarationListConstantDeclarations evaluated as follows:

1. EvaluateConstantDeclaration

The productionConstantDeclarationList ConstantDeclarationList ConstantDeclaratioris evaluated as
follows:

1. EvaluateConstantDeclarationList
2. EvaluateConstantDeclaration

The productionConstantDeclaration Identifier Initialiseris evaluated as follows:

Evaluateldentifier as described in 11.1.2.

Evaluatelnitialiser.

Call GetValue(Rsult(2)).

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

Call the [[GetOwnProperty]] method of Result(4) with argument Result(5).

If Result(6).[[Const]] is noUninitialized then throw a SyntaxError exception.

Update the own property P &esult(4) with attributes [[Value]]: Result(2) and [[Condltijtialized .
This update is preformed irrespective of the current values of the properties [[Writable]] and
[[Configurabld] attributes.

9. Return a string value containing the same sequence oacteas as in th&lentifier.

ONoGa~wNE

Function Definition

FunctionDeclaration
function Identifier (FormalParameterLis},) { FunctionBody}

FunctionExpression
function Identifier,, (FormalParameterLis};) { FunctionBody

01 September 2008

- 83-

FormalParameterList [Deleted: variable
Identifier [Delotod. 2
FormalParameterList ldentifier .
{ Comment [pL41]: Mark: is this observable?
. . itis!
FuncnonBody Lars: yes it is!
SourceElements Comment [pL42]: From AWB:
Fix scoping issues €
Semantics [Deleted: DontDelete, ReadOnly
The productiorFunctionDeclaration: function Identifier (FormalParameterLisf,) { FunctionBody} is { gelet{%gi fcouple ofdfefinitiolns ?re n«?edeg.
processed for function declarations as follows: escribe the process of creating function obj

13.1

13.2

1. Create a new Functioobject as specified in 13.2 with parameters specifiedFiynalParameterLisy,, |
and body specified by¥unctionBody Pass in the scope chain of the running execution context as the
Scope

Result(1).

The productionFunctionExpression function
as follows:

(FormalParameterLis),) { FunctionBody} is evaluated

1. Create a new Function object as specified in 13.2 with parametecifisgd by FormalParameterLisfy
and body specified byunctionBody Pass in the scope chain of the running execution context as the
Scope

2. Return Resulfl).
Identlfler(FormaIParameternggt) { FunctionBod¢ } is

The productionFunctionExpression function
evaluated as follows:

1. Create a new object as if by the expressi@mw Object()
constructor with that name

2. %dd Result(1) to the front of the scope chain.

3. Create a new Function object as specified in 13.2 with parameters specifiedringlParameterLisjy
and body specified by¥unctionBody Pass in the scope chain of the running execution context as the
Scope

4. Create a property in the object Result(1). Timperty's name iddentifier, value is Result(3), anﬁ
attributes are {[Writable]]: false, [[Enumerable]]true], [[Configurabld]: false}\ Il

5. Remove Result(1) from the front of the scope chain.

6. Return Result(3).

NOTE

Theldentifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBod
to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a
FunctionExpression cannot be referencedonfi and does not affect the scope enclosing the
FunctionExpression.

where Object is the standard butkin {

The productiorFunctionBody. SourceElementss evaluated as follows:

1. ProcessSourceElementfor function declarations.

2. EvaluateSourceElements

3. Return Result(2).
Definitions ‘
JThis section is no longer usgd. 3|

Creating Function Objects
Given an optional parameter list specified ByrmalParameterLista body speified by FunctionBody and

Deleted:

13.1.1 Equated Grammar Productidhs

Two uses of the FunctionBody grammar
production are defined to be equated when ¢
the following is trueff

Both uses obtained their FunctionBody from
same location in the source text of the same
ECMAScript program. This source text consi
of global code and any contained function cc
according to the definitions in 10.112.

Both uses obtained their Functiood/ from the
same location in the source text of the same
to eval (15.1.2.1). This source text consists ¢
eval code and any contained function codes
according to the definitions in 10.192.
NOTEf

Two uses of FunctionBody obtained from a c
to the Fumtion constructor 15.3.1 and 15.3.2
never equated. Also, two uses of FunctionBc
obtained from two different calls to eval are
never equated, even if those two calls to eva
were passed the same argunfent.

13.1.2 Joined Object

When two or more Funain objects are joined
they have the following special behaviofjrs:
Any time a norinternal property of an object !
is created or set, the corresponding property
immediately also created or set with the sam
value and attributes in all objects joinedwa@ §
Any time a norinternal property of an object !
is deleted, the corresponding property is
immediately also deleted in all objects joined
with Of

If objects O and P are joined, they compare |
and === to each othéfr.

Joining is transitive and symmietrso that if
objects O and P are joined and objects P an
are joined, then objects O and Q are also
automatically joined}

NOTE

Two or more objects joined to each other are
effectively indistinguishable except that they
have different internal pperties. The only suc
internal property that may differ in this
specification is [[Scopelf.

Joined objects are used as a tool for precise
specification technique in this standard. The:
not meant to be used as a guideline to how
Function objects are iplemented in practice.
Rather, in practice an implementation may d
when the differences in the [[Scope]] propert
of two or more joined Function objects arg”

a scope chain specified [8cope a Function object is constructed as follows:

1. Create a new native ECMAScript object andHete that object. |
2. Set the [[Class]] property df to "Function”

3. Set the [[Prototype]] property df to the original Function prototype object as spiecifin 15.3.3.1.

4. Set the [[Call]] property of as described in 13.2.1.

Deleted: <#>If there already exists an obje
E that was created by an earlier call to this
section's algorithm, and if that call to this
section's algorithm was giverFanctionBody
that is equated to tHeunctionBodygiven now
then go to step 13. (If there is more than or
objectE satisfying theseriteria, choose one
the implementation’s discretiofi.)

01 September 2008

-84 -

5. Set the [[Construct]] property df as described in 13.2.2.
6. Set the [[Scope]] property dF to a new scope chain (10.1.4) that contains the same objeStopse Deleted: .
7. Set thelength propety of F to the number of formal properties specifiedFarmalParameterListIf Deleted: is given
no p_a_ram_eters are specified, set teegth property of F to 0. This property is given attributes as [Deleted: DontEnum
specified in 15.3.5.1.
8. Set the [[Extensible]] property d¥ to true. Deleted: <#>At the implementation’s discretion,

to either step 2 or step 4.
<#>Create a newative ECMAScript object joined |
E and letF be that object. Copy all neinternal

9. Createa new object as would be constructed by the expresston Object() is the

standard buikin constructor with that name.

where Object

10. Set theconstructor property of Result(9) td=. This propertyhasattributes {[[Writable]]: true, properties and their attributes frdérto F so that all
[[Enumerable]]:false, [[Configurabld]: true}. nonvinternal properties are |dent|c%IEnanQFﬁl

- - - . e . <#>Set the [[Class]] property ¢ to "Function” .{

11. Set theprototype property of F to Result(9). This property is given attributes as specified in <#>Set the [[Prototype]] property &Fto the original

15.3.5.2. Function prototype object as specified in 15.318.1
12. ReturnF. <#>Set the [[Call]] property oF as described in
13.2.1
‘ 2 <#>Set the [[Construct]] property &f as described i
NOTE 13.2.29

<#>Set the [[Scope]] property fto anew scope
chain (10.1.4) that contains the same objecBcape
ReturnF.

A prototype property is automatically created for every function, to allow for the possibility that the
function will be used as a constructor.

| Jd3.2.1 [[Call]] Deleted: Step 1 allows an implementati¢m optimis
. Y . . . u-. R the common case of a function A that has a neste
When the [[Call]] property for a Function objeftis called, the following steps are taken: function B where B is not dependent on A. In this
. . 5 . . the implementation is allowed to reuse the same c
1. Establish a new execution context usig FormalParameterListthe passed arguments list, and the for B instead of creating a new one every time A i
this value as described in 10.2.3. called. Step 13 makes this aptsation optional; an
2. EvaluateF's FunctionBody implementation that chooses not to implement it w
3. Exit the execution context established in step 1, restoring the previous execution context. tFOStePZ”)
. or example, in the cofle
4. If Result(2).type ishrow then throw Result(2).value. function AQ {
5. If Result(2).type iseturn then return Result(2).value. function B(x) {return x*x;}
6. (Result(2).type must beormal.) Returnundefined. }return B;
13.2.2 [[Construct]]

When the [[Construct]] property for a Function objécis called, the fdbwing steps are taken:

function C() {
return eval(“(function (x) {return x*x;})");

}

1. Create a new native ECMAScript object.
2. Set the [[Class]] property of Result(1) t@bject” var bl = A();
3. Set the [[Extensible]] property of Result(1) truie. varb2 = A(); o
4. Get the value of thprototype property ofF. Iﬂgg:gg gig; g‘;:ﬂ:: ;::;
5. If Result@) ir§”@n, objecrtr!wsgt thigPrototype]] property of Result(1) to Resyhj(_) var b5 = C(); '
6. If Result@) is not an object, set the [[Prototype]] property of Result(1) to the original Object var b6 = C(f
prototype object as described in 15.2.3.1. an implementation is allowed, but not required, to
7. Invoke the [[Call]] property ofF, providing Result(1) as ththis value and providing the argument 2éj:é‘td::c';gsfsﬁﬁétre’qg{]omjvzflltoagg:’ezct‘i‘:ef:;;
list passed into [[Construct]] as the argument values. between their [[Scope]] properties. On the other h
8. If Type(Result})) is Objectthen return Resulf). an implementation must not job8 andb4 because
9. Return Result(1). \ their source codes are not equated (13.1.1). Also,

01 September 2008

implementation must not join5 andb6 because the
were produced by two different calls¢wal and
therefore their source codes are not equfited.

In practice it's likely to be productive to join two
Function objects only in the cases where an
implementation can prove that the differences bet
their [[Scope]] properties are not observablepse
object can be reused. By following this policy, aC

Deleted: the

Deleted: 3

Deleted: 3

Deleted: 3

omment [pL43]: Her man Venter s
e fiis an Object?o0

Deleted: 6

[
[
(
(
B
[
[

Deleted: 6

- 85 -

14 Program
Syntax

Program:
UseSubsetDirectiyg SourceElements

lUseSubsetDirectiyg :
" use subset SubsetList ;

SubsetList
Identifier
SubsetList Identifier |

SourceElements
SourceElement
SourceElements SourceElement

SourceElement
Statemept |

Semantics
The productiorProgram: UseSubsetDirectiyg SourceElementds evaluated as follows:

1. If the optionalUseSubsetDirectivis not present, the set of usage subsets foPtbgramis the empty
set.
Else

a. EvaluateSourceElements
The set of usage subsets for the Program is elements of the intertlaflist Result(2a).
ProcessSourceElement®or function declarations.
EvaluateSourceElements

N

onsw

The productiorSourceElementsSourceElemenis processed for function declarations as follows:

1. ProcessSourceElemenfior function declarations.

The productiorSourceElementsSourceElemenis evaluated as follows:

1. EvaluateSourceElement

2. Return Result(1).

The productionSourceElements SourceElements SourceElemeéstprocessed for function declarations as
follows:

1. ProcessSourceElementfor function declarations.

2. ProcessSourceElemenfior function declarations.

The productiorSourceElements SourceElements SourceEleménevaluated as follows:

1. EvaluateSourceElements

2. If Result(1) is an abrupt completion, retuResult(1)

3. EvaluateSourceElement

4. Return Result(3).

The productiorSourceElement Statements processed for function declarations by taking no action.
The productiorSourceElement Statements evaluated as follows:

1. EvaluateStatement

2. Return Result(1).

The productiorSourceElement FunctionDeclarationis processed for function declarations as follows:

01 September 2008

[Comment [AWB44]:

Need toadd semantics

Deleted:
FunctionDeclaration

[Deleted: 2

- 86 -

1. Procesd-unctionDeclarationfor function declarations (see clause 13).

The productiorSourceElement FunctionDeclarationis evaluated as follows:
1. Return(normal, empty, empty).

The productiorUseSubsetDirectiyg : " use subset SubsetList ; is evaluated as follows:
1. EvaluateSubsetList
2. Return Result(1)

The productiorBubsetList: Identifier is evaluated as follows:

1. If Identifieris not the name of asage subset that is supported by this ECMAScript implementation,
return an empty internal list.
2. Return an internal list containing one element which isldeatifier.

The productiorBubsetList: SubsetList Identifieris evaluated as follows:
1. EvaluateSubsetList

2. If Identifieris not the name of a usage subset that is supported by this ECMAScript implementation,
return Result(1)

3. If Identifieris already an element of Result(1), return Result(1)
4. Return an internal list whose length is one gre#tan the length of Result(1) and whose items are the
items of Result(1), in order, followed at the endlbdgntifier, which is the last item of the new list.

01 September 2008

15

15.1

-87-

Native ECMAScript Objects

There are certain butih objects available whenever an ECMAS¢riprogram begins execution. One, the
global object, is in the scope chain of the executing program. Others are accessible as initial properties of -
global object.

Unless specified otherwise, the [[Class]] property of a bimilbbject is"Function” if that builtin object
has a [[Call]] property, ofObject" if that built-in object does not have a [[Call]] propertynless specified
otherwise, the [[Extensible]] property of a buift object has the valugue.

Many built-in objects are functions: theyao be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with ibe operator. For each builb function, this
specification describes the arguments required by that function and properties of therFobjct. For each
built-in constructor, this specification furthermore describes properties of the prototype object of tha
constructor and properties of specific object instances returned bhgwaexpression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described i
this section is given fewer arguments than the function is specified to require, the function or constructor shi
behave exactly as if it hatbeen given sufficient additional arguments, each such argument being the
undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described i
this section is given more arguments than the fiomcis specified to allow, thhdditional arguments are‘
ignored

NOTE
Implementations thaadd additional capabilities to the set of buift functions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Every builtin function and every buHin constructor has the Function prototype objedhjch is the initial
value of the expressiorfrunction.prototype (15.3.2.1), as the value of its internal [[Prototype]]
property.

Every builtin prototype object has the Object prototype object, which is the initial value of the expressior
Object.prototype (15.3.2.1), as the value of its internal [[Prototype]] property, except the Object
prototype object itself.

None of the builin functions described in this section shall implement the internal [[Construct]] method
unless otherwise specified in the deption of a particular function. None of the buift functions described

in this section shall initially have prototype property unless otherwise specified in the description of a
particular function. Every buHin Function object described in this siecid whether as a constructor, an
ordinary function, or botéh has alength property whose value is an integer. Unless otherwise specified, this
value is equal to the largest number of named arguments shown in the section headings for the functi
description including optional parameters.

NOTE

For example, the Function object that is the initial value ofgliee property of the String prototype object
is described wunder the section heading AString. pr
arguments start and end; therefore the value oflémgth property of that Function object &.

In every case, théength property of a builin Function object described in this section has the attributes
{ [[Writable]]: false, [[Enumerable]]:false, [[Configurablg]: falsg} (and no others). Every other propert
described in this section has the attributgWritable]]: true, [[Enumerable]]:false, [[Configurablg]: true }
Junless otherwise specified.

The Global Object

The global object does not have a [[Construct]] property; it is not possible to use the global object as

constructor with thenew operator.

The global object does not have a [[Call]] property; it is not possible to invoke thel glbpect as a

function.

The values of the [[Prototype]] and [[Class]] properties of the global object are implemerndependent.

01 September 2008

Deleted: behaviour of the function or
constructor is undefined. In particular, an
implementation is permitted (but not required
throw aTypeError exception in this case

Comment [pL45]: Breaking change!!

Lars asks for the motivation of this change? He
Venter says: | am not totally sure that this is OK
since the language was added before my time &
presumably was required to allow either Naviga
or IE to claim to beompliant with the standard
while extending it. TODO: figure out if this issue
discussed anywhere.

[Deleted: ReadOnly, DontDelete, DontEnum

[Deleted: DontEnum

[Deleted: (and no others)

- 88 -

15.1.1 Value Properties of the Global Object

15.1.1.1 NaN
The initial value ofNaN is NaN (8.5). This property has the atitites { [[Writable]]: }falsé, {Comment[pL46]: This is an intentional incompatibl
[[Enumerable]]:false, [[Configurabld]: false}. change from ES3.

15.1.1.2 Infinity

[Deleted: DontEnum, DontDelete

The initial value ofInfinity is +wo (8.5). This property has the attributes[[{Vritable]]: false,

[[Enumerable]]:false, [[Configurabld]: false}. [Deleted: DontEnum, DontDelete
15.1.1.3 undefined

The initial value ofundefined is undefined (8.1). This property has the attributed[{Vritable]]:

false, [[Enumerable]]false, [[Configurabld]: false}. [Deleted: DontEnum, DontDelete

15.1.2 Function Properties of the Global Object

15.1.2.1 ev

al (x)

When theeval function is called with one argumexrtthe following steps are taken:

oakrwbpE

If xis not a string value, retum

Parsex as aProgram If the parse fails, throw SyntaxError exception (but see also clause 16).
Evaluate the program from step 2.

If Result(3).type ismormal and its completion value is a vali¥e then return the valu¥.

If Result(3).type immormal and its completion value smpty, then return the valuendefined.
Result(3).type must béarow. Throw Result(3).value as an exception.

|If the value of theeval property is used in any way other than a direct call (that is, other than by the

ex
ev

15.1.2.1.1

plicit use of its name as ddentifier which is theMemberExpressinin a CallExpressiod, or if the
al property is assigned to, &valError exception may be throWn Comment [pL47]: From AWB:

. L Need to do additional spec work to make eval act like
Usage Subsetautious Restrictions operator but without reservirtge eval identifier.

If an execution context that is subset restricted tocthetious subset uses the value of teeal

property any way other than a direct call (that is, other than by the explicit use of its name as an
Identifier which is theMemberExpressiom a CallExpressiol, or if theeval property is assigned

to, anEvalError exception is thrown.

15.1.2.2 parselnt (string , radix)

Th

e parselnt function produces an integer value dictated by interpretation of the contents of the

string argument according to the specifieatlix. Leading whitespace in the string is ignored. rkidix
is undefined or 0, it is assumed tbe 10 except when the number begins with the character @airs

or

0X, in which case a radix of 16 is assumed. Any ratbxnumber may also optionally begin with

the character pai@x or OX.

When theparselnt function is called, the following steps amken:

1.
2.

Call ToStringétring).
Let S be a newly created substring of Result(1) consisting of the first character that is not a
StrWhiteSpaceChaand all characters following that character. (In other words, remove leading
white space.)
Let signbe 1.
If Sis not empty and the first character $fs a minus sign , letsignbe —1.
If Sis not empty and the first character 8fs a plus sign+ or a minus sign , then remove the
first character frons.
Let R= ToInt32fadix).
If R=0, go to step 11.
If R<2 orR> 36, then returiNaN.
If R=16, go to step 13.
. Go to step 14.
. LetR=10.
. If the length ofS'is at least 1 and the first character®f s00fi t hen at the i mp
discretion either leR = 8 or leaveR unchanged.

01 September 2008

15.1.2.3

15.1.2.4

15.1.2.5

15.1.3

-89 -

13. If the length ofSis a least 2 and the first two characters®fr e eOxb h ®Xo i t he
remove the first two characters fra®and letR = 16.

14. If Scontains any character that is not a raRigigit, then letZ be the substring 0% consisting of
all characters beforéeé first such character; otherwise, kebe S.

15. If Zis empty, returrNaN.

16. Compute the mathematical integer value that is representedl ihyradix-R notation, using the
lettersA-Z anda-z for digits with values 10 through 35. (HoweverRfis 10 andZ contains more
than 20 significant digits, every significant digit after the 20th may be replacedObydiyit, at
the option of the implementation; andRfis not 2, 4, 8, 10, 16, or 32, then Result(16) may be an
implementationdependent approximation tbheé mathematical integer value that is represented by
Z in radix-R notation.)

17. Compute the number value for Result(16).

18. Returnsign> Result(17).

NOTE

parselnt may interpret only a leading portion of the string as an integer value; it ignores any
characters that cannot be interpreted as part of the notation of an integer, and no indication is giver
that any such characters were ignored.

When radix is 0 oundefined and the string's number begins witlDadigit not followed by arx or X,
then the implementation may, at its discretion, interpret the number either as being octal or as bein
decimal. Implementations are encouraged to interpret numbers in this cdssrasdecimal.

parseFloat (string)

The parseFloat function produces a number value dictated by interpretation of the contents of the
string argument as a decimal literal.

When theparseFloat function is called, the following steps are taken:

1. Call ToString6tring).

2. Compute a substring of Result(l) consisting of the leftmost character that is not a
StrWhiteSpaceChaand all characters to the right of that character.(In other words, remove
leading white space.)

3. If neither Result(2) nor any prefix dResult(2) satisfies the syntax ofStrDecimalLiteral(see

4. Compute the longest prefix of Result(2), which might be Result(2) itself, which satisfies the
syntax of aStrDecimalLiteral
5. Return the number value for the MV of Result(4).

NOTE

parseFloat may interpret only a leading portion of the string as a numbeuealt ignores any
characters that cannot be interpreted as part of the notation of an decimal literal, and no indication is
given that any such characters were ignored.

isNaN (number)

Applies ToNumber to its argument, then retutnse if the realt is NaN, and otherwise returrfalse.

isFinite (number)

Applies ToNumber to its argument, then retufakse if the result isNaN, +w, or —w, and otherwise
returnstrue.

URI Handling Function Properties
Uniform Resource Identifiers, orRIs, are strings that identify resources (e.g. web pages or files) and

transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScrip

language itself does not provide any support for using URIs except for functions thdeeawb decode
URIs as described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and 15.1.3.4.

NOTE
Many implementations of ECMAScript provide additional functions and methods that manipulate wel
pages; these functions are beyond the scope of this standard.

01 September 2008

Deleted:

0

-90 -

A URI is composd of a sequence of components separated by component separators. The general form
is:

Scheme: First / Second; Third ? Fourth

where the italicised name:so,foeflipdfieas ih tairceo mpeosneernvtesd ac
used as separators. TeacodeURI and decodeURI functions are intended to work with complete

URIs; they assume that any reserved characters in the URI are intended to have special meaning and so
are not encoded. ThencodeURIComponent anddecodeURIComponent functionsare intended to

work with the individual component parts of a URI; they assume that any reserved characters represent
text and so must be encoded so that they are not interpreted as reserved characters when tle@tcompon

is part of a complete URI.

The following lexical grammar specifies the form of encoded URIs.
uri i
uriCharactersgy,

uriCharacters:::
uriCharacter uriCharactergy

uriCharacter:::
uriReserved
uriUnescaped
uriEscaped

uriReserved:: one of
l? @ &=+%,

uriUnescaped::
uriAlpha
DecimalDigit
uriMark

uriEscaped::
%HexDigit HexDigit

uriAlpha::: one of
abcdefghijklmnopaq tu
ABCDEFGHIJKLMNOPQRST UvwxXxyz
uriMark ::: one of

)

When a character to be included in a URI is not listed above or is not intended to have the special
meaning sometimes given to the reserved characters, that character must be encoded.ather ¢har

first transformed into a sequence of octets using the -BTtFansformation, with surrogate pairs first
transformed from their UG8 to UCS4 encodings. (Note that for code points in the range [0,127] this
results in a single octet with the saméuea) The resulting sequence of octets is then transformed into a
string with each octet represefmxdoed by an escape se€

The encoding and escaping process is described by the hidden function Encode taking two string
argumentsstring and unescapedSef his function is defined for expository purpose only.

Compute the number of characterssining.

Let R be the empty string.

Letk be 0.

If k equals Result(1), returR.

Let C be the character at positiéwithin string.
If Cis not inunescapedSggo to step 9.

Let Sbe a string containing only the charactr
Go to step 24.

ONoGOrWNE

01 September 2008

-91-

9. If the code point value oC is not less than 0xDCOO and not greater than OXDFFF, throw a
URIError exception.

10. If the code point value o€ is less than 0xD800 ogreater than OxDBFF, le¥ be the code point
value ofC and go to step 16.

11. Increasek by 1.

12. If k equals Result(1), throw dRIError exception.

13. Get the code point value of the character at positiwsthin string.

14. If Result(13) is less than 0xDCOO or greater than OXDFFF, thraMREError exception.

15. Let V be (((the code point value &) i 0xD800) * 0x400 + (Result(13) 0xDCO00) + 0x10000).

16. Let Octetsbe the array of octets resulting by applying the WB'Eansformabn to V, and letL be
the array size.

17. Letj be O.

18. Get the value at positignwithin Octets

19.LetShe a string cont a%id nwh erhe eXY ceirag atcwe risp gier
encoding the value of Result(18).

20. Let Rbe a new string value agputed by concatenating the previous valu®aidsS.

21. Increasg by 1.

22.If j is equal toL, go to step 25.

23. Go to step 18.

24. Let Rbe a new string value computed by concatenating the previous vaRiarafS.

25. Increasek by 1.

26. Go to step 4.

The unescaping andecoding process is described by the hidden function Decode taking two string
argumentsstring andreservedSetThis function is defined for expository purpose only.

Compute the number of characterssining.

Let R be the empty string.

Letk be 0.

If k equals Result(1), returR.

Let C be the character at positi&within string.

IfCis not 06 %6, go to step 40.

Let start bek.

If k+ 2 is greater than or equal to Result(1), throWwRIError exception.

If the characters at positiork€1) and k + 2) within string do not represent hexadecimal digits,

throw aURIError exception.

10. Let B be the 8bit value represented by the two hexadecimal digits at posikienl) and k + 2).

11. Incrementk by 2.

12. If the most significant bit iB is 0, letC be the baracter with code point valugand go to step 37.

13. Let n be the smallest nenegative number such tha €< n) & 0x80 is equal to 0.

14. If nequals 1 onis greater than 4, throw@RIError exception.

15. Let Octetsbe an array of ®it integers of sizen.

16. PutB into Octetsat position 0.

17.1f k+ (3* (ni 1)) is greater than or equal to Result(1), throWRIError exception.

18. Let | be 1.

19. If j equalsn, go to step 29.

20. Incrementk by 1.

21. If the character at positioki s not 0 YRIErrott éxception. a

22. If the characters at positiork (+1) and k + 2) within string do not represent hexadecimal digits,
throw aURIError exception.

23. Let B be the 8bit value represented by the two hexadecimal digits at posikienl) and k + 2).

24. If the two most significant bits iB are not 10, throw &RIError exception.

25. Incrementk by 2.

26. PutB into Octetsat positionj.

27. Increment by 1.

28. Go to step 19.

29. Let V be the value obtained by applying the UBRransformation t®ctets that is, from an may of
octets into a 3it value.

30. If Vis less than 0x10000, go to step 36.

31. If Vis greater than OX10FFFF, throwdRIError exception.

OCXNoaA~LNE

01 September 2008

-92-

32. LetL be (((Vi 0x10000) & Ox3FF) + 0xDCO00).

33. Let H be ((((v i 0x10000) >> 10) & Ox3FF) + 0xD800).

34. Let Sbe the string containing the two characters with code point vaduaasdL.
35. Go to step 41.

36. Let C be the character with code point vaMe

37. If Cis not inreservedSetgo to step 40.

38. Let Sbe the substring ddtring from positionstartto positionk included.

39. Go to step 41.

40. Let Sbe the string containing only the character

41. Let Rbe a new string value computed by concatenating the previous vaRiarafS.
42. Increasek by 1.

43. Go to step 4.

NOTE 1

The syntax of Uniform Resource Identifiers is given in RF6239

NOTE 2

A formal description and implementation of UBFis given in the Unicode Standard, Version 2.0,
Appendix A.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one
has the higheworder bit set to 0the remaining 7 bits being used to encode the character value. In a
sequence of n octets, n>1, the initial octet has the n higheer bits set to 1, followed by a bit set to 0.

The remaining bits of that octet contain bits from the value of the charémtbe encoded. The following

octets all have the highesrder bit set to 1 and the following bit set to 0, leaving 6 bits in each to
contain bits from the character to be encoded. The possible&&Rcodings of ECMAScript characters

are:
Code Point Véue Representation 1% Octet 2" Octet 390ctet 4™ Octet
0x0000 - Ox007F 00000000 0zzzzzzz 0zzzz777
0x0080 - OxO7FF 00000 yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYYY YYZ22277 1110 XxxXx 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110 v VWWWWWXX
followed by followed by 11110 uuu 10uuwwww | 10xxyyyy 10zzzzzz
0xDCO00 i OxDFFF 110111 yy yyzzzzzz

0xD800 - OxDBFF

not followed by causes URIError
0xDC00 i OxXxDFFF

0xDC00 i OxDFFF causes URIError
OxEO00 - OxFFFF XXXXYYYY YYZ22227 1110 xxxx 10yyyyyy 10zzzzzz
Where

uuuuu = vvw +1

to account for the addition of 0x10000 as in 3.7, Surrogates of the Unicode Standard version 2.0.

The range of code point values OxD8OYDFFF is used to encode surrogate pairs; the above
transformation combinea UCS2 surrogate pair into a UC8 representation and encodes the resulting
21-bit value in UTF8. Decoding reconstructs the surrogate pair.

15.1.3.1 decodeURI (encodedURI)

ThedecodeURI function computes a new version of a URI in which each escape semaed UTF
8 encoding of the sort that might be introduced by ¢imeodeURI function is replaced with the

01 September 2008

15.1.3.2

15.1.3.3

15.1.3.4

- 03 -

character that it represents. Escape sequences that could not have been introcunoedibyRI are
not replaced.

When thedecodeURI function is callel with one argumenencodedURI the following steps are
taken:

1. Call ToStringencodedUR

2. LetreservedURISébe a string containing one instance of each character validReservedlus
A#o0.

3. Call Decode(Result(lyeservedURISgt

4. Return Result(3).

NOTE
The character A#O i s not decoded from escape
character.

decodeURIComponent (encodedURIComponent)

The decodeURIComponent function computes a new version of a URI which each escape
sequence and UTB encoding of the sort that might be introduced by ¢meodeURIComponent
function is replaced with the character that it represents.

When thedecodeURIComponent function is called with one argumeahcodedURIComponenthe
following steps are taken:

1. Call ToStringencodedURIComponent

2. LetreservedURIComponentSle¢ the empty string.
3. Call Decode(Result(1yeservedURIComponentSet
4. Return Result(3).

encodeURI (uri)

The encodeURI function computes a new version of a URI which each instance ofertain
characters is replaced by one, two or three escape sequences representing-therlid®éling of the
character.

When theencodeURI function is called with one argumeati, the following steps are taken:

1. Call ToString@ri).

2. LetunescapedURISdte astring containing one instance of each character valigiReserved
anduriUnescapedp | us A #0.

3. Call Encode(Result(1ynescapedURISEt

4. Return Result(3).

NOTE
The character fA#0 i s not encoded to an unescapepe
URI character.

encodeURIComponent (uriComponent)

The encodeURIComponent function computes a new version of a URIwhich each instance of
certain characters is replaced by one, two or three escape sequences representing&hentbithg
of the character.

When the encodeURIComponent function is called with one argumentriComponent the
following steps are taken:

1. Call ToString@riComponenk

2. LetunescapedURIComponent3et a string containing one instance of each character valid in
uriUnescaped

3. Call Encode(Result(1ynescapedURIComponentpet

4. Return Result(3).

01 September 2008

