Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
07 November 2008

Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
07 November 2008

Standard ECMA262

3'Y Edition - December 199¢

ECMA

Standardizing Information and Communication Systems

ECMAScript 3.1Language
Specification- DRAFT

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
07 November 2008

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape)
and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appearn t hat com
Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft
starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first editiors #EMA Standard was adopted by
the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under thé&rdaktprocedure, and approved as
international standard ISO/IEC 16262, in April 1998. The ECMA General rAkke of June 1998 approved the
second edition of ECMA62 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second
edition are editorial in nature.

The third edition of the Standargncludes powerful regular expressions, better string handling, new control{ Deleted: current document defines the
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor chang
in anticipation of forthcoming internationalisation facilities andufetlanguage growthl he language documented by
the third edition has come to be known as ECMAScript 3 or ES3.

[Deleted: and

Work on the language is not complete. The technical committee is working on significant enhancements, including
mechanisms for scripts to be ated and used across the Internet, and tighter coordination with other standards bodies
such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum.

Deleted: This Standard has been adopted as 3rd Edi
ECMA-262 by the ECMA General Assembly in Decen
1999.

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
07 November 2008

3

4

The Strict variant of ECMAScript

Scope
Conformance
References
Overview
4.1 Web Scripting
4.2 Language Overview
4.2.1 Objects
4.2.2
4.3 Definitions
4.3.1 Type
4.3.2 Primitive Value
4.3.3 Object
4.34 Constructor
4.3.5 Prototype
4.3.6 Native Object
4.3.7 Built-in Object
4.3.8 Host Object
4.3.9 Undefined Value
4.3.10 Undefined Type
4.3.11 Null Value
4.3.12 Null Type
4.3.13 Boolean Value
4.3.14 Boolean Type
4.3.15 Boolean Object
4.3.16 String Value
4.3.17 String Type
4.3.18 String Object
4.3.19 Number Value
4.3.20 Number Type
4.3.21 Number Object
4.3.22 Infinity
4.3.23 NaN
4.3.24 Function
4.3.25 Internal Function
4.3.26 Property
4.3.27 Method
4.3.28 Attribute
4.3.29 Own Property
4.3.30 Inherited Property
4.3.31 Built-in Method
4.3.32 Decimal Value
4.3.33 Decimal Type
4.3.34 Decimal Object

Table of contents

07 November 2008

=

[y

OO OO0 o000 00 00O 0000 Ogoooooooo0o oMM DMDDAEASDDEDNMODNMDNDNDNEPRE

5 Notational Conventions

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

5.2

Syntactic and Lexical Grammars
ContextFree Grammars
The Lexical and RegExp Grammars
The Numeric String Grammar
The Syntactic Grammar
Grammar Notation

Algorithm Conventions

6. Source Text

7 Lexical Conventions

7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.9
7.9.1
7.9.2

Unicode FormaiControl Characters
White Space
Line Terminators
Comments
Tokens

Reserved Words

Keywords

Future Reserved Words
Identifiers
Punctuators
Literals

Null Literals

Boolean Literals

Numeric Literals

String Literals

Regular Expression Literals
Automatic Semicolon Insertion

Rules of Automatic Semicolon Insertion

Examples of Automatic Semicolon Insertion

8 Types

8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.7
8.7.1
8.7.2
8.8
8.9

8.10 The Property Descriptor and Property Identifier Types

8.10.1

The Undefined Type
The Null Type
The Boolean Type
The String Type
The Number and the Decimal Types
The Object Type
Property Attributes
Internal Properties and Methods
The Reference Type
GetValue (V)
PutValue (V, W)
The List Type
The Completion Type

IsAccessorDescriptor (Desc)

07 November 2008

0 N NN NN~

10

11

12
12
12
13
14
14
15
15
15
15
17
17
17
17
17
19
22
23
23
24

25
25
25
25
25
26
27
27
28
33
34
34
34
34
35
35

8.10.2 IsDataDescriptor (Desc)

8.10.3 IsGenericDescriptor (Desc)

8.10.4 FromPropertyDescriptor (Desc)

8.10.5 ToPropertyDescriptor (Desc)
8.11 The Environment Record Type

9 Type Conversion and Testing
9.1 ToPrimitive
9.2 ToBoolean
9.3 ToNumber and ToDecimal

9.3.1 ToNumber and ToDecimal Applied to the String Type
9.4 Tolnteger
9.5 Tolnt32: (Signed 32 Bit Integer)
9.6 ToUint32: (Unsigned 32 Bit Integer)
9.7 ToUintl16: (Unsigned 16 Bit Integer)
9.8 ToString
9.8.1 ToString Applied to either the Number Type or the Decimal Type
9.9 ToObject
9.10 IsCallable
9.11 The SameValue Algorithm

10 Executable Code and Execution Contexts
10.1 Types of Executable Ced
10.1.1 Strict Mode Code
10.2 Lexical Environments
10.2.1 Enviornment Records
10.2.2 Lexical Environment Operations
10.2.3 The Global Environment
10.3 Execution Contexts
10.3.1 Identifier Resolution
10.3.2 Arguments Object
10.3.3 Declaration Binding Instantiation

10.4 Entering An Execution Context
10.4.1 Global Code
10.4.2 Eval Code
10.4.3 Function Code

11 Expressions

11.1 Primary Expressions
11.1.1 Thethis Keyword
11.1.2 Identifier Reference
11.1.3 Literal Reference
11.1.4 Array Initialiser
11.1.5 Object Initialiser
11.1.6 The Grouping Operator

11.2 Left-Hand Side Expressions
11.2.1 Property Accessors

07 November 2008

35
35
35
36
36

37
37
37
37
38
40
41
41
41
42
42
43
43
43

44
44
44
44
45
48
49
49
49
50
51

52
52
52
53

53
53
53
53
53
53
55
56
56
57

11.2.2 Thenew Operator
11.2.3 Function Calls
11.2.4 Argument Lists
11.2.5 Function Expressions
11.3 Postfix Expressions
11.3.1 Postfix Increment Operator
11.3.2 Postfix Decrement Operator
11.4 Unary Operators
11.4.1 Thedelete Operator
11.4.2 Thevoid Operator
11.4.3 Thetypeof Operator
11.4.4 Prefix Increment Operator
11.4.5 Prefix Decrement Operator
11.4.6 Unary+ Operator
11.4.7 Unary- Operator
11.4.8 Bitwise NOT Operator ¢)
11.4.9 Logical NOT Operator {)
11.5 Multiplicative Operators
11.5.1 Applying the* Operator
11.5.2 Applying the/ Operator
11.5.3 Applying the%Operator
11.6 Additive Operators
11.6.1 The Addition operator ¢)
11.6.2 The Subtraction Operator-()
11.6.3 Applying the Additive Operators€, -) to Numbers
11.7 Bitwise Shift Operators
11.7.1 The Left Shift Operator €<)
11.7.2 The Signed Right Shift Operator¢)
11.7.3 The Unsigned Right Shift Operator¢>)
11.8 Relational Operators
11.8.1 The Lessthan Operator €)
11.8.2 The Greateithan Operator ¢)
11.8.3 The Lessthanor-equal Operator €=)
11.8.4 The Greateithanor-equal Opeator (>=)
11.8.5 The Abstract Relational Comparison Algorithm
11.8.6 The instanceof operator
11.8.7 The in operator
11.9 Equality Operators
11.9.1 The Equals Operator£=)
11.9.2 The Doesnot-equals Operator =)
11.9.3 The Abstract Equality Comparison Algorithm
11.9.4 The Strict Equals Operator===
11.9.5 The Strict Doesnot-equal Operator (==
11.9.6 The StrictEquality Comparison Algorithm
11.10 Binary Bitwise Operators

07 November 2008

58
58
58
59
59
59
59
60
60
60
60
61
61
61
62
62
62
62
63
63
63
64
64
65
65
65
65
66
66
66
67
67
67
67
68
69
69
69
69
70
70
71
71
71
72

11.11 Binary Logical Operators
11.12 Conditional Operator (?:)
11.13 Assignment Operators
11.13.1 Simple Assignment €)
11.13.2 Compound Assignmentdp=)
11.14 Comma Operator ()

12 Statements

12.1 Block
12.1.1 Strict Mode Restrictions
12.2 Variable statement

12.3 Empty Statement

12.4 Expression Statement
12.5 Theif Statement

12.6 Iteration Statements
12.6.1 Thedo-while Statement
12.6.2 Thewhile statement
12.6.3 Thefor Statement
12.6.4 Thefor -in Statement
12.7 Thecontinue Statement
12.8 Thebreak Statement
12.9 Thereturn Statement
12.10 Thewith Statement
12.10.1 Strict Mode Restrictions
12.11 Theswitch Statement
12.12 Labelled Statements
12.13 Thethrow statement
12.14 Thetry statement
12.15 Debugger statement

13 Function Definition
13.1 Definitions
13.2 Creating Function Objects
13.2.1 [[Call]]
13.2.2 [[Construct]]

14 Program
15 Native ECMAScript Objects

15 Native ECMAScript Objects

15.1 The Global Object
15.1.1 Value Properties of the Global Object
15.1.2 Function Properties of the Global Object
15.1.3 URI Handling Function Properties
15.1.4 Constructor Properties of the Global Object
15.1.5 Other Properties of the Global Objec

15.2 Object Objects

07 November 2008

72
73
74
74
74
75

76
76
77
77
78
78
78
79
79
79
80
81
81
82
82
83
83
83
85
85
85
86

87
88
88
88
88

90

92

92
92
93
93
95
99
100
100

- Vi -

15.2.1 The Object Constructor Called as a Function
15.2.2 The Object Constructor
15.2.3 Properties of the Object Constructor
15.2.4 Properties of the Obg# Prototype Object
15.2.5 Properties of Object Instances

153 Function Objects
15.3.1 The Function Constructor Called as a Function
15.3.2 The Function Constructor
15.3.3 Properties of the Function Constructor
15.3.4 Properties of th Function Prototype Object
15.3.5 Properties of Function Instances

15.4 Array Objects
15.4.1 The Array Constructor Called as a Function
15.4.2 The Array Constructor
15.4.3 Properties of the Array Constructor
15.4.4 Properties of the Array Btotype Object
15.4.5 Properties of Array Instances

15.5 String Objects
15.5.1 The String Constructor Called as a Function
15.5.2 The String Constructor
15.5.3 Properties of the String Constructor
15.5.4 Properties of the String Prototype Object
15.5.5 Properties of String Inances

15.6 Boolean Objects
15.6.1 The Boolean Constructd®alled as a Function
15.6.2 The Boolean Constructor
15.6.3 Properties of the Boolean Constructor
15.6.4 Properties of the Boolean Prototype Object
15.6.5 Properties of Boolean Instances

15.7 Number Objects
15.7.1 The Number Constructor Called as a Function
15.7.2 The Number Constructor
15.7.3 Properties of the Number Constructor
15.7.4 Properties of the Number Prototype Object
15.7.5 Properties of Number Itances

15.8 The Math Object
15.8.1 Value Properties of th#ath Object
15.8.2 Function Properties of the Math Object

159 Date Objects
15.9.1 Overview of Date Objects and Definitions of Internal Operators
15.9.2 The Date Constructor Called as a Function
15.9.3 The Date Constructor
15.9.4 Properties of the Date Constructor
15.9.5 Properties of the Date Prototype Object
15.9.6 Properties of Date Instances

15.10 RegExp (Regular Expression) Objects
15.10.1 Patterns

07 November 2008

100
100
100
103
104
104
104
104
105
105
107
108
108
108
109
109
124
124
124
125
125
125
133
134
134
134
134
134
135
135
135
135
135
136
139
139
140
140
145
145
150
150
151
152
158
158
158

15.10.2
15.10.3
15.10.4
15.10.5
15.10.6
15.10.7

- vii -

Pattern Semantics

The RegExp Constructor Called asanction
The RegExp Constructor

Properties othe RegExp Constructor
Properties of the RegExp Prototype Object
Properties of RegExp Instances

15.11 Error Objects

15.11.1
15.11.2
15.11.3
15.11.4
15.11.5
15.11.6
15.11.7

The Error Constructor Called as a Function
The Error Constructor

Properties of the Error Constructor
Properties of the Error Prototype Object
Properties of Error Insnces

Native Error Types Used in This Standard
NativeError Object Structure

15.12 The JSON Object

15.12.1 parse (text [, reviver])

15.12.2 stringify (value [, replacer [, space]])
15.13 Decimal

15.13.1
15.13.2
15.13.3
15.13.4
15.13.5
15.13.6

Overview of Decimal Objects and Definitions of Internal Operators
The Decimal Constructor Called as a Function

The Decimal Constructor

Properties of the Decimal constructor

Properties of the Decimal Prototype Object

Properties of Deienal Instances

16 Errors

Annex A

A.l Lexical Grammar

A.2 Number Conversions

A.3 Expressions

A.4 Statements

A.5 Functions and Programs

A.6 Universal Resource ldentifier Character Classes

A.7 Regular Expressions

Annex B

Compatibility

B.1 Additional Syntax
B.1.1 Numeric Literals
B.1.2 String Literals

B.2 Additional Properties

07 November 2008

160
172
172
172
173
174
174
174
174
175
175
175
175
176
177
178
179
182
182
182
183
183
184
185

186

187

187

192

193

198

200

201

201

205

205

205
205
205

206

- viii -

B.2.1 escape (string)

B.2.2 unescape (string)

B.2.3 String.prototype.substr (start, length)
B.2.4 Date.prototype.getYear ()

B.2.5 Date.prototype.setYear (year)

B.2.6 Date.prototype.toGMTString ()

Annex C

The Strict variant of ECMAScript
C.1 The strict mode
C.1.1 Excluded Features
C.1.2 Additional Execution Exceptions

Annex D
Correction and Clarifications in Edition 3.1 with Possible Compatability Impact
Annex E

Additions and Changes in Edition 3.1 which Introduce Incompatabilities with Edition 3

07 November 2008

206
207
207
208
208
208

209

209
209
209
209

210

210

211

211

Scope
This Standardlefines the ECMAScript scripting language.

Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall interpret charactemnformance with the
Unicode Standard, VersigB.0 or later, and ISO/IEC 10646 with either UCS2 or UTF16 as the adopted
encoding form, implementation level 3. If the adopted ISO/IEC 10b646bset is not otherwise specified, it is
presumed to be the BMP subset, collection 300. If the adopted encfmtimgis not otherwise specified, it
presumed to be the UTE6 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. kicupar, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, anc
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript isepmitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted tc
support program syntax that makes us ethipdpecifidaton. i f ut u

References
ISO/IEC 9899:1996 Programming Language®, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 106461:1993 Information Technology Universal MultipleOctet Coded Character Set (UCS) plus
its amendments anebrrigenda.

The Unicode Consortium. The Unicode Standard, Ver8i6n defined by: The Unicode Standard, Versi®@

ANSI/IEEE Std 7541985: IEEE Standard foBinary FloatingPoint Arithmetic. Institute of Electrical and
Electronic Engineers, New York (1985).

Overview
This section contains a narormative overview of the ECMAScript language.

ECMAScript is an objeebriented programming language for performiogmputations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to b
computationally selkufficient; indeed, there are no provisions in this specification for input of external data
or output ofcomputed results. Instead, it is expected that the computational environment of an ECMAScrig
program will provide not only the objects and other facilities described in this specification but also certail
environmenispecifichostobjects, whose descripth and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that
be called from an ECMAScript program.

A scripting languageis a programming languagiat is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a use¢
interface, and the scripting language is a mechanism for exposing that functionalitgtamreontrol. In this

way, the existing system is said to provide a host environment of objects and facilities, which completes tl
capabilities of the scripting language. A scripting language is intended for use by both professional-and no
professional ppgrammers. To accommodate nprofessional programmers, some aspects of the langaragy
defined tobe tolerant of programmer mistakeslowever, such tolerance can easily result in programs
containing undiscovered errors that professional programmers would wish to discover and coorect. T
facilitate such error detection script can be explicitly declaret o strcté varaantdf the ful ECMAScript
language that provides enhanced error detection as well

ECMAScript was originally designed to beeb scripting languageproviding a mechanism to enliven Web
pages in browsers and to perform server computation as part of ab¥éeld clienserver architecture.

07 November 2008

Deleted: 2.1

Deleted: Unicode Inc. (1996), The Unicode
Standard, Version 2.0. ISBN: £01-483459,
Addisan-Wesley Publishing Co., Menlo Park,
California.

Deleted: Unicode Inc. (1998), Unicode
Technical Report #8: The Unicode Standard
Version 2.1y

[Deleted: may be somewhat less strict

4.1

4.2

ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMASipt are similar to those used in other programming languages; in particular

Javd”, Self, and Schemas described in: [Deleted: and

* Gosling, James, Bill Joy and Guy Steele. The Javanguage Specification. Addison Wesley Publishing
Co., 1996.

®* Ungar, David, and Srth, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 22241, Orlando, FL, October 1987.

* |EEE Standard for the Scheme Programming Language. IEEE Std1R0(3

Web Scripting

A web browser provides an ECMAScript host eoviment for clientside computation including, for
instance, objects that represent windows, menus;upsp dialog boxes, text areas, anchors, frames, history,
cookies, and input/output. Further, the host environment provides a means to attach sooig¢ing events

such as change of focus, page and image loading, unloading, error and abort, selection, form submission,
and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of
user interface elements and fixeddaoomputed text and images. The scripting code is reactive to user
interaction and there is no need for a main program.

A web server provides a different host environment for seside computation including objects
representing requests, clients, an@diland mechanisms to lock and share data. By using breiseand
serverside scripting together, it is possible to distribute computation between the client and server while
providing a customised user interface for a \Wetsed application.

Each Webbrowser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

Language Overview
The following is an informal overview of ECMAScriptnot all parts of the language are described. This
ovelview is not part of the standard proper.

ECMAScript is objectbased: basic language and host facilities are provided by objects, and an
ECMAScript program is a cluster of communicating objects. An ECMASooipiect is an unordered
collection ofpropertieseach with zero or morattributesthat determine how each property can be dsed

Deleted: ReadOnly

ECMAScript code to change the value of the propégeys. Properties are containers that hold other [

Deleted: true

objects,primitive values or methods A primitive value is a member of one of the following baiittypes:
Undefined, Null, Boolean, Number, and String; an object is a member of the remaining biilttype [

Deleted: has no effect

Object; and a method is a function associated with an object via a property.

ECMAScript defines a collection djuilt-in objectsthat round out the definition of ECMAScript entities.
These builtin objects include th&lobal object, theObject object, theFunction object, theArray object,
the String object, theBoolean object, theNumber object, theMath object, theDate object, theRegExp
object the JSON object, the Decimal object, and the Error object&rror, EvalError , RangeError,
ReferenceError, SyntaxError, TypeError andURIError .

ECMAScript also defines a set of built operators ECMAScript operators include various unary
operations, multiplicative operatorsgdditive operators, bitwise shift operators, relational operators,

Deleted: thatmay not be, strictly speakinfynctions
or methods

equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma
operator.

ECMAScript syntax intentionally resembles Java syntB&MAScript synta is relaxed to enable it to

serve as an eagyp-use scripting language. For example, a variable is not required to have its type declared
nor are types associated with properties, and defined functions are not required to have their declarations
appear tetually before calls to them.

4.2.1 Objects

ECMAScript does not contaiglasses such as those in C++, Smalltalk, or Java, but rather, supports{

Deleted: proper

constructorswhich create objects by executing code that allocates storage for the objects and initialises
all or part of them by assigning initial values to their properd}’dsconstructors are objects, but not all

07 November 2008

objects are construct¢rsEach constructor has property namedﬁprototype \(‘) that is used to|
implementprototypebasedinheritance andshared propertiesObjects are created by using constructors

Comment [pL1]: Rationale:
Consider window.document. It is an object (type
document should be 60

in new expressions; for examplaew String("A String") creates a new String object. Invoking a (€t s ST e (e T oy
constructor without usingnew has consequences that depend on the constructor.ekample,
String("A String") produces a primitive string, not an object.

typography consistent.

{ Comment [pL2]: From AWB:Need to make

Deleted: Prototype property

ECMAScript supportgrototypebased inheritanceEverypbject created by constructor has an implicit
reference(called theobj ect 6s) jpor ott lod ypal ue o fiprotiotype oOcpoopesty I u-¢
Furthermore, a prototype may have a fmrl implicit reference to its prototype, and so on; this is called
the prototype chainWhen areference is made to a property in an object, that reference is to the property
of that name in the first object in the prototype chain that contains a property of that name. In othe[
words, first the object mentioned directly is examined for such a ptypié that object contains the [Deleted: to the prototyp

named property, that is the property to which the reference refers; if that object does not contain tr[Deleted: associated with its constructor
named property, the prototype for that object is examined next; and so on.

Deleted: constructor has an associated
prototype, and every

Deleted: that

In a classbased objeebriented languagenigeneral, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods ¢
carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that
property and its value. The following diagram illustrates this:

L)
""""" CF implicit prototype link
prototype LEF ,,,,,,,, | [Deleted: Cf,
P1 CFP1 explicit prototypeproperty ‘ [Deleted: link
o ... o, o of, I i JUR ;i
ql ql q1 q1 q1
g2 q2 q2 a2 q2

4.2.2

CF is a constructor (and also an object). Five objects have been created byewiegpressionscf;,

cf,, cfs, cfy, and c§. Each of these objects contains properties named ql and g2. The dashed line
represent the implicit prototype relationship; so, for examplgd) sf pr ot og Vhe eonsirsctorC F
CF, has two properties itself, named P1 and P2¢hvhare not visible to CF cf;, cf, cfs, cfy, or ck. The
property named CFP1 in GFs shared by ¢f cf,, cf;, cf;, and c§ (but not by CF), as are any properties
found in CFp&s ihampthat ard riot npmed flo 2y @r €FP&. Notice that there is no
implicit prototype link between CF ar@F,.

Unlike classbased object languages, properties can be added to objects dynamically by assigning valu
to them. That is, constructors are not riegd to name or assign values to all or any of the constructed
objectos properties. I'n the above dicf,gfs ecf, andn e
cfs by assigning a new value to the propertyOR,.

The Strict variant of ECMAS cript

The ECMAScript Language recognizes the possibility that some users of the language may wish -
restrict their usage ofomefeatures available in the language. They might do so in the interesis of
security, to avoid what they consider to be errarner featuresto get better error checkingy for other
reasons of their choosing. In support of this possibility, ECMAScript defmesrict variantof the

07 November 2008

languageThe strict subset of the languagecludes somespecific syntactic and semantic features of the
non-strict ECMAScript languagend modifies the detailed semantics of some featdris.strict variant
also specifiesadditional error conditions thamustbe reported by throwing error exceptions in siioias
that are not specified as errors thwe nonstrict form of thelanguage.

The strict variant of ECMAScript is commonly referred to asdtrect modeof the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMASTegplicitly made at the level

of individual ECMAScript code units. Because strict mode is selected at the level of a syRtagtiam

unit, strict mode only imposes restrictions that have local effect within s®ebgramunit. Strict mode

does not resict or modify any aspect of the ECMAScript semantics that must operate consistently
across multipleProgramunits. A complete ECMAScript program may be composed for both strict mode
and nonstrict mode ECMAScriptProgram units. In this case, strict modenly applies when actually
executing code that is defined within a strict mé&tegramunit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode vawérihe ECMAScript language as defined

by this specification. In addition, an implementation must support the combination of unrestricted and
strict modeProgramunits into a single composite program

4.3 Definitions
The following are informal definitionsf key terms associated with ECMAScript.
4.3.1 Type
A typeis a set of data values.

4.3.2 Primitive Value

A primitive valueis a member of one of the typéindefined, Null, Boolean Number, Decimal or
String. A primitive value is a datum that is represehtdirectly at the lowest level of the language
implementation.

4.3.3 Object

An objectis a member of the typ@bject. It is a collection of properties. Deleted: Itis an unordered collection of propertie
each of which contains a primitive value, object, ol
4.3.4 Constructor function. A function stored in a property of an obje
A constructor is a Function object that creates and initialiségeots. The value of a castructord s called a method.
fiprototype O property is aprototype object that is used to implement inheritance and shared [Deleted: Each constructor has an associated
properties.

4.3.5 Prototype

A prototypeis an object used to implement structure, state, lzattaviour inheritance in ECMAScript.
When a constructor creates an object 6 fgrdicaype @bj ect

propertyf or t he purpose of resol vi ng fgatotypee roprypertyeh e r { Deleted: associated prototype
be referenced by the program expressmmstructor .prototype , and properties added to an |£

objectds prototype are shared, through inheritan

4.3.6 Native Object

A native objectis any object supplied by an ECMAScript implementation independent of the host
environment. Standard native objects are defined in this specification. Some native objects dre built
others may be constructed during the course of execution of an ECMpAPoogram.

4.3.7 Built-in Object

A built-in objectis any object supplied by an ECMAScript implementation, independent of the host
environment, which is present at the start of the execution of an ECMAScript program. Standair built
objects are definedh this specification, and an ECMAScript implementation may specify and define
others. Every builin object is a native object built-in constructoris abuilt-in object that is also a
constructor.

4.3.8 Host Object

A host objectis any object supplietdy the host environment to complete the execution environment of
ECMAScript. Any object that is not native is a host object.

Deleted: associated prototype
(O -

07 November 2008

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.15

4.3.16

4.3.17

4.3.18

4.3.19

4.3.20

4.3.21

4.3.22

Undefined Value
Theundefined valueis a primitive value used when a variable has not been assigned a value.

Undefined Type
The typeUndefined has exactly one value, calleshdefined.

Null Value
Thenull value is a primitive value that represents the null, empty, or-evistent reference.

Null Type
The typeNull has exactly one value, calledll.

Boolean Value
A boolean valueis a member of the typBooleanand is one of two unique valudsye andfalse

Boolean Type

The typeBooleanrepresents a logical entity and consists of exactly two unique values. One is callec
true and the other is diad false.

Boolean Object

A Boolean objectis a member of the typ®bject and is an instance of the buitt Boolean object. That

is, a Boolean object is created by using the Boolean constructor newaexpression, supplying a
boolean as an argume The resulting object has an implicit (unnamed) property that is the boolean. A
Boolean object can be coerced to a boolean value.

String Value

A string valueis a member of the typ8tring and is a finite ordered sequence of zero or moréil6
unsigned integer values.

NOTE

Although each value usually represents a singlebitunit of UTR16 text, the language does not place
any restrictions or requirements on the values except that they-b& L&signed integers.

String Type

The typeString is the set of all string values.

String Object

A String objectis a member of the typ®bject and is an instance of the built String object. That is, a
String object is created by using the String constructor mew expression, supplying atring as an
argument. The resulting object has an implicit (unnamed) property that is the string. A String object ca
be coerced to a string value by calling the String constructor as a function (15.5.1).

Number Value

A number valueis a member of the typdumber and is a direct representation of a number.

Number Type

The typeNumber is a set of values representing numbers. In ECMAScript, the set of values represent
the doubleprecision 64bit format IEEE 754 values includingh e s pe-aNamb &@Not (NaN)
positive infinity, and negative infinity.

Number Object

A Number objectis a member of the typ©bject and is an instance of the built Number object. That

is, a Number object is created by using the Nurmdmmstructor in anew expression, supplying a number

as an argument. The resulting object has an implicit (unnamed) property that is the number. A Numb
object can be coerced to a number value by calling the Number constructor as a function (15.7.1).

Infinity
The primitive valuenfinity represents the positive infinite number value. This value is a member of the
Number type.

07 November 2008

4.3.23

4.3.24

4.3.25

4.3.26

4.3.21

4.3.8

4.3.9

4.330

4.331

4.3.2

4.3.3

4.3.%

NaN

The primitive valueNaNr epr esent s t he set-aNdUmbleErBE vSatlaunedsa.r dT hfii N
member of theNumber type.

Function

A function is a member of the typ@bject that may be invoked as a subroutire addition to its named
properties, a function contaimxecutablecode and state that determine how it behaves when invoked. A
funct i on 6 maynatbe writtenin ECMAScript.

Internal Function

An internal functions is a function that is a btiilt object of the language, such aarselnt and
Math.exp. An implementation may also provide implementatigpendent internal functions thate
not described in this specification. Internal functions do not necessarily contain executable code defined

by the ECMAScript grammar. Comment [pL3]: In ES3, this text is in section 10.1.1
Internal function the term is used at various places in
Property ESW3 spec and these uses have not been changed.

A propertyis an association between a name and a value. Depending upon the form of the ghaperty
value may beepresentectitherdirectly asa data value (a primitive value, an object, or a function) or
indirectly bya pair ofaccessofunctions.

Method

A methodis a function that is the value of a property.

Attribute
An attribute is an internal value that defines some characteristic of a property.

Own Property
An own property of an object is a property that is direptlgsent orthat object.

Inherited Property

An inherited propertyis a property of an object that iot one of its own properties but is a property
(either own or inherited) of the objectds prototyp
Built-in Method

A built-in methodis any method supplied by an ECMAScript implementation, independent of the host
environment. Standard builh methods are defined in this specification, and an ECMAScript
implementation may specify and define otheksbuilt-in method is an internal fution.

Decimal Value
A decimal valueis a member of the typpecimal and is a direct representation of a number.

Decimal Type

The typeDecimal is a set of values representing numbers. In ECMAScript, the set of values represents
the quadprecison 128bit format IEEE 7542 008 val ues i ncl u-aNwmmbearhde (shael
values, positive infinities, and negative infinities.

Decimal Object

A Decimal objectis a member of the typ@bject and is an instance of the buifi Number objectThat

is, a Decimal object is created by using the Decimal constructor meva expression, supplying a
decimal valueas an argument. The resulting object has an implicit (unnamed) property that is the
decimal value A Decimal object can be coerced to aideal value by calling the Decimal constructor as

a function (15.7.1).

07 November 2008

5 Notational Conventions

5.1

5.1.1

5.1.2

5.1.3

5.1.4

Syntactic and Lexical Grammars

This section describes the contdrte grammars used in this specification to define the lexical and
syntactic structurefoan ECMAScript program.

Context-Free Grammars

A contextfree grammarconsists of a number gfroductions Each production has an abstract symbol
called anonterminalas itsleft-hand side and a sequence of zero or more nonterminal &@nohinal
symlols as itsright-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, callgdatheymbal a given
contextfree grammar specifies language namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a rigr
hand side of a production for which the nonterminal is theHaftd side.

The Lexical and RegExp Grammars

A lexical grammarfor ECMAScript is given in clause 7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symk
InputElementDivor InputElemenRegExp that describe how sequences of Unicode characters are
translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntact
grammar for ECMAScript and are called ECMAScrifpkens. These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, althougt
not considered to be tokens, also become part of the stream of input elements and guide the proces:
not appear in the stream of input elements for the syntactic grammpliul_.ineComment(that is, a
comment of *éeWe® fremmar @l es s nsimorevtham briedine) is likewisepsamply
discarded if it contains no line terminator; but if MultiLineCommentcontains one or more line
terminators, then it is replaced by a single line terminator, which becomes part of the stream of inpi
elements fothe syntactic grammar.

A RegExp grammafor ECMAScript is given in 15.10. This grammar also has as its terminal symbols
the characters of the Unicode character set. It defines a set of productions, starting from the goal syml
Pattern that describe howesjuences of Unicode characters are translated into regular expressior
patterns.

Producti ons of the Il exical and RegExp gr:atnmass
separating punctuation. The lexical and RegExp grammars share some productions.

The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the pe
of the lexical grammar having to do with numeric literals and has as its terminal symbols the characte
of the Unicodecharacter set. This grammar appears in 9.3.1.

Productions of t he numeric string gr ammard arse
punctuation.

The Syntactic Grammar

The syntactic grammarfor ECMAScript is given in clauses 11, 12, 13 and This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set o
productions, starting from the goal symhb@togram that describe how sequences of tokens can form
syntactically correct ECMAScript progms.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted tc
stream of input elements by repeated application of the lexical grammar; this stream of input elements
then parsed by a single application betsyntax grammar. The program is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nontermi
Program with no tokens left over.

07 November 2008

Deleted:

785

Productions of the syntactic grammar are distinguidhged havi ng | uf ta so npeu ncootl want ifio

The syntactic grammar as presented in sectjinsl2, 13 and 14s actually not a complete account of [Deleted: 0, 0,0and0

which token sequences are accepted as correct ECMAScript programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequmEnin certain places (such as before line terminator characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if a terminator
character appears in certain fiawkwardo places.

5.1.5 Grammar Notation

Teminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown ifixed width font, both in the productions of the grammars and throughout
this specification whenever the text directly refers to sadierminal symbol. These are to appear in a
program exactly as written. All nonterminal characters specified in this way are to be understood as the
appropriate Unicode character from the ASCII range, as opposed to any dooikémg characters from
otherUnicode ranges.

Nonterminal symbols are shown italic type. The definition of a nonterminal is introduced by the name

of the nonterminal being defined followed by one or more colons. (The number of colons indicates to
which grammar the production bela®y One or more alternative rightand sides for the nonterminal
then follow on succeeding lines. For example, the syntactic definition:

WhileStatement Deleted: WithStatement

while (Expressior) Statement

Deleted: WithStatement

,,,,,,,,,,,,,,,,,,,,,, [Deleted: with
token, followed by arExpression followed by a right parenthesis token, followed bg@@tementThe %

Deleted: with

occurrences oExpressiorand Statemenare themselves nonterminals. As another example, the syntactic
definition:

ArgumentList

AssignmentExpression
ArgumentList, AssignmentExpression

states that arArgumentListmay represent either a singhssignmentExpressioar an ArgumentList
followed by a comma, followed by amssignmentExpressionThis definition of ArgumentListis
recursive that is, it is defined in terms of itself. The result is thatAagumentListmay contain any
positive number of arguments, separated by commas, where each emtguErpression is an
AssignmentExpressiosuch recursive definitions of nonterminals are common.

The subscrioptd,edwhiudh imayl appear after a tomionali nal
symbol The alternative containing the optional symbotually specifies two righhand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration:
Identifier Initialisery

is a convenient abbreviation for:

VariableDeclaration:
Identifier
Identifier Initialiser

and that:

IterationStatement
for (ExpressionNolg, ; Expressiog, ; Expressiog;) Statement

is a convenient abbreviation for:

IterationStatement
for (; Expressiog, ; Expressiop,) Statement
for (ExpressionNoln; Expressiop, ; Expressiog,) Statement

which in turn is an abbreviation for:

07 November 2008

IterationStatement
for (;; Expressiogy) Statement
for (; Expression; Expressiog,) Statement
for (ExpressionNoln; ; Expressiog,) Statement

for (ExpressionNoln; Expression; Expressiog,) Statement

which in turn is an abbreviation for:

IterationStatement

for (;;) Statement

for (;; Expression) Statement

for (; Expression;) Statement

for (; Expression; Expression) Statement

for (ExpressionNoln;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nontermindterationStatemenactually has eight alternative rightand sides.

I f t he [eppl0 aad gp dar s -hansl sidetoea produgtion, it indicates that the production's
right-hand side contains no terminals or nonterminals.

I f t h e [lopkhhéadezss€l0 flap pear s -hamd sitehod a prodgction, it indicates that the
productionmay not be used if the immediately following input terminal is a member of the geen
Thesetcan be written as a list of terminals enclosed in curly braces. For convenience, the set can also
written as a nonterminal, in which case it represengssit of all terminals to which that nonterminal
could expand. For example, given the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [lookaheads {1, 3,5, 7, 9}] DecimalDigits
DecimalDigit [lookaheade DecimalDigit]

matches either the letterfollowed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.

I f t h e h@uUneTansngorhdiep ap p ear s -hamd sidehoé a pradgction of the syntactic
grammar, it indicates that the production & restricted production it may not be used if a
LineTerminatoroccurs in the input stream at the indicated position. Fomgke, the production:

ReturnStatement
return [no LineTerminatothere] EXpreSSiOQm)

indicates that the production may not be used IfimeTerminatoroccurs in the program between the
return token and thé&xpression

Unless the presence of kineTermirator is forbidden by a restricted production, any number of
occurrences ofineTerminatormay appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When t heonevolr diisw thie colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

07 November 2008

- 10 -

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::, [Deleted: one of

1

Co~NoOUThWN

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be
a multicharacter token, it represents the sempeeof characters that would make up such a token.

The righthand side of a production may specify that certain expansions are not permitted by using the
phr abstemotdi and then indicating the expansions to be
Idenifier ::

IdentifierNamebut not ReservedWord

means that the nonterminkdentifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not répdseevedWord

Finally, a fewnonterminal symbols are described by a descriptive phrase in roman type in cases where it
would be impractical to list all the alternatives:

SourceCharacter.

any Unicode character

Algorithm Conventions

The specification often uses a numbered lisspecify steps in an algorithm. These algorithms are used to
clarify semantics. In practice, there may be more efficient algorithms available to implement a given
feature.

When an algorithm is to produce x V & ltowirslieatesthatather e s u |
result of the algorithm is the value wfand that the algorithm should terminate. The notation Reguk(
used as short handnof.orTxyfiptehfe urseesdu lats osfh osxdtehpand f or At |

For clarity of expression, gbrithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labeled with lovase alphabetic characters and the
second level of substeps labelled with lower case roman numerals. If more than three levels are required
these rules repeat with the fourth level using numeric labels. For example:

1. Top-level step

a. Substep.

b. Substep
i. Subsubstep.
ii. Subsubstep.

1. Subsubsubstep
a. Subsubsubsubstep

A step or substep may be written as a predicate that conditions its substeihés dase, the substeps are
only applied if the predicate i s tr ueisapreflicate thatisep o1
the negation of the preceding predicaetydollowddebpa a't t
parenthesized step or substep labehtiiés a predicate that is the negation of that labelled predicate.

07 November 2008

-11 -

A step my specify théerative application of its substeps.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and tht
mathematical functions defined later in this section should always be understood as computing exs
mathematical redts on mathematical real numbers, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model ffo@itihg
arithmetic include explicit steps, where necessary, to leantfinities and signed zero and to perform
rounding. If a mathematical operation or function is applied to a flogimigt number, it should be
understood as being applied to the exact mathematical value represented by that-floatingumber;

such afloating-point number must be finite, and if it # or —0 then the corresponding mathematical value

is simply 0.

The mathematical function abg(yields the absolute value &f which is—x if x is negative (less than zero)
and otherwise ix itself.

The mathematical function sigk(yields 1 ifx is positive and-1 if x is negative. The sign function is not
used in this standard for cases wheis zero.

T he n o kmadiloyiny iffust be finite and nonzero) computes a vddwé the same sign as(or zero)
such that ab&j < abs§) andx—k = q > y for some integeq.

The mathematical function floot) yields the largest integer (closest to positive infinity) that is not larger
thanx.

NOTE

floor(x) = x—(x modulo 1).

If an algorithm is definedtdt hr ow an exceptionbo, execution of t
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly dea
with the exception, using teg mi mrodwmgé&o.su@rhc e ss WidH

has been encountered the exception is no longer considered to have occurred.
Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, ver
Normalised Form C (canonical composition), as described in Unicode Technical Report #15. Conformin
ECMAScript implementations are not required to performy aormalisation of text, or behave as though they
were performing normalisation of text, themselves.

SourceCharacter.
any Unicode character

Throughout the rest ofcotdlei spod md wmemtd, tthhee woh rda sflec h
to a 16bit unsigned value used to represent a singlebitéunit of UTF1 6 t ext . The ©phr
charactero wild!l be used to refer to t heyaasibgkeUnicodet |
scalar value (which may be longer than 16 bits and thus may be represented by more than one code poi
This only refers to entities represented by single Unicode scalar values: the components of a combini
character sequence are siillndi vi dual fiuni code characters, o even

sequence as a single character.

In string literals, regular expression literals and identifiers, any character (code point) may also be express
as a Unicode escape sequencesistimg of six characters, namely plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal
regular expression literal, the Unicode escape sequence contributehanaeter to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE 1

Al t hough this document sometimes refers to a fAtrar
the 16bit unsigne integer that is the UTH6 encoding of that character, there is actually no transformation
because a fAicharactero within a f s-bitunsiggedvalus. act ual |

NOTE 2

07 November 2008

Deleted: 2.1

Deleted: ECMAScript source text can contal
any of the Unicode characters. All Unicode w
space characters are treatsdvhite spageand &
Unicode line/paragraph separatare treated a:
line separators. Nebatin Unicode characters :
allowed in identifiers, string literals, regular
expression literals and commefits.

-12 -

ECMAScript differs from the Java programming languagehia behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequenaB00A, for example, occurs within a singlmme comment, it

is interpreted as a line terminator (Unicode charact#0A is line feed) and therefore the next character is
not part of the comment. Similarly, if the Unicode escape sequar@@0A occurs within a string literal in a
Java program, it is likewise interpreted as a line terminator, which is not allowed withiring $iterald one
must write\ n instead of\ uOOOA to cause a line feed to be part of the string value of a string literal. In an

ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and

therefore cannot contribute ttermination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contributes a character to the string value of the
literal and is never interpreted as a line terminator or as a quote i@k might terminate the string literal.

Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are

either tokens, line terminators, comments, or white space. The source text is scamekffrto right,
repeatedly taking the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. TiputElementDivsymbol is used in those syntactic

grammar contexts where a divisio/)(or

division-assignment /€) operator

InputElementRegExpymbol is used in other syntactic grammar contexts.

is permitted. The

Note that contexts exist in the syntactic grammar where both a division Redj@arExpressionLiteraare
permitted by the syntacticrgmmar; however, since the lexical grammar uses ItipatElementDivgoal
symbol in such cases, the opening slash is not recognised as starting a regular expression literal in such a
context. As a workaround, one may enclose the regular expression litgraténtheses.

Syntax

InputElementDiv:

WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegExp

7.1

7.2

WhiteSpace
LineTerminator
Comment

Token
RegularExpressionLiteral

Unicode Format-Control Characters

The Unicode formatontrol character (i . e . ,
Database such asFT-TO-RIGHT MARK Or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higleeel protocols for this (such as maukp languages).

It is useful to allow these in source text to facilitate editing and display.

The format control characteysay be usedn identifiers, within comments, and within string literals and [

regular expression literals

White Space

t he

characters

n

catego

Deleted: can occur

White space characters are used to improve source text readability and to separate tokens (indivisi
lexical units) from each other, batre otherwise insignificant. White space may occur between any two
tokens, and may occur within strings (where they are considered significant characters forming part of t
literal string value), but cannot appear within any other kind of token.

The following characters are considered to be white space:

Code Point Value

Name

Formal Name

07 November 2008

Deleted: anywhere in the source text of an
ECMAScript program. These characters are remov
from the source text befoepplying the lexical
grammar. Since these characters are removed befi
processing string and regular expression literals, ol
must use aJnicode escape sequence (see 7.6) to
include a Unicode formatontrol character inside a
string or regular expressiditeral

ECMAScript implementations must recognize all of the white space characters defined in Unicode 3.(
editions of the Unicode Standard may define other wlsipace characters.

Later

\ u0009
\ u000B
\ uoooC
\ u0020
\ u0085
\ UOOAO
\ u200B
\ UFEFF

- 13-

Tab

Vertical Tab
Form Feed
Space

Next Line
No-break space
Zero width space
Byte Order Mark

Ot her categ Any other Unicode

fispace sepa

<TAB>
<VT>
<FF>
<SP>
<NEL>
<NBSP>
<ZWSP>
<BOM>
<Usp>

ECMAScript

implementations may recognize white space characters from later editions of the Unicode Standard.

Syntax
WhiteSpace:

7.3

Syntax

<TAB>
<VT>
<FF>
<SP>
<NEL>
<NBSP>
<ZWSP>
<BOM>
<USpP>

Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, lir
terminators have some influence over thédgour of the syntactic grammar. In general, line terminators

may occur between any two tokens, but there are a few places where they are forbidden by the syntac

grammar. A line terminator cannot occur within any tokexgept that lie terminators that are preceded hyy
an escape sequence may occur within a string literal tokiere terminators also affect the process

automatic semicolon insertiofr.©).

Line terminators are included in the set of white space characters thagtrked by thés class in regular
expressions.

The following characters are considered to be line terminators:

Code Point Value
\ uOOOA
\ uo00D
\ u2028
\ u2029

Name

Line Feed
Carriage Return
Line separator

Paragraph separator

Formal Name
<LF>
<CR>
<LS>
<PS>

Only the characters in the above table &eated as line terminators. Other new line or line break|ng

f

characters are treated as white space but not as line terminBbersharacter sequence <CR><LF>
is treated as a single line terminator.

07 November 2008

Deleted: not even a string

Deleted: 7.8.5

14 -

LineTerminator.:
<LF>
<CR>
<LS>
<PS>
<CR><LF>

7.4 Comments
Description

Comments can be either single or muliltie. Multi-line comments cannot nest.

Because a singiBne comment can contain any character exceptn@ Terminatorcharacter, and because

of the general rule that a token is always as long as possible, a-Birggleomment always consists of all
characters from thg marker to the end of the line. However, th@eTerminatorat the end of the line is

not consideredo be part of the singléne comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important,
because it implies that the presence or absence of simgecomments does not affect the process of
automatic semicolon insertion (7.9).

Comments behave like white space and are discarded except thaditinineCommentcontains a line
terminator character, then the entire comment is considered td_beaaminator for purposes of parsing
by the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:
/* MultiLineCommentChagsg, */

MultiLineCommentChars
MultiLineNotAsteriskChar MultiLineCommentChgys
* PostAsteriskComemtChargp

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChgars
* PostAsteriskCommentChags

MultiLineNotAsteriskChar:
SourceCharactebut not asterisk*

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not forward-slash/ or asterisk*

SingleLineComment
/I SingleLineCommentChays

SingleLineCommentChars
SingleLineCommentCha&ingleLineCommentChags

SingleLineCommentChar
SourceCharactebut not LineTerminator

7.5 Tokens
Syntax

07 November 2008

- 15-

Token::
ReservedWord
Identifier
IdentifierName
Punctuator
NumericLiteral
StringLiteral

7.5.1 Reserved Words
Description

Reserved words cannot be used as identifiers.

Syntax

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.5.2 Keywords
The fdlowing tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript

programs.
Syntax
Keyword:: one of
preak else new var | (Deleted: Break
case finally return void
catch for switch while
continue function this with
default if throw debugger |
delete in try
do instanceof typeof

7.5.3 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow
the possibility of future adoption of those extensions.

Syntax

FutureReservedWord one of
abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
const goto private transient
v implements | protected volatile | Comment [pL4]: This table needs to be repac
double import public to get rid of he holes.

[Deleted: debugger

Note
TBD: Need to have a note alluding to the futuyfe

7.6 ldentifiers [Deleted: upcoming version 3.0 of the

Description [Deleted: standard

Deleted: 2.1

Identifiers are interpreted according to the grammar given in Section 5.16 @frilkede standard, with|
some small modifications. This grammar is based on both normative and informative character categori Deleted: ;however, conforming ECMAScrif

specified by the Unicodgtandard The characters in the specified categories in veriomf the Unicode :L”epn"ﬁx”ctﬁg?;;emr:ﬁ:é's;‘/oidgigoc”;'e'ggs
standard mst be treated as in those categories by all conforming ECMAScript implementgations assignment from later versions of Unicode

07 November 2008

- 16 -

This standard specifiegpecific character additionhe dollar sign$) and the underscore (_) are permitted
anywhere in an identifigr.

Deleted: one departure from the grammar given ir
Unicode standard

Unicode escape sequences are also permitted in identifiers, where they contribute a single character to
identifier, as computed by the CV of thénicodeEscapeSequendsee 7.8.4). Thd preceding the

Deleted: The dollar sign is intended for use only i
mechanically gnerated code.

UnicodeEscapeSequenaes not conthute a character to the identifier. WnicodeEscapeSequence
cannot be used to put a character into an identifier that would otherwise be illegal. In other words, if a
UnicodeEscapeSequensequence were replaced by UsicodeEscapeSequeriseCV, the reslt must still

be a validldentifier that has the exact same sequence of characters as the oldgimidier.

Two identifiers that are canonically equivalent according to the Unicode standandtagual unless they
are represented by the exact samgueace of code points (in other words, conforming ECMAScript

implementations are only required to do bitwise comparison on identifiers). The intent is that the incoming

source text has been converted to normalised form C before it reaches the compiler.

ECMAScript implementations may recognize identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in
Unicode 3.0.

Syntax
Identifier ::
IdentifierNamebut not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodeLetter
$

\ UnicodeEscapeSequence

IdentifierPart ::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
\ UnicodeEscape$gence

UnicodeLetter

any <character in the Unicode categories fAUppercase |

AModi fier letter (Lm)o, fAOther |l etter (Lo)o, or fiLette
UnicodeCombiningMark

any character in the Unicodeat e gor-s gaciiM@ nmar k (Mn) o6 or fACombining sp.
UnicodeDigit

any character in the Unicode category fdADeci mal number
UnicodeConnectorPunctuation

any character in the Unicode category fAConnector punct

UnicodeEscapeSequenc
see 7.8.4.

HexDigit:: one of
0123456789abcdefABCDETF

07 November 2008

-17 -

7.7 Punctuators

Syntax
Punctuator:: one of
{ } () []
, y < > <=
>= == 1= === |I==
+ - * % ++ -
<< >> >>> & | N
! ~ && I ?
= += -= *= %= <<=
>>= >>>= &= |: A=

DivPunctuator:: one of
/=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.8.1 Null Literals

Syntax
NullLiteral ::
null

Semantics
The value of the null literatull is the sole value of the Null type, nameilyll.

7.8.2 Boolean Literals

Syntax

BooleanLiteral:
true
false

Semantics
The value of the Boolean litertue is a value of the Boolean type, nameélye.
The value of the Boolean literédlse is a value of the Boolean type, namédyse.

7.8.3 Numeric Literals
Syntax

NumericLiteral::
DecimalLiteralm
DecimalLiteral
HexlIntegerLiteral

DecimalLiteral::
DecimalintegerLiteral DecimalDigits, ExponentPag;
. DecimalDigits ExponentPayg;
DecimallntegerLiteral ExponentPapt

07 November 2008

- 18-

DecimalintegerLiterat:
0
NonZeroDigit DecimalDigitg;

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
ExponentindicatoSignedinteger

Exponentindicator: one of
e E

SignedInteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

The source character immediately following NumericLiteral must not be anldentifierStart or
DecimalDigit

NOTE
For example:

3in
is an error and not the two input elemetandin.

Semantics

A numeric literal stands for a value of the Number type. Maikie is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as
described below.

The MV of NumericLiteral:: DecimalLiteralis the MV ofDecimalLiteral

The MV of NumericLiteral:: HexIntegerLiterais the MV ofHexIntegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral is the MV ofDecimalintegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral DecimalDigitsis the MV of DecimallntegerLiteralplus
(the MV o DecimalDigitstimes 10"), wheren is the number of charactersrecimalDigit.

The MV of DecimalLiteral:: DecimallntegerLiteral ExponentParis the MV of DecimallntegerLiterakimes
1C°, whereeis the MV of ExponentPart

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPartis (the MV of
DecimallntegerLiteralplus (the MV ofDecimalDigitstimes 10") times 16, wheren is the number of
characters ifDecimalDigits andeis the MV of ExponentPart

The MV of DecimalLiteral::. DecimalDigitsis the MV of DecimalDigitstimes 16", wheren is the number of
characters ifDecimalDigits.

The MV of DecimalLiteral::. DecimalDigits ExponentPais the MV of DecimalDigitstimes 16", wheren is
the number of characters ecimalDigts andeis the MV ofExponentPart

07 November 2008

- 19-

The MV of DecimalLiteral:: DecimallntegerLiterais the MV of DecimallntegerLiteral

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPais the MV of DecimalintegerLiteraltimes
10°, whereeis the MV of ExponentPart

The MV of DecimallntegerLiterat: 0 is 0.

The MV of DecimalintegerLiteral:: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10) plus
the MV of DecimalDigits wheren is the number of charactersrecimalDigits

The MV of DecimalDigits :: DecimalDigitis the MV ofDecimalDigit

The MV of DecimalDigits:: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart: Exponentindicator Signedintegisrthe MV ofSignedintege

The MV of Signedinteger: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: - DecimalDigitsis the negative of the MV dbecimalDigits

The MV of DecimalDigit:: 0 or of HexDigit:: 0 is 0.

The MV of DecimalDigit:: 1 or of NonZeroDigit:: 1 or of HexDigit:: 1 is 1.

The MV of DecimalDigit:: 2 or of NonZeroDigit:: 2 or of HexDigit:: 2 is 2.

The MV of DecimalDigit:: 3 or of NonZeroDigit:: 3 or of HexDigit:: 3 is 3.

The MV of DecimalDigit:: 4 or of NonZeroDigit:: 4 or of HexDigit:: 4 is 4.

The MV of DecimalDigit:: 5 or of NonZeroDigit:: 5 or of HexDigit:: 5 is 5.

The MV of DecimalDigit:: 6 or of NonZeroDigit:: 6 or of HexDigit:: 6 is 6.

The MV of DecimalDigit:: 7 or of NonZeroDigit:: 7 or of HexDigit:: 7 is 7.

The MV of DecimalDigit:: 8 or of NonZeroDigit:: 8 or of HexDigit:: 8 is 8.

The MV of DecimalDigit:: 9 or of NonZeroDigit:: 9 or of HexDigit:: 9 is 9.

The MV of HexDigit:: a or of HexDigit :: Ais 10.

The MV of HexDigit :: b or of HexDigit:: Bis 11.

The MV of HexDigit :: ¢ or of HexDigit:: Cis 12.

The MV of HexDigit:: d or of HexDigit:: Dis 13.

The MV of HexDigit:: e or of HexDigit:: Eis 14.

The MV of HexDigit:: f or of HexDigit:: Fis 15.

The MV of HexIntegerLiterat: Ox HexDigitis the MV ofHexDigit

The MV of HexIntegerLiterak: 0X HexDigitis the MV ofHexDigit

The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV of HexIntegerLiteratimes 16) pls the
MV of HexDigit

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of th

Decimal type if the suffixm is present, otherwise to tiéumber type. If the MV is 0, then the roundeld

value is+0; otherwise, the rounded value mustthe number value for the MV (in the sense defined in

8.5), unless the literal is BecimalLiteraland the literal has more than 20 significant digits, in which

case the number value may be either the number valuaédvV of a literal produced by replacing each

significant digit after the 20th with @ digit or the number value for the MV of a literal produced by

replacing each significant digit after the 20th witl a@igit and then incrementing the literal at thetl2

significant digit position. A digit isignificantif it is not part of arExponentPartand

itis notO; or
there is a nonzero digit to its left and there is a nonzero digit, not iBxpenentPartto its right.

7.8.4 String Literals

A string literalis zero or more characters enclosed in single or double quotes. Each character may t
represented by an escape sequerdeUnicode characters may appear literally in a string literal excgpt
for the closing quote character, backslash, carriage retudhliraafeed. Any character may appear in the
form of an escape sequence.

Syntax

07 November 2008

-20-

StringLiteral::
" DoubleStringCharactegg, "
' SingleStringCharactegs '

DoubleStringCharacters
DoubleStringCharacteDoubleStringCharactegg

SingleStringCharacters
SingleStringCharacte8ingleStringCharacters

DoubleStringCharacter.

SourceCharactebut not doublequote” or backslash or LineTerminator

\ EscapeSequence
LineContinuation

SingleStringCharacter.

SourceCharactebut not singlequote' or backslash or LineTerminator

\ EscapeSequence
LineContinuation

LineContinuatiorn:
\' [LineTerminatdr

EscapeSequence
CharacterEscapeSequence
0 [lookaheadz DecimalDigif
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of
" bfnrtv

NonEscapeCharacter
SourceCharactebut not EscapeCharacteor LineTerminator

EscapeCharacter.
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence
x HexDigit HexDigit

UnicodeEscapeSequence
u HexDigit HexDigit HexDigit HexDigit

The definitions of the nontermindlexDigit is given in section 7.8.3SourceCharacteis described in

sections 2 and 6.

A string literal stands for a value of the Stritype. The string value (SV) of the literal is described in

Comment [pL5]: From DEC:
Do we really want to do this?

[Comment [pL6]: 4/4 browsers support this.

terms of character values (CV) contributed by the various parts of the string literal. As part of this

process, some characters within the string literal are interpreted as having a matherahtec @), as

described below or in section 7.8.3.

The SV ofStringLiteral:: " is the empty character sequence.

07 November 2008

- 21 -

The SV ofStringLiteral:: " is the empty character sequence.

The SV ofStringLiteral:: " DoubleStringCharacters is the SV ofDoubleStrin@Characters

The SV ofStringLiteral:: ' SingleStringCharacters is the SV ofSingleStringCharacters

The SV of DoubleStringCharacters: DoubleStringCharactelis a sequence of one character, the CV of
DoubleStringCharacter

The SV ofDoubleStringCharacts :: DoubleStringCharacteDoubleStringCharacters a sequence of the CV
of DoubleStringCharactefollowed by all the characters in the SV@bubleStringCharacteris order.

The SV of SingleStringCharacters: SingleStringCharactelis a sequence of one character, the CV of
SingleStringCharacter

The SV ofSingleStringCharacters SingleStringCharactegingleStringCharacters a sequence of the CV of
SingleStringCharactefollowed by all the characters in the SVSihgleStringChaactersin order.

The SV ofLineContinuatiort: \ LineTerminatoris the empty character sequence

The CV of DoubleStringCharacter:: SourceCharacterbut not doublequote " or backslash\ or
LineTerminatoris theSourceCharactecharacter itself.

The CV ofDoubleStringCharacter. \ EscapeSequenégthe CV of theEscapeSequence

The CV ofSingleStringCharacter. SourceCharactebut not singlequote' or backslash or LineTerminator
is theSourceCharactecharacter itself.

The CV ofSingleStringCharacter. \ EscapeSequendgthe CV of theEscapeSequence

The CV ofEscapeSequenceCharacterEscapeSequenisghe CV of theCharacterEscapeSequence

The CV ofEscapeSequence0 [lookaheade DecimalDigifis @ <NUL> character (Unicode value 0000).

The CV ofEscapeSequenceHexEscapeSequentsethe CV of theHexEscapeSequence

The CV ofEscapeSequenceUnicodeEscapeSequenisghe CV of thdJnicodeEscapeSequence

The CV of CharacterEscapeSequence SingleEscapeCharactes the character whose code point value is
determined by th8ingleEscapeCharactexccording to the following table:

Escape Sequence Code Point Value Name Symbol

\b \ u0008 backspace <BS>
\'t \ ud009 horizontal tab <HT>
\n \ uOOOA line feed (new line) <LF>
\'v \ uo00B vertical tab <VT>
\ f \ uoooC form feed <FF>
\'r \ uo00D carriage return <CR>
\" \ u0022 double quote "

\! \ u0027 single quote '

\\ \ u005C backslash \

The CV ofCharacterEscapeSequenceNonEscapeCharactés the CV of theNonEscapeCharacter

The CV of NonEscapeCharacter: SourceCharactetbut not EscapeCharacteor LineTerminatoris the
SourceCharactecharacter itself.

The CV ofHexEscapeSequencex HexDigit HexDigitis the character whose code point value is (16 tithes
MV of the firstHexDigit) plus the MV of the secoridexDigit

The CV of UnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the character whose code
point value is (4096 (that is, J&imes the MV of the firsHexDigit) plus (256 (thatd, 16) times the MV of
the secondHexDigit) plus (16 times the MV of the thitdexDigif) plus the MV of the fourttdexDigit

NOTE

A 'LineTerminator' character cannot appear in a string literakcept wherpreceded by a backslash L [Deleted: even if
asad6lLineContinuationd to pr odu dhe cdrrece wag topause aclinga r

terminator character to be part of the string value of a string literal is to use an escape sequence such i

\'n or\ uOOOA.

07 November 2008

7.8.5

Syntax

RRegularExpressionLiteral

-22 -

Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (sectiorﬁeaﬁhw) [

Deleted: when it is scanned

time the literal is evaluatéd’wo regular expression literals in a program evaluate to regular expression
objects that never compare as= to each other even if the two literals' contents are identical. gERe
object may also be created at runtime mgw RegExp (section 15.10.4) or calling th®egExp
constructor as a function (section 15.10.3).

Comment [pL7]: From AWB:

Because of this change RegularExpressionLiteral argt
should be moved to section 11.1. However, | am not
actually proposing we do so.

The productions below describe the syntax for a regular expression literal and are used by the in
element scanner to find the end of the regular expression literal. The strings of characters comprising
RegularExpressionBodyand the RegularExpressionFlagsare passed uninterpreted to the regular

Deleted: The object is created before evaluation
the containing program or function begins. Evalua
of theliteral produces a reference to that object; it
not create a new object.

expression constructor, which interprets them according to its own, more stringent grammar. An
implementation may extend the regular expression constructor's grammar, but it should not lestend t
RegularExpressionBodynd RegularExpressionFlagproductions or the productions used by these
productions.

| RegularExpressionBody RegularExpressionFlags

Comment [pL8]: All browser currently suppd
[}/ and /(.(/ as regexp literals so need to fix grammar.

RegularExpressionBody
RegularExpressionFirstChd&egulaExpressionChars

RegularExpressionChars

[empty]

RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar
NonTerminatoibut not * or\ or/
BackslashSequence

RegularExpressionChar
NonTerminatobut not\ or/
BackslashSequence

BackslahSequence

\ NonTerminator

NonTerminator:
SourceCharactebut not LineTerminator

RegularExpressionFlags
[empty]
RegularExpressionFlags IdentifierPart

Deleted: stands for

Deleted: Object

Deleted: constructor is called with twarguments
Pattern and Flags and t

Deleted: result

Deleted: becomes the value of the
RegularExpressionLiteral

Y Y

NOTE

Deleted: If

Regular expression literals may not be empty; instead of representing an empty regular expressidg
literal, the characters// start a singleline comment. To specify an empty regular expression, use

Comment [pL9]: Note that both IE and FF detect ea

(testcase below).

1(?2)] <script>
i var falsy = function(){return 0}();
Semantics re = [/
. . . — alert(re);
A regular expression litergtvaluates taa value of theRegExptype. This value is determined in two If(falsy){_”
steps: first, the characters comprising the regular expressi®egularExpressionBodyand ;?g,{((’re2);
RegularExpressionFlagproduction expansions are collected uninterpreted into twingstrPattern and)
Flags, respectively. Themach time the literal is evaluatealnew object is created as if tye expression <Iscript>
new RegExp (Pattern, Flags) where RegExps the standard butith constructor with that name, [Deleted: s

Jhe newly constructed objedbecomes the value of the RegularExpressionLijelifajhe call tonew/
RegExp would generatgan errorl’;he error must be reported while scanning the probram

Deleted: an implementation may, at its digtion,
either report the error immediately while scanning
program, or it may defer the error until the regular
expression literal is evaluated in the course of proi
execution

07 November 2008

7.9

7.9.1

- 23-

Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statermehtile
statementcontinue statementbreak statementreturn statement, andhrow statement) must be
terminated with semicolons. Such semicadomay always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. The
situations are described by saying that semicolons are automatically inserted into the sourtakeonde
stream in those situations.

Rules of Automatic Semicolon Insertion

* When, as the program is parsed from left to right, a token (calledfterding tokenis encountered
that is not allowed by any production of the grammar, then a semicolant@natically inserted
before the offending token if one or more of the following conditions is true:

1. The offending token is separated from the previous token by at leastimgiBerminator
2. The offending token i$.

* When, as the program is parsed fronit léo right, the end of the input stream of tokens is
encountered and the parser is unable to parse the input token stream as a single compl
ECMAScript Program then a semicolon is automatically inserted at the end of the input stream.

* When, as the pragm is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production isestricted productiorand the token would be the
first token for a terminal or nonterminal immediately following the annotatrino LiheTerminator
herep wi thin the restricted production (and thei
the restricted token is separated from the previous token by at leadtimeiBerminator then a
semicolon is automatically insed before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is neve
inserted automatically if the semicolon would then be parsed as an empty statement or if that semicol
would become one ohe two semicolons in the header ofoa statement (section 12.6.3).

NOTE
These are the only restricted productions in the grammar:
PostfixExpression
LeftHandSideExpressiofno LineTerminatomere] ++
LeftHandSideExpressioino LineTerminatothere] --

ContinueStatement
continue [no LineTerminatotere] Identifiery, ;

BreakStatement
break [no LineTerminatothere] Identifieryy ;

ReturnStatement
return [no LineTerminatothere] EXpressiogy;

ThrowStatement
throw [no LineTerminatothere] Expression

The practical effect of these restricted productions is as follows:

* When a++ or -- token is encountered where the parser would treat it as a postfix operator, and a
least oneLineTerminatoroccurred between the preceding token and theor -- token, then a
semicolon is automatically inserted before thieor -- token.

* When acontinue , break , return , or throw token is encountered andLlaneTerminatoris
encountered before the next token, a semicolon is automatically inserted afteoritieue
break , return , orthrow token.

The resulting practical advice to ECMAScript programmers is:

* A postfix ++ or-- operator should appear on the same line as its operand.

07 November 2008

7.9.2

24 -

* An Expressionin areturn or throw statement should start on the same linehesréturn or
throw token.
* A label in abreak or continue statement should be on the same line as ltheak or
continue token.
Examples of Automatic Semicolon Insertion
The source
{12}3
is not a valid sentence in the ECMAScript grammar, even thieghautomatic semicolon insertion rules.
In contrast, the source
{1
213
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:
{1
213

which is a valid ECMAScript sentence.

The source
for (a;b
)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header dba statement. Automatic semicolon insertion never inserts one
of the two semicolons in the header ofoa statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a+b;

NOTE
The expressiom + b is not treated as a value to be returned by theurn statement, because a
‘LineTerminator' separates it from¢htokenreturn
The source

a=b

++C
is transformed by automatic semicolon insertion into the following:

a=b;

++C;

NOTE
The tokent+ is not treated as a postfix operator applying to the varidbldecause a ‘LineTerminator’
occurs betweeb and++.

Thesource
if (@ > b)
elsec=d

07 November 2008

- 25-

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion befelsethe
token, even though no production of the grammar applies at that point, because an automatically insert
semicolon would the be parsed as an empty statement.

The source
a=b+c
(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that beg
the second line can be interpreted as an argument list for a function call:
a=b +c(d+e).print()
In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea

the programmer to provide an explicit semicolon at the end of the preceding statement rather than to re
on automatic semicolomsertion.

Types

LA value is an entity that takes on one@tventypes. There argleventypes (Undefined, Null, Boolean Deleted: nine

String, Number, Object, Reference, Li§tompletion Property Descriptor, and Property IdentijieValues of

. . s . = . Deleted: nine
type Reference, List, and Completion are used only as intermediate results of expression evaluation a

cannot be stored as properties of objécts.

Comment [pL10]: From AWB:

[Deleted: and
{ May need to rework this whole paragraph.

The Undefined Type

The Undefined type has exactly one value, calliedlefined. Any variable that has not ke assigned a
value has the valuendefined.

The Null Type
The Null type has exactly one value, calledl.

The Boolean Type
The Boolean type represents a logical entity having two values, dallecandfalse.

The String Type

The String typeis the set of all finite ordered sequences of zero or morbkitL@nsigned integer values
(el ement so) . The String type is generally used t
in which case each element in the string is treated asda point value (see section 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegati
integers. The first element (if any) is at position O, the next element (if any) at position 1, and deon. T
length of a string is the number of elements (i.e-bitévalues) within it. The empty string has length zero
and therefore contains no elements.

When a string contains actual textual data, each element is considered to be a singl@ Wit Whether

or not this is the actual storage format of a String, the characters within a String are numbered as thou
they were represented using UFIB. All operations on Strings (except as otherwise stated) treat them as
sequences of undifferentiated -b& unsigned integers; they do not ensure the resulting string is in
normalised form, nor do they ensure languagasitive results.

NOTE

The rationale behind these decisions was to keep the implementation of Strings as simple and hig
performing as possible. Thatent is that textual data coming into the execution environment from outside
(e.g., user input, text read from a file or received over the network, etc.) be converted to Unicod
Normalised Form C before the running program sees it. Usually this would attiie same time incoming
text is converted from its original character encoding to Unicode (and would impose no additiona
overhead). Since it is recommended that ECMAScript source code be in Normalised Form C, string litera
are guaranteed to be norlised (if source text is guaranteed to be normalised), as long as they do not
contain any Unicode escape sequences.

07 November 2008

8.5

- 26-

The Number and the DecimalTypes

The Number type has exactly 18437736874454810627 (thaf%4s2°%+3) values, representing the double
precision 64bit format IEEE 754 values as specified in the IEEE Standard for Binary FleBbing
Arithmetic, except that the 9007199254740990 (thati%;2) di st-aMwmb drNotval ues of
Standard are represented in ECMAScript as a singkcial NaN value. (Note that theNaN value is
produced by the program expressiN@aN, assuming that the globally defined variaiNaN has not been

altered by program execution.) In some implementations, external code might be able to detect a difference
between various Noma-Number values, but such behaviour is implementatependent; to ECMAScript

code, all NaN values are indistinguishable from each other.

There are two other special values, calpesitive Infinity andnegative Infinity. For brevity, these values
are also referred to for expository purposes by the symbolsind—w, respectively. (Note that these two
infinite number values are produced by the program expressibrimity (or simply Infinity) and

- Infinity , assuming thathe globally defined variablénfinity has not been altered by program
execution.)

The Decimal type has exactly ¥612288+3 values, representing the quadrupacision 12&bit format

IEEE 7542008 format values as specified in the IEEE Standard fortiRigd oint Arithmetic, except that

the 1G* distinct NaN, positive infinity and negative infinity values are are represented in ECMAScript as a
singleNaN, +Infinity, and 1 Infinity values.

The other 18437736874454810624 (that i&-2°%) for Number and 18*12288 for Decimalvalues are
called the finite numbers. Half of these are positive numbers and half are negative numbers; for every finite
positive number there is a corresponding negative number having the same magnitude.

Note thateach type haboth apositive zeroand anegative zero For brevity, these values are also referred [Deleted: there is

to for expository purposes by the symbel3and-0, respectively. (Note that these two zero number values
are produced by the program expressi®fAs(or simply0) and- 0.)

The 18437736874454810622 (that i§+2°°-2) for Number and 1%*12288-2 for Decimalfinite nonzero
values are of two kinds:

18428729675200069632 (that is22%%) for Number and 15*12288 for Decimglare normalised, having [Deleted: of them

the form

[Deleted: 2°

For Numbersis +1 or—1, mis a positive integer less thaf®*dut not less than®3, base is 2ande is an [Deleted: where

integer ranging fronr1074 to 971, inclusive.

For Decimal,s is +1 or—1, mis a positive integer less than *tut with a least significant digit of
anything but zero, base is 10, amt an integer ranging from6143 to 6144, inclusive.

The remaining 9007199254740990 (that i8*-2) for Number and 9*18*12288 for Decimalvalues are
denormalised, having the for

sxmxpasé [Deleted: ¥

JFor Numbersis +1 or—1, mis a positive integer less thaf’2base is 10ande is —1074. [Deleted: where

For Decimal,sis +1 or=1, mis a positive integer less than®*®ut with a least significant digit of zero,
base is 10, andis an integer ranging from6143 to 6144, inclusive.

Note that all the positive and negative integers whose magnitude is no greatertham r2presentable in
the Number type (indeed, the integer 0 has two representati@nand - 0), and that all ofthe positive
integers no greater than *f@re representable in the Decimgpé.

A finite number has awdd significandif it is nonzero and the integen used to express it (in one of the
two forms shown above) is odd. Otherwise, it hageen significad.

I'n this specification, t hxé w he nepesentsi anhexact manzebboereal v a |
mathematical quantity (which might even be an irrational number suéh means a number value chosen
in the following manner. Consider the set of fallite values of the Number type, wittD removed and with

two additional values added to it that are not representable jmntherlyingtype, namely 2 (which is +1 (Deleted: Number

07 November 2008

- 27 -

x 253 x 297Y) and—2192% (which is—1 x 2°% x 2°™) for Number and 1%7°and-10°*"*for Decimal Choose the|

member of this set that is closest in valuextdf two values of the set are equally close, then the one with

an even significand is chosen; for this purpose, the two extra v@wesconsidered to ke even
significands. Finally, ifan extra valuavas chosen, replace it with,if positive ang-« if negative if +0

was chosen, replace it witk0 if and only ifx is less than zero; any other chosen value is used unchanged.

The result is the number value for (This procedure corresponds exactly to the behaviour of the IEEE
Around to nearesto mode.)

Some ECMAScript operators deal only with integers in the ear@f* through 21, inclusive, or in the

range O through %-1, inclusive. These operators accept any value of the Number type but first conver
each such value to one of?*anteger values. See the descriptions of the Tolnt32 and ToUint32 operators in

sections9.5andQ.6, respectively.

8.6 The Object Type

An Object isa collection of propertiesEach propertyis either a named data property, a namedessor
property, or an internal property.

* A named data propertgssociates a name with a value and a set of boolean attributes.

* A namedaccessorproperty associates a name with a getter method, a setter method, and a
booleanattributes.

* An internal propertyhas no name and is not directly accessible via the property accessor ope
Internal properties exist purely fapecificationpurposes. How and when some of these properties
used is specified by the language specification below.

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of named propgenised
data property associates a name with the follovattgbutes

Table 1 Attributes of a Named Data Property

Attribute Name Value Description
Domain
[[Value]] any The value retrieved by reading the property.
[[Writ able]] boolean If true, attempts by ECMAScript code to assign the
propertyds value will suc
[[Enumerable]] | boolean If true, the property will be enumerated by aifor

enumeration (section 12.6.4). Otherwise, the property is
to be norenumerable.

[[Configurabld] | boolean If true, attempts to delete the propertange the property
to being an accessor propeny,change its attributes will

succeed. See the description of the delete operator in sd
11.4.1, and the reflective Object methods.

A namedaccessoproperty associates a name with the followattributes

Table 2 Attributes of a Named AccessorProperty

Attribute Name Value Domain Description

[[Getter]] functionor undefined | A method that to be called each time the property
read, to retrieve the current value of the property.

[[Setter]] functionor undefined | A method to be called each time the property is
assigned to, in order ttefine the current value of th
property

07 November 2008

set c

ators
are

Deleted: 2'%%*and-2'°%

Deleted: 292

Deleted: ;

[
(
754 [
[

Deleted: —2'**was chosen, replace it with

Deleted: 0

Deleted: 0

Deleted: an unordered

Deleted: consists of a name value and a s
of attributes.

8.6.2

- 28-

[[Enumerable]] | boolean If true, the property is to be enumerated by airfior
enumeration (section 12.6.4). Otherwise, the prop
is saidto be norenumerable.

[[Configurablg] | boolean If true, attempts to delete the properthange the
property to a data propertgr change its attributes
will succeed. See the description of the delete
operator in section 11.4.1, and the reflective Obje
methods

v [

Deleted: A property can have zero or more attrib
If the value of an attribute is neiplicitly specified for a named property, the default value as defined in from the following sef|
the following table is used: 1

Attribute f
Table 3 Default Attribute Values
Attribute Default Value
Name
[[Value]] undefined
[[Getter]] undefined
[[Setter]] undefined
[[Writable]] false
[[Enumerable]] | false
[[Configurablg] | false

Property descriptors, defined in section 8.10, are internal types used within this specifioat&stribe
manipulations of property attributes.

Internal Properties and Methods

Internal properties and methods are not part of the language. They are defined by this specification
purely for expository purposes. An implementation of ECMAScript must behave as if it produced and
operated upon internal properties in the manner desctileee. For the purposes of this document, the
names of internal properties are enclosed in double square brackets [[]]. When an algorithm uses an
internal property of an object and the object does not implement the indicated internal property, a
TypeError exception is thrown.

There are two types of access for normal @woiernal) properties:iget and put, corresponding to
retrieval and assignment, respectively.

All ECMAScript objects have an internal property called [[Prototype]]. The value ofptlvigerty is

[Deleted: Native
either null or an object and is used for implementing inheritandemed data mpertiesof the [

Deleted: Properties

[[Prototype]] objectare inherited dre visible as properties of the child objefidr the purposes of get
access,\but not for put accebsNamed accessorproperties are inherited for both get access and put

Comment [pL11]: From MSM:

access. Not technically true, since reamhly prevents an overridi
. - . \ B
The following table summarises the internal properties used by this specificatibmare applicable to Comment [pL12]: _ From AWB:

all ECMAScript objectsThe description indicates their behavioar hative ECMAScript objectaunless
stated otherwise in this document for particular types of ECMAScript objects. In particular, Array;
objects have a slightly differerdefinition of the [[ThrowabléPut]] method (see 15.4.5.8nd String

I't is not obvious how to
itis fine as written.

,,,,,,,,,,,,,,,,,,,,,,,,,,,, Deleted: implement

internal propertieswith any implementatiordependent behaviour, or it may be that a host object
Supportsonly sone internalpropertiesand not others.

Deleted: implements

[
[Deleted: methods
(
[Deleted: methods

07 November 2008

- 29-

Property Value Domain Description
[[Prototype]] DObject| null The prototype of this objedtdust benull or an Object.
[[Class]] String A string value indicating the kind of this object.
[[PrimitiveValue]] Jprimitive Internal state information associated with this object
[[Extensible]] boolean If true, own properties may be added to the object.
[[Get]] lfunctior(PropertyNam)a\"(Returns the value of theamedproperty.
an
[[GetOwnProperty]] function(PropertyNamg Y Returns the Property Descriptor of the named owi
undefined or Property property of this object, arndefined if absent.
Descriptor
[[GetProperty]] functionPropertyNamgY Returnsthe Property Descriptorof the named propert
undefined or Property of this object, oundefined if absent.
Descriptor
[[Put]] function(PropertyNamegany) | Sets the specifiedamedproperty tpspecified value
[[CanPut]] function(PropertyNamgY. Returns a boolean value indicating whether a [[P
boolean operation withPropertyNamgan be performed
[[HasProperty]] function(PropertyNamg Y Returns a boolean value indicating whether the ok
boolean already has aropertywith thegiven name.
[[Delete]] function(PropertyName Removes the specifiedamed ownproperty from the
boolear) Y boolean object.The flag controls failure handling.
[[DefaultValue]] function(Hint) Y any Returns a default value for the object, which shoulg
aprimitive value (not an object or reference).
[[DefineOwnProperty]] | function(PropertyName, Creates or alters the named own property to have
PropertyDegiptorc, boolear) | state describedby a Property DescriptorThe flag
controls failure handling
[[ThrowablePut]] function(PropertyNameany, | Sets the specified named propertyMalue The flag
boolear) controls failure handling.
[[Construct]] function(a list of argument | Constructs an object. Invoked via thew operator.

values provided by the calle
Y Object

Objects that implement this internal method are ca
constructors

[[Calll]

function(a list of argument
values provided by the calle
Y any

Executes code associated with the object. Invoked
function call expression. Objects that implement
internal method are callddnctions

[[HasInstance]]

function(@any) Y. boolean

Returns a boolean value indicating whethéalue

delegates behaviour to this object. Of the na
ECMAScript objects, only Function objects implemg
[[HasInstance]].

[[Scope]] v A Jexical environmenthat defines the environment
which a Function object is executed.
[[Match]] function(string, jndex ¥ Tests for a regular expression match and retur
MatchResult MatchResult value (see section 15.10.2.1).

internal dataproperties and the [[Get]]|[GetProperty]], [[GetOwnProperty]][[DefineOwnProperty]],
[[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValuelhternal methods. (Note, however

that the [[DefaultValue]] method may, for somej@edts, simply throw &ypeError exception.)

The value of the [[Prototype]] property must be either an objectudl, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]] propert
must eventually lead to aull value). Whether or not a native object can have a host object as its

[[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of-inudbject. The
value of the [[Class]] property of a host object may be any value, even a value used byia bbjkct
for its [[Class]] property. The value of a [[Class]] property is used internally to distinguish different
kinds of builtin objects. Note that this spiéication does not provide any means for a program to access
that value except througBbject.prototype.toString

(see 15.2.4.2).

07 November 2008

Deleted:

Parameters

Deleted:

none

none

[
[
[Deleted:
(

Deleted:

none

Comment [pL13]:

Not e

FromAWB:

that any really

ECMAScript language value but excluding inter

types

Deleted:

Value

Deleted:

Value

will succeed

Deleted:

[
[
[Deleted:
[

member

Comment [pL14]:
is properties of all objects, and the other is prop
that apply to only some objects.

Divide the table into two; o

[Deleted:

Value

Deleted:

None

Deleted:

scope chain

String

Deleted:

Index

(
(
[Deleted:
(
[

Deleted: and

-30-

For native objects the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]] and [[DefaultValue]]

methods behave as described in described in 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, 8.6.2.5 and 8.6.2.6,

respectively, except that Array objects have a sligldifferent implementation of the [[Put]] method

(see 15.4.5.1). Host objects may implement these methods in any manner unless specified otherwise; for

example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch ard stor
property values but [[HasProperty]] always generdtdse.

In the following algorithm descriptions, assur@eis a native ECMAScript objecP is a string Descis [

Deleted: and

an internal property description record, ahtrowis a boolearflag.

Deleted: fOdoesndét have aPp
go to step 4]

Get the value of the properfy.

Return Result(2).

If the [[Prototype]] ofO is null, returnundefined.|
Call the [[Get]] method of [[Prototype]] with proper
nameP.{

Return Result(5%

Deleted: <#>Call the [[CanPut]] method d® with
nameP.q

<#>If Result(1) isfalse, return
<#3fOdoesndt have aPmgoto,]
step 61

<#>Set the value of the property ¥ The attributes
the property are not chang®d.

<#>Returnf

<#>Create a property with nanfe st its value to/
and give it empty attributefs.

<#>Returnf

Note, however, that iD is an Array object, it has a
more elaborate [[Put]] method (15.4.51L).

Deleted: The [[CanPut]] method is used only by
[[Put]] method{

Deleted: fOdoesndt have aP,
go to step 4]
If the property has the ReadOnly attribute, refaise
Returntrue.
If the [[Prototype]] ofO is null, returntrue .|
Call the [[CanPut]] method of [[Prototype]] &f with
property namé.q

Return Result(5).

8.6.2.1 [[Get]] (P)
When the [[Get]] method oD is called with property name, the following steps are taken:
1. Call the [[GetProperty]] method d with property nameP.
2. If Result(1) isundefined, returnundefined.
3. If IsDataDescriptoiResult(1) is true, returnResult(1)[[Value]].
4. Otherwise, IsAccessorDescriptor(Result(1)) must be trygsbResult(1][Getter]].
5. If Result@) is undefined, returnundefined.
6. Call the[[Call]] method ofResult(4)providing O as thethis value and providingno arguments.
7. ReturnResultp).
B8.6.22 [[Put]] (P, V)
[[Put]] is primarily used in the specification of built methods.Algorithms that require explicit
control over the handling of invalid property stafeouldcall [[ThrowablePut]] directly
When the [[Put]] method oD is called with property and valueV, the following steps are taken:
1. Call the [[ThrowablePut]] method @ with argumentd, V, andfalse.
2. Return
Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (15.4.5.1).
B8.6.2.3 [[CanPut]] (P)
When the [[CanPut]] method @ is called with propertypameP, the following steps are taken:
1. Call the [[GetOwnProperty]] method of O withrgumentP.
2. If Result(1) is noundefined, then
a. If IsAccessorDescriptor(Result(1)) teue, then
i. If Result(1).[[Setter]] isundefined, then returrfalse.
ii. Else returrtrue.
b. Otherwise, Result(1) must be a DataDescriptor so return the value of
Result(1).[[Writable]]
3. Get the internal [[Prototype]] property &f.
4. If Result@) is null, then returrthe value of the [[Extensible]] property &f.
5. Call the [[GetProperty]] method of Resu8j(with propertynameP.
6. If Result) is undefined, returnthe value of the [[Extensible]] property &f.
7. If IsAccessorDescriptor(Resuf) is true, then
a. If Result(5).[[Setter]] isundefined, then returrfalse.
b. Else returrtrue.
8. Else, Result(5must be a DataDescriptor
a. If the [[Extensible]] property 00 is false, returnfalse.
b. Else returrthe value of Result(5).[[Writable]]
NOTE
Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should
not allow [[Put]] operations in situations where this definition of [[CanPut]] retéefss.
B.6.2.4 [[HasProperty]] (P) (

Deleted: <#>

When the [[HasProperty]] mkbd of O is called with property name, the following steps are taken:

1. Callthe [[GetProperty]] method of O with property name P.
2. If Result(1) is undefined, then return false.
3. Else returrtrue.

07 November 2008

8.6.2.5

8.6.2.6

8.6.2.7

8.6.2.8

-31-

v

[[Delete]] (P, Throw)

When the [[Delete]] method o® is called with property nam@ and thebooleanflag Throw, the

following steps are taken:

1. Call the [[GetOwnProperty]] method & with property namé®.
2. If Result(1) isundefined, then returrtrue.
3. If Result@).[[Configurabld] is true, then
a. Remove the own property with narRefrom O.
b. Returntrue.
4. Else if Throw, then throwa TypeError exception
5. Returnfalse

[[Defaultvalue]] (hint)
When the [[DefaultValue]] method @ is called with hint String, the following steps are taken:

Call the [[Get]] method of objedD with argument toString ".

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), wit® as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of objedD with argument ValueOf ".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), wit® as hethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw aTypeError exception.

©COoNOOR~WONE

When the [[DefaultValue]] method @ is called with hint Number, the following steps are taken:

Call the [[Get]] method of objedD with argument'valueOf"

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), wit® as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of objedD with argument'toString"

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), wit® as thethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw aTypeError exception.

©Co~NOarWONE

When the [[DefaultValue]] method oD is called with no hint, then it behaves as if the hint were
Number, unles® is a Date object (see 15.9), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native offig can return only primitive values. If a
host object implements its own [[DefaultValue]] method, it must ensure that its [[DefaultValue]]

method can return only primitive values.
[[GetProperty]] (P)

When the [[GetProperty]] method & is called with property name, the following steps are taken:

Call the [[GetOwnProperty]] method & with property namé®.

If Result(1) is noundefined, return Result(1).

If the [[Prototype]] ofO is null, returnundefined.

Call the [[GetProperty]] minod of [[Prototype]] with property name.
Return Result(4).

[[GetOwnProperty]] (P)

arwdE

When the [[GetOwnProperty]] method & is called with property namP, the following steps are

taken:

1. fOdoesnodt have an ownretpnudefieedt v wi t h name
2. LetD be a newly created Property Descriptor (Section 8.10) with no fields.
3. LetXbeObs own proBerty named

07 November 2008

Deleted: If O has a property with nanf return
true.|
If the [[Prototype]] ofO is null, returnfalsef|
Call the [[HasProperty]] method of
[[Prototype]] with property namBe.{
Return Result(3).

Deleted: 1

lfOdoesndt have aPpr
returntrue .|

If the property has the DontDelete attribute
returnfalsef

Remove the property with nanffrom O.
Returntrue.

-32-

4. If Xis a data property, then
a. SetD.[[Value]]tothevalueoXds [[Val ue]] attribute.
b. SetD.[[Writable]] to the value oX6 s [[|&Yraitribaeb

5. ElseXis an accessor property, so

a. SetD.[[Getter]]tothevalueokKbés [[Getter]] attribute.
b. SetD.[[Setter]] tothevalueokés [[Setter]] attribute.
6. SetD.[[Enumerable]] tothevalueof6 s [[Enumer abl e]] attribute

7. SetD.[[Configurable] tothevalueoX6s [[Conf i gurabl e]] attribute.
8. ReturnD.

Note, however, that ifO is a Stringobject it has a more elaborate [[GetOwnProperty]] method
(15.5.5.2).

8.6.29 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithmt he t er m f R dfjTarow i® truenehem throwhaTypeError
exception, otherwise retur

When the [[DefineOwnProperty]] method & is called withproperty nameP, propertydescriptor
Desc and boolean flaghrow, the followingsteps are taken:

1. Call the [[GetOwnProperty]] method @ with property name.
2. Get the [[Extensible]] internal property €.
3. If Result(1) isundefined and Result(2) isalse, then Reject.
4. If Result(1) isundefined and Result(2) isrue, then
a. If IsGenericDescriptofjesq or IsDataDescriptofjesq is true, then
i. Create an own data property nanfedf objectO whose[[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values aescribed byDesc If
the value of an attribute field diescis absentthe attribute of the newly created
propertyis set toits default value.
b. Else,Descmust be a accessoPropertyDescriptor so,
i. Create an own accessor property narRemf objectO whose[[Getter]],
[[Setter]], [[Enumerable]] and [[Configurable]] attribeitvalues arelescribed by
Desc If the value of an attribute field descis absentthe attribute of the newly
created propertis set toits default value.
c. Return.
5. Return, if the value of every field iDescis absent
6. Return, if every field inDescalso occurs in Result(1) and the value of every fielascis the
same valuas the corresponding field in Result(1).
7. |If the [[Configurabld] field of Result(1) isfalsethen
a. Reject, if the [Configurabld] field of Descis true.
b. Reject, if the [[Enumerable]] field of Result(1) abescare theBoolean negation of each
other.
8. If IsGenericDescriptoiesq is true, then no further validation is required.
9. Else, if IsDataDescriptor(Result(1)) and IsDataDescrifegq have differentesults, then

a. Reject, if the [Configurabld] field of Result(1) isfalse.
b. If IsDataDescriptor(Result(1)) isue, then

i. Convert the property nameRiof objectO from a data property to an accessor
property. Preserve the existing values
[[Configurabld] and [[Enumerable]] attributes and set the the rest of the
propertyo6s attributes to their defaul't

c. Else,

i. Convert the property naad P of objectO from an accessor property to a data
property. Preserve the existing values
[[Configurablg] and [[Enumerable]] attributes and set the the rest of the
propertyo6s attributes to their default

10. Else, if IsDa&Descriptor(Result(1)) and IsDataDescripde6q are bothtrue, then
a. If the [[Configurabld] field of Result(1) isfalse, then

i. Reject, if the [[Writable]] field of Result(1) ialse and the [[Wrigble]] field of
Descis true.

ii. If the [[Writable]] field of Result(1) ifalse, then

07 November 2008

8.6.210 [[ThrowablePut]] (P, V, Throw)

8.7

- 33-

1. Reject, if the [[Value]] field ofDescis preent and
SameValueDesc[[Value]], Result(1).[[Value]]) isfalse.
b. else, the [Configurabld] field of Result(1) istrue, soany change is acceptable.
11. Else,IsAccessorDescriptor(Result(1)) and IsAccessorDescripts@ are bothtrue so,
a. If the [[Configurabld] field of Result(1) isfalse, then
i. Reject, if the [[Setter]] field oDescis present and SameValugésc[[Setter]],
Result(1).[[Setter]] idalse.
ii. Reject, if the [[Getter]] field oDescis presentand SameValueesc[[Getter]],
Result(1).[Getter]]) idalse
12. For each attribute field dbescthatis presentset the correspondingly named attribute of the
property namedP of objectO to the value oftie field.
13. Return.

When the [[ThrowablePut]] method @ is called with property, valueV, andboolean flagThrow
the following steps are taken:

1. Call the [[CanPut]] method oD with argumentP.
2. If ResultQ) isfalse, then
a. If Throw istrue, then throwa TypeError exception
b. Else return.
3. Call the [[GetOwnProperty]] method & with argumentP.
4. If IsDataDescriptor(Resuld)) is true, then
a. Set the [[Value]] attribute of property of O to V.
b. Return.
5. Call the [[GetProperty]] method @ with argument.
6. If IsAccessorDescriptoResultg)) is true, then
a. GetResut(5).[[Setter]] which cannot beindefined.
b. Callthe [[Call]] method ofResultGa) providing O as thethis value and providing/ as
the soleargument
7. Else, ceate a named data property nanfedn objectO whose attributes are:
a. [[Vvalue]]: Vv,
b. [[Writable]]: true,
c. [[Enumerable]]itrue,
d. [[Configurablé]: true.
8. Return.

=

Note, however, that ifO is an Array objectit has a more elaborate [[ThrowablePut]] meth
(15.4.5.1).

The Reference Type

The internal Reference type is not a language data tyfteis defined by this specification purely for
expository purposes. An implementation of ECMAScript must behavéiaproduced and operated upon
references in the manner described here. However, a value of Rgperenceis used only as an
intermediate result of expression evaluation and cannot be stored as the value of a variable or property.

The Reference type iased to explain the behaviour of such operatordelgte , typeof , and the
assignment operators. For example, the-tefhd operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead, be explained entiretynsdf a case analysis on
the syntactic form of the leftand operand of an assignment operator, but for one difficulty: function calls
are permitted to return referenc&sis possibility is admitted purely for the sake of host objeNts built-

in ECMAScript function defined by this specification returns a reference and there is no provision for ¢
userdefined function to return a reference. (Another reason not to use a syntactic case analysis is thal
would be lengthy and awkward,fatting many parts of the specification.)

A Referenceis a reference to a resolved name binding. A Reference consists of three compondrdsethe
value the referenced namand the Boolean valuestrict referenceflag. The base value is either null, a
object, or an environment record (10.2.1). A base value of null indicates that the reference could jnot I
resolved to a binding. The referenced name is a string g

The following abstract operations are used in this specification to access the components of references:

07 November 2008

[Deleted: 1

Comment [pL15]: We wanted to remowis ,
but have decided to leave it in as this could
potentially break web applications.

Deleted: Another use of the Reference type
to explain the determination of titteis value for
a function cally

A Referenceis a reference to a property of ar
object. A Reference consists of two compon
thebase objecand theproperty name

-34-

Deleted: object

Deleted: GetPropertyName

* GetBase(V). Returns the baseluecomponent of the reference V. [
¢ GetReferencedNan(¥). Returns thgeferencechame component of the reference V. [
* [sStrictReference(V). Returns the strict reference component of the reference V. [

Deleted: property

* IsPropertyReference(V). Returtmue if the base value is an object afalse if the base value is an
environment record.
* IsUnresolvableReference(VIReturnstrue if the base value isull andfalse otherwise.

The following abstract operations are usedhis specification to operate on references:

Deleted: Result(2) isull

Deleted: GetPropertyName

Deleted: property name

Deleted: 4

8.7.1 GetValue (V)
1. If Type(V) is not Reference, retuvi.
2. Call GetBaseY).
3. If UnresolvableReferenc¥], throw aReferenceError exception. [
4. If IsPropertyReferenc#/), then
a. Call the [[Get]] method of Result(2), passifgtReferencedNan(¥) for theargument [
b. Return Result(4a). [
5. Else, Result(2) must be an environment record.
a. Call the GetBindingValudy, S) concrete method of Result(2) passing
GetReferacedNameY) and IsStrictReferenc¥f as arguments.
b. Return Resulffa). [
8.7.2 PutValue (V, W)
1. If Type(V) is not Reference, throwReferenceError exception.
2. Call GetBaseY).
3. If UnresolvableReferenc¥], then
a. If IsStrictReference() is true, then throw eReferenceError exception.
b. Call the [[ThrowablePut]] method for the global object, passingR@tdrencetlame{/) for
the property namey for the value, andalse for the Throw flag.
4. Else if IsPropertyReferenc¥], then
a. Call the [[ThrowablePut]] method of Relt(2), passing GetReferencedName(V) for the
property name, W for the value, ateBtrictReferencé() for theThrowflag.
5. ElseResult(2) must be a reference whose base is an environment record. So,
a. Call theSetMutableBinding(N, V, S) concreteethod of Result(2), passing
GetReferencelame{) for N, Wfor V, andIsStrictReferencé() for S.
6. Return.
8.8 The List Type
The internal List typeis not a language data typdt is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon List valug
in the manner described here. However, a value of the List typseid only as an intermediate result of
expression evaluation and cannot be stored as the value of a variable or property.
The List type is used to explain the evaluation of argument lists (see 11.2mwirexpressions and in
function calls. Values of theist type are simply ordered sequences of values. These sequences may be
any length.
8.9 The Completion Type

Deleted: <#>If Type(V) is not Reference, throw ¢
ReferenceError exceptionf
<#>Call GetBase\).1
<#>If Result(2) isnull, go to step 6.
<#>Call the [[Put]] method oResult(2), passing
GetPropertyNam#/) for the property namandW fo
the valuefl
<#>Returny
<#>Call the [[Put]] method for the global object,
passing GetPropertyNam@(for the property name
andW for the valuef

<#>Returnf

The internal Completion type is not a language data typeis defined by this specification purely for
expository purposes. An implementatioh ECMAScript must behave as if it produced and operated upon

Completion values in the manner described here. However, a value of the Completion type is used only as

an intermediate result of statement evaluation and cannot be stored as the valugaifle eaproperty.

The Completion type is used to explain the behaviour of statembrgsl(, continue , return and
throw) that perform nonlocal transfers of control. Values of the Completion type are triples of the form
(type value targef), wheretype is one of normal, break, continue, return, or throw, value is any
ECMAScript value oempty, andtargetis any ECMAScript identifier oempty.

The term filabrupt completiond refenosnalt o any

07 November 2008

compl et

- 35-

8.10 The Property Descriptorand Property Identifier Types

8.101

8.102

8.103

8.104

The internal Property Descriptor and Property Identifier types are not language data types. They are

defin

by this specification purely for expository purposes. An implementation of ECMAScript must behave as i

it produced ad operated upon Property Descriptor and Property Identifier values in the manner des

cribe

here. However, values of these types are used only as an intermediate result of expression evalugtion

cannot be stored as the value of a variable or property.

The Property Descriptor type is used to explain the manipulation and reification of named pr
attributes. Values of the Property Descriptor
name is an attribute name and its value is a coomding attribute value. In additionb,ny field maybe
present or absent

Property Descriptor values may be further classified as data property descriptors and accessor

descriptors based upon the eriste or use of certain fields. A dgpaoperty descriptor is one that includgs

any fields named either [[Value]], or [[Writable]].mAaccessor property descriptor is one that includes

fields named either [[Getter]], or [[Setter]]JAny property descriptor may have fields named

[[Enumerable], and [[Configurablg].

For notational conenience within this specification, an object litediéde syntax can be used to define
property descriptor value. For example, Property Descriptatue: 42,writable: falseconfigurable true}
defines a dea property descriptor. The order of listing fields names is not signifidamy fields that are
not explicitly listedare considered to be absent

In specification text and algorithms, dot notation may be used to refer to a specific field of a Pr
Descriptor. For exampl e, if D is a property d
namedi & | ue 0.

The Property Identitr type is used to associate a property name with a Property Descriptor. Values

pert:
ty |

Comment [pL16]: Stored descriptors are alw:
complete. Only delta descriptors may have abse
FOP€ fields.

any

D

pert
S C

of th

Property Identifier typare pairs of the form (name, descriptor), where name is a string and descriptgr is ¢

Property Desdptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor vialues

IsAccessorDescriptor (Desc)
When theabstract operatiotsAccessorDescriptois calledwith propertydescriptorDescthe following
steps are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDescl[Gettel] and Desc[[Sette}] are absenthen returrfalse
3. Returntrue.

IsDataDescriptor (Desc)
When theabstract operatioisDataDescriptois calledwith propertydescriptorDescthe following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDesc[[Valu€g]] and Desc[[Writablg]] are absenthen returrfalse
3. Returntrue.

IsGenericDescriptor (Desc)
When theabstract operatiofsGenericDescriptors calledwith propertydescriptorDescthe following
steps are taken:

1. If Descis undefined, thenreturnfalse
2. If IsAccessorDescriptoBlesq and IsDataDescriptdBesq arebothfalse then returrirue.
3. Returnfalse

FromPropertyDescriptor (Desc)
When the abstract operationFromPropertyDescriptolis called with property descriptor Desc the
following steps are takenthe followingsteps are taken:

1. If Descis undefined, then returrundefined.
2. Create a new object as if by the expressiew Object() whereObject is the standard buiih constructor
with that name.

07 November 2008

8.105

8.11

- 36 -

3. If IsDataDescripto@esq is true, then
a. Callthe [[Put]] methodoResul t (2) with arguments fAvalu
b. Call the [[Put]] method of mDess[[Writab[gRk) wi t h
4. Else,IsAccessorDescriptables9 must betrue, so
a. Call the [[Put]] method of Re[Seateil (2) with
b. Call the [[Put]] method of ReSaitéflt (2) with
5. Call the [[Put]] method of ReDBResc][Bnnrpblgwi t h ar gu
6. Call the [[Put]] met hocdnfiguablérR eabest[[Canfyyrabili t h ar gu
7. Return Result(2).
NOTE

eo
ar

ar
ar
me nt
me n i

The above algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned
from [[GetOwnProperty]].

ToPropertyDescriptor (Desc)

When theabstract operatiomoPropertyDescriptois calledwith object Desc the following steps are
taken:

ahrwNdE

No

10.
11.

12.
13.

14.
15.

16.

17.

If Descis undefined, then returrundefined.
Call ToObjectPesq.
Create a new Property Descriptibiat initially has no fields

Call the [[HasProperty]] method of Result(2)w h ar gument fAenumer abl eo.

If Result(4) istrue, then
a. Call the [[Get]] method oDescwi t h fienumer abl eo.
b. Call ToBoolean(Result(5a)).
c. Setthe [[Enumerable]] field of Result(3) to Result(5b).
Cal | the [[HasPropertyl]] monfighrab® . o f
If Result(6) istrue, then
a. Call the [[Get]] method oResult(2)with argumenticonfigurable .
b. Call ToBoolean(Result(7a)).
c. Setthe [Configurabld] field of Result(3) to Result(7b)
Call the [[HasProperty]] method of Result(2) with argumént a | u e o .
If Result(8) istrue, then
a. Call the [[Get]] method oResult(2)with argumenfivalued .
b. Set the [[Value]] field of Result(3) to ResulH@
Cal | the [[HasProperty]] met hod of
If Result(10) istrue, then
a. Call the [[Get]] method oResult(2)with argumentiwritableo .
b. Call ToBoolean(Result(11a)).
c. Setthe [[Writable]] field of Result(3) to Result(11b).
Cal | the [[HasPropertyl]] met hod of
If Result(12) igrue, then
a. Call the [Get]] method ofResult(2)with argumentigetten .
b. Call IsCallable(Result(13a))

Result (2)

Result (2)

Result(2)

c. If Result(13b) isfalse and Result(13a) is natndefined, then throw arypeError exception

d. Set the [[Getter]] field of Result(3) to Result@3
Call the [[HasProperty]met hod of Result (2) with
If Result(#) is true, then

a. Call the [[Get]] method oResult(2)with argumentisetteo .

b. Call IsCallable(Result(15a))

argument

c. If Result(15b) isfalseand Result(15a) is naindefined, then throw alrypeError exception

d. Sd the [[Setter]] field of Result(3) to Result(45
If either Result(3).[[Getter]] or Result(3).[[Setted}e presentthen

a. |If either Result(3).[[Value]] or Result(3).[[WritableHre presentthen throw arypeError

exception.
Return Result(3).

The Environment Record Type
TBD: Do we want to mention Environment Records here?

07 November 2008

Wi

Wi

Wi

Aset

9.1

9.2

9.3

-37-

Type Conversionand Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics
certain constructs it is useful to define a set of conversion operators. These operators are not a part of
language; they are defined here to ai@ ®pecification of the semantics of the language. The conversion
operators are polymorphic; that is, they can accept a value of any standard type, but not of type Referen

List, Completion or PropertyDescriptothe internal types).

ToPrimitive

The operator ToPrimitive takes a Value argument and an optional argiRneferredType The operator
ToPrimitive converts its value argument to a f@hject type. If an object is capable of converting to more
than one primitive type, it may use the optiohait PreferredTypeo favour that type. Conversion occurs

according to the following table:

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The resuliequals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is retriey
calling the internal [[DefaultValue]] method of the object, passing the opti
hint PreferredType The behaviour of the [[DefaultValue]] method is defined
this spedication for all native ECMAScript objects (8.6.2.6).

ToBoolean

The operator ToBoolean converts its argument to a value of type Boolean according to the following table

Input Type Result

Undefined false

Null false

Boolean The result equals thaput argument (no conversion).

Number The result idalseif the argument is-0, -0, or NaN; otherwise the result tsue.

String The result idalseif the argument is the empty string (its length is zero); othen
the result idrue.

Object true

ToNumber and ToDecimal

The operator ToNumbeand ToDecimalconvertsan argument to a value of type Number type Decimal

respectivelyaccording to the following table:

Input Type

Result

07 November 2008

[Deleted: or

[

Deleted:

its

- 38 -

Undefined NaN
Null +0
Boolean The result isl if the argument isrue. The result is-0 if the argument ifalse
Number The result equals the input argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

9.3.1 ToNumber and ToDecimal Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot
interpret the string as an expansionStfingNumericLiteral then the result of ToNumber MaN.

StringNumericLiterat::

StrWhiteSpacg;
StrWhiteSpacg; StrNumericLiteral StrwhiteSpage

StrWhiteSpace:

StrWhiteSpaceChar:
WhiteSpace
JLineTerminator

StrWhiteSpaceChar StrWhiteSpgce

StrNumericLiteral::

StrDecimalLiteral:::
StrUnsignedDecimalLiteral [
+ StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral

StrDecimalLiteral
HexlIntegerLiteral

Deleted: <TAB>
<SP>

<NBSP>

<FF>

<VT>

<CR>

<LF>

<LS>

<PS>

Deleted: <USP>

StrUnsignedDecimalLiterat:

DedmalDigits. DecimalDigits,: ExponentPag,
. DecimalDigits ExponentPay;
DecimalDigits ExponentPayg;

DecimalDigits:::

DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of

ExponentPart::
ExponentindicatoSignedinteger

0123456789

Exponentindicator:: one of

07 November 2008

- 39-

Signedinteger::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0123456789abcdefA BCDEF

Some differences should be noted between the syntaxSifiagNumericLiteraland aNumericLiteral
(see 7.8.3):

* A StringNumericLiteralmay be preceded and/or followed by white space and/or line terminators.
* A StringNumericLiterakhat is deanal may have any number of leadi@gligits.

* A StringNumericLiterathat is decimal may be preceded-byr - to indicate its sign.

* A StringNumericLiteralthat is empty or contains only white space is convertetDto

The conversion of a string to a numbelue is similar overall to the determination of the number value
for a numeric literal (see 7.8.3), but some of the details are different, so the process for converting
string numeric literal to a value of Number type is given here in full. This vislwetermined in two
steps: first, a mathematical value (MV) is derived from the string numeric literal; second, this
mathematical value is rounded as described below.

* The MV of StringNumericLiteral:: [empty] is O.

* The MV of StringNumericLiteral:: StrWhiteSpaces 0.

¢ The MV of StringNumericLiteral:: StrWhiteSpacg; StrNumericLiteral StrWhiteSpaggis the MV
of StrNumericLiteral no matter whether white space is present or not.

* The MV of StrNumericLiteral::: StrDecimalLiteralis the MV of StrDecimalLiteral.

* The MV of StrNumericLiteral::: HexIntegerLiteralis the MV ofHexIntegerLiteral

* The MV of StrDecimallLiteral :: StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral

* The MV of StrDecimalliteral:: + StrUnsignedDecimallLiteda is the MV of
StrUnsignedDecimalLiteral

* The MV of StrDecimalLiteral:: - StrUnsignedDecimalLiteralis the negative of the MV of
StrUnsignedDecimalLiteral(Note that if the MV ofStrUnsignedDecimalLiterails 0, the negative of
this MV is also 0. The routing rule described below handles the conversion of this sign less
mathematical zero to a floatifmpint +0 or -0 as appropriate.)

* The MV of StrUnsignedDecimalLiteral: Infinity is 10'°°°°(a value so large that it will round to
+00).

* The MV of StrUnsigne@®ecimalLiterat:: DecimalDigits is the MV ofDecimalDigits

* The MV of StrUnsignedDecimalLiteral: DecimalDigits DecimalDigitsis the MV of the first
DecimalDigits plus (the MV of the secon®ecimalDigitstimes 10"), wheren is the number of
characters in the secomecimalDigits.

The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentParts the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigits DecimalDigits ExponentParis (the MV of the first
DecimalDigitsplus (the MV of the seconBecimalDigitstimes 10") times 16, wheren is the number of
characters in the secobcimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLited:::. DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is
the number of characters DecimalDigits.

The MV of StrUnsignedDecimalLiterat. DecimalDigits ExponentParis the MV of DecimalDigits times
107", wheren is the number of charactersrecimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiteral DecimalDigitsis the MV ofDecimalDigits

07 November 2008

9.4

- 40 -

The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentParis the MV of DecimalDigitstimes 16,
whereeis the MV ofExponentPart

The MV of DecimalDigits::: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV
of DecimalDigit

The MV of ExponentPart::

The MV of Signedinteger:

The MV of Signedinteger:

The MV of Signedinteger::

Exponentindicator Signedintegisrthe MV ofSignedinteger
DecimalDigitsis the MV ofDecimalDigits

+ DecimalDigitsis the MV ofDecimalDigits

- DecimalDigitsis thenegative of the MV obecimalDigits

The MV of DecimalDigit::: 0 or of HexDigit::: 0 is 0.
The MV of DecimalDigit::: 1 or of HexDigit::: 1is 1.
The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.
The MV of DecimalDigit::: 3 or of HexDigit::: 3 is 3.
The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.
The MV of DecimalDigit::: 5 or of HexDigit::: 5 is 5.
The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.
The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.
The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.
The MV of DecimalDigit::: 9 or of HexDigit::: 9is 9.
The MV of HexDigit ::: a or of HexDigit::: Ais 10.
The MV of HexDigit ::: b or of HexDigit::: Bis 11.
The MV of HexDigit ::: ¢ or of HexDigit::: Cis 12.
The MV of HexDigit ::: d or of HexDigit::: Dis 13.
The MV of HexDigit ::: e or of HexDigit::: Eis 14.
The MV of HexDigit::: f or of HexDigit::: Fis 15.

The MV of HexIntegerLiteral:: Ox HexDigitis the MV ofHexDigit

The MV of HexIntegerLiteral:: 0X HexDigitis the MV ofHexDigit

The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteratimes 16) plus the
MV of HexDigit

Once the exact MV for a string numeric literal has been determined, it is then rounded to afvhiee
Number typeor the Decimal type based on the operator uskethe MV is 0, then the rounded value is

+ 0 unl ess t he first non whi t e spac-é&, char avhti erh
rounded value is0. Otherwise, the roundecalue must be the number value for the MV (in the sense
defined in 8.5), unless the literal includesSaUnsignedDecimallLiteradnd the literal has more than 20
significant digits, in which case the number value may be either the number value for the dVfeoél
produced by replacing each significant digit after the 20th with a 0 digit or the number value for the MV
of a literal produced by replacing each significant digit after the 20th with a 0 digit and then
incrementing the literal at the 20th digfosition. A digit is significant if it is not part of an
ExponentParand

icra

it is notO; or
there is a nonzero digit to its left and there is a nonzero digit, not iBxpenentPartto its right.

Tolnteger

The operator Tolnteger converts its argumémtan integral numeric value. This operator functions as
follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, return+0.

3. If Result(1) is+0, -0, +w, or —eo, return Result(1).

4. Compute sign(Result(1)) * floor(abs(Result(1))).

5. Return Result(4).

07 November 2008

9.5

9.6

9.7

- 41 -

Tolnt32: (Signed 32 Bit Integer)

The operator ToInt32 converts its argument to one %3firteger values in the range2®* through 2*-1,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, -0, +c0, Or—oo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo®? that is, a finite integer value k of Number type with positive sign and
less than # in magnitude such the mathematical difference of Result(3) and k tisematically an
integer multiple of 2.

5. If Result(4) is greater than or equal t& Zeturn Result(4) 2°?, otherwise return Result(4).

NOTE
Given the above definition of ToInt32:

The TolInt32 operation is idempotent: if applied to a result that it predut¢he second application leaves that value
unchanged.

TolInt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property thané —«
are mapped to +0.)

TolInt32 maps-0 to +0.

ToUint32: (Unsigned 32 Bit Integer)

The operator ToUint32 converts its argument to one filteger values in the range 0 througf-2,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, -0, +w0, or —eo, return +0.

3. Computesign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo®? that is, a finite integer value k of Number type with positive sign and
less than # in magnitude such the mathematical difference of Result(3) and k is mathematically ar
integer multple of 22

5. Return Result(4).

NOTE
Given the above definition of ToUInt32:

Step 5 is the only difference between ToUint32 and Tolnt32.

The ToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves that valu
unchanged.

ToUint32(TolInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property thanet —co
are mapped to +0.)

ToUint32 maps-0 to +0.

ToUintl6: (Unsigned 16 Bit Integer)

The operator ToUint16 converts itggument to one of3 integer values in the range 0 through-2,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0,-0, +w0, or —eo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo'?; that is, a finite integer valuk of Number type with positive sign and
less than # in magnitude such the mathematical difference of Result(3)kaisdmathematically an
integer multiple of 2.

5. Return Result(4).

NOTE
Given theabove definition of ToUint16:

The substitution of % for 2°2in step 4 is the only difference between ToUint32 and ToUint16.

07 November 2008

42 -

ToUint16 maps-0 to +0.

9.8 ToString
The operator ToString converts its argument to a value of type String according to therfgltale:
Input Type Result
Undefined "undefined”
Null "null"
Boolean If the argument igrue, then the result i&rue"”
If the argument igalse, then the result i¥alse"
Number See note below.
String Return the input argument (no conversion)
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint String).
2. Call ToString(Result(1)).
3. Return Result(2).
9.8.1 ToString Applied to either the Number Type or the Decimal Type

The operator ToString converts a numbeto string format as follows:

If mis NaN, return the stringNaN" .

If mis +0 or -0, return the string0" .

If mis less than zero, return the string concatenation of the striigand ToStringtm).

If mis infinity, return the stringInfinity"

. Otherwise, letn, k, ands be integers such th&t> 1, 167 < s< 10¢, the number value fos * 10" is
m, andk is as small as possible. Note thas the number of digits in the decimal representatios, of
thatsis not divisible by 10, and that the least significant digis &f not necessarily uniquely
determined by these criteria.

6. If k<n<21, return the string consisting of tkaligits of the decimal representation of s (in order,

with no leading zeroesjpllowed byn-koccurrences db.the character 0

7. 1f 0 < n<= 21, return the string consisting of the most significadigits of the decimal representation

of s, foll owed by.06a dfeoclilnoane dp otiyndigiteée the decmaal ni n g

represetation ofs.

apwdE

8. If 6<n<0, return the string006c¢orfwildtoiweg ddfydtah e ech ama:

followed by-noccurrences db, t hel t bldyitofthe ddacitna
representation of.
9. Otherwise, ifk = 1, return the string consisting of the single digispfollowed by lowercase
char aeét ef o061 owed +byora mi w8 sascscigogrndd onrg-1 is positivenoe t h e r
negative, followed by the decimal representation of the integenabs(with no leading zeros).
10.Return the string consisting of the most significant digit of the decimal representation of s, followed
by a deci mal point 6. 6, 1digislof tkeadecinal deprbsgntatiom ef s,r e ma i n

followed by the lowercasehcar act er 6ed, foll owed b acpodomudi g gt

whether il is positive or negative, followed by the decimal representation of the integer-aps(n
(with no leading zeros).

NOTE
The following observations may be useful as guidslife implementations, but are not part of the normative
requirements of this Standard:

If x is any number value other tha#), then ToNumber(ToString(x)) is exactly the same number value as x.
The least significant digit of s is not always uniquely deteem by the requirements listed in step 5.

For implementations that provide more accurate conversions than required by the rules above, it is recommended
that the following alternative version of step 5 be used as a guideline:

07 November 2008

9.9

9.10

9.11

- 43 -

Otherwise, let n, k, and s betegers such that k1, 10* <s < 10, the number value for s10"*is m, and k is
as small as possible. If there are multiple possibilities for s, choose the value of s for whi€f§is closest in

value to m. If there are two such possible values of s, choose the one that is even. Note that k is the numbe

digits in the decimal representation of s and that s is not divisible by 10.

Implementors of ECMAScript may find useful the grapnd code written by David M. Gay for binaty-decimal

conversion of floatingpoint numbers:

Gay, David M. Correctly Rounded Binafyecimal and DecimaBinary Conversions. Numerical Analysis
Manuscript 96010. AT&T Bell Laboratories (Murray Hill, New Jsey). November 30, 1990. Available as

as

http://cm.bell - labs.com/cm/cs/doc/90/4 -10.ps.gz . Associated code available
http://cm.bell - labs.com/netlib/fp/dtoa.c.gz andashttp://cm.bell -
labs.com/netlib/fp/g_fmt.c.gz and may also be found at the variowstlib ~ mirror sites.
ToObject
The operator ToObject converts its argument to a value of type Object according to the following table:
Input Type Result
Undefined Throw aTypeError exception.
Null Throw aTypeError exception.
Boolean Create a new Booleasbject whose JPrimitiveValug] property is set to the valu
of the boolean. See 15.6 for a description of Boolean objects.
Number Create a new Number object whoger[mitiveValud] property is set to the valu
of the number. See 15.7 for a deption of Number objects.
Decimal Create a new Decimal object whose [[PrimitiveValue]] property is set to the
of thedecimal. See 15.7 for a description of Decimal objects.
String Create a new String object whosgifnitiveValud] propertyis set to the value o
the string. See 15.5 for a description of String objects.
Object The result is the input argument (no conversion).
IsCallable
The operatorisCallable determines if its argument is a callable function Object according to the folloing
table:
Input Type Result
Undefined Returnfalse
Null Returnfalse
Boolean Returnfalse
Number Returnfalse
Decimal Returnfalse
String Returnfalse
Object If the argumenbbjecthas annternal [[Call]] methodthenreturntrue, otherwise|

returnfalse

The SameValue Algorithm

The internalcomparisorfunction SameValue(y), wherex andy are values, producdsue or false. Such a

comparison iperformedas follows:

1. If Type(x) is different from Typey), returnfalse
2. If Type(x) is Undefined, returtrue.
3. If Type(x) is Null, returntrue.
4. If Type(x) is Number, then.
a. If xis NaN andy is NaN, returrtrue.
b. If xis+0OandyisY O, falset ur n

c. Ifxi

YyQs +@, metlrnfalse.

d. If xis the same number value gsreturntrue.

07 November 2008

[Deleted: value

[Deleted: value

[Deleted: value

- 44 -

e. Returnfalse.
5. If Type(x) is String, then return true ¥andy are exactly the same sequence of characters (same length
and same characters in corresponding positions); otherwise, fataen
6. If Type(x) is Boolean, return true X andy are bothtrue or bothfalse; otherwise, returrialse.
7. If Type(x) is Decimal, hen
a. If xis a Decimal NaN ang is a Decimal NaN then retuitnue.
b. If xis a Decimal positive zero andis a Decimal negative zero, retufiase.
c. If xis a Decimal negative zero agds a Decimal positive zero, retufalse.
d. Return the result of IEEE 452008 Decimal.compareQuietEqual(X, y).
8. Return true ifx andy refer to the same object. Otherwise, retfalse

10 Executable Code andexecution Contexts
10.1 Types of Executable Code
There are three types of ECMAScript executable code:

Global codeis source text that is treated as an ECMAScipbgram The global code of a particular

Programdoes not include any source text that is parsed as parFoheionBody

Eval codeis the source text supplied to the bditeval function. More preciselyif the parameter to the

built-in eval function is a string, it is treated as an ECMAScHysbgram The eval code for a particular
invocation ofeval is the global code portion of the string parameter.

Function codeis source text that is parsed as pafta FunctionBody The function codeof a particular

10.1.1

10.2

FunctionBodydoes not include any source text that is parsed as part of a rfastetonBody Function
codealso denotes the source text supplied when using theibuflinction object as a constructoMore
precisely, the last parameter provided to Euction constructor is converted to a string and treated as
the FunctionBody If more than one parameter is provided to thenction constructor, all parameters
except the last one are converted torgfsi and concatenated together, separated by commas. The resulting
string is interpreted as theormalParameterListfor the FunctionBodydefined by the last parameter. The
function codefor a particular instantiation of Bunction does not include any sowdext that is parsed

as part of a nestefflunctionBody

Strict Mode Code

As described in section 4.2.2, an ECMAScritogram syntactic unit may be processed using either
unrestricted or strict mode syntax and semantics. When processed using strict mode the three types of
ECMAScript code are referred to as strict global code, strict eval code, and strict function code. Code is
interpreted in strict mode code in the following situations:

®* Global code is strict global code if thBrogram that defines the global code includes a
UseStrictDirective

* Eval code is strict eval code if tHerogramthat defines the eval code include®)seStrictDirective
or if the call to eval is a direct call (see section 15.1.2.1) to the eval function that is contained in
strict mode code.

* Function code that is part of RunctionDeclarationor FunctionExpressions strict function code if
its FunctionDeclaration or FunctionExpressionis contained in strict mode code or if its
FunctionBodyincludes aJseStrictDirective

* Function code that is supplied as the last argument to the-ibuiunction constructor is strict
function code if the last argumeig a string that when processed a$unctionBodyincludes a
UseStrictDirective

Lexical Environments

A lexical environmenis used to define the association Identifiersto specific variables and functrions
based upon the lexical nesting structuwe ECMAScript code. A lexical environment consists of an
environment record and a possibly null reference tooater lexical environment. Usually a lexical
environment is associated with some specific syntactic structure of ECMAScript code such as a

07 November 2008

- 45 -

FunctionDeclaration a WithStatementor aBlockand a new lexical environment is created each time sfich
code is evaluated.

An environment recordecords the identifier bindings that are created within the scope of its assodiatec
lexical environment.

The outerenvironment reference is used to model the dynamic nesting of lexical environments. The| oute
reference of a (inner) lexical environment is a reference to the lexical environment that logically surfounc
the inner lexical environment. An outer lexical @mwwment may, of course, have its own outer lexidal
environment. A lexical environment may serve as the outer environment for multiple inner lgxical
environments. For example, if RunctionDeclarationcontains two neste&unctionDeclarationsthen the
lexical environments of each of the nested functions will have as their outer lexical environment the |exici
environment of the current execution of the surrounding function.

Lexical environments and environment records are purely specification mechanism#&eadd not
correspond to any particular artifact of an ECMAScript implementation. It is impossible for an
ECMAScript program to directly access or manipulate them.

10.2.1 Enviornment Records

There are two kinds of environment records used in this spetdicaleclarative environment recordg
and object environment records Declarative environment records are used to define the effect of
ECMAScript language syntactic elements such FasictionDeclarations VariableDeclarations and
Catch clauses that direlt associateidentifier bindings with values or variables. Object environment
records are used to define the effect of ECMAScript elements suPhoggsam and WithStatementhat
associatedentifier bindings with the properties of some object.

For specification purposes environment records can be thought of as existing in a simpleodkejeetd
hierarchy where environment record is an abstract class with two concrete subclasses, dec|arati
environment record and object environment record. Theradisclass defnes the following abstragt
methods that have distinct concrete definitions for each of its subclasses:

Method Purpose

HasBinding(N) Determine if an environment record has a binding for an ident|
Returntrue if it does andalseif it does not. The string value N is t
text of the identifier.

CreateMutableBinding(N) Create a new mutable binding in an environment record. The {
value N is the text of the bound name.

CreatelmmutableBinding(N) Create a new but uninitializeéchmutable binding in an environme|
record. The string value N is the text of the bound name.

GetBindingValue(N,S) Returns the value of an already existing binding from an environ|
record. The string value N is the text of the bound name. IftGies
and the binding is an unitialized immutable binding throw
ReferenceError exception.

InitializelmmutableBinding(N,V)| Set the value of an already existing but uninitialized immuti
binding in an environment record. The string value N is the text o
bound name. V is the value for the binding and is either a prim
value or an object.

SetMutableBinding(N,V, S) Set the value of an already existing mutable binding in an environ|
record. The string value N is the text of the bound name. V igalue

for the binding and is either a primitive value or an object. S

Boolean flag. If S igrue and the binding can not be set throw
TypeError exception.

10.2.1.1 Declarative Envioronment Records
Each declarative environment record is assodiatéth a ECMAScrpt program scope containing
variable, function, or constant declarations. A declarative environment record binding the $et o
identifiers defined by the declarations contained within its scope.

07 November 2008

- 46 -

10.2.1.1.1 HasBinding)

The concrete enviranent record method HasBinding for declarative environment records simply
determines if the argument identifier is one of the identifiers bound by the record:

1. Get the declarative environment record for which the method was invoked.
2. If Result(1) has a binding for the name that is the valul,akturntrue.
3. If it does not have such a binding, retdatse

10.2.1.1.2 CreateMutableBinding (N)

The concreteenvironment record method CreateMutableBinding for declarative environment
records creates a new mutable binding for the naintkat is initialized to the value undefined. A
binding must not already exist in this environment record\for

1. Get the declarative envirament record for which the method was invoked.
2. Assert: Result(1) does not already have a binding\for
3. Create a mutable binding in Result(1) drand set its bound value tmdefined.

10.2.1.1.3 CreatelmmutableBinding (N)

The concrete environment recordethod CreatelmmutableBinding for declarative environment
records creates a new immutable binding for the nahtbat is initialized to the value undefined.
A binding must not already exist in this environment record\for

1. Get the declarative environmergcord for which the method was invoked.

2. Assert: Result(1) does not already have a binding\for

3. Create a immmutable binding in Result(1) fdand record that it is uninitialized..
10.2.1.1.4 GetBindingValue(N,S)

The concrete environment record methodt®edingValue for declarative environment records
simply returnsthe value of its bound identifer whose name is the value of the argusenhe
binding must already exist. Bis true and the binding is an unitialized immutable binding throw a
ReferenceEor exception.

1. Get the declarative environment record for which the method was invoked.
2. Assert: Result(1) has a binding fiir
3. If the binding forN in Result(1) is an uninitialized immutable binding, then
a. |If Sisfalse, return the valueindefined, otherwse throw a ReferenceError excepton.
4. Else, return the value currently boundNan Result(1).

10.2.1.1.5 InitializelmmutableBinding (N,V)

The concrete environment record method InitializelmmutableBinding for declarative environment
records is used to set the bound value of the current binding of the identifer whose name is the
value of the argumentl to the value of argument{. A unitialized immutable binding folN must
already exist.

1. Get the declarative environment record for which the method was invoked.
2. Assert: Result(1) must have an unitialized immutable binding for N.

3. Set the bound value foN in Result(1) toV.

4. Record that the immubde binding forN in Result(1) has been initialized.

10.2.1.1.6 SetMutableBinding (N,V,S)

The concrete environment record method SetMutableValue for declarative environment records
attempts to change the bound value of the current binding of the identiteye name is the value

of the argument N to the value of argument V. A binding for N must already exist. If the binding is
an immutable binding, A TypeError is always thrown. The S argument is ignored because stict
mode deoes not change the meaningedfisg bindings in declarative environment records have .

1. Get the declarative environment record for which the method was invoked.

2. Assert: Result(1) must have a binding for N.

3. If the binding for N in Result(1) is a mutable binding, change its bound valie t

4. Else this must be an attempt to change the value of an immutable binding so throw a TypeError
exception.

07 November 2008

- 47 -

10.2.1.2 Object Environment Records

Each object environment record is associated with an object callbth@izig object An environment
record bnds the set of identifiers that directly correspond to the property names of its binding o

Property names that are not identifiers are not included in the set of

properties can be dynamically added and deleted from tshjdte set of identifiers bound by an obje
environment record may potentially change as a-effilect of any operation that adds or delet
properties. Any bindings that are created as a result of such @&t is considered to be a mutab
binding even if the Writable attribute of the corresponding property has the false Immutable

bindings can only be defined using the CreatelmmutableBinding method.

10.2.1.2.1 HasBinding(N)

The concrete environment record method HasBinding for object @mwient records determines i
its associated binding object has a property whose name is the value of the arjument

1.
2.
3.
4.

Get the object environment record for which the method was invoked.
Get the binding object for Result(1).

Call the [[HasProperty]] methodf ®esult(2), passind\ as the property name.
Return Result(3).

10.2.1.2.2 CreateMutableBinding (N)

The concrete environment record method CreateMutableBinding for object environment rg

creates a property naméd in the environment record that is initialized to the valmelefined. A
property namedN must not already exist in the binding object.

1.
2.
3.

4.

Get the declarative environment record for which the method was invoked.

Get the binding object for Result(1).

Assert:The result of calling the [[HasProperty]] method of Result(2), pasiliag the property
name isfalse.

Call the [[Put]] method of Result(2), passiNgandundefined for the arguments.

10.2.1.2.3 CreatelmmutableBinding (N)
The concrete environment record method CreatelmmutableBinding for object environment r¢g
creates a new immutable binding for the naMehat is initialized to the value undefined.
binding must not already exist in this environment record\for

1. Getthe declarative environment record for which the method was invoked.

2. Get the binding object for Result(1).

3. Assert: The result of calling the [[HasProperty]] method of Result(2), padsagthe property
name isfalse.

4. Call the [DefineOwnPropert]] method &esult(2), passind{, the property descriptor
{[[Value]]: undefined, [[Writable]]: false, [[Enumerable]]itrue, [[Configurable]]:true}, and
falseas arguments.

5. Record that the binding in Result(1) fidris uninitialized.

10.2.1.2.4 GetBindingValue(N,S)

The concrete environment record method GetBindingValue for object environment records r

the value of itds associated binding objec

identifier. The property should already exist but it does not éselt depends upon the value ®f
argument:

1. Get the object environment record for which the method was invoked.

2. Get the binding object for Result(1).

3. Call the [[HasProperty]] method of Result(2), passhhgs the property name.

4. If Result(3) isfalse or thebinding forN in Result(1) is an uninitialized immutable binding,

oo

then

a. If Sisfalse return the valueindefined, otherwise throw a ReferenceError excepton.
Call the [[Get]] method of Result(2), passiNgfor the argument.
Return Result(5)

bound identifiers. Bg

pject
caus
rct

£s

e

I

cord

cord
n

pturn

—
[e})

07 November 2008

- 48 -

10.2.1.2.5InitializelmmutableBinding (N,V)

The concrete environment record method InitializelmmutableBinding for object environment records
is used to set value of its associated bindng objects property whose name is the value of the
argumentN to the value of argmentV. A unitialized immutable binding foX must already exist.

1. Get the declarative environment record for which the method was invoked.
2. Get the binding object for Result(1).
3. Assert: The result of calling the [[HasProperty]] method of Result(2), padsagthe property

name istrue.
4. cCall the [DefineOwnPropert]] method of Result(2), pasdihgheproperty descriptdf[[Value]]: Comment [pL17]: From AWB:

V, [[Writable]]: false}, and falseas argumsts. This depends upon Define
5. Record that the immutable binding firin Result(1) has been initialized. valueofa fir eadonlyo data pr

10.2.1.2.6 SetMutableBinding (N,V,S)
The concrete environment record method SetMutableValue for object environment records attempts
to set the value ofadgde@cieamtvdad omimeditng echjradtsds p
value of the argument to the value of argument. A property namedN should already exist but if it
does not or is not currently writable, error handling is determined by the value of the Boolean
argumentsS.

1. Get the object environment record for which the method was invoked.
2. Get the binding object for Result(1).
3. If the binding forN in Result(1) is a mutable binding, then
a. Call the [[ThrowablePut]] method of Result(2) with argumeN{s/, andS.
4. Elsethis must be an attempt to change the value of an immutable binding so throw a TypeError
exception.

10.2.2 Lexical Environment Operations
The followingabstractoperations are used in this specification to operate upon lexical environments:

10.2.2.1 GetldentifierReference (lex, name, strict)

When theabstract operatioGetldentifierReference is called with a lexical environmlent identifier
string, name and boolan flagtrict the following steps are performed:

1. Letenvbe the value ofex.
2. While envis notnull , repeat
a. LetenvRedeend s environment record.
b. Call the HasBinding(N) concrete methodefvRemassingnameas the argument N.
c. If Result(2b) istrue , return a value of type Reference whose base valeevRe¢
whose referenced namename and whose strict mode flag ssrict.
d. Else, seenvto the value of the currenvd0s out er environment refe
3. namedoes not have a binding in the lexical environmlent so return a value of type Reference
whose base value iull , whose referencedame isname and whose strict mode flag ssrict.

10.2.2.2 NewDeclarativeEnvironmentRecord(E)
When the abstract operationNewDeclarativeEnvironmentRecord is call with either a lexical
environment onull as argument E the following steps are performed:

1. Create a new DeclarativeEnvironmentRecord containing no bindings.
2. Set the outer lexical environment reference of Result(1) to E.
3. Return Result(1).
10.2.2.3 NewObjectEnvironmentRecord(O,E)
When theabstract operatioNewObjectEnvironmentRecord is call with obj&tas an argument and a
lexical environment onull as argumenkE the following steps are performed:

1. Create a new ObjectEnvironmentRecord containing u€ing the binding object.
2. Set the outer lexical enviroment reference of Result(1) &
3. Return Result(1).

10.2.24 PopEnvironmentRecord
When theabstract operatioRopEnvironmentRecord is call the following steps are performed:

07 November 2008

- 49 -

1. Get the outer lexical environment reference of the current LexicalEnvironment.
2. Setthe LexicalEnvironment to Result(1).

10.2.3 The Global Environment

Theglobal environments a unique lexical environment which is created before any ECMAScript code is
executed. The gl obal environment 6 s envwhose biml:g |t

object is the global object (15.1).hulfhe globa Comment [pL18]: From AWB:

. . . . E ../O0r should this be fAim
As ECMAScript code is executed, additional properties may be added to the global object and thg initi| would allow an implementation to provide globa
properties may be modified. bindings that can not be diddled with using the
global object.

10.3 Execution Contexts

When control is transferred to ECMAScript executable code, control is enterirgemmition contextActive
execution contexts logically form a stack. The top execution context on this logical stack is the runnin
execution contextA new exectubn context is created whenever control is transferred from the excutipble
code associated with the currently running execution context to executable code that is not associatfed w
that execution context. The newly created execution context is pushedhenstack and becomes the running
execution context.

An execution context contains whatever state is necessary to tract the execution progress of its aspocie
code. In addition, each execution context has the following state components:

Component Purpose

LexicalEnvironment Identifes the lexical environment used to resolve identifier references mg
code within this execution context.

VariableEnvironmnet Identifies the environment record that holds bindings created
VariableStatementand FunctionDeclarationsvithin the execution context.

ThisBinding The value associated with théis keyword within ECMAScript codg
associated with this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution carexlways lexical
environments. When a execution context is created its LexicalEnvironment and VariableEnviropmer
components have the same value. The value of the VariableEnvironment component never changes while
value of the LexicalEnvironemnt compent may change during execution of code within an execution

context.

In most situations only the running execution context (the top of the execution context stack) is djrectl
mani pul ated by al gori thms wi thin thisxispe&nvifat
AVariabl eEnvironmento and AThi sBindingo are wuse¢d

components of the running execution context.

An execution context is purely a specification mechanism and need not correspond toteyapartefact of
an ECMAScript implementation. It is impossible for an ECMAScript program to access an execution coptext

10.3.1 Identifier Resolution

Identifier resultion is process of determining the binding ofdemntiferusing the LexicalEnvironment of|
the running execution context. During execution of ECMAScript code, the syntactic produftion
PrimaryExpression Identifier is evaluated using the following algorithm:

1. Letenvbe the running execuwnmem. contextods LexicaldeE

2. If the syntactic production that is being evaluated is contained in a strict mode code, tteictlbe
true else letstrict befalse.

3. Call theabstract operatiofsetldentifierReference function passiagy, Identifier, andstrict as

arguments.

4. Return Result(3).

The result of evaluating an identifier is always a value of type Reference with its referenced|[nam
component equal to theentifier string.

07 November 2008

10.3.2

-50-

[Arguments Object Comment [pL19]: ALP says: Deviations doc §2.4 rz

. . . . concern over theepresentation of arguments.toString()
When control enters an execution context for function code, an argsmbject is created. ES4 specifies Object. prototype.toString() here (see

The arguments object is created by calling abstract operatiofreateArgumentsObject with arguments | incompatibilities.pdf §3.4.
func the function object whose code is to be evaluateimesa List containing the formal parameter

names args the actual arguents pass to the [[Call]] methpe&nv the variable environment for the

function code,andstrict a Boolean that indicates whether or not the function code is strict code. When
CreateArgumentsObject is call the following steps are performed:

If strictistrue, perform the following steps:

1. Letlenbe the number of elements angs.
2. Create a new object as if by the expressiew Array(len) whereArray is the standard bukin
constructor with that name and len is the numeric valuerof
3. Letobjbe Result?).
4. Letindx=0
5. Repeat whilendx < len,
a. Letval be the the element @frgsat O-origined list positionindx.
b. Call the [[Put]] method obbj passingindx andval as arguments.
c. Letindx=indx+ 1
6. Letfbe a function which when evaluated throwEypeError exception and performs no other
actions.
7. Call the [[DefineOwnProperty]] method @bj passing talle€', the property descriptor {[[Getter]]:
f, [[Enummerable]]false, [[Configurable]]:false}, and true as arguments.
8. Call the [[DefineOwnPropertyjmethod onobj passing Ealler”, the property descriptor {[[Getter]]:
f, [[Enummerable]]false, [[Configurable]]:false}, and true as arguments.
9. Returnobj

If strictis false, perform the following steps:

Letlen be the number of elements angs.
Creae a new ECMAScript object.
Let obj be Result(2).
Set the [[Class]] property of obj to "Object".
Set the [[Constructor]] property afbj to the standard butin Object constructor (Section 15.2.3).
Set the [[Prototype]] property afbj to the standard butin Array prototype object (Section 15.4.4).
Call the [[DefineOwnProperty]] method arbj passing "length”, the property descriptor {[[Value]]:
len, [[Enummerable]]false, [[Configurable]]:true}, and falseas arguments.
Letindx=0
Repeat whilendx < len,

a. If indxis less than the number of elementsyames then

i. Letnamebe the the element efamesat O-origined list positionndx.

ii. Letg be the result of calling th®lakeArgGetterfunction with argumentaameand
env.

iii. Letp be the result of calling thMakeArgSettefunction with argumentsameand
env.

iv. Call the [[DefineOwnProperty]] method aybj passing ToStrinddx), the property
descriptor {[[Setter]]:p, [Getter]]: g, [[Enummerable]]:false, [[Configurable]]:
true}, andfalseas arguments.

b. Else,there are fewer arg names than actual arguments so
i. Letval be the the element @frgsat G-origined list positionndx.
ii. Call the [[Put]] method obbj passingindx andval as arguments.
c. Letindx=indx+ 1
10. Call the [[DefineOwnProperty]] method arbj passing talle€', the property descriptor {[[Value]]:
func, [[Enummerable]]false, [[Configurable]]:true}, and falseas arguments.
11. Returnobj

NoahwhpE

©®

The functionMakeArgGettercalled with stringnameand environment recorénv creates a function
object that vmen executes returns the value boundrfamein env. It performs the following steps:

07 November 2008

10.3.2.1 Strict Mode Restrictions

10.3.3

-51-

1. Let body be the result of concatenating the stringsutn ", name and "

2. Create a function object as described in 13.2 usingormalParameterListbodyfor FunctionBody
andenvasScope

3. Return Result(2)

The function MakeArgSettercalled with stringname and environment recorénv creates a function
object that when executes returns the value bounddarein env. It performs the following steps:

1. Let param be the stringameconcatenated with the string "_arg"

2. Let body be the strinikname> = <param>;" with <name>replaced by the value sfameand
<param> replaced by the value gfaram

3. Create a function object as described in 13.2 using a Ligauing the single stringaramas
FormalParameterListbodyfor FunctionBody andenvasScope

4. Return Result(3)

If a arguments object is createdcallee property is not created.

The arguments object does not shareperties with the activation object. Changing the value 0
arguments object property does not change the value of the corresponding activation object p
and vice versa.

Declaration Binding Instantiation

Every execution context hasassociated with it an environment record that provides
VariableEnviornment for that execution context. Variables and functions declared in ECMAScript
evaluate in the execution context are added as bindings in the that environment record. Fon f
code, parameters are also added as bindings.

Which environment record is used to bind declaration and its kind depends on the type of ECMA
code executed by the execution context, but the remainder of the behaviour is generic. On entg
execuion context, bindings are created in the VariableEnvironment environment record as follows]

1. Letenvbe the running execution contextos Vari a
2. If the ECMAScript code that is to be executed is strict mode code, thetrilgttbetrue else le
strict befalse
3. If the code that is to be executed is eval codeeVet be true, otherwisefalse.
4. If the code that is to be executed is function code, then
a. Letnamesbe a list containing, in left to right order, the strings corresponding to the
ident f i er s of HRommealPafameterltist on 6 s
b. Letargsbe the argument list passed to the [[Call]] internal method that is executing the
function code and leargCountbe the number of elements amgs.
c. Letfuncbe the function object that is the thislwa of the [[Call]] internal method that is is
executing the function code.
d. Letn be the number 0.
e. For each stringargNamein names in list order do
i. Letn be the current value of plus 1.
ii. If nis greater than the number of elementsiigs, letv be undefined otherwise let
vbethendt h el argsent i n
ii. Calle n vHasBinding{) concrete method passimggNameas the argument.
iv. If Result(4eiii) ishals , Calle n vGresiteMutableBind(N) concrete method passin
argNameas the argument.
v. Calle n vSetMuableBinding(\,V,S) concrete method passimggName v, and
strict as the arguments.
5. For eachFunctionDeclarationfi n t he execution contextdés cod
a. Letfnbe theldentiferin FunctionDeclarationf.
b. Letfo be the result of creating a function object as described in section 13arsiag the
[[Scope]].
c. Calle n vHasBinding{) concrete method passiifig as the argument.
d. If Result(5c) isfalse, Calle n vGiemteMutableBind(N) concrete method pasdimgs he

Fa
opel

he
code
nct

Scrif
ring

b |

l

argument.

07 November 2008

Comment [pL20]: From AWB:
Rebember to put strict mode duplicate name ch
into function declaration parsing.

-52-

Else ifstrictis true and evalis true throw an EvalError exception

Comment [pL21]: From AWB:
f. Calle n vS@tMutableBindindy{,V,S) concrete method passiffig, fo, andstrict as the Strict gl ob anlafuectoa declavatiom that
arguments. overwrites a previously existing name
6. For eachvariableDeclarationandVariableDeclarationNolmdinthee x ecut i on cont ext ds
source text order do
a. Letdnbe theldentiferin d.
b. Calle n vHasBinding() concrete method passing as the argument.
c. If Result(6d) isfalse, then
i. Call envds Cr &laconerdleimeshbd pasBimgrdm gs the argument.
ii. Ccd | envobds Set M43 eohcrete Betimod passing dn, undefined, and
strict as the arguments.
[Else ifstrict is true and evalis true throw an EvalError exceptimh Comment [pL22]: From AWB:
7. Calle n vHasBinding() concrete method passitigrguments” as the argument Strict global eval candt
Iif the code is function code and Result(7¥atse, them [PreanEly SRl e REmEeE
a. Call theabstract operatio@reateArgumentsObject passirffgnc, names, arggnvandstrict Comment [pL23]: From AWB:
as arguments. Mark wants to specify that the the arguments object tc
b. If strictis true, then Sreated forwict funtctlon‘s on]y if tha:t ar\]re fre%ref%rence
i. Cal l envds Cr eatNedomerete method massingetdtiing g (Zﬁiﬁ”TE?eonLzs efis? tyh
"arguments" as the argument. an arguments array is has been created and hence ar
i. Call envods | nit iN¥lconeretd methadtpasbing¢aByumedtg"and M EETELT ey eEimlED EVES SiEp s
Result(8a) as arguments. whether or not we give them permission.
c. Else,

i. Call envds Cr e a\iDgddnctete meétroBpassithg thhegstfing
"arguments" and false as theguments.

Cal | env06s SK\S/aornceete meth®d paskifg "arguments”,
Result(8a), and strict as arguments.

. . Deleted: 1
104 Entering An Execution Context [
Every function and constructor call enters a new execution context, even if a function is caldiig its
recursively. Every return exits an execution context. A thrown exceptiay also exit one or more execution [Deleted: , if not caught,
contexts.
When control enters an execution contexth e execution contextos Thi sBi
Environment and iitial LexicalEnvironment is definedinstantiation is performed, and thais value is Deleted: the scope chain is created and initialised,
determineql'he exact manner in which these actions ocdepend on the type of code being entered. variable
Deleted:

104.1,Global Code
The following sets are performed when control enters the execution context for global code:

The initialisation of the scope chain, variable
instantiation, and the determination of thés value

{
!
N
{

1. Set the VariableEnvironment to the Global Environment. Deleted: 2
2. Setthe LexicalEnvironment to the Global Environment. Deleted:
3. |If the code is strict code, set the ThisBinding to the global object, otherwise set the ThisBinding to
undefined.
4. Perform DeclarationBindinglnstantiation using the global gode. Deleted: The scope chain is createcddnitialised t
contain the global object and no oth§rs.
104.2 Eval Code <#>Variable instantiation is performed using the g

The followingsets are performed when control enters the execution context for eval code:

object as the variable object and using property
attributes { DontDelete ¥
Thethis value is the global object.

l

Deleted: 2

1. If there is no calling context or if the eval code is not being evaluated by a direct call (Secno
15.1.2.1) apply the steps in section 10.4.1 using the eval code as the gldbal co
2. Else,

a. Set the ThisBinding to the same value as the ThisBinding of the calling context.

b. If the eval code is strict code, then
i. Call NewDeclarativeEnvironmentRecord(E) passing LexicalEnvironment of the calling
context as the argument.
ii. SetthelLexicalEnvironment to Result(2bi).
c. Else, Set the LexicalEnvironment to the LexicalEnvironment of the calling context.

d. Set the VariableEnvironment to the same value as the LexicalEnvironment.

07 November 2008

- 53-

3. Perform Declaration Binding Instantiation using eval code.

10.4.2.1 Strict Mode Restrictions
If either the execution context for the eval code or the execution context in which the eval opjeratc
was executed is subset restricted to shect subset, the eval code cannot instantiate variables,
functions, or constas in the lexical environment of the context that invoked the eval operator.

Il nstead, a new environment object is created a
chain and that environment object is used for environment bindings instantadtthe eval codg. Deleted: When control enters an executior
) context for eval code, the previous active
104.3 Function Code execution context, referred to as tiaiing
The following sets are performed when control enters the execution context for function code confaine| ~ Sontextis used to determine the scope chai
in function obiect E: var|_ab|e object, and _tft_h_ls_v_alue. If there is n
in) . calling cantext, then initialising the scope ch.
. . . variable instantiation, and determination of 1
1. Let thlsArgl be the cz_:lller provided this valug. o ‘ this value are performed just as for global ¢
2. If the function code istrict code, set the ThisBinding to thisArg. The scope chain is initialised to contain the
3. Else if thisArg is null or undefined, set the ThisBinding to the global object. same objects, in the same order, as the ca
4. Else if thisArg is not an object, set the ThisBinding to ToObject(thisArg). ng‘eé“t's tShCOPe"‘?ha'ﬁh'? '"tCI'Udes OinC‘_S
. . . . aadea to the calling context's scope chain
5. Else set the ThlsF._%mdln_g to thisArg. _ with statements ancatch clauses|]
6. Call NewDeclaratreEnvironmentRecord(E) passing the value of the [[Scope]] property of F as the Variable instantiation is performed using th
argument. calling context's variable object and using
7. Set the LexicalEnvironment to Result(6). empty property attributef.)
8. Set the VariableEnvironment to the same value as the LexicalEnvironment. ;leggllﬁn\éalc%?nlz;re same as this value of
9. Perform Declaration Bindingnstantiation using theuhction code of F. y
[Deleted: 2
11 Expressions
11.1 Primary Expressions
Syntax
PrimaryExpression
this
Identifier
Literal
ArrayLiteral
ObjectLiteral
(Expression
11.1.1 Thethis Keyword
Thethis keyword evaluates to this value of the execution context.
11.1.2 Identifier Reference
An Identifier is evaluated using the scoping rules stated ig8.10The result of evaluating aldentifier | [Deleted: 1.4
is always a value of type Reference.
11.1.3 Literal Reference
A Literal is evaluated as described in 7.8.
11.1.4 Array Initialiser
An array initialiser is an expression describing the initialisation of an Array object, written in a form of a
literal. It is a list of zero or more expressions, each of which represents an array element, enclosed
square brackets. The elemiemeed not be literals; they are evaluated each time the array initialiser is
evaluated.
Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma
the element list is not preceded by AssignmentExpressiofi.e., a comma at the beginning or after
another comma), the missing array element contributes to the length of the Array and increases the inc
of subsequent elements. Elided array elements are not dekfnad.element is elided at the end of gn
array, tha element does not contribute to the length of the Array Comment [pL24]: From AWB:
This really should be specified in the grammar i
Syntax isno6t already.

07 November 2008

- 54 -

ArraylLiteral :
[Elisiongy]
[ElementList]
[ElementList Elisionyg]

ElementList
Elision,; AssignmentExpression
ElementList Elision,,, AssignmentExpression

Elision:
Elision,
Semantics

The productionArrayLiteral : [Elisiony,] is evaluated as follows:

1. Create a newbjectas if by the expressionew Array() where Array s the standard buHin
constructor with that name

2. EvaluateElision; if not present, use theumeric value zero.

3. Call the [[Put]] method of Result(1) with argumeriigngth " and Result(2).

4. Return Result(1).

The productionArrayLiteral : [ElementList] is evaluated as follows:

1. EvaluateElementList
2. Return Result(1).

The productionArrayLiteral : [ElementList, Elisiony,] is evaluated as follows:

EvaluateElementList

EvaluateElision; if not present, use the numeric value zero.

Call the [[Get]] method of Result(1) with argumerength

Call the [[Put]] method of Result(1) with argumentsength " and (Result(2)+Result(3)).
Return Result(1).

aprpLONE

The productionElementList Elisiony, AssignmentExpressiois evaluated as follows:

1. Create a newbjectas if by the expressiomew Array() where Array s the standard budin

constructor withthat name

2. EvaluateElision; if not present, use the numeric value zero.

3. EvaluateAssignmentExpression

4. Call GetValue(Result(3)).

5. Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).
6. Return Result(1)

The productionElementList ElementList Elision,, AssignmentExpressiois evaluated as follows:

EvaluateElementList

EvaluateElision; if not present, use the numeric value zero.
EvaluateAssignmentExpression

Call GetValue(Result(3)).

Call the [[Get]] method of Result(1) withrgument" length .

Call the [[Put]] method of Result(1) with arguments (Result(2)+Result(5)) and Result(4).
Return Result(1)

NogarwNE

The productionElision: , is evaluatedas follows:

1. Return the numeric valug
The productionElision: Elision, is evaluaéd as follows:

07 November 2008

[

Deleted: array

[

Deleted: array

- 55-

EvaluateElision.
2. Return (Result(1)+1).

NOTE:
The use of [[Put]] rather than [[ThrowablePut]] in this section is intentional as there are no situgtions
where these [[Put]] operations should fail.

11.1.5 Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form
resembling a literal. It is a list of zero or more pairs of property names and associated values, enclosed
curly braces. The values need not be literals; they emauated each time the object initialiser is
evaluated.

Syntax

ObjectLiteral:

{}

{ PropertyNameAndValueLis}
{ PropertyNameAndValuelList }

PropertyNameAndValueList
PropertyAssignment

PropertyNameAndValueList PropertyAssignment

PropertyAssignment
PropertyName AssignmentExpression
getPropertyName) { FunctionBody}
setPropertyName PropertySetParameterLi3t{ FunctionBody}

PropertyName
IdentifieName
StringLiteral
NumericLiteral

PropertySetParameterList
Identifier

Semantics
The productionObjectLiteral: { } is evaluated as follows:

1. Create a new object as if by the expressiew Object() is the standard buiin

construcor with that name
2. ReturnResult(1).

whereObject

The productios ObjectLiteral: { PropertyNameAndValueLidt and{ PropertyNameAndValueList}
Areevaluated as follows:

1. EvaluatePropertyNameAndValueList
2. Return Result(1);

The production
PropertyNameAndValueList PropertyAssignment

is evaluated as follows:

1. Create a new object as if by the expressiew Object() is the standard buiin
construcor with that name

2. EvaluatePropertyAssignment

whereObject

3. Lallthe [[DefineOwnProperty]] method of Result(#jth arguments Result(2).name,

Result(2).descriptoffalsg,

4. Return Result(1).

07 November 2008

[Deleted: PropertyName AssignmentExpress

[Deleted: PropertyName AssignmentExpress

[Deleted: is

Deleted: PropertyName
AssignmentExpression

Deleted: PropertyName

Deleted: <#>EvaluateAssignmentExpressit

|¥
(

Comment [pL25]: Object literal property
definition should never cause [[DefineProperty]]
throw; so, false is fine here.

[Deleted: GetValue(Result(3))
‘ Deleted: <#>Call the [[Put]] method of

Result(1) with arguments Result@)d
Result(4)1

11.1.6

11.2
Syntax

- 56 -

The production

Result(2).descriptorfalse).
4. Return Result(1).

The productionPropertyAssgnment. PropertyName AssignmentExpresside evaluated as follows:

5.

PropertyNameAndValueList PropertyNameAndValueLis{PropertyAssignment [
is evaluated as follows:

1.
2.
3. Callghe [DefineOwnProperty]] method of Result(1) with argumefResult(2).name,

Deleted:

PropertyName AssignmentExpression

EvaluatePropertyNameAndValueList

EvaluatePropertyAssignment

Deleted:

PropertyName

Deleted:

<#>EvaluateAssignmentExpressidh

Deleted:

GetValue(Result(3))

—

Deleted:

<#>Call the [[Put]] method of Result(1)

with arguments Result(ZndResult(4)]

1. EvaluatePropertyName

2. EvaluateAssignmentExpression

3.

4. Create Property Descriptor{[[Value]]: Result(2), [[Writableifue, [[Enumerable]]itrue,

Call GetValue(Result(2)).

[[Configurabld]: true}
Return Property Identifer (Result(1), Result(4)).

The productionPropertyAssignmentget PropertyName) { FunctionBody} is evaluated as follows:

1.
2.

3.
4.

EvaluatePropertyName

Create a new Function object as specified in 13.2 with an empty parameter list and body specified by
FunctionBody Pass in théexical environmenbdf the running execution context as theope

Create Property Descriptor{[[Getter]]: Result(2), [[Enumerdblerue, [[Configurabld]: true}

Return Property Identiér (Result(1), Resul8)).

The production PropertyAssignment setPropertyName(PropertySetParameterLigt{ FunctionBody}
is evaluated as follows:

1.
2.

3.
4.

EvaluatePropertyName

Create a new Function object as specified in 13.2 with parameters specified by
PropertySetParameterListnd body specified blfunctionBody Pass in théexical environmenbf
the running execution context as tBeope

Create Property Descriptor{[[Setter]]: Result(2), [[Enumerablalle, [[Configurablg]: true}
Return Property Identiér (Result(1), Resul8)).

The productionPropertyName IdentifierName is evaluated as follows:

1.
2.

Form a string literal containing treame sequence of characters asldeatifierName
Return Result(1).

The productionPropertyName StringLiteral is evaluated as follows:

1.

Return the value of th8tringLiteral

The productionPropertyName NumericLiteral is evaluated as follows:

1.
2.

Form the value of th&lumericLiteral
Return ToString(Result(1)).

The Grouping Operator
The productiorPrimaryExpression (Expression is evaluated as follows:

1.
2.

EvaluateExpression This may be of type Reference.
Return Result(1).

NOTE
This algorithm does not apply GetValue to Result(1). The principal motivation for this is so that
operators such adelete andtypeof may be applied to parenthesised expressions.

Left-Hand-Side Expressions

07 November 2008

-57-

MemberExpression
PrimaryExpression
FunctionExpression
MemberExpressioh Expression
MemberExpression ldentifieiName
new MemberExpressionArguments

NewExpression
MemberExpression
new NewExpression

CallExpression
MemberExpressioPArguments
CallExpression Arguments
CallExpressiorf Expression|
CallExpression IdentifieiName

Arguments

()
(ArgumentList)

ArgumentList
AssignmentExpression
ArgumentList AssignmentExpression

LeftHandSideExpressian
NewExpression
CallExpression

11.2.1 Property Accessors

Properties are accessed hgme, using either the dot notation:

MemberExpression IdentifielName
CallExpression IdentifieiName
or the bracket notation:

MemberExpressioh Expression
CallExpressiorf Expression

The dot notation is explained by the following syntaciaversion:

MemberExpression IdentifieiName

is identical in its behaviour to

MemberExpressioh <identifier-namestring>]

and similarly

CallExpression IdentifieiName

is identical in its behaviour to

CallExpressior] <identifier-namestring>]

where <dentifiernamestring> is a string literal containing the same sequence of characters a

IdentifierName

The productioiMemberExpression MemberExpressiofi Expressiorn] is evaluated as follows:

1. EvaluateMemberExpressian

07 November 2008

5 the

11.2.2

11.2.3

11.2.4

- 58 -

. Call GetValue(Result(1)).

. EvaluateExpression

. Call GetValue(Result(3)).

. Call ToObject(Result(2)).

. Call ToString(Result(4)).

. Return a value of type Reference whose base object is Result(5) and whose property name is
Result(6).

~N~No b wN

The productionCallExpression: CallExpression[Expression] is evaluated in exactly the same
manner, except that the contain@dllExpressioris evaluated in step 1.

The new Operator
The productiorNewExpression new NewExpressioiis evaluated as follows:

. EvaluateNewExpression

. Call GetValueResult(1)).

. If Type(Result(2)) is not Object, throwTaypeError exception.

. If Result(2) does not implement the internal [[Construct]] method, thrwpeError exception.

. Call the [[Construct]] method on Result(2), providing no arguments (that is, an éistpdy
arguments).

6. Return Result(5).

O WONPRFP

The productioiMemberExpressionnew MemberExpression Argumentsevaluated as follows:

EvaluateMemberExpressian

Call GetValue(Result(1)).

EvaluateArguments producing an internal list of argument values (11.2.4)

If Type(Result(2)) is not Object, throwTypeError exception.

If Result(2) does not implement the internal [[Construct]] method, thr@wpeError exception.
Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument.values
Return Result(6).

NogrwnNpE

Function Calls
The productiorCallExpression MemberExpressioArgumentss evaluated as follows:

EvaluateMemberExpressian

. Call GetValue(Result(1)).

. EvaluateArguments producing an internal list of argument values (&.4).

. Jf Type(Resultp)) is not Object, throw dypeError exception.

. If IsCallableResultQ)) is false, throw aTypeError exception.

. If Type(Result(1)) is Referencend IsPropertyReference(Result(1))rise, Result(6) is
GetBase(Result(1)). Otherwise, Result(6hidl.

couAwN R

The productionCallExpression: CallExpression Argumentss evaluated in exactly the same manner,
except that the containedallExpressions evaluated in step 1.

NOTE

Result(8) will never be of type Reference if Reglli§ a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementdeipendenh.lf a value of type
Reference is returnedt, must be a nosstrict Property Reference.

Argument Lists
The evaluation of an argument list produces an internal list of values (see 8.8).

The productioPArguments () is evaluated as follows:

1. Return an empty internal list of values.

07 November 2008

Deleted: <#>Call GetValue(Result(1)].

Deleted: 3

Deleted: 3

Deleted: does not implement the internal [[Call]]
method

Deleted: <#>If Result(6) is an activation object,
Result(7) isull. Otherwise, Result(7) is the same
Result(6)T

Deleted: 3

Deleted: 7

Deleted: 2

Deleted: 8

Deleted: 3

Comment [pL26]: We wanted to remove this
possibility but have not done so because this could br
bridging to VBScript. Cannot afford to do that as VBSc
is still used in the intranet.

-59-

The productioPArguments (ArgumentList) is evaluated as follows:

1.
2.

EvaluateArgumentList
Return Result(1).

The productioPArgumentList AssignmentExpressioms evaluated as follows:

1.
2.
3.

EvaluateAssignmentExpression
Call GetValue(Result(1)).
Return aninternal list whose sole item is Result(2).

The productiomPArgumentList ArgumentList, AssignmentExpressiois evaluated as follows:

1.
2. EvaluateAssignmentExpression

3.

4. Return an internal list whose length iseogreater than the length of Result(1) and whose items are

EvaluateArgumentList
Call GetValue(Result(2)).

the items of Result(1), in order, followed at the end by Result(3), which is the last item of the new
list.

11.2.5 Function Expressions

The productiorMemberExpression FunctionExpressioms evaluated as follows:
1. EvaluateFunctionExpression
2. Return Result(1).

11.3 Postfix Expressions

Syntax

PostfixExpression

LeftHandSideExpression

LeftHandSideExpressiomo LineTerminatothere] ++
LeftHandSideExpressiomo LineTerminatohere] --

11.3.1

11.3.2

Postfix Increment Operator
The productionPostfixExpression LeftHandSideExpressionno LineTerminatorhere] ++ is evaluated as

follows:
1. Evaluate LeftHandSideExpression.
2. Call GetVvalue(Result(1)).
3. If TypeResultQ)) is Decimal, then
a. Performthe addition method as defined llBEE 7542008with arguments Result(2) and the
decimal value 1m.
b. Call PutValue(Result(1), Result(3a)).
c. Return Result(1).
4. Call ToNumber(Result(2)).
5. Add the valuel to Result#), using the same rules as for th@perator $§ee 11.6.3).
6. Call PutValue(Result(1), Resyh).
7. Return Resulf).
Postfix Decrement Operator
The productionPostfixExpression LeftHandSideExpressionno LineTerminatorhere] -- is evaluated as
follows:
1. Evaluate LeftHandSideExpression.
2. Call GetValue(Result(1)).
3. If TypeResult@)) is Decimal, then

a. Performthe subtraction method as defined HEE 7542008with arguments Result(2) and
the decimal value 1m.

b. Call PutValue(Result(1), Result(3a)).

c. Return Result(1).

07 November 2008

Deleted: 3

Deleted: 4

Deleted: 3

- 60 -

4. Call ToNumber(Result(2)).
5. Subtract the valué from Result#), using the same rules as for th@perator (11.6.3). [Deleted: 3
6. Call PutValue(Result(1), Resy). [Deleted: 4
7. Return Resulf). [S
eleteq:
11.4 Unary Operators
Syntax
UnaryExpression
PostfixExpression
delete UnaryExpression

void UnaryExpression

typeof

UnaryExpression

++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

11.4.1 Thedelete Operator
The productionJnaryExpression delete UnaryExpressions evaluated as follows:

1
2.
3.
4

11411

Evaluate Unarykpression.

If Type(Result(1)) is not Reference, returoe.
If UnresolvableReference(Result(1)) retrrne.
If IsPropertyReference(Result(1)) tisie, then

a. Call the [[Delete]] method oetBase(Result(1)) providing GetReferencedName(Result(1)) Deleted: <#>Call GetBase(Result(1}).
and IsStrictReference(Result(1)) as the argungents <#>Call GetPropertyName(Result(%)).

b. Return RESUIt(4a_)- [Deleted: Result(3),providing Result(4)
Else,Result(1) is an environment record reference, so [Dolotod: _as the broperty name 1o dolete
a. If GetBase(Result(1))s a declarative environment record, return false. - property

b. Get the binding object of the object environment record that is the value of
GetBaseResult(1)).

c. Call the [[Delete]] method on Result(5b)), providing GetReferencedName (Result(1)) and ,
IsStrictReferenc@Result(1)) as the arguments.

d. Return Result(8).

Strict Mode Restrictions

When adelete operatoroccurs within an execution context that is subset restricted totthst
subset, itsUnaryExpres®n is further limited to being a@lemberExpressianin addition, if the
property to be deleted is has the attribufgGonfigurabld]:false}, aTypeError exception $ thrown.

11.4.2 Thevoid Operator
The productiorlJnaryExpression void UnaryExpressions evaluated as follows:

1.
2.
3.

EvaluateUnaryExpression
Call GetValue(Result(1)).
Returnundefined.

11.4.3 Thetypeof Operator
The productionJnaryExpression typeof UnaryExpressions evaluated as follows:

arwbpE

EvaluateUnaryExpression
If Type(Result(1)) is not Reference, go to step 4.

If JsUnresolvableReferen(Result(1)) isirue, return"undefined" . [Deleted: GetBase

Call GetValue(Result(1)). [Deleted: null

Return a string determined by Type(Result(4)) according to the following table:

07 November 2008

11.4.4

11.4.5

11.4.6

-61-

Type Result
Undefined "undefined"
Null "object”
Boolean "boolean"
Number "number"”
Decimal "decimal”
String "string"

Object (native and "object”
doesnot

[[Calll])

Object (native and "function”
implements [[Call]])

Deleted: 3

Deleted: 4

Object (host) Implementatiordependent
Prefix Increment Operator
The productioJnaryExpression ++ UnaryExpressions evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. If TypeResult(2) is Decimal, then
a. Performthe addition method as defined I BEE 7542008with arguments Result(2) and the
decimal value 1m.
b. Call PutvValue(Result(1), Result(3a)).
c. Return Result(1).
4. Call ToNumber(Result(2)).
5. Add the valuel to Result$), using the same rules as for theperator (see 11.6.3).
6. Call Putvalue(Result(1), Resy®).
7. ReturnResul.
Prefix Decrement Opermator
The productiorlJnaryExpression -- UnaryExpressions evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. If TypeResult(2) is Decimal, then
a. Performthe subtraction method as defined HEE 7542008with arguments Result(nd
the decimal value 1m.
b. Call Putvalue(Result(1), Result(3a))
c. Return Result(3a).
4. Call ToNumber(Result(2)).
5. Subtract the valué from Resultf), using the same rules as for th@perator (see 11.6.3).
6. Call PutValue(Result(1), Resyky).
7. Return Resulf).

Deleted: 4

Deleted: 3

Deleted: 4

Unary + Operator
The unary + operator converts its operand to Number type.

The productioJnaryExpression + UnaryExpressions evaluated as follows:

Evaluate UnaryExpression.

Call GetValue(Result(1)).

If TypeResult(2) is Decimal, then
a. Return Result(2).

Call ToNumber(Result(2)).

Return Resulg).

07 November 2008

Deleted: 4

Deleted: 3

-62-

11.4.7 Unary - Operator

The unary- operator converts its operand to Number type and then negates it. Note that ne@ating
produces-0, and negating-0 producestO.

The productionJnaryExpres®n : - UnaryExpressions evaluated as follows:

1. Evaluate UnaryExpression.

2. Call Getvalue(Result(1)).

3. If TypeResult(2) is Decimal, then
a. Performthe negate method as definedlHEE 7542008with argument Result(2).
b. Return Result(3a).

4. Call ToNumber(Resulf)).

5. If Result) is NaN, returnNaN. ([Deleted: 3
6. Negate Resulf); that is, compute a number with the same magnitude but opposite sign. [Deleted: 3
7. Return Resulg).

,,,,,,,,,,,, [Deleted: 5

11.4.8 Bitwise NOT Operator (~)
The productionJnaryExpression ~ UnaryExpressions evaluated as follows:

EvaluateUnaryExpression

Call GetValue(Result(1)).

Call ToInt32(Result(2)).

Apply bitwise complement to Result(3). The result is a signeti8hteger.
Return Result(4).

arwbdE

11.4.9 Logical NOT Operator (!)
The productiolJnaryExpression ! UnaryExpressia is evaluated as follows:

EvaluateUnaryExpression
Call GetValue(Result(1)).
Call ToBoolean(Result(2)).

If Result(3) istrue, returnfalse.
Returntrue.

aprwnpE

11.5 Multiplicative Operators
Syntax

MultiplicativeExpression
UnaryExpression
MultiplicativeExpressiori UnaryExpression
MultiplicativeExpressiort UnaryExpression
MultiplicativeExpressiofoUnaryExpression

Semantics

The productionMultiplicativeExpression MultiplicativeExpression @ UnaryExpressiowhere @ stands
for one of theoperators in the above definitions, is evaluated as follows:

Evaluate MultiplicativeExpression.
Call GetValue(Result(1)).
Evaluate UnaryExpression.
Call GetValue(Result(3)).
If TypeResult(2) is Decimal andTypeResult(4) is Decimal, then
a. Performthe coresponding Decimal method (multipation, division, remainder) with
arguments Bsult@) and Resuly).
b. Return Result(5a).
Call ToNumber(Result(2)).

aghrwdE

Deleted: 5

o N

Call ToNumber(Result(4)). [
Apply the specified operation (*, /, or %) to Resfi)tand Resulf{). See thenotes below (11.5.1,

11.5.2, 11.5.8 (Deleted: 6

9. Return Resulg). [Deleted: 7

07 November 2008

11.5.1

11.5.2

11.5.3

- 63 -

Applying the * Operator
The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScrHj@sause of finite precision.

The result of a floatingoint multiplication is governed by the rules of IEEE 754 doyfiecision
arithmetic:

If either operand iNaN, the result ifNaN.

The sign of the result is positive if both operands have the same ségative if the operands have
different signs.

Multiplication of an infinity by a zero results idaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule
already stated above.

Multiplication of aninfinity by a finite norrzero value results in a signed infinity. The sign is determined
by the rule already stated above.

In the remaining cases, where neither an infinity or NaN is involved, the product is computed ani
rounded to the nearest represen¢abdlue using IEEE 754 rourtd-nearest mode. If the magnitude is
too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too sma
to represent, the result is then a zero of appropriate sign. The ECMAScript langgages support
of gradual underflow as defined by IEEE 754.

Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECMAScript doets perform integer division. The
operands and result of all division operations are dopbéeision floatingpoint numbers. The result of
division is determined by the specification of IEEE 754 arithmetic:

If either operand idNaN, the result isNaN.

The sign of the result is positive if both operands have the same sign, negative if the operands ha
different signs.

Division of an infinity by an infinity results ilNaN.

Division of an infinity by a zero results in an infinity. The sign is determined byrthe already stated
above.

Division of an infinity by a norezero finite value results in a signed infinity. The sign is determined by
the rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determined byuleealready stated
above.

Division of a zero by a zero results NaN; division of zero by any other finite value results in zero,
with the sign determined by the rule already stated above.

Division of a nonzero finite value by a zero results in a signefinity. The sign is determined by the
rule already stated above.

In the remaining cases, where neither an infinity, nor a zero,N&\ is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754c-oeadestmode. If
the magnitude is too large to represent, the operation overflows; the result is then an infinity o
appropriate sign. If the magnitude is too small to represent, the operation underflows and the result
a zero of the appropriate sign. The ECMABt language requires support of gradual underflow as
defined by IEEE 754.

Applying the %Operator
The % operator yields the remainder of its operands from an implied division; the left operand is the
dividend and the right operand is the divisor.

NOTE
In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts
floating-point operands.

The result of a floatingoint remainder operation as computed by ¥heperator is not the same as the
Aremainder adebperedt ibyn | EEE 754. The | EEE 754 i

07 November 2008

- 64 -

remainder from a rounding division, not a truncating division, and so its behaviour is not analogous to
that of the usual integer remainder operator. Instead the ECMAScript languagesdéfom floating

point operations to behave in a manner analogous to that of the Java integer remainder operator; this may
be compared with the C library function fmod.

The result of a ECMAScript floatingoint remainder operation is determined by the suté IEEE
arithmetic:

If either operand idNaN, the result idNaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the resuaiN.

If the dividend is finite and the divisor is amfinity, the result equals the dividend.

If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

In the remaining cases, where neither an infinity, nor a zero,Na\ is involved, the floatingpoint
remainder r from a dividend n and a divisor d is defined by the mathematical relatiorr(¢ hq)
where g is an integer that is negative only if n/d is negative and positive only if n/d is positive, and

whose magnitudés as large as possible without exceeding the magnitude of the true mathematical
quotient of n and d.

11.6 Additive Operators
Syntax

AdditiveExpression
MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

11.6.1 The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The productionAdditiveExpression. AdditiveExpressiont+ MultiplicativeExpressionis evaluated as
follows:

EvaluateAdditiveExpression.
Call GetValue(Result(1)).
Evaluate MultiplicativeExpression.
Call GetValue(Result(3)).
If TypeResult(2) is Decimal andType(Result(4) is Decimal, then
a. Performthe addition method as defined IEBEE 7542008with argumentfResult@) and
Resultd).
b. Return Result(5a).

s 0 N =

6. Call ToPrimitive(Result(2)).

7. Call ToPrimitive(Result(4)).

8. If Type(Resultg)) is String or Type(Resulf}) is String,ther [Deleted: 5
a. Call ToString(Result(6)). Deleted: 6
b. Call ToString(Result(7)). [eleted . .
c. Concatenate Result(8a) followed by Result(8b). Deleted: go to step 12. (Note that this step diffe

from step 3 in the comparison algorithm for the

d. Return Result(8c). relatioral operators, by using or instead of and.)

9. Call ToNumber(Resulg)).
10. Call ToNumber(Resulff)).
11. Apply the addition operation to Res#j(and Resul{(0). See the note below (11.6.3).
12. Return Resulf(1). Deleted: 8

(
(
[
NOTE [Deleted: 9
/

Deleted: 5

Deleted: 6

No hint is provided in the calls to ToPrimitive in steps 5 &dAll native ECMAScript objects except
Date objects handle the absence of a hint as if the hint Number were given; Date objects handle t

absence of a hint as if the hint String were given. Host objects may handle the absence of a hint in so Deleted: <#>Call ToString(Result(5)
other mamer <#>Call ToString(Result(6)yl.

. <#>Concatenate Result(12) followed by Result(f
<#>Return Result(14Y.

Deleted: 10

07 November 2008

- 65 -

11.6.2 The Subtraction Operator (-)

The productionAdditiveExpression. AdditiveExpression MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression.
Call GetValue(Result(1)).
Evaluate MultiplicativeExpression.
Call GetValue(Result(3)).
If TypeResult(2) is Decimal andTypeResult(4) is Decimal, then
a. Performsubtraction method as definedlBEE 7542008with argumentResult(2) and
Resultd).
b. Return Result(8).

SHER R

6. Call ToNumber(Result(2)).

7. Call ToNumber(Result(4)).

8. Apply the subtraction operation to Resg)t@nd Resulf{). See the note below (11.6.3). [Deleted: 5

9. ReturnResulg. [Deleted: 6
11.6.3 Applying the Additive Operators (+, -) to Numbers [Deleted: 7

The + operator performs addition when applied to two operands of numeric type, producing the sum c
the operands. The operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always assiv@at
The result of an addition is determined using the rules of IEEE 754 dpuébtésion arithmetic:

If either operand idNaN, the result isNaN.

The sum of two infinities of opposite signh&N.

The sum of two infinities of the same sign is the infirofythat sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeros+§. The sum of two positive zeros, or of two zeros of opposite sign, is
+0.

The sum of a zero and a nonzero finite value is equdleémonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite si@n is

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands ha
the same sign or have different magnitudédse sum is computed and rounded to the nearest
representable value using IEEE 754 rodnéhearest mode. If the magnitude is too large to represent,
the operation overflows and the result is then an infinity of appropriate sign. The ECMAScript
language regjres support of gradual underflow as defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing thi
difference of its operands; the left operand is the minuend and the right operand is the subGaheand.
numeric operanda andb, it is always the case that b produces the same resultas(i b) .
11.7 Bitwise Shift Operators
Syntax
ShiftExpression
AdditiveExpression
ShiftExpressior< AdditiveExpression
ShiftExpressiomr> AdditiveExpression
ShiftExpession>>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)
Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

The productiorShiftExpression ShiftExpressior< AdditiveExpressiotis evaluaed as follows:

1. EvaluateShiftExpression
2. Call GetValue(Result(1)).
3. EvaluateAdditiveExpression

07 November 2008

©CeNOGOM

- 66 -

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compasalt(6) & Ox1F.
Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

11.7.2 The Signed Right Shift Operator (>>)

Performs a sigifilling bitwise right shift operation on the left operand by the amount spmetifiy the
right operand.

The productiorShiftExpression ShiftExpressior> AdditiveExpressiois evaluated as follows:

ONoGkwNE

9.

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sigrextending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is a signed 32 bieger.

Return Result(8).

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zerdilling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The productiorShiftExpression ShiftExpressiorr>> AdditiveExpressiolis evaluated as follows:

ONoGO~WNE

<

| [11.8 Relational Operators

Syntax

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call ToUint32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Re&), that is, compute Result(6) & Ox1F.

Perform zeréfilling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 bit integer.

Return Result(8).

[Deleted:

11.4

RelationalExpresion:
ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressiomstanceof ShiftExpression
RelationalExpressioin ShitExpression

07 November 2008

- 67 -

RelationalExpressionNoin
ShiftExpression
RelationalExpressionNold ShiftExpression
RelationalExpressionNoln ShiftExpression
RelationalExpressionNoln= ShiftExpression
RelationalExpressionNolr= ShiftExpression
RelationalExpressionNolimstanceof ~ ShiftExpression

NOTE
The 'Noln' variants are needed to avoid confusing itheoperator in a relational expression with thie
operator in afor statement.

Semantics

The result of evaluating a relational operator is always of type Boolean,tiefjaghether the relationship
named by the operator holds between its two operands.

The RelationalExpressionNolproductions are evaluated in the same manner a&kéhationalExpression
productions except that the contain®elationalExpressionNolis evaliated instead of the contained
RelationalExpression

11.8.1 The Lessthan Operator (<)
The productiorRelationalExpression RelationalExpressior ShiftExpressions evaluated as follows:
Evaluate RelationalExpression.
Call GetValue(Result(1)).
EvaluateShiftExpression.

Call GetValue(Result(3)).
Perform the comparison Result(2) < Result(4). (see 11.8.5)

ok whPE

11.8.2 The Greater-than Operator (>)
The productiorRelationalExpression RelaionalExpressior> ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result{@)h LeftFirstequal tofalse. (see 11.8.p ‘

= UGl

11.8.3 The Lessthan-or-equal Operator (<=)
The productiorRelationalExpression RelationalExpressior= ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result{@)h LeftFirstequal tofalse. (see 11.8.5). ‘

oukrwhE

If Result{) is true or undefined, returnfalse. Otherwise, returtrue.

11.8.4 The Greater-than-or-equal Operator (>=)
The productiorRelationalExpression RelationalExpressior= ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform he comparison Result(2) < Result(4). (see 11.8.5).

If Result@) is true or undefined, returnfalse. Otherwise, returtrue. |

oukwhE

07 November 2008

Deleted: 5

Deleted: 5

Deleted: 5

Deleted: 5

Deleted: 5

Deleted: 5

11.8.5

- 68 -

The Abstract Relational Comparison Algorithm

The comparisox <y, wherex andy are values, producdsue, false, or undefined (which indicates that
at least one operand MaN). In addition tox andy the algorithm takes a booledlag named_eftFirst as
a parameter. The flag is used to control the order in which operations with potentially visibtdfeitte

are perbrmed uponx andy. It is necessary because ECMAScript specifies left to right evaluation of
expressions. The default value loéftFirstis true and indicates that the paramenter corresponds to an

expression that occurs to the left of th@arameters aoesponding expressioif LeftFirstis false, the

reverse is the case and operations must be performedydpsfiorex. Such a comparison is performed as

follows:

1. If the LeftFirstflag is true, then
a. Letpxbe the result of calling oPrimitive(x, hint Number).
b. Jetpybe the result of callindoPrimitive(y, hint Number).
2. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Letpybe the result of calling ToPrimitivg(hint Number).
b. Let pxbe the result of callingoPrimitive(x, hint Number).
3. If Type(px) is Stringjod Type(py) is String, go to step 16. (Note that this step differs from step 7 in
the algorithm for the addition operat#rin usingandinstead ofor.)

Deleted: Call

Deleted: Call

Comment [pL27]: See Deviations doc item 2.8

Deleted: Result(1)

4. Jetnxbe the result of callingoNumberpx). Because opx andpy are primitive values evaluation -

order is not important. Deleted: and
5. Let ny be the result of callinfoNumbe(py). Deleted: Result(2)
6. If nx @s NaN, returnundefined. Deleted: Call
7. If pyis NaN, returnundefined. -
8. If pxandyy are the same number value, retéatse Deleted: Result(1)
9. If pxis +0andpnyis -0, returnfalse. Deleted: Call ToNumber

10. If pxis -0 andnyis +0, returnfalse.

other.)

NOTE

(
[
(
(
(
(
(
[Deleted: Result(2)
11. If n>g!s +o0, returnfalse. [Deleted: Result(4)
12. If nyis +wo, returntrue.
13. If ny,is —wo, returnfalse [Deleted: Resuls)
14. If nxis —w, returntrue. [Deleted: Result(4)
15. If the mathematical value ¢fxis less than the mathematical valuengfd note that these [Deleted: Result(5)
mathematical values are both finite and not both @eneturntrue. Otherwise, returfialse \ [Deleted: Result(@)
16. If pyis a prefix ofpx, returnfalse. (A string valuep is a prefix of string valug if g can be the result .
of concatenating and some other string Note that any string is a prefix of itself, because r may/| be [Deleted: Result(5)
the empty string.) [Deleted: Result(4)
17. If pxis a prefix ofpy, returntrue. [Deleted: Result(5)
18. Let k be the smallest nonnegative integer such that the character at pdsititiin px is different .
from the character at positidnwithin py. (There must be suchia for neither string is a prefix of the [Deleted: Result(4)
[Deleted: Result(5)
19. Let m be the integer that is the code point value for the character at posiighinpx. [Deleted: Result(5)
20. Let n be theinteger that is the code point value for the character at poditvithinpy. .
21. If Type(m) is Decimal or Type{) is Decimal, then [Deleted: Result(4)
Call ToDecimal(n) [Deleted: Result(4)
b' CalNg@ReCigiy [Deleted: Result(5)
c. Perform the compareQuietLess method as defined in IEEE20B8 with arguments
Result(21a) and Result(21b). [Deleted: Result2)
d. Return Result(21c). [Deleted: Result(1)
22. If m<n, returntrue. Otherwise, returfialse. [Deleted: Result(1)
[Deleted: Result(2)
The comparison of strings uses a simple lexicographic ordering on sequences of code point value valu
There is no attempt to use the more complex, stinaly oriented definitions of character or string [Deleted: Resuty
equality and collating order defined in the Unicode specification. Therefore strings that are canonlcally(Deleted: Result(2)
equal according to the Unicode standard could test as unequal. In effect this algorithm assates th[Deleted: Result(1)
both strings are already in normalised form. [Deleted: Result2)

07 November 2008

- 69 -

11.8.6 The instanceof operator

The productionRelationalExpressianRelationalExpressiomnstanceof ShiftExpressions evaluated
as follows:

EvaluateRelationalExpression

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwTaypeError exception.

If Result(4) does not have a [[HasInstance]] method, thraw@eError exception.
Call the [[HasInstance]] method of Result(4) with parameter Result(2).

Return Result(7).

Nooh~wNE

11.8.7 The in operator
The productiorRelationalExpression RelationalExpressioin ShiftExpressions evaluated as follows:

EvaluateRelationalExpression

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

If Result(4) is not an object, throwTaypeError exception.

Call ToString(Result(2)).

Call the [[HasProperty]] method of Result(4) with parameter Result(6).
Return Result(7).

OGN~ wONE

11.9 Equality Operators
Syntax

EqualityExpression
RelationalExpression
EqualityExpression-= RelationalExpression
EqualityExpressiot= RelationalExpression
EqualityExpressior== RelationalExpression
EqualityExpressiot== RelationalExpression

EqualityExpressionNoln
RelationalExpressionNoln
EqualityExpressionNolr= RelationalExpessionNoln
EqualityExpressionNolt= RelationalExpressionNoln
EqualityExpressionNolr== RelationalExpressionNoln
EqualityExpressionNolb== RelationalExpressionNoln

Semantics

The result of evaluating an equality operator is always of type Boolean, irfjeghether the relationship
named by the operator holds between its two operands.

The EqualityExpressionNolrproductions are evaluated in the same manner asEthalityExpression
productions except that the containgdualityExpressionNoland RelationaExpressionNolrare evaluated
instead of the containelqualityExpressiormndRelationalExpressionrespectively.

11.9.1 The Equals Operator (==

The production EqualityExpression: EqualityExpression== RelationalExpressionis evaluated as
follows:

Evaluate EqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).

apwbhE

07 November 2008

-70-

6. Return Result(5).

11.9.2 The Doesnot-equals Operator (!=)

The production EqualityExpression: EqualityExpression!= RelationalExpressionis evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (5&€8.3).
If Result(5) istrue, returnfalse. Otherwise, returitrue.

orwNE

11.9.3 The Abstract Equality Comparison Algorithm

The comparisonx ==y, wherex and y are values, producegue or false Such a comparison is
performed as follows:

If Type(x) is different from Typeg), go to stegls. [Deleted: 14
If Type(X) is Undefined, returtirue.
If Type(x) is Null, returntrue.
If Type() is Decimal then

a. Perform the compareQuietEqual method as defind&EE 7542008with argumentsx and

y.

b. ReturnResult(4a)
5. If Type(x) is not Number, go to step2. . (Deleted: 11
6. If xis NaN, returnfalse.
7
8

bl

If yis NaN, returnfalse.
. If xis the same number value @sreturntrue.
9. If xis+0andyis -0, returntrue.
10. If xis—0andy is +0, returntrue.
11. Returnfalse.
12. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, fiidgan
13. If Type(x) is Boolean, returitrue if x andy are bothtrue or bothfalse. Otherwise returnfalse.
14. Returntrue if x andy refer to the same objgoDtherwise, returfialse. Deleted: or if they refer to objects joined to eac
15. If xis null andy is undefined, returntrue. other (see 13.1.2)
16. If x is undefined andy is null, returntrue.
17. If Type(x) is Number and Typey) is String,
return the result of the comparis@r= ToNumbery).
18. If Type(x) is String and Typsef is Number,
return the result of the comparison ToONumbgrg=y.
19. If Type(x) is Decimalor Type(y) is Decimal then
a. Call ToDecimalk).
b. Call ToDecimaly).
c. Perform the compareQuietEqual method as defind&HEE 7542008with arguments
Result(19a) and Result(19b)
d. ReturnResult(19c)
20. If Type(x) is Boolean, return the result of the comparison ToNumderf y.
21. If Type(y) is Boolean, returnhte result of the comparison== ToNumbery).
22. If Type(x) is either String or Number and Typg(s Object,
return the result of the comparis@rr= ToPrimitive(y).
23. If Type(x) is Object and Typej is either String or Number,
return the result of theomparison ToPrimitiveq) ==y.
24. Returnfalse.
NOTE
Given the above definition of equality:

String comparison can be forced BY:+ a==""+b

Numeric comparison can be forced kay:- 0 == - 0.

07 November 2008

11.9.4

11.9.5

11.9.6

- 71 -

Boolean comparison can be forced bg:==!b

Theequality operators maintain the following invariants:

Al= Bis equivalent td(A ==B).

A== Bis equivalent td == A, except in the order of evaluation AfandB.

The equality operator is not always transitive. For example, there might be two diStiitg objects,
each representing the same string value; each String object would be considered equal to the strir
value by the== operator, but the two String objects would not be equal to each other.

Comparison of strings uses a simple equality tessequences of code point value values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality an
collating order defined in the Unicode 2.0 specification. Therefore strings that are canonically equal
according to the Unicode standard could test as unequal. In effect this algorithm assumes that bot
strings are already in normalised form.

The Strict Equals Operator (===

The productionEqualityExpression: EqualityExpression=== RelationalExpressions evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
Return Result(5).

oukrwhPE

The Strict Doesnot-equal Operator (!==)

The productionEqualityExpression: EqualityExpression!== RelationalExpressions evaluated as
follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpression

Call GetValue(Result(3)).

Performthe comparison Result(4) === Result(2). (See below.)
If Result(5) istrue, returnfalse. Otherwise, returtrue.

Sk wWNE

The Strict Equality Comparison Algorithm

The comparisonrx ===y, wherex andy are values, producesBue or false Such a comparison is
performed as follows:

If Type(x) is different from Typey), returnfalse.
If Type(x) is Undefined, returtrue.
If Type(x) is Null, returntrue.
If Type(x) is not Number, go to step 11.
If x is NaN, returnfalse.
If yis NaN, returnfalse.
If xis the same&wumber value ag, returntrue.
If xis +0 andy is —0, returntrue.
. If xis —0 andy is +0, returntrue.
0. Returnfalse.
1. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions); otherwise, f@dgen
12. If Type(X) is Boolean, returtrue if x andy are bothtrue or bothfalse; otherwise, returfialse.
13. If Type(x) is Decimal, hen
a. Call ToDecimal(x).
b. Call ToDecimal(y).
c. Perform the compareQuietEqual method as defind@&BE 7542008with arguments
Result(13a) and Result(13b)

RHRBOoo~NoGORrwDE

07 November 2008

-72 -

d. ReturnResult(13c)
14. Returntrue if x andy refer to the same objedDtherwise, returfialse.

J1.10 Binary Bitwise Operators
Syntax

BitwiseANDEXxpression
EqualityExpression
BitwiseANDEXxpressio& EqualityExpression

BitwiseANDExpressionNoln
EqualityExpressionNoln
BitwiseANDEXxpressionNol& EqualityExpressionNoln

BitwiseXOREXxpression
BitwiseANDEXxpression
BitwiseXORExpressioh BitwiseANDEXxpression

BitwiseXORExpressionNotn
BitwiseANDEXxpressionNoln
BitwiseXORExpressionNofn BitwiseANDExpresionNoln

BitwiseORExpression
BitwiseXOREXxpression
BitwiseORExpression Bitwise XOREXxpression

BitwiseORExpressionNotn
BitwiseXORExpressionNoln
BitwiseORExpressionNo|n BitwiseXORExpressionNoln

Semantics

The productionA: A @ B where @ is one of theitivise operators in the productions above, is evaluated

as follows:

EvaluateA.

Call GetValue(Result(1)).
EvaluateB.

Call GetValue(Result(3)).
Call ToInt32(Result(2)).
Call ToInt32(Result(4)).

0 N o g N =

Return Result(7).

11.11 Binary Logical Operators
Syntax

Logical ANDEXxpression
BitwiseOREXxpression
LogicalANDEXxpressio&& BitwiseORExpression

LogicalANDExpressionNoln
BitwiseORExpressionNoln
LogicalANDEXxpressionNol&& BitwiseORExpressionNoln

LogicalORExpression

LogicalANDEXxpression
LogicalORExpressiofj LogicalANDExpression

07 November 2008

Deleted: or if they refer to objects joined to eacl
other (see 13.1.2)

Deleted: <#>

Apply the bitwise operator @ to Result(5) and Result(6). fesailt is a signed 32 bit integer.

-73-

LogicalORExpressionNoIn
LogicalANDExpressionNoln
LogicalORExpressionNoljj LogicalANDExpressionNoln

Semantics

The productionLogical ANDExpresion : LogicalANDExpressior&& BitwiseORExpressiois evaluated as
follows:

EvaluateLogical ANDExpression
Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return Result(2).
EvaluateBitwiseORExpressian

Call GetValue(Result(5)).

Return Result(6).

NoogakwhpE

The productionLogicalORExpression LogicalORExpressior)] LogicalANDExpressioris evaluated as
follows:

1. EvaluatelLogical ORExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, return Result(2).
EvaluateLogical ANDExpression
Call GetValue(Result(5)).

Return Result(6).

NoogohrwnN

The LogicalANDExpressionNolrand LogicalORExpressionNolproductions are evaluated in the same
manner as the.ogicalANDExpressiorand LogicalORExpressiorproductions except that the contath
LogicalANDExpressionNoln BitwiseORExpressionNolnand LogicalORExpressionNolnare evaluated
instead of the contained.ogicalANDExpression BitwiseORExpressionand LogicalORExpression

respectively.
NOTE

The value produced by && or || operator is not ecessarily of type Boolean. The value produced will

always be the value of one of the two operand expressions.

11.12 Conditional Operator (?:)
Syntax

ConditionalExpression
LogicalORExpression
LogicalORExpressior? AssignmentExpressionAssignmentExpression

ConditionalExpressionNoln
LogicalORExpressionNoln
LogicalORExpressionNolr? AssignmentExpressionAssignmentExpressionNoln

Semantics

The productionConditionalExpression Logical ORExpressioff AssignmentExpressian
AssignmentExmssionis evaluated as follows:

EvaluatelLogical ORExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 8.

Evaluate the firsAssignmentExpression
Call GetValue(Result(5)).

Return Result(6).

Evaluate the seconéissignmentExpression

ONoGOR~WNE

07 November 2008

- 74 -

9. Call GetValue(Result(8)).
10. Return Result(9).

The ConditionalExpressionNolproduction is evaluated in the same manner asOtweditionalExpression
production except that the contained.-ogicalORExpressionNoln AssignmentExpressionand
AssignmentExpressionNolnare evaluated instead of the containddogicalORExpression first
AssignmentExpressicand second\ssignmentExpressipnespectively.

NOTE

The grammar for a ConditionalExpression in ECMAScript is a little bit different from th&t amd Java,

which each allow the second subexpression to be an Expression but restrict the third expression to be a
ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment
expression to be governed by either arfracconditional and to eliminate the confusing and fairly useless
case of a comma expression as the centre expression.

11.13 Assignment Operators
Syntax

AssignmentExpression
ConditionalExpression
LeftHandSideExpression AssignmentOperétssignmentExpression

AssignmentExpressionNoin
ConditionalExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperatarone of
= *= /= %= += -= <<= >>= >>>= &= N= =

Semantics

The AssignmentExpressionNofiroductions are evaluated in the same manner a8ghignmentExpression
productions except that the contain@bnditionalExpressionNoln and AssignmentExpressionNaie
evaluated instead of the contain€dnditionalExpressiomnd AssignmentExpressiomespectively.

11.13.1 Simple Assignment (=)

The productionAssignmentExpression LeftHandSideExpression AssignmentExpressiois evaluated
as follows:

EvaluatelLeftHandSideExpression
EvaluateAssignmentExpression
Call GetValue(Result(2)).

Call PutValug¢Result(1), Result(3)).
Return Result(3).

o1~ w e

11.13.1.1 Strict Mode Restrictions

When asimpleassignmentccurs within an execution context that is subset restricted tettloe
subset, itd_eftHandSidemust not evaluate toan unresolvable referencH it does aReferenceError
exception is thrown. ThéeftHandSidealso may not be a referente a property with the attribute
value {[[Writable]]:false} nor to a norexistent property of an object whose [[Extensible]] property
has the valudalse. In these cases @ypeError exception is thrown.

11.13.2 Compound Assignment (op=)

The productionAssignmentExpressionLeftHandSideExpression @ AssignmentExpressipmhere @
represents one of the operators indicated above, is evaluated as follows:

EvaluatelLeftHandSideExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression

Call GetValue(Result(3)).

Apply operator @ to Result(2) and Result(4).

arwhE

07 November 2008

- 75-

6. Call PutValue(Result(1), Result(5)).
7. Return Result(5).

11.13.2.1 Strict Mode Restrictions
The saame restrictions apply as specified in 11.13.1.1

11.14 Comma Operator (,)
Syntax

Expression
AssignmentExpression
Expression AssignmentExpression

ExpressionNoln
AssignmentExpressionNoln
ExpressionNoln AssignmentExpressionNoln

Semantics
The prodution Expression Expression AssignmentExpressids evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression
Call GetValue(Result(3)).
Return Result(4).

arwdOPE

The ExpressionNolrproduction is evaluated in the same manner asEthiessionproduction except that
the containedExpressionNolnand AssignmentExpressionNolare evaluated instead of the contained
Expressiomand AssignmentExpressiomespectively.

07 November 2008

-76-

12 Statements
Syntax

Satement
SulStatement
VariableStatement
FunctionDeclaration

SulStatement
Block

IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement
DebuggerStatement

Semantics

The |l abels introduced this way are collectively
semantics of individual statements.LAbelledStatemerttas no semantic meaning other than the introduction
of a label to alabel set The label set of anterationStatemenbr a SwitchStatemeninitially contains the
single elemenempty. The label set of any other statement is initially empty.

Note:
TBD: Implementations have been known to supgerhctionDeclarationin a SubStatementowever there is
no uniform support.Ilt is impossible to reconcile their differing semantics, and hence this specification
excludestheir possibility.
12.1 Block
Syntax

Block:
{ StatementLigf; }

StatementList
Statement
StatementList Statement
Semantics
The productiorBlock: { } is evaluated as follows:

1. Return formal, empty, empty).

The productiorBlock: { StatementLis} is evaluated as follows:

1. \Establish a new lexicdllock execution context using any contextually supplied block parameters
2. EvaluateStatementListising thenew execution context

3. Exit the execution context established in step 1, restoring the previous execution context

4. Return Result).

The productiorStatementList Statements evaluated as follows:

07 November 2008

[Deleted: VariableStatement

Comment [pL28]: Note this means that

VariableStatements cannot be & d

This is a change from ES3.

as-bii p &

Comment [pL29]: Mark (and perhaps others) think
should be a substatement. However, that would be a
breaking syntactic change from ES3. Need to start a
discussion list thread on whether or not this is really
acceptate. Another alternative is to only make this cha

in strict mode code.

Comment [pL30]: From AWB:

Needs to be rewritten for new lexical scoping model.

[

Deleted: 1

2.

3.

- 77 -

EvaluateStatement

If an exception was thrown, returrthfow, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were thrown.)

Return Result(1).

The productiorStatementList StatementList Statemeistevaluated as follows:

1.

2.
3.
4

oo

1211

EvaluateStatementList

If Result(1) is an abrupt completion, return Result(1).

EvaluateStatement

If an exception was thrown, returthtow, V, empty) whereV is the exception. (Execution now
proceeds as if no exception were thrown.)

If Result(3).value impty, letV = Result(1).@alue, otherwise let V = Result(3).value.

Return (Result(3).typey, Result(3).target).

Strict Mode Restrictions

A VariableStatementwithin an execution context that is subset restricted tosthiet subset, may
not occur as theStatementLisbf a Block The occurrence of ¥ariableStatemenin such a contexmust
be treated as a syntax error.

12.2 Variable statement

Syntax

VariableStatement
var VariableDeclarationList

VariableDeclarationList
VariableDeclaration
VariableDeclarationList VariableDeclaration

VariableDeclarationListNoln
VariableDeclarationNoln
VariableDeclarationListNoln VariableDeclarationNoln

VariableDeclaration:
Identifier Initialiser,

VariableDeclarationNoln
Identifier InitialiserNoln,

Initialiser :

= AssignmentExpression

InitialiserNoln :
= AssignmentExpressionNoln

Description

A variable statemenfeclares variables that are created as defined in section 10.3.1. Varaeles
initialised to undefined when created. A variable with ammitialiser is assigned the value of its
AssignmentExpressiomhen theVariableStatemenis executed, not when the variable is created.

Semantics

The productiorVariableStatementvar VariableDeclarationList is evaluated as follows:

1.
2.

EvaluateVariableDeclarationList
Return ormal, empty, empty).

The productiorvariableDeclarationList VariableDeclarationis evaluated as follows:

1.

EvaluateVariableDeclaration

07 November 2008

Comment [pL31]: From MSM:

What about a variable declaration at top level of
Program being evaled by an eval operator withi
function, or by a strict eval operator, or by a stric
eval operator within a function?

Deleted: If the

Deleted: occurs inside &unctionDeclaration
the variables are defined with functitotal
scope in that function, as described0.1.3.
Otherwise theyare defined with global scope
(that is, they are created as members of the
object, as described in 10.1.3) using propert
attributes {DontDelete}. Variables are create
when the execution scope is enteredléck
does not define a new executistope. Only
ProgramandFunctionDeclaratiorproduce a
new scopeVariables

-78-

The productionVariableDeclarationList: VariableDeclarationList, VariableDeclarationis evaluated as
follows:

1. EvaluateVariableDeclarationList
2. EvaluateVariableDeclaration

The productiorvariableDeclaration: Identifieris evaluated as follows:

1. \Return[dstring value containing the same sequence of characters aslutetitéier.

The productiorvVariableDeclaration: Identifier Initialiseris evaluated as follows:

1. jf the VariableDeclarationoccurs in strict mode, ledtrict betrue, otherwise lestrict be false.
2. Evaluatelnitialiser.

3. Call GetValue(Result(2)).

4. Call the SetMtableBinding(\,V,S) met hod

concrete o f\Variatie&Envieorneent u t

5. Return a string value containing the same sequence of characters asdentifger.

The productionnitialiser : = AssignmentExpressids evaluated as follows:

1. EvaluateAssignmentExpression
2. Return Result(1).

The VariableDeclarationListNoln VariableDeclarationNolnand InitialiserNoln productions are evaluated
in the same manner as thariableDeclarationList VariableDeclarationand Initialiser productions except
that the contained VariableDeclarationListNoln VariableDeclarationNoln InitialiserNoln and
AssignmentExpressionNolnare ealuated instead of the containedvariableDeclarationList
VariableDeclaration Initialiser and AssignmentExpressiomespectively.

12.3 Empty Statement
Syntax
EmptyStatement
Semantics
The productiorEmptyStatement; is evaluated as follows:
1. Return formal, empty, empty).
12.4 Expression Statement
Syntax

ExpressionStatement

[lookaheadz {{, function

12.5
Syntax

}1 Expression

Note that anExpressionStatemerdannot start with an opening curly brace because that might make it

ambiguous with @8lock Also, anExpressionStatemertannot start with théunction
that might make it ambiguous withFainctionDeclaration

keyword because

Semantics
The productiorExpressionStatemen{lookaheade {{, function 11 Expression is evaluated as follows:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return formal, Result(2),empty).

The if Statement

07 November 2008

Comment [pL32]: From MSM:

Since it seems so mysterious, we should either remov

fireturnos or include a n
Comment [pL33]: From AWB:
Cano6t r emo v ehangmgparts wfithe $pecut

depend on them.

[

Deleted: Evaluateldentifieras described in 11.1.2

Comment [pL34]: Note that this results in a semant
bug fix to ES3.. In ES3 a var statement with an initializ
that is within a with statement whose with object has ¢
property that is the same name as the variable chase

initialise to assign to the property rather than the varia

Deleted: Call PutValue(Result(1), Result(3))

-79-

IfStatement
if (Expression) SulStatementelse SulStatement
if (Expressior) SulStatement

Each else for which the choice of associatdfl is ambiguous shall be associated with the nearest
possibleif that would otherwise have no correspondaige .

Semantics
The productionfStatement if (Expression SulStatemenelse SulStatements evaluated as follows: |

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 7.

Evaluate the firsBulStatement |
Return Result(5).

Evaluate the secondulStatement |
Return Result(7).

ONoGRrwWDE

The productionfStatement if (Expression) SulStatements evalwated as follows: |

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return formal, empty, empty).
EvaluateSulStatement

Return Result(5).

oaprONE

12.6 lteration Statements

An iteration statement consists ofheader (which consists of a keyword and a parenthesised control
construct) and &ody(which consists of &tatement

Syntax

IterationStatement
do SulStatementwhile (Expression;
while (Expressior) SulStatement
for (ExpressionNolgy; Expressiog,; Expressiog,) SulStatement
for (var VariableDeclarationListNoln Expressiogy,; Expressiog,) SulStatement
for (LeftHandSideExpressian Expressior) SulStatement
for (var VariableDeclarationNolrin Expressior) SulStatement

12.6.1 Thedo-while Statement
The productiordo SutStatementwhile (Expressior); is evaluated as follows: |

LetV = empty.

EvaluateSulStatement |
If Result(2).value is noémpty, letV = Result(2).value

If Result(2).type iscontinue and Result(2).target is in the current label set, go to step 7.

If Result(2).type isreak and Result(2).target is in the current label set, retnomfal, V, empty).
If Result(2) is an abrupt completion, return Result(2).

EvaluateExpression

Call GetVdue(Result(7)).

. Call ToBoolean(Result(8)).

10.1f Result(9) istrue, go to step 2.

11.Return formal, V, empty);

CINOUAWNE

12.6.2 The while statement
The productioriterationStatement while (Expression) SulStatements evaluated as follows:

07 November 2008

12.6.3

- 80 -

LetV = empty.

EvaluateExpressio.

Call GetValue(Result(2)).

Call ToBoolean(Result(3)).

If Result(4) isfalse, return formal, V, empty).

EvaluateSulStatement

If Result(6).value is noémpty, letV = Result(6).value.

If Result(6).type icontinue and Result(6).target is in thearrent label set, go to 2.
If Result(6).type ireak and Result(6).target is in the current label set, retnomfal, V, empty).
10 If Result(6) is an abrupt completion, return Result(6).

11.Go to step 2.

CoNOOMLONE

The for Statement

The production IterationStatement: for (ExpressionNolg, ; Expressiogy ; Expressiopy)
SulStatements evaluated as follows:

If ExpressionNoljis not present, go to step 4.
EvaluateExpressionNoln

Call GetValue(Result(2)). (This value is naded.)

LetV = empty.

If the first Expressions not present, go to step 10.

Evaluate the firsExpressio.

Call GetValue(Result(6)).

Call ToBoolean(Result(7)).

If Result(8) isfalse, go to step 19.

10 EvaluateSulStatement

11.1f Result(10).value is noémpty, let V = Result(10).value

12.1f Result(10).type idreak and Result(10).target is in the current label set, go to step 19.
13.1f Result(10).type isontinue and Result(10).target is in the current label set, go to step 15.
14.1f Result(10) is an abrupt completioreturn Result(10).

15.1f the secondExpressioris not present, go to step 5.

16.Evaluate the seconixpressio.

17.Call GetValue(Result(16). (This value is not used.)

18.Go to step 5.

19.Return formal, V, empty).

©COeNOOAMLNE

The production IterationStatement: for (var VariableDedarationListNoln ; Expressiogy ;
Expressiop,) SulStatements evaluated as follows:

1. EvaluateVariableDeclarationListNoln

2. LetV =empty.

3. If the first Expressions not present, go to step 8.

4. Evaluate the firsExpression

5. Call GetValue(Result(4)).

6. Call ToBoolean(Result(5)).

7. If Result(6) isfalse, go to stegl?.

8. EvaluateSulStatement

9. If Result(8).value is noémpty, let V = Result(8).value.

10.1f Result(8).type ireak and Result(8).target is in the current label set, go to step 17.
11.If Result(8).type iscontinue and Result(8).target is in the current label set, go to step 13.
12.1f Result(8) is an abrupt completion, return Result(8).

13.1f the secondExpressions not present, go to step 3.

14.Evaluate the seconfixpression

15.Call GetValue(Result(14)). (Thisalue is not used.)

16.Go to step 3.

17.Return formal, V, empty).

07 November 2008

[

Deleted: the firstExpression

[

Deleted: 14

12.6.4

12.6.4.1Strict Mode Restrictions

12.7
Syntax

-81-

The for -in Statement

The productioniterationStatement for (LeftHandSideExpressioim Expression) SulStatemenis |
evaluated as follows:

Evaluate theExpression

Call GetValue(Result(1)).

If Result(2) isnull or undefined, return formal, V, empty). |
Call ToObject(Result(2)).

LetV = empty.

Get the name of the next property of Regiljthose [[Enumerable]] attribute tsue. If there is no ‘
such property, go to stefb.

Evaluate thd_eftHandSideExpressiopit may be evaluated repeatedly).

Call PutValue(Result(6), Resyfy).

. EvaluateSulStatement

10.1f Result@).value is noempty, letV = Resultf).value.

11.1f Result@).type isbreak and Resulf).target is in the current label set, go to stép

12.1f Result@).type iscontinue and Resul{g).target is in the current label set, go to gfep

13.1f Result() is an abrupt completion, return Resg)t(

14.Go to stefp.

15.Return (hormal, V, empty).

oukwhE

©®N

The production IterationStatement: for (var VariableDeclarationNoln in Expression)
SulStatements evaluated as follows:

EvaluateVariableDeclarationNoln

EvaluateExpression

Call GetValue(Result(2)).

If Result(3) isnull or undefined, return formal, V, empty). |
Call ToObject(Result(3)).

Let V = empty.

NoahrwhE

8. Evaluate Result(1) as if it were an Identifier; §ep 7 from the previous algorith¢it may be

9. Call PutValue(Result(7), Resuyty).
10.EvaluateSulStatement

15Gotostey.
16.Return formal, V, empty).

The mechanics of enumerating the properties (step 5 in the first algorithm, step 6 in the se;ctmdL

specified Properties of ie object being enumerated may be deleted during enumeration. If a propert

that has not yet been visited during enumeration is deleted, then it will not be visited. If new propertie[

are added to the object being enumerated during enumeration, the rogely properties aliguaranteed
notto be visited in the active enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, andt

prototype of the prototype, and so on, recursively; but a propertypodtatype is not enumerated if it is
Aishadowedd because some previous object in the

The same restrictiaapply as specified in section 11.13.1.1

The continue Statement

07 November 2008

is

Deleted:

3

Deleted:

attribute

that doesndt hi

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

v jjo oo |0 | | o

Deleted:

4

Deleted:
attribute

that doesnodt h:

T e N | | A A Y Y e

Deleted:

15

Comment [pL35]:

I dondt

From AWB:

see what valu
spot where step numbering can get out of whac

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

[
(
[
[
[
[
[
[

Deleted:

y

Deleted:

Deleted:

Deleted:

Deleted:

[
%

Deleted:

@ ||| | o

Deleted:

6

Deleted:

implementation dependent

v[
|
|

Deleted: The order of enumeration is defin
by the object.

Comment [pL36]:
it isnot
(or should) force upon implementations.

Mark wants to delete this, |
obvi ou xtthatwe ta

[

Deleted:

not

-82-

ContinueStatement
continue [noLineTerminatothere] ldentifieryy ;

Semantics
A program is considered syntactically incorrect if either of the following are true:

The program contains eontinue statement without the option&dentifier, whichis not nested, directly
or indirectly (but not crossing function boundaries), withinltemationStatement

The program contains @ontinue statement with the optionadlentifier, whereldentifier does not appear
in the label set of an enclosing (but not crossing function bounddtézajionStatement

A ContinueStatementithout anldentifier is evaluated as follows:

1. Return €ontinue, empty, empty).

A ContinueStatememnith the optionalldentifier is evaluated as follows:

1. Return €ontinue, empty, Identifier).

12.8 The break Statement
Syntax
BreakStatement

break [noLineTerminatothere] Identifieryy ;

Semantics
A program is considered syntactically incorrect if either of the following are true:

The program contains lreak statement without the option&dientifier, which is not nested, directly or
indirectly (but not crossing function boundaries), withinlearationStatemenor a SwitchStatement
The program contains lareak statement with the gtional Identifier, whereldentifier does not appear in

the label set of an enclosing (but not crossing function bound$tesemerht
A BreakStatemenwithout anldentifier is evaluated as follows:

1. Return preak, empty, empty).

A BreakStatemenwith anldentifieris evaluated as follows:

1. Return preak, empty, Identifier).

12.9 Thereturn Statement
Syntax
ReturnStatement

return [no LineTerminatorhere] Expressiogbt)

Semantics

An ECMAScript program is considered syntactically incorrect if it containstarn statement that is not

within aFunctionBody A return statement causes a function to cease execution and return a value to the

caller. If Expressionis omitted, the returvalue isundefined. Otherwise, the return value is the value of
Expression

The productiorReturnStatementreturn [no LineTerminatorhere] Expressiogy; is evaluated as:

1. If the Expressions not present, returrdturn, undefined, empty).
2. EvaluateExpression

3. Call GetValue(Result(2)).

4. Return teturn, Result(3),empty).

07 November 2008

Comment [pL37]): From AWB:

Need to consider whether this should be SubStatemer

- 83-

12.10 The with Statement
Syntax

WithStatement
with (Expressior) SulStatement

Description

Thewith statement adds a computed objeawvironment recordo thelexical environmenof the current
execution context, then executes a statement with this augmented scope chain, then resjeresath
environment

Semantics
The productionVithStatement with (Expression) SulStatements evaluated as follows:

1. EvaluateExpression

2. Call GetValue(Result(1)).

3. Call ToObject(Result(2)).

4, Cal | NewObj ect Environment Record(O, E) passing
LexicalEnvironment as the argumgnt
Set the LexicalEnvironment to Result(4).

~N O 01
m
<
=R
c
Q
5
[0}
wn
c
)
Q
5
@D
3
@D
3
(=g
%3
=)
«
3
z
@
X.
(e]
=2
m
5
<
o
35
3
@
3
z
2
o
3
[%]
o
g

8. (Lall PopEnvironmentRecord .~~~
9. ReturnC.

NOTE
No matter how control leaves the embedd®diStatement’, whether normally or by somenfoof abrupt

12.10.1Strict Mode Restrictions

An execution context that is subset restricted tostret subset, may not executeVdithStatement
The occurrence of WithStatemenin such a contexmustbe treated as a syntax error.

12.11 The switch Statement
Syntax
SwitchStatement

switch (Expressior) CaseBlock

CaseBlock
{ CaseClauseg }
{ CaseClausgg DefaultClause CaseClausgs

Cas&Clauses
CaseClause
CaseClauses CaseClause

CaseClause
case Expression StatementLigf

DefaultClause
default : StatementLig;
Semantics
The productiorSwitchStatementswitch (Expression CaseBlocks evaluated as follows:

1. EvaluateExpression
2. Call GetValue(Result(1)).

07 November 2008

[Deleted: front of the scope clia

[Deleted: scope chain

Deleted: Add Result(3) to the front dhe
scope chain.

Deleted: augmented scope chain
Deleted: 4

Deleted: 5

Deleted: Remove Result(3) from the front
the scope chain

I
|
(
(
(Deleted: 5
(
{
(

Deleted: scope chain

-84 -

3. EvaluateCaseBlock passing it Result(2) as a parameter.

4. If Result(3).type is break and Result(3).target is in the current label set, retunorrfal,
Result(3).valueempty).

5. Return Result(3).

The production CaseBlocK : CaseClagesy, } is given an input parameténput, and is evaluated as follows:

. LetV=-empty.

. Let Abe the list of CaseClause items in source text order.

. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 16.
. EvaluateC.

If inputis not equal to Result(4) as defined by the operator, then go to step 3.

If C does not have a StatementList, then go to step 10.

. EvaluateC6 s St at e meRbethérssult. and | et

. If Ris an abrupt completion, then retd®n

. LetV=Ruvalue.

10. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 16.
11. If C does not have a StatementList, then go to step 10.

12. EvaluateCd s St at e meRbethéerssult. and | et

13. If Rvalue is noempty, then letV = R.value.

14. If Ris an abrupt completion, then retuRtype,V, Rtarget).

15. Go to step 10.

16. Return formal, V, empty).

©O~NOUTAWNR

The production CaseBlocK : CaseClausgg DefaultClause CaseClaugg$ is given an input parameténput, and
is evaluated as follows:

1. LetV=empty.

2. Let A be the list of CaseClause items in the first CaseClauses, in source text order.
3. Let C be the next CaseClauseAnlf there isno such CaseClause, then go to step 11.
4. EvaluateC.

5. If inputis not equal to Result(4) as defined by the operator, then go to step 3.

6. If C does not have a StatementList, then go to step 20.

7. EvaluateCO6 s St at e meRbethéesult. and | et

8. If Ris an abrupt completion, then retuRn

9. LetV=Ruvalue.

10. Go to step 20.

11. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
12. Let C be the next CaseClauseBnlf there is no sucaseClause, then go to step 26.
13. EvaluateC.

14. If inputis not equal to Result(13) as defined by!ttre operator, then go to step 12.
15. If C does not have a StatementList, then go to step 31.

16. EvaluateC6 s St at e meRbethersesit and | et

17. If Ris an abrupt completion, then retu®n

18. LetV =Ruvalue.

19. Goto step 31.

20. Let C be the next CaseClauseAnlf there is no such CaseClause, then go to step 26.
21. If Cdoes not have a StatementList, then go to step 20.

22. EvaluateC6 s St at e meRbethérssult. and | et

23. If Rvalue is noempty, then letv = Rvalue.

24. If Ris an abrupt completion, then retuRt¢pe,V, Rtarget).

25. Go to step 20.

26. If the DefaultClause does not have a StatementList, théo step 30.
27.Evaluate the Default CRbethsresdlts St atementlLi st and
28. If Rvalue is noempty, then letV = Rvalue.

29. If Ris an abrupt completion, then retuft¢pe,V, Rtarget).

30. Let B be the list of CaseClause items ie gecond CaseClauses, in source text order.
31. Let C be the next CaseClauseBnlf there is no such CaseClause, then go to step 37.
32. If Cdoes not have a StatementList, then go to step 31.

33. EvaluateCO s St at e meRbethérssult. and | et

07 November 2008

et

- 85 -

34. If Rvalue is noempty, then letv = Rvalue.

35. If Ris an abrupt completion, then retuRtype,V, Rtarget).
36. Go to step 31.

37. Return formal, V, empty).

Jhe productionrCaseClause case Expression StatementLisf, is evaluated as fdws:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return Result(2).

NOTE

Evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Expres:
and returns the value, which the CaseBlock algorithm uses to determine BratbmentList to start
executing.

12.12 Labelled Statements

Syntax

LabelledStatement

Identifier: Statement

Semantics

statements. ECMAScript has goto statement.

break andcontinue

An ECMAScript program is considered syntactically incorrect if it contairlsabelledStatementhat is
enclosed by d abelledStatemenwith the samddentifier as label. This does not apply to labels appearing
within the body of &unctionDeclarationthat is nested, directly or indirectly, within a labelled statement.

The productionldentifier : Statemenis evaluated by addintdentifier to the label set oStatementand
then evaluatingStatement|f the LabeledStatemenitself has a norempty label set, these labels are also
added to the label set Statemenbefore evaluating it. If the result of evaluatiBtatements (break, V, L)
wherelL is equal toldentifier, the production results im¢rmal, V, empty).

Prior to the evaluation of habelledStatementhe containedtatements regarded as possessing an empty
label set, except if it is aiterationStatementor a SwitchStatementin which case it is regarded as
possessing a label set consisting of the single elerrenity.

12.13 The throw statement

Syntax
ThrowStatement
throw [no LineTerminatomhere] Expression ;

Semantics

Deleted: The productiorCaseBlock {
CaseClauses DefaultClause CaseClayses
given an input parameténput, and is evaluate
as followsT
<#>Let Abe the list ofCaseClauséems in th
first CaseClausesn source text ordef.
<#>For the nexCaseClausén A, evaluate
CaseClauself there is no sucfaseClausgegc
to step A
<#>If inputis not equal to Result(2), as defil
by the!== operator, go to step®.
<#>Evaluate th&StatementLisof this
CaseClausq
<#>If Result(4) is an abrupt completion ther
return Result(4)l
<#>Go to step 1.
<#>Let B be the list ofCaseClauséems in th
secondCasClausesin source text ordef.
<#>For the nexCaseClausén B, evaluate
CaseClauself there is no sucaseClausegc
to step 19]
<#>If inputis not equal to Result(8), as defi
by the!==operator, go to step®B.
<#>Evaluate théStatementLisof this
CaseClaua.f
<#>If Result(10) is an abrupt completion the
return Result(10)
<#>Go to step 18
<#>For the nexCaseClausén A, evaluate the
StatementLisof this CaseClauself there is nc
suchCaseClausggo to step 15.
<#>If Result(13) is an abrupt completion the
return Reslt(13) 1
<#>Execute theStatementLisdf DefaultClaus
<#>If Result(15) is an abrupt completion the
return Result(19)
<#>Let B be the list olCaseClauséems in th
secondCaseClausesn source text ordef.
<#>For the nexCaseClausén B, evaluate the
StatementListf this CaseClauself there is n
suchCaseClausgreturn filormal, empty,
empty).{
<#>If Result(18) is an abrupt completion the
return Result(18Y.
<#>Go to step 18.

Comment [pL38]:
whether this should be SubStatement. See com

The productionThrowStatement throw [no LineTerminaor here] Expression is evaluated as:

1. EvaluateExpression
2. Call GetVvalue(Result(1)).
3. Return (hrow, Result(2),empty).

12.14 Thetry statement

Syntax

TryStatement
try Block Catch
try Block Finally
try Block Catch Finally

07 November 2008

There is a debate regardin

in section 12.0.

[Comment [pL39]: Same as the above comm:

Catch:

- 86 -

catch (Identifier) Block

Finally :

finally

Block

Description

The try

catch clause cabes an exception, itslentifieris bound to that exception.

iSemanticé

The productionTryStatement try Block Catchis evaluated as follows:

el e

EvaluateBlock

If Result(1).type is nothrow, return Result(1).
EvaluateCatchwith parameter Result(1).
Return Result(3).

The productioriTryStatement try BlockFinally is evaluated as follows:

el N S

The productionTryStatement try Block CatchFinally is evaluated as follows:

ONoarwNE

EvaluateBlock

EvaluateFinally.

If Result(2) typeis normal, return Result(1).
Return Result(2).

EvaluateBlock

Let C = Result(1).

If Result(1).type is nothrow, go to step 6.
EvaluateCatchwith parameter Result(1).
EvaluateFinally.

If Result(6).type isnormal, returnC.
Return Result(6).

The productionCatch: catch (Identifier) Blockis evaluated as follows:

statement encloses a block of code in which an exceptional condition can occur, such as a
runtime error or ahrow statement. Theatch clause provides the exceptidrandling code. When a

Comment [pL40]: Work still needs to be done to giv
catch blocks real lexical scoping.

[Deleted: If Result(4).typds notnormal,

Deleted: Create a new object as if by the expres
new Object() .1

<#>Create a property in the object Result(2). The
property's name ilentifier, value isC.value, and
attributes are { DontDeletef}.

<#>Add Result(2) to the front of the scope ch&in.
<#>EvaluateBlock

Remove Result(2) from the front of the scope cha

[Deleted: 5

1. LetC be the parameter that has been passed to this production.

2. Cal l NewDecl arati veEnvironment Recor d(E) passin
LexicalEnvironment as the argument.

3. Call the CreateMutableBinding(N) concrete method of Result(2) passing the Identifier as the argument.

4. Call the SetMutableBinding(N,V,S) corete methof of Result(2) passing the Identifer, C.value, and
false as arguments. Note that the last argument is immaterial in this sityation.

5. Set the LaicalEnvironment to Result(2).

6. EvaluateBlock

7. Call PopEnvironmentRecord.

8. Return Resulf).

The productiorFinally : finally Blockis evaluated as follows:

1. EvaluateBlock

2. Return Result(1).

12.15 Debugger statement

Syntax

DebuggerStatement
debugger ;

07 November 2008

-87-

Semantics

Evaluating theDebuggerStatememtroductionmay allow an implementation to cause &reakpoint when run
under a debugger.

13 Function Definition
Syntax
FunctionDeclaratiort
function Identifier (FormalParameterList;) { FunctionBody}

FunctionExpression
function Identifier,, (FormalParameterLisf,) { FunctionBody

FormalParameterList
Identifier
FormalParameterList Identifier

FunctionBody.
UseStrictDirectivg, SourceElements |
Semantics

The productiorFunctionDeclaration: fun ction Identifier (FormalParameterLisf,) { FunctionBody} is
processed for function declarations as follodusing Declaration Binding instantiation (10.3.3)

1. Create a new Function object as specified in 13.2 with parameters specifiearinalParametelist,,,

and body specified bffunctionBody Pass in thgexicalEnvironmeniof the running execution context a [Deleted: scope chain
the Scope

2. Create a property of the curremtvironmentobject (as specified in 48.3) with namedentifier and value | [Deleted: variable
Result(1). Deleted: 1

The productiorFunctionExpression function (FormalParameterLisf,) { FunctionBody} is evaluated

as follows:

1. Create a new Function object as specified in 13.2 with parameters specifieorimplParameterLisy
and body specified bffunctionBody Pass in thg¢.exicalEnvironmenif the running execution context ap [Deleted: scope chain
the Scope

2. Return Resulfl). . - | [Deleted: 2

The productionFunctionExpression function Identifier (FormalParameterLisf;) { FunctionBody} is

evaluated as follows:

1. Call NewDeclarativEnvironmentRecord(E) passing the LexicalEnvironment as the argument

2. Call the CreatelmmutableBinding(N) concrete method of Result(1) passing the string value of Identifier a
the argument.

3. [Create a new Function object as specified in 13.2 with parameters specifiedrmplParameterLisfy Deleted: <#>Create a new object dshiy the

and body specified bifunctionBody Pass ifResult(1)as theScope
4. |call the InitializelmmutableBinding(N,V) concrete method of Result(1) passing the string value of
Identifier and Result(3) as the arguments

expressiomew Object() .1
<#>Add Result(1) to the front of the scope
chain{

5. Return Result(3).

Deleted: the scope chain of the rungin
execution context

NOTE {
The Identifier in a FunctionExpression can be referenced from inside the FunctionExpre$siantionBody {

Comment [pL41]:
Fix

From AWB:
scoping issues €

to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a
FunctionExpression cannot be referenced from and does not affect the scope enclosing th
FunctionExpression.

The productiorFundionBody: SourceElementss evaluated as follows:

1. If the optional UseStrictDirective is present, SourceElements is processed and evaluated in the followir

Deleted: <#>Create a property in the objec
Result(1). The property's namedentifier,
value is Result(3), and attributes are {
DontDelete, ReadOnly}. {

Remove Result(1) from the front of the scop
chain

steps as strict mode code code. Otherwise SourceElements is processed and evaluatfdlowithge
steps as nostrict mode code

07 November 2008

- 88 -

2. ProcessSourceElementfor function declarations.
3. EvaluateSourceElements
‘ 4. Return Resulff).

13.1

13.2

| 1321

13.2.2

Definitions

Jhis section is ndonger useg.

Creating Function Objects

Given an optional parameter list specified BbyrmalParameterLista body specified bfFunctionBody and
ajexical environmenspecified byScope a Function olct is constructed as follows:

1. Create a new native ECMAScript object andHete that object.

2. Set the [[Class]] property df to "Function”

3. Sd the [[Prototype]] property oF to the original Function prototype object as specified in 15.3.3.1.

4. Set the [[Call]] property of as described in 13.2.1.

5. Set the [[Construct]] property df as described in 13.2.2.

6. Setthe [[Scope]] property df tothevalue ofScope

7. Setthelength property ofF to the number of formglarameterspecified inFormalParameterListIf
no parameters are specified, set teegth property ofF to 0. Thisproperty is given attributes as
specified in 15.3.5.1.

8. Set the [[Extensible]] property df to true.

9. Create a new object as would be constructed by the expressiorObject() whereObject is the
standard builin constructor with that name.

10. Set theconstructor property of Result(9) td=. This propertyhasattributes {[[Writable]]: true,
[[Enumerable]]:false, [[Configurabld]: true}. -

11. Set theprototype property of F to Result(9). This property is given attributes as specified| in
15.3.5.2.

12. ReturnF.

NOTE

A prototype property is aubmatically created for every function, to allow for the possibility that the

function will be used as a constructor.

(Campy ...
When the [[Call]] property for a Function objefetis called, the following steps are taken:

1. Establish a new execution context usig FormalParameterListthe passed arguments list, and the
this value as described in 1403.

2. If the FunctionF is not strict, and théype ofthis valueis notObject, then
a. If the this value isnull or undefined, replace it with the global object.
b. Else replace théhis value with the result of calling ToObjeoh the this value.

EvaluateF's FunctionBody

Exit the execution context established in step 1, restoring the previous execution context.

ResultB).type must bexormal.) returnundefined.

[[Construct]]
When the [[Construct]] property for a Function objécis called, the following steps are taken:

No oMW

Create a new native ECMAScript object.

Set the [[Class]] property of Result(1) t@bject"”

Set the [[Extensible]] property of Result(1) tae.

Get the value of thprototype property ofF.

If Result{) is an object, set the [[Prototype]] property of Result(1) to Rggult(

If Result@d) is not an object, set the [[Prototype]] property Résult(1l) to the original Object
prototype object as described in 15.2.3.1.

Invoke the [[Call]] property ofF, providing Result(1) as ththis value and providing the argument
list passed into [[Construct]] as the argument values.

If Type(Result})) is Objectthen return Resulf).

ok wbpE

~N

©

07 November 2008

(

Deleted: 2

Deleted: A couple of definitions are needed to
describe the process of creating function objects:

Deleted:

13.1.1 Equated Grammar Productidns

Two uses of the FunctionBody grammar productior
defined to be equated when one of the following is
Both uses obtained their FunctionBody from the sa
location in the source text of the same ECMAScr
program. This source text consists of global code 2
any contained function codes according to the
definitions in 10.1.2]

Both uses obtained their FunctionBody from the sa
location in the source text of the same call to eval
(15.1.2.1). This sourcext consists of eval code and
contained function codes according to the definitior
10.1.2%

NOTEY

Two uses of FunctionBody obtained from a call to t
Function constructor 15.3.1 and 15.3.2) are never
equated. Also, two uses of FunctionBody obtaifteth
two different calls to eval are never equated, even
those two calls to eval were passed the same argy
13.1.2 Joined Object

When two or more Function objects are joined, the
have the following special behavioufs: (.

Deleted: scope chain

Deleted: <#>If there already exists an obje€that
was created by an earlier call to this section's (.

Deleted: a nev scope chain (10.1.4) that contain:
same objects as

Deleted: properties

Deleted: .

Deleted: is given

Deleted: DontEnum

Deleted: <#>At the implementation's discretion, ¢
to either step 2 or step 4.

Deleted: Step 1 allows an implementation to opti
the common case of a function A that has a neg”

Deleted: 2

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

2
2
2
Deleted: 2
(
2
R

Deleted:

Deleted:

Deleted: 3

Deleted: 3

Deleted: 3

omment [pL42]: Her man Venter s
e fiis an Object?o0

Deleted: 6

Deleted: 6

-89 -

O

9. Return Result(1).

07 November 2008

-90 -

14 Program
Syntax

Program:
UseStrictDirective,, SourceElements

UseStrictDirectivey :
" use strict useExtensiap; " ;

useExtension
, DoubleStringCharactegs

SourceElements
SourceElement
SourceElements SourceElement

SourceElement
Statement
FunctionDeclaration

Semantics
The productiorProgram: UseStrictDirective,,, SourceElementds evaluated as follows:

1. If the optionalUseStrictDirectiveis presentSourceElements is processed awvéluated in the following
steps as strict mode code. Otherwise SourceElements is processed and evaluated in the following steps as
non-strict mode code.

2. ProcessSourceElementfor function declarations.

3. EvaluateSourceElements

4. ReturnResulf. [Deleted: 2

The praluctionSourceElementsSourceElemenis processed for function declarations as follows:
1. ProcessSourceElemenfor function declarations.

The productiorSourceElementsSourceElemenis evaluated as follows:

1. EvaluateSourceElement

2. Return Result(1).

The production SourceElements SourceElements SourceElemastprocessed for function declarations as
follows:

1. ProcessSourceElementfor function declarations.

2. ProcessSourceElemenfor function declarations.

The productiorSourceElementsSourceElementSourceElemens evaluated as follows:

1. EvaluateSourceElements

2. If Result(1) is an abrupt completion, return Result(1)

3. EvaluateSourceElement

4. Return Result(3).

The productiorSourceElement Statements processed for function declarations by taking no action.
The productiorSourceElement Statements evaluated as follows:

1. EvaluateStatement

2. Return Result(1).

The productiorSourceElement FunctionDeclarationis processed for function declaratiorssfallows:

1. ProcesdunctionDeclarationfor function declarations (see clause 13).

07 November 2008

-91-

The productiorSourceElement FunctionDeclarationis evaluated as follows:
1. Return formal, empty, empty).

The productiondJseStrictDirectivgy, : " use strict useExtensiog," ; ; and
useExtensiog:, DoubleStringCharactegy have no associated semantic actions.

07 November 2008

15.1

-92-

15 Native ECMAScript Objects
There are certain buiih objects available whenever an ECMAScript program begins execution. One, the

global object, ispart of the lexical environmenif the executing program. Others are accessible as initial [

Deleted: in thescope chain

properties of the global object.

Unless specified otherwise, the [[Class]] property of a bimilbbject is"Function" if that built-in object
has a [[Call]] property, ofObject" if that built-in object does not have a [[Call]] propertynless specified
otherwise, the [[Extensible]] property of a buillt object has the valuiue.

Many built-in objects are functionsthey can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with ribes operator. For each builh function, this
specification describes the arguments required by that function and propertiesFoittteon object. For each
built-in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned hgwa expression that invokes that
constructor.

Unless oherwise specified in the description of a particular function, if a function or constructor described in
this section is given fewer arguments than the function is specified to require, the function or constructor shall
behave exactly as if it had beenven sufficient additional arguments, each such argument being the
undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described in

this section is given more arguments than the functionpecisied to allow, thehdditional arguments are
ignored

Deleted: behaviour of the function or constructor is
undefined. In particular, an implementation is permi
(but not required) to throw BypeError exception in tt

NOTE case

Implementations that adddditional capabilities to the set of built functions are encouraged to do so by Comment [pL43]: Breaking change!!

adding new functions rather than adding new parameters to existing functions. Lars asks for the motivation of this change? Herman \
- . . A . .. L says: | am not totally sure thiis is OK, since the

Every builtin function and every buHin constructor has the Function prototype object, Wwhi the initial language was added before my time and presumably-

value of the expressiorfrunction.prototype (15.3.2.1), as the value of its internal [[Prototype]] required to allow either Navigator or |E to claim to be

property. compliant with the standard while extending it. TODO:

fig

ure out if this issue is discussed anywhere.

Every builtin prototype object has the Object prototype object, which is the initial value of the expression
Object.prototype (15.3.2.1), as the value of its internal [[Prototype]] property, except the Object
prototype object itself.

None of the builin functions described in this section shall implement the internal [[Construct]] method
unless otherwise specified in the descriptafma particular function. None of the built functions described

in this section shall initially have prototype property unless otherwise specified in the description of a
particular function. Every buHin Function object described in this secidowhether as a constructor, an
ordinary function, or boté has aength property whose value is an integer. Unless otherwise specified, this
value is equal to the largest number of named arguments shown in the section headings for the function
description, intuding optional parameters.

NOTE
For example, the Function object that is the initial value ofgliee property of the String prototype object

is described wunder the section heading AString. prot

argumerts start and end; therefore the value of thagth property of that Function object .

In every case, théength property of a buikin Function object described in this section has the attributes

{ [[Writable]]: false, [[Enumerable]]:false, [[Configurabld]: falsg} (and no others). Every other property [

Deleted: ReadOnly, DontDelete, DontEnum

described in this section has the attributgWritable]]: true, [[Enumerable]]:false, [[Configurablg]: true } [

Deleted: DontEnum

Junless otherwise specified. [

Deleted: (and no others)

The Global Object
The uniqueglobal objectis created before control enters any execution context.

Unless other wise specified, the properties of the global object have attributes { [[Enumerfaide]:

The global object does not have a [[Construgtpperty; it is not possible to use the global object as a
constructor with thenew operator.

07 November 2008

