[Ecma/TC39/2009/006 |

Standard ECMA-262

3" Edition - December 1999

ECMA

Standardizing Information and Communication Systems

SES Language Specification — - (T
e S A SR -
DRAFT as derived from the

“Mountain View Draft” of
ECMAScript 3.1

P Mark S. Miller 1/19/09 5:14 PM
7777777777777777777777 - Deleted: 15 January 2009

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
19 January 2009 |

patrick
Text Box
Ecma/TC39/2009/006

Standard ECMA-262

3" Edition - December 1999

ECMA

Standardizing Information and Communication Systems

P Mark S. Miller 1/19/09 5:14 PM
e e e - Deleted: 15 January 2009

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
19 January 2009

Standard ECMA-262

3™ Edition - December 1999

ECMA

Standardizing Information and Communication Systems

SES Language Specification —
DRAFT as derived from the
“Mountain View Draft” of
ECMAScript 3.1

g Mark S. Miller 1/19/09 3:54 PM

Deleted: ECMAScript 3.1 Language
Specification - DRAFT .

P Mark S. Miller 1/19/09 5:14 PM
e e e - Deleted: 15 January 2009

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
19 January 2009 |

Standard ECMA-262

3" Edition - December 1999

ECMA

Standardizing Information and Communication Systems

P Mark S. Miller 1/19/09 5:14 PM
e e e - Deleted: 15 January 2009

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
19 January 2009

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape)
and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s
Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft
starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this ECMA Standard was adopted by
the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard ISO/IEC 16262, in April 1998. The ECMA General Assembly of June 1998 approved the
second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second
edition are editorial in nature.

The third edition of the Standard includes powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes
in anticipation of forthcoming internationalisation facilities and future language growth. The language documented by
the third edition has come to be known as ECMAScript 3 or ES3.

The language documented by the edition 3.1 has come to be known as ECMAScript 3.1 or ES3.1.

html, css, the browser/dom API, and ECMAScript. It defines two subsets of ES3.1-strict: Cajita and Valija. Cajita is a
true object-capability language, meant to be a robust platform for new code expressing capability-based security
policies. Valija is similar to ES3.1-strict, with some compromises to facilitate safely emulating multiple virtual Valija
environments within one Cajita environment, embedded in one ES3.1 environment. Objects from multiple Valija
environments can interoperate with each other, and with Cajita objects and “tamed uncajoled” ES3.1 objects from
their hosting environment. Cajita is a subset of Valija, with some compromises to enable it to translate well into the
variants of ES3 implemented on current widely deployed browsers.

The present variant of the ES3.1 draft spec proposes a design for Secure ECMAScript, or SES, based on Cajita,
without the compromises needed to accommodate pre-ES3.1 browsers. However, to ease incremental adoption, the
design of SES is constrained to be easily and efficiently implementable by translation to ES3.1-strict.

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
19 January 2009

g Mark S. Miller 1/19/09 5:16 PM

Deleted: Work on the language is not complete.
The technical committee is working on significant
enhancements, including mechanisms for scripts to
be created and used across the Internet, and tighter
coordination with other standards bodies such as
groups within the World Wide Web Consortium and
the Wireless Application Protocol Forum.

P Mark S. Miller 1/19/09 5:14 PM
- Deleted: 15 January 2009

P Mark S. Miller 1/19/09 5:14 PM
T e e e e e e e - Deleted: 15 January 2009

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
19 January 2009

Table of contents

1 Scope
2 Conformance
3 References
4 Overview
4.1 Web Scripting
4.2 Language Overview
4.2.1 Objects
4.2.2 The Strict Variant of ECMAScript
4.3 Definitions
4.3.1 Type
432 Primitive Value
4.3.3 Object
4.3.4 Constructor
4.3.5 Prototype
4.3.6 Native Object
4.3.7 Built-in Object
4.3.8 Host Object
439 Undefined Value
4.3.10 Undefined Type
4.3.11 Null Value
4.3.12 Null Type
4.3.13 Boolean Value
4.3.14 Boolean Type
4.3.15 Boolean Object
4.3.16 String Value
4.3.17 String Type
4.3.18 String Object
4.3.19 Number Value
4.3.20 Number Type
4.3.21 Number Object
4.3.22 Infinity
4.3.23 NaN
4.3.24 Function
4.3.25 Built-in Function
4.3.26 Property
4.3.27 Method
4.3.28 Attribute
4.3.29 Own Property
4.3.30 Inherited Property
4.3.31 Built-in Method
5 Notational Conventions
5.1 Syntactic and Lexical Grammars
5.1.1 Context-Free Grammars

19 January 2009,

Mark S. Miller 1/20/09 12:00 AM

Deleted: 1

Mark S. Miller 1/20/09 12:00 AM

Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
’ ' Mark S. Miller 1/20/09 12:00 AM
/)| Deleted:>)
Mark S. Miller 1/20/09 12:00 AM
|/ Deleted:>
/) ¥ Mark S. Miller 1/20/09 12:00 AM
| /Deleted:s
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
/| Deleted: 4
, Mark S. Miller 1/20/09 12:00 AM
/ | Deleted: 4
Mark S. Miller 1/20/09 12:00 AM
~ | Deleted: 4

Mark S. Miller 1/20/09 12:00 AM
Deleted: 4

Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM

Deleted: 5

Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM

Deleted: 5

Mark S. Miller 1/20/09 12:00 AM

Mark S. Miller 1/20/09 12:00 AM

Mark S. Miller 1/20/09 12:00 AM

Deleted: 6

(1
|
\

Mark S. Miller 1/20/09 12:00 AM

[Mark S. Miller 1/20/09 12:00 AM

8

5.1.2
5.1.3
5.1.4
5.1.5
5.2

7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.9
7.9.1
7.9.2

8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.7
8.7.1
8.7.2
8.8
8.9

8.10 The Property Descriptor and Property Identifier Specification Types

8.10.
8.10.
8.10.
8.10.

S -

The Lexical and RegExp Grammars
The Numeric String Grammar
The Syntactic Grammar
Grammar Notation
Algorithm Conventions

Source Text

Lexical Conventions
Unicode Format-Control Characters
White Space
Line Terminators
Comments
Tokens
Reserved Words
Keywords
Future Reserved Words
Identifiers
Punctuators
Literals
Null Literals
Boolean Literals
Numeric Literals
String Literals
Regular Expression Literals
Automatic Semicolon Insertion
Rules of Automatic Semicolon Insertion
Examples of Automatic Semicolon Insertion

Types
The Undefined Type
The Null Type
The Boolean Type
The String Type
The Number Type
The Object Type
Property Attributes
Object Internal Properties and Methods
The Reference Specification Type
GetValue (V)
PutValue (V, W)
The List Specification Type
The Completion Specification Type

1 IsAccessorDescriptor (Desc)

2 IsDataDescriptor (Desc)

3 IsGenericDescriptor (Desc)

4 FromPropertyDescriptor (Desc)

19 January 2009,

Mark S. Miller 1/20/09 12:00 AM
Deleted: 13

Mark S. Miller 1/20/09 12:00 AM
- Deleted: 14

B Mark S. Miller 1/20/09 12:00 AM

Deleted: 15

Mark S. Miller 1/20/09 12:00 AM
Deleted: 15

Deleted: 15

Mark S. Miller 1/20/09 12:00 AM
Deleted: 15

} Mark S. Miller 1/20/09 12:00 AM

\
|||\ Deleted: 23

\
‘\\\\

'

Y

\\\m\\\ Mark S. Miller 1/20/09 12:00 AM
I Mark S. Miller 1/20/09 12:00 AM
\

L)

\\m Mark S. Miller 1/20/09 12:00 AM

[Mark S. Miller 1/20/09 12:00 AM

- iii -

8.10.5 ToPropertyDescriptor (Obj) 36,

8.11 The Lexical Environment and Environment Record Specification Types 36,

8.12 Algorithms for Object Internal Methods 36,
8.12.1 [[GetOwnProperty]] (P) 36,
8.12.2 [[GetProperty]] (P) 37,

8.12.3 [[Get]] (P) 37,
8.12.4 [[CanPut]] (P) 37,
8.12.5 [[ThrowingPut]] (P, V, Throw) 37,
8.12.6 [[Put]] (P, V) 38,
8.12.7 [[HasProperty]] (P) 38,
8.12.8 [[Delete]] (P, Throw) 38,
8.12.9 [[DefaultValue]] (hint) 38
8.12.10 [[DefineOwnProperty]] (P, Desc, Throw) 39,

9 Type Conversion and Testing 40,

9.1 ToPrimitive 40, .

9.2 ToBoolean 40, B

9.3 ToNumber 41, B
9.3.1 ToNumber Applied to the String Type 41,

9.4 Tolnteger

9.5 Tolnt32: (Signed 32 Bit Integer)

9.6 ToUint32: (Unsigned 32 Bit Integer)
9.7 ToUintl6: (Unsigned 16 Bit Integer)
9.8 ToString

9.8.1 ToString Applied to the Number Type
9.9 ToObject
9.10 CheckObjectCoercible
9.11 IsCallable
9.12 The SameValue Algorithm
10 Executable Code and Execution Contexts

10.1 Types of Executable Code
10.1.1 Strict Mode Code
10.2 Lexical Environments
10.2.1
10.2.2
10.2.3
10.3 Execution Contexts
10.3.1
10.4
10.4.1
10.4.2
10.4.3
10.5
10.6

Environment Records
Lexical Environment Operations
The Global Environment

Identifier Resolution
Establishing an Execution Context
Global Code
Eval Code
Function Code
Arguments Object
Declaration Binding Instantiation

11 Expressions

11.1 Primary Expressions

19 January 2009,

/_Deleted:4 o T
Mark S. Miller 1/20/09 12:00 AM
Deleted: 34

Mark S. Miller 1/20/09 12:00 AM
Deleted: 34
Mark S. Miller 1/20/09 12:00 AM
Deleted: 35
Mark S. Miller 1/20/09 12:00 AM
Deleted: 35
Mark S. Miller 1/20/09 12:00 AM
Deleted: 35
Mark S. Miller 1/20/09 12:00 AM
Deleted: 35
Mark S. Miller 1/20/09 12:00 AM
Deleted: 36
Mark S. Miller 1/20/09 12:00 AM
Deleted: 36
Mark S. Miller 1/20/09 12:00 AM
Deleted: 36
Mark S. Miller 1/20/09 12:00 AM
Deleted: 36

-~ Mark S. Miller 1/20/09 12:00 AM

- Deleted: 36

- Mark S. Miller 1/20/09 12:00 AM

N Deleted: 37
Mark S. Miller 1/20/09 12:00 AM

. | Deleted: 38
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Deleted: 39
Mark S. Miller 1/20/09 12:00 AM
Deleted: 39
Mark S. Miller 1/20/09 12:00 AM
Deleted: 39
Mark S. Miller 1/20/09 12:00 AM
Deleted: 42
Mark S. Miller 1/20/09 12:00 AM
Deleted: 42
Mark S. Miller 1/20/09 12:00 AM
Deleted: 42
Mark S. Miller 1/20/09 12:00 AM

Deleted: 43

Mark S. Miller 1/20/09 12:00 AM
Deleted: 45

Mark S. Miller 1/20/09 12:00 AM
Deleted: 45
Mark S. Miller 1/20/09 12:00 AM
Deleted: 45
Mark S. Miller 1/20/09 12:00 AM
Deleted: 45
Mark S. Miller 1/20/09 12:00 AM
Deleted: 46
Mark S. Miller 1/20/09 12:00 AM
Deleted: 46
Mark S. Miller 1/20/09 12:00 AM

Deleted: 46

W Mark S. Miller 1/20/09 12:00 AM
\

\

| Mark S. Miller 1/20/09 12:00 AM
\

\
| Mark S. Miller 1/20/09 12:00 AM
\

Mark S. Miller 1/19/09 5:14 PM

\\
\\\
\

\
\
\

11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.3
11.3.1
11.3.2
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.4.6
11.4.7
11.4.8
11.4.9
11.5
11.5.1
11.5.2
11.5.3
11.6
11.6.1
11.6.2
11.6.3
11.7
11.7.1
11.7.2
11.7.3
11.8
11.8.1
11.8.2
11.8.3
11.8.4
11.8.5
11.8.6
11.8.7

- iv -

The this Keyword

Identifier Reference

Literal Reference

Array Initialiser

Object Initialiser

The Grouping Operator
Left-Hand-Side Expressions

Property Accessors

The new Operator

Function Calls

Argument Lists

Function Expressions
Postfix Expressions

Postfix Increment Operator

Postfix Decrement Operator
Unary Operators

The delete Operator

The void Operator

The typeof Operator

Prefix Increment Operator

Prefix Decrement Operator

Unary + Operator

Unary - Operator

Bitwise NOT Operator (~)

Logical NOT Operator (!)
Multiplicative Operators

Applying the * Operator

Applying the / Operator

Applying the $ Operator
Additive Operators

The Addition operator (+)

The Subtraction Operator (-)

Applying the Additive Operators (+, -) to Numbers

Bitwise Shift Operators
The Left Shift Operator (<<)
The Signed Right Shift Operator (>>)
The Unsigned Right Shift Operator (>>>)
Relational Operators
The Less-than Operator (<)
The Greater-than Operator (>)
The Less-than-or-equal Operator (<=)
The Greater-than-or-equal Operator (>=)

The Abstract Relational Comparison Algorithm

The instanceof operator
The in operator

19 January 2009,

5
5
5
57
577
5
5
57
877
5
5
5
6
077
077
077
077

PRERPPRRRRERRBERERRELRERER

Deleted: 61

Mark S. Miller 1/20/09 12:00 AM
Deleted: 61

Mark S. Miller 1/20/09 12:00 AM
Deleted: 62

Mark S. Miller 1/20/09 12:00 AM
Deleted: 62

Mark S. Miller 1/20/09 12:00 AM
Deleted: 62

Mark S. Miller 1/20/09 12:00 AM

[Mark S. Miller 1/20/09 12:00 AM

/| Deleted: 71

¥ Mark S. Miller 1/20/09 12:00 AM
Deleted: 72

Mark S. Miller 1/20/09 12:00 AM

v Deleted: 72
Mark S. Miller 1/20/09 12:00 AM
Deleted: 72
11.9 Equality Operators 68, Mark S. Miller 1/20/09 12:00 AM
11.9.1 The Equals Operator (==) 69,
11.9.2 The Does-not-equals Operator (!=) 69, rk S Miller 1/20/09 12:00 AM
-
11.9.3 The Abstract Equality Comparison Algorithm 69, Mark S. Miller 1/20/09 12:00 AM
- . \Viller g
11,94 The Strict Equals Operator (=== ., _
11.9.5 The Strict Does-not-equal Operator (!==) 70, Mark S. Miller 1/20/09 12:00 AM
11.9.6 The Strict Equality Comparison Algorithm 71, Deleted: 74
11.10 Binary Bitwise Operators 71, Mark S. Miller 1/20/09 12:00 AM
11.11 Binary Logical Operators 72, Deleted: 74
.. o Mark S. Miller 1/20/09 12:00 AM
11.12 Con.dltlonal Operator (?2:) 72, Deleted: 75
1113 Assignment Operators 3y _ _ N Mark S. Miller 1/20/09 12:00 AM
11.13.1 Simple Assignment (=) 3, Deleted: 76
11.13.2 Compound Assignment (op=) 74, - Bl Mark S. Miller 1/20/09 12:00 AM
11.14 Comma Operator (,) 74, .. \Deleted: 76
a N Mark S. Miller 1/20/09 12:00 AM
12 Statements 75, | ~ \Deletedi76
12.1 Block 75, N Mark S. Miller 1/20/09 12:00 AM
T Deleted: 77
12.2 Variable statement 76, X L et :
123 Emoty Stat B N Mark S. Miller 1/20/09 12:00 AM
: mpty Statement e | |peletea:7s
124 Expression Statement 7 Mark S. Miller 1/20/09 12:00 AM
125 The if Statement 77,
12.5.1 Strict Mode Restrictions 78 Mark S. Miller 1/20/09 12:00 AM
12.6 Iteration Statements 78, |\ Deleted: 79
12.6.1 The do-while Statement 78, \ rS Ier 1/20/09 12:00 AM
- eleted:
12.6.2 The while stat \
¢ while statement % Mark S. Miller 1/20/09 12:00 AM
12.6.3 The for Statement 79, A Deleted: 80
12.6.4 The for-in Statement 79, 7\\ Mark S. Miller 1/20/09 12:00 AM
12.7 The continue Statement so, Deleted: 80
12.8 The break Statement 81 -0 Mark S. Miller 1/20/09 12:00 AM
12.9 Th S ST = Deleted: 81
: e return Statement 8, Mark S. Miller 1/20/09 12:00 AM
12.10 The with Statement 81,) Deleted: 81
. L - -0
12.10.1 Strict Mode Restrictions 8ly \\\ Mark S. Miller 1/20/09 12:00 AM
12.11 The switch Statement 8l j\\\\\\\\\ Deleted: 81
12.11.1 Strict Mode Restrictions 83 kK \\\ o Mark S. Miller.1/20/09 12:00 AM
S = =) Deleted: 81
12.12 Labelled Statements 83 I .
= Mark S. Miller 1/20/09 12:00 AM
12.13 The throw statement 83, j\\ ' | Deleted: 52
12.14 The try statement 84, j\\‘ (R Mark S Miller 1/20/09 12:00 AM
12.15 Debugger statement 85, \\‘\\\\\\\\ Deleted: 82
Ty Mark S. Miller 1/20/09 12:00 AM
13 Function Definition o
13.1 Definitions - Mark S. Miller 1/20/09 12:00 AM

13.2 Creating Function Objects Deleted: 84
13.2.1 [[Call]] B Mark S. Miller 1/20/09 12:00 AM

1322 [[Construct]] e
- Mark S. Miller 1/20/09 12:00 AM

Deleted: 84

Mark S. Miller 1/20/09 12:00 AM
Deleted: 85

Mark S. Miller 1/20/09 12:00 AM
Deleted: 85

Mark S. Miller 1/20/09 12:00 AM

\
TN Deleted: 87
|

1
\\\w\\ I Mark S. Miller 1/20/09 12:00 AM
(L0,
\
Bl Mark S. Miller 1/20/09 12:00 AM

14 Program
14.1 Use Strict Directive

19 January 2009,

\

== =

=

\
M Mark S. Miller 1/20/09 12:00 AM
W

Ll

\\‘ﬂ\ Mark S. Miller 1/20/09 12:00 AM

i Mark S_ Miller 1/20/09 12:00 AM
|

[Mark S. Miller 1/20/09 12:00 AM

]

15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5

15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5

15.3
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5

15.4
15.4.1
15.4.2
15.4.3
15.4.4
15.4.5

15.5
15.5.1
15.5.2
15.5.3
15.5.4
15.5.5

15.6
15.6.1
15.6.2
15.6.3
15.6.4
15.6.5

15.7
15.7.1
15.7.2
15.7.3
15.7.4
15.7.5

15.8
15.8.1
15.8.2

15.9
15.9.1

S vi-

The Global Object
Value Properties of the Global Object
Function Properties of the Global Object
URI Handling Function Properties
Constructor Properties of the Global Object
Other Properties of the Global Object

Object Objects
The Object Constructor Called as a Function
The Object Constructor
Properties of the Object Constructor
Properties of the Object Prototype Object
Properties of Object Instances

Function Objects
The Function Constructor Called as a Function
The Function Constructor
Properties of the Function Constructor
Properties of the Function Prototype Object
Properties of Function Instances

Array Objects
The Array Constructor Called as a Function
The Array Constructor
Properties of the Array Constructor
Properties of the Array Prototype Object
Properties of Array Instances

String Objects
The String Constructor Called as a Function
The String Constructor
Properties of the String Constructor
Properties of the String Prototype Object
Properties of String Instances

Boolean Objects
The Boolean Constructor Called as a Function
The Boolean Constructor
Properties of the Boolean Constructor
Properties of the Boolean Prototype Object
Properties of Boolean Instances

Number Objects
The Number Constructor Called as a Function
The Number Constructor
Properties of the Number Constructor
Properties of the Number Prototype Object
Properties of Number Instances

The Math Object
Value Properties of the Math Object
Function Properties of the Math Object

Date Objects

Overview of Date Objects and Definitions of Internal Operators

19 January 2009,

B

B

B

B

/
¥ Mark S. Miller 1/20/09 12:00 AM

Mark S. Miller 1/20/09 12:00 AM

Mark S. Miller 1/20/09 12:00 AM

Mark S. Miller 1/20/09 12:00 AM

Deleted: 101

Mark S. Miller 1/20/09 12:00 AM
Deleted: 102

Mark S. Miller 1/20/09 12:00 AM
Deleted: 102

Mark S. Miller 1/20/09 12:00 AM
Deleted: 102

Mark S. Miller 1/20/09 12:00 AM
Deleted: 102

Mark S. Miller 1/20/09 12:00 AM
Deleted: 102

Mark S. Miller 1/20/09 12:00 AM
Deleted: 105

Mark S. Miller 1/20/09 12:00 AM
Deleted: 106

Mark S. Miller 1/20/09 12:00 AM
Deleted: 106

Deleted: 106

Mark S. Miller 1/20/09 12:00 AM

Deleted: 106

Mark S. Miller 1/20/09 12:00 AM
\ | Deleted: 107

Mark S. Miller 1/20/09 12:00 AM
\ | _Deleted: 108

Mark S. Miller 1/20/09 12:00 AM
\|_Deleted: 109

Mark S. Miller 1/20/09 12:00 AM
Deleted: 110

Mark S. Miller 1/20/09 12:00 AM
Deleted: 110

Mark S. Miller 1/20/09 12:00 AM
Deleted: 110

Mark S. Miller 1/20/09 12:00 AM
Deleted: 111

Mark S. Miller 1/20/09 12:00 AM
Deleted: 127

Mark S. Miller 1/20/09 12:00 AM
|| Deleted: 127

I Varic S Miller 1/20/09 12:00 AM

Rl Mark S_ Miller 1/20/09 12:00 AM

Mark S. Miller 1/20/09 12:00 AM

' Vark S Miller 1/20/09 12:00 AM
‘

I Mark S_ Miller 1/20/09 12:00 AM

\
.| | Deleted: 136

1
.
.
C______________

\

i Mark S. Miller 1/20/09 12:00 AM

\
|

\

=

\
|
|
|
\

[Mark S. Miller 1/20/09 12:00 AM

- vii -

15.9.2
15.9.3
15.9.4
15.9.5
15.9.6

15.10
15.10.1
15.10.2
15.10.3
15.10.4
15.10.5
15.10.6
15.10.7

15.11
15.11.1
15.11.2
15.11.3
15.11.4
15.11.5
15.11.6 Native Error Types Used in This Standard
15.11.7 NativeError Object Structure

15.12 The JSON Object
15.12.1 parse (text [, reviver])

The Date Constructor Called as a Function
The Date Constructor
Properties of the Date Constructor
Properties of the Date Prototype Object
Properties of Date Instances

RegExp (Regular Expression) Objects
Patterns
Pattern Semantics
The RegExp Constructor Called as a Function
The RegExp Constructor
Properties of the RegExp Constructor
Properties of the RegExp Prototype Object
Properties of RegExp Instances

Error Objects
The Error Constructor Called as a Function
The Error Constructor
Properties of the Error Constructor
Properties of the Error Prototype Object
Properties of Error Instances

15.12.2 stringify (value [, replacer [, space]])

16 Errors
Annex A
Al Lexical Grammar
A2 Number Conversions
A3 Expressions
A.4 Statements
A5 Functions and Programs
A.6 Universal Resource Identifier Character Classes
A7 Regular Expressions
Annex B
Compatibility
B.1 Additional Syntax

B.1.1 Numeric Literals

B.1.2 String Literals
B.2 Additional Properties

19 January 2009,

143

—Y _

143,

144,

B

145

B

151

B

151

—y _

151,

153

—=y _ _

165

B

les,

165

B

165

B

167

e

167

e

167

e

167

—y _

16

A Deleted:isa
Mark S. Miller 1/20/09 12:00 AM
Deleted: 152

Mark S. Miller 1/20/09 12:00 AM
Deleted: 153

Mark S. Miller 1/20/09 12:00 AM
Deleted: 154
Mark S. Miller 1/20/09 12:00 AM
Deleted: 161
Mark S. Miller 1/20/09 12:00 AM
Deleted: 161
Mark S. Miller 1/20/09 12:00 AM
Deleted: 161
Mark S. Miller 1/20/09 12:00 AM
Deleted: 163
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Rl Mark S. Miller 1/20/09 12:00 AM
— Deleted: 175
— Mark S. Miller 1/20/09 12:00 AM
- Deleted: 176
Mark S. Miller 1/20/09 12:00 AM
Deleted: 177

Mark S. Miller 1/20/09 12:00 AM
Deleted: 177

Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Deleted: 131
Mark S. Miller 1/20/09 12:00 AM
Deleted: 132

Mark S. Miller 1/20/09 12:00 AM
Deleted: 186

Mark S. Miller 1/20/09 12:00 AM
Deleted: 187

Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM
Mark S. Miller 1/20/09 12:00 AM

Mark S. Miller 1/20/09 12:00 AM

\\\

\
| |\ Deleted: 202

—
C
\
\
m———
\

Mark S. Miller 1/20/09 12:00 AM

\

\
\\\
\\\\\
W
\
\
\
1\
\\
\\
\
\

|

Mark S. Miller 1/20/09 12:00 AM

- viii -

B.2.1 escape (strin 193,
pe (g) I \ark S. Miller 1/20/09 12:00 AM
B.2.2 unescape (string) 193, Deleted: 207
B.2.3 String.prototype.substr (start, length) 193, Mark S. Miller 1/20/09 12:00 AM
B.2.4 Date.prototype.getYear () 193, Deleted: 208
B.2.5 Date.prototype.setYear (year) 193, Mark S. Miller 1/20/09 12:00 AM
B.2.6 Date.prototype.toGMTString () 193, Deleted: 208
Mark S. Miller 1/20/09 12:00 AM
Annex C 193, Deleted: 209
Mark S. Miller 1/20/09 12:00 AM
The Strict variant of ECMAScript 193, Deleted: 209
C.1 The strict mode 193 Mark S. Miller 1/20/09 12:00 AM
C.1.1 Excluded Features 193, Deleted: 209
C.1.2 Additional Execution Exceptions 194, Mark S. Miller 1/20/09 12:00 AM
o
Annex D 194, Mark S. Miller 1/20/09 12:00 AM
Correction and Clarifications in Edition 3.1 with Possible Compatability Impact 194, \\ W Mark S. Miller 1/20/09 12:00 AM
j\ \ N Deleted: 210
Annex E 194,) \\ W Mark S. Miller 1/20/09 12:00 AM
a N Deleted: 210
Additions and Changes in Edition 3.1 which Introduce Incompatabilities with Edition 3. 194, " Vark S. Miller 1/20/09 12:00 AM

\ \| Deleted: 210

W Mark S. Miller 1/20/09 12:00 AM

| | Deleted:2it)
W Mark S. Miller 1/20/09 12:00 AM

. peteted:zn
W Mark S. Miller 1/20/09 12:00 AM

\|_Deleted: 212

Mark S. Miller 1/20/09 12:00 AM

Deleted: 212

Mark S. Miller 1/19/09 5:14 PM
| /| Deleted: 15 January 2009

19 January 2009 J

Scope
This Standard defines the SES language.

Conformance

functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall interpret characters in conformance with the
Unicode Standard, Version 3.0 or later and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted
encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is
presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it
presumed to be the UTF-16 encoding form.

References ‘)

ISO/IEC 9899:1996 Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 10646-1:1993 Information Technology -- Universal Multiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda.

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard, Version 3.0
(Boston, MA, Addison-Wesley, 2000. ISBN 0-201-61635-5).

Unicode Inc. (1998), Unicode Technical Report #15: Unicode Normalization Forms.

ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and
Electronic Engineers, New York (1985).

The “Mountain View Draft” of ECMAScript 3.1 15jan2009

Overview

SES Js an object-gcapability programming language for performing computations and manipulating |

not only the objects and other facilities described in this specification but also certain environment-specific
host objects, whose description and behaviour are beyond the scope of this specification except to indicate
that they may provide certain properties that can be accessed and certain functions that can be called from an

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Java™, Self, and Scheme as described in:

e Gosling, James, Bill Joy and Guy Steele. The Java” Language Specification. Addison Wesley Publishing
Co., 1996.

¢ Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October 1987.

/
/

19 January 2009 J|

Sy Mark S. Miller 1/19/09 4:13 PM

Deleted: A conforming implementation of
ECMAScript is permitted to provide additional
types, values, objects, properties, and functions
beyond those described in this specification. In
particular, a conforming implementation of
ECMAScript is permitted to provide properties not
described in this specification, and values for those
properties, for objects that are described in this
specification.
A conforming implementation of ECMAScript is
permitted to support program and regular expression
syntax not described in this specification. In
particular, a conforming implementation of
ECMAScript is permitted to support program syntax
that makes use of the “future reserved words” listed
_in 7.5.3 of this specification.

(.

il Mark S. Miller 1/19/09 4:14 PM
Sl Mark S. Miller 1/19/09 4:14 PM
self-sufficient; indeed, there are no provisions in this specification for input of external data or output of \

computed results. Instead, it is expected that the computational environment of an SES program will provide |

e

Deleted: ECMA Script

N Mark S. Miller 1/19/09 4:14 PM
\ | Deleted: oriented

Mark S. Miller 1/19/09 4:15 PM
\

Mark S. Miller 1/19/09 4:15 PM

| Deleted: ECMAScript

Mark S. Miller 1/19/09 4:15 PM
Deleted: ECMAScript

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

4.1

4.2

4.2.1

- 10 -

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for
instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history,
cookies, and input/output. Further, the host environment provides a means to attach scripting code to events
such as change of focus, page and image loading, unloading, error and abort, selection, form submission,
and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of
user interface elements and fixed and computed text and images. The scripting code is reactive to user
interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects
representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and
server-side scripting together, it is possible to distribute computation between the client and server while
providing a customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

Language Overview

more attributes that determine how each property can be used—for example, when the Writable attribute

7
for a property is set to false, any attempt by executed SES gode to change the value of the property fails. ~

Properties are containers that hold other objects, primitive values, or methods. A primitive value is a
member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an object
is a member of the remaining built-in type Object; and a method is a function associated with an object via
a property.

object, the Math object, the Date object, the RegExp object, the JSON object, and the Error objects Error,
EvalError, RangeError, ReferenceError, SyntaxError, TypeError and URIError.

operators, additive operators, bitwise shift operators, relational operators, equality operators, binary bitwise
operators, binary logical operators, assignment operators, and the comma operator.

relaxed compared to Java. to enable it to serve as an easy-to-use scripting language. For example, a variable
is not required to have its type declared nor are types associated with properties, and defined functions are
not required to have their declarations appear textually before calls to them.

Objects

other words, first the object mentioned directly is examined for such a property; if that object contains
the named property, that is the property to which the reference refers; if that object does not contain the

19 January 200 .

Deleted: ECMAScript ... ECMAScript
n...ECMAScript ...ECMAScript .. [1]

Mark S. Miller 1/19/09 4:19 PM
Deleted: ECMAScript ... ECMAScript

Deleted: ECMAScript ...All constructors are objects, but
not all objects are constructors. Each constructor has a
property named “prototype” that is used to implement
prototype-based inheritance and shared properties. Objects
are created by using constructors in new expressions; for
example,new String("A String") creates a new

String object. Invoking a constructor without using new has

pratapL 1/19/09 8:57 PM

Comment: From AWB: Need to make typography
consistent.

Deleted: string("A String") produces a primitive
string, not an object

Deleted: ECMAScript ...created by a constructor

prototype...value of its constructor’s “prototype”

property...prototype ...prototype...prototype ...prototype
prototype for

- 11 -

Mark S. Miller 1/19/09 4:29 PM
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by e

classes, and inheritance is only of structure and behaviour. In SES, the state and methods are carried by7/| Mark S. Miller 1/19/09 4:30 PM

objects, and structure, behaviour, and state are all inherited.) /| Deleted: prototype
All objects that do not directly contain a particular property that their parent contains share that pﬁroperﬁtyﬁJ[Mark S. Miller 1/19/09 4:30 PM
and its value. The following diagram illustrates this: / | Deleted: implicit prototype

// Mark S. Miller 1/19/09 4:35 PM
|_Deleted: CF is a constructor (and also an object).
A > s
arent link i Mark S. Miller 1/19/09 4:35 PM
: pamlnk | [eteteds tywingneweresiens

CF, W Mark S. Miller 1/19/09 4:35 PM
cFP1

Mark S. Miller 1/19/09 4:36 PM
Mark S. Miller 1/19/09 4:36 PM

Deleted: The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to

CF,, cf}, cfy, cf;, cfy, or cfs.

..................................... s —
| Deleted: (utnotoych)

""" ' : KBY \aric S. Miller 1/19/09 4:36 PM
||\ Deleted:prooype
I

Mark S. Miller 1/19/09 4:37 PM

/| Deleted: Notice that there is no implicit prototype
link between CF and CF,.

Mark S. Miller 1/19/09 4:37 PM

| cfy

4.3.7

/| Deleted: That is, constructors are not required to
name or assign values to all or any of the constructed
object’s properties.

Mark S. Miller 1/19/09 4:39 PM
Deleted: 4.2.2 - The Strict Variant of
ECMAScript .

The ECMAScript Language recognizes the
possibility that some users of the language may wish
to restrict their usage of some features availalf

... [7]
Definitions / Mark S. Miller 1/19/09 5:19 PM
77 ~ . .
The following are informal definitions of key terms associated with SES. 7 Deleted: ECMAScript
”””””””” Mark S. Miller 1/19/09 4:41 PM
Type /| _Deleted: Constructor
A type is a set of data values as defined in section 8 of this specification. & \Mark S. Miller 1/19/09 4:41 PM

/

o o
o o
[= (3
o o
a 2
~ a
o

S

S

=)

=

&

Primitive Value |
IR Mark S. Miller 1/19/09 4:41 PM

/,
Il \Mark S. Miller 1/19/09 4:41 PM
/" /| Deleted: A prototype is an object used to

A primitive value is a member of one of the types Undefined, Null, Boolean, Number, or String. A
primitive value is a datum that is represented directly at the lowest level of the language implementation.

Object

An object is a member of the type Object. It is a collection of properties. //// ¥ \\ark S. Miller 1/19/09 4:42 PM
)
NA, N
N/A (TR \ark S. Viller 1/19/09 4:42 PM
Nveonet S
B T T] P = S. Miller 1/19/09 4:43 PM
A native object is any object supplied by an SES implementation independent of the host environment. ,| /
Standard native object: defined in thi ification. S tive object, built-in; oth be /
S, o s r i i s el Some s hjis re i obrs ey b (SN TTEPREET
. pemmm SRy
Built-in Object I \\\=k S. Miller 1/19/09 4:44 PM
A built-in object is any object supplied by an SES jmplementation, independent of the host environment, /|, , / | Deleted: , and an ECMAScript implement(_,_. [10] J

which is present at the start of the execution of an SES program. Standard built-in objects are defined in /|, Mark S. Miller 1/19/09 5:14 PM
this specification, Every built-in object is a native object. A built-in constructor is a built-in object that /| / | peleted: 15 January 2009
/

4.3.8

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.20

4.3.23

- 12 -

is also a constructor. Objects directly constructed by built-in constructors are tamed native objects.
Native objects other than built-ins and tamed natives are cajoled objects.

Tamed Host Object

A tamed host object is any object supplied by the host environment to complete the execution

Undefined Value

The undefined value is a primitive value used when a variable has not been assigned a value.
Undefined Type

The type Undefined has exactly one value, called undefined.

Null Value

The null value is a primitive value that represents the null, empty, or non-existent reference.
Null Type

The type Null has exactly one value, called null.

Boolean Value

A boolean value is a primitive value that is a member of the type Boolean and is one of two unique
values, true and false.

Boolean Type

The type Boolean represents a logical entity and consists of exactly two unique values. One is called
true and the other is called false.

A string value is a primitive value that is a member of the type String and is a finite ordered sequence of
zero or more 16-bit unsigned integer values.

NOTE

Although each value usually represents a single 16-bit unit of UTF-16 text, the language does not place
any restrictions or requirements on the values except that they be 16-bit unsigned integers.

String Type
The type String is the set of all string values.

N/A e

A number value is a primitive value that is a member of the type Number and is a direct representation
of a number.

Number Type

the double-precision 64-bit format IEEE 754 values including the special “Not-a-Number” (NaN) values,
positive infinity, and negative infinity.

The primitive value Infinity represents the positive infinite number value. This value is a member of the
Number type.
NaN

The primitive value NaN represents the set of IEEE Standard “Not-a-Number” values. This value is a
member of the Number type.

19 January 200 .

mlm Mark S. Miller 1/19/09 4:45 PM
Deleted: ECMA Script

Mark S. Miller 1/19/09 4:49 PM

Mark S. Miller 1/19/09 4:49 PM

Deleted: A Boolean object is a member of the type
Object and is an instance of the built-in Boolean object.
That is, a Boolean object is created by using the Boolean
constructor in a new expression, supplying a boolean as an
argument. The resulting object has an implicit (unnamed)
property that is the boolean. A Boolean object can be
coerced to a boolean value. -

Mark S. Miller 1/19/09 4:50 PM

Mark S. Miller 1/19/09 4:50 PM

Deleted: A String object is a member of the type Object
and is an instance of the built-in String object. That is, a
String object is created by using the String constructor in a
new expression, supplying a string as an argument. The
resulting object has an implicit (unnamed) property that is
the string. A String object can be coerced to a string value
by calling the String constructor as a function (15.5.1). -

Mark S. Miller 1/19/09 5:19 PM

Deleted: ECMA Script

mlm Mark S. Miller 1/19/09 4:50 PM
_ Deleted: Number Object

Mark S. Miller 1/19/09 4:50 PM

Deleted: A Number object is a member of the type
Object and is an instance of the built-in Number object.
That is, a Number object is created by using the Number

constructor in a new expression, supplying a number as an
argument. The resulting object has an implicit (unnamed)
property that is the number. A Number object can be
coerced to a number value by calling the Number
constructor as a function (15.7.1). .

Mark S. Miller 1/19/09 5:14 PM
/| _Deleted: 15 January 2009
/

4.3.24

4.3.25

4.3.26

4.3.27

4.3.28

4.3.29

4.3.30

4.3.31

- 13 -

Function

A function is a member of the type Object that may be invoked as a subroutine. In addition to its named
properties, a function contains executable code and state that determine how it behaves when invoked. A

Built-in Function
A built-in function is a function that is a built-in object of the language, such as parselnt and Math.exp., |

Property

A property is an association between a name and a value. Depending upon the form of the property the
value may be represented either directly as a data value (a primitive value, an object, or a function) or
indirectly by a pair of accessor functions.

Method

A method is a function that is the value of a property.

Attribute

An attribute is an internal value that defines some characteristic of a property.

Own Property

An own property of an object is a property that is directly present on that object.

Inherited Property

An inherited property is a property of an object that is not one of its own properties but is a property

Built-in Method
A built-in method is any method that is a built-in function. Standard built-in methods are defined in this

19 January 2009 J|

| e Mark S. Miller 1/19/09 4:50 PM
Deleted: ECMA Script
| e Mark S. Miller 1/19/09 4:51 PM

Deleted: An implementation may also provide
implementation-dependent built-in functions that are
not described in this specification.

| e Mark S. Miller 1/19/09 4:52 PM
Deleted: prototype

| mlm Mark S. Miller 1/19/09 4:53 PM
Deleted: , and an ECMAScript implementation
may specify and define others

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

5
5.1

5.1.1

14 -

Notational Conventions

Syntactic and Lexical Grammars
This section describes the context-free grammars used in this specification to define the lexical and

Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and ferminal
symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-
hand side of a production for which the nonterminal is the left-hand side.

The Lexical and RegExp Grammars

of the Unicode character set. It defines a set of productions, starting from the goal symbol
InputElementDiv or InputElementRegExp, that describe how sequences of Unicode characters are
translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic

X

N \ g Mark S. Miller 1/19/09 4:54 PM

e Mark S. Miller 1/19/09 5:19 PM
Deleted: ECMA Script

|

B Mark S. Miller 1/19/09 4:54 PM
Deleted: ECMA Script

also become part of the stream of input elements and guide the process of automatic semicolon insertion \ . | Deleted: ECMAScript

(7.9). Simple white space and single-line comments are discarded and do not appear in the stream of
input elements for the syntactic grammar. A MultiLineComment (that is, a comment of the form
“/*...x/” regardless of whether it spans more than one line) is likewise simply discarded if it contains
no line terminator; but if a MultiLineComment contains one or more line terminators, then it is replaced
by a single line terminator, which becomes part of the stream of input elements for the syntactic
grammar.

characters of the Unicode character set. It defines a set of productions, starting from the goal symbol
Pattern, that describe how sequences of Unicode characters are translated into regular expression
patterns.

[T

Productions of the lexical and RegExp grammars are distinguished by having two colons
separating punctuation. The lexical and RegExp grammars share some productions.

as

The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the part
of the lexical grammar having to do with numeric literals and has as its terminal symbols the characters
of the Unicode character set. This grammar appears in 9.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as

punctuation.

The Syntactic Grammar

defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Program, that describe how sequences of tokens can form syntactically correct

When a stream of Unicode characters is to be parsed as an SES program, it is first converted to a stream
of input elements by repeated application of the lexical grammar; this stream of input elements is then
parsed by a single application of the syntax grammar. The program is syntactically in error if the tokens
in the stream of input elements cannot be parsed as a single instance of the goal nonterminal Program,

with no tokens left over.

19 January 2009 s

: Nl Mark S. Miller 1/19/09 4:54 PM
\ | Deleted: ECMAScript

Mark S. Miller 1/19/09 4:54 PM
Deleted: ECMA Script

B \Mark S. Miller 1/19/09 4:54 PM
Deleted: ECMAScript

e Vlark S. Miller 1/19/09 4:55 PM

N N Deleted: ECMA Script
Mark S. Miller 1/19/09 4:55 PM
Deleted: ECMA Script
B Mark S. Miller 1/19/09 4:55 PM
Deleted: ECMA Script
Mark S. Miller 1/19/09 4:55 PM
Deleted: ECMA Script

Mark S. Miller 1/19/09 5:14 PM
/| _Deleted: 15 January 2009
/

~
~

i

5.1.5

- 15 -

@,

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in sections 11, 12, 13 and 14 is actually not a complete account of
by the grammar are not considered acceptable if a terminator character a})p%a?s?nicgl'taiini“gwiv;ara”i
places.

Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown in fixed width font, both in the productions of the grammars and throughout
this specification whenever the text directly refers to such a terminal symbol. These are to appear in a
program exactly as written. All nonterminal characters specified in this way are to be understood as the
appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from
other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name
of the nonterminal being defined followed by one or more colons. (The number of colons indicates to
which grammar the production belongs.) One or more alternative right-hand sides for the nonterminal
then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :

while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic
definition:

ArgumentList :

AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList,
followed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is
recursive, that is, it is defined in terms of itself. The result is that an ArgumentList may contain any
positive number of arguments, separated by commas, where each argument expression is an
AssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffix “ops”, which may appear after a terminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration :

Identifier Initialiserop:

is a convenient abbreviation for:

VariableDeclaration :

Identifier
Identifier Initialiser

and that:

IterationStatement :

for (ExpressionNolnop: ; Expressionop: ; Expressioney) Statement

is a convenient abbreviation for:

IterationStatement :

for (; Expressionop: ; Expressionop:) Statement
for (ExpressionNoln ; Expressionop ; Expressiong,) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ; Expressionoy) Statement

19 January 200 J|

SR ark S. Miller 1/19/09 4:55 PM
AN

Mark S. Miller 1/19/09 5:26 PM

Deleted: additional token sequences are also
accepted, namely, those that would be described by
the grammar if only semicolons were added to the
sequence in certain places (such as before line
terminator characters). Furthermore, certain

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

-16 -

for (; Expression ; Expressionoy) Statement
for (ExpressionNoln ; ; Expressionoy:) Statement
for (ExpressionNoln ; Expression ; Expressionoy:) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ;) Statement

for (; ; Expression) Statement

for (; Expression ;) Statement

for (; Expression ; Expression) Statement

for (ExpressionNoln ; ;) Statement

for (ExpressionNoln ; ; Expression) Statement

for (ExpressionNoln ; Expression ;) Statement

for (ExpressionNoln ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's
right-hand side contains no terminals or nonterminals.

If the phrase “[lookahead & sef]” appears in the right-hand side of a production, it indicates that the
production may not be used if the immediately following input terminal is a member of the given set.
The set can be written as a list of terminals enclosed in curly braces. For convenience, the set can also be
written as a nonterminal, in which case it represents the set of all terminals to which that nonterminal
could expand. For example, given the definitions

DecimalDigit :: one of
0123456789

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead & {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead & DecimalDigit |

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.
If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic

grammar, it indicates that the production is a restricted production: it may not be used if a
LineTerminator occurs in the input stream at the indicated position. For example, the production:

ReturnStatement :

return [no LineTerminatorhere] Expressionop: ;

indicates that the production may not be used if a LineTerminator occurs in the program between the
return token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of
occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical

grammar for SIS contains the production: . '
NonZeroDigit :: one of
1234567809

) /| _Deleted: 15 January 2009

19 January 200 .

17 -

which is merely a convenient abbreviation for:

NonZeroDigit ::

WOl WN K

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be
a multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not Reserved Word
means that the nonterminal /dentifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace Reserved Word.

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::

any Unicode character

Algorithm Conventions
The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to

imply the use of any specific implementation technique. In practice, there may be more efficient algorithms IV ELSS VISR A 0 ol =]
available to implement a given feature. Deleted: ECMA Script

In order to facilitate their use in multiple parts of this specification some algorithms, called abstract
operations, are named and written in parameterized functional form so that they may be referenced by name
from within other algorithms.

When an algorithm is to produce a value as a result, the directive “return x” is used to indicate that the
result of the algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is
used as shorthand for “the result of step n”. Type(x) is used as shorthand for “the type of x”.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labeled with lower case alphabetic characters and the
second level of substeps labelled with lower case roman numerals. If more than three levels are required
these rules repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.
b. Substep
i. Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep

A step or substep may be written as a predicate that conditions its substeps. In this case, the substeps are
only applied if the predicate is true. If a step or substep begins with the word “else” it is a predicate that is

the negation of the preceding predicate step at the same level. Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

19 January 2009,) |

6.

- 18 -

A step may specify the iterative application of its substeps.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the
mathematical functions defined later in this section should always be understood as computing exact
mathematical results on mathematical real numbers, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model floating-point
arithmetic include explicit steps, where necessary, to handle infinities and signed zero and to perform
rounding. If a mathematical operation or function is applied to a floating-point number, it should be
understood as being applied to the exact mathematical value represented by that floating-point number;
such a floating-point number must be finite, and if it is +0 or —0 then the corresponding mathematical value
is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is —x if x is negative (less than zero)
and otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and -1 if x is negative. The sign function is not
used in this standard for cases when x is zero.

The notation “x modulo y” (y must be finite and nonzero) computes a value k£ of the same sign as y (or zero)
such that abs(k) < abs(y) and x—k = g x y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger
than x.

NOTE
floor(x) = x—(x modulo 1).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as “If an exception was thrown...”. Once such an algorithm step
has been encountered the exception is no longer considered to have occurred.

Source Text

composition), as described in Unicode Technical Report #15. Conforming SI

required to perform any normalisation of text, or behave as though they were pgrforming normalisation of \\\

\ \ | Deleted: is expected to have been
\

text, themselves.

SourceCharacter ::
any Unicode character

Throughout the rest of this document, the phrase “code unit” and the word “character” will be used to refer to
a 16-bit unsigned value used to represent a single 16-bit unit of UTF-16 text. The phrase “Unicode character”
will be used to refer to the abstract linguistic or typographical unit represented by a single Unicode scalar
value (which may be longer than 16 bits and thus may be represented by more than one code unit). This only
refers to entities represented by single Unicode scalar values: the components of a combining character
sequence are still individual “Unicode characters,” even though a user might think of the whole sequence as a
single character.

In string literals, regular expression literals and identifiers, any character (code unit) may also be expressed as
a Unicode escape sequence consisting of six characters, namely \u plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or
regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE 1

Although this document sometimes refers to a “transformation” between a “character” within a “string” and
the 16-bit unsigned integer that is the UTF-16 encoding of that character, there is actually no transformation
because a “character” within a “string” is actually represented using that 16-bit unsigned value.

NOTE 2

19 January 200 .

i Mark S. Miller 1/19/09 4:56 PM

Deleted: ECMA Script

Mark S. Miller 1/19/09 5:28 PM

IR Mark S. Miller 1/19/09 5:28 PM

\ | Deleted: normalised to

Mark S. Miller 1/19/09 4:56 PM
Deleted: ECMA Script

Mark S. Miller 1/19/09 5:14 PM
/| _Deleted: 15 January 2009
/

-19 -

SES differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java |

program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it is
interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is not
part of the comment. Similarly, if the Unicode escape sequence \u0O00A occurs within a string literal in a
Java program, it is likewise interpreted as a line terminator, which is not allowed within a string literal—one
must write \n instead of \u0O00A to cause a line feed to be part of the string value of a string literal. In an

interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions
The source text of an SES program is first converted into a sequence of input elements, which are eﬁithﬁerﬁJ
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.
There are two goal symbols for the lexical grammar. The InputElementDiv symbol is used in those syntactic
grammar contexts where a division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExp symbol is used in other syntactic grammar contexts.
Note that contexts exist in the syntactic grammar where both a division and a RegularExpressionLiteral are
permitted by the syntactic grammar; however, since the lexical grammar uses the InputElementDiv goal
symbol in such cases, the opening slash is not recognised as starting a regular expression literal in such a
context. As a workaround, one may enclose the regular expression literal in parentheses.
Syntax
InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegExp ::

WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral
7.1 Unicode Format-Control Characters
The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).
It is useful to allow these in source text to facilitate editing and display.
The format control characters may be used in identifiers, within comments, and within string literals and
regular expression literals.
7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible
lexical units) from each other, but are otherwise insignificant. White space may occur between any two
tokens, and may occur within strings (where they are considered significant characters forming part of the
literal string value), but cannot appear within any other kind of token.

The following characters are considered to be white space:

Code Unit Value Name Formal Name

19 January 200 J|'

m Mark S. Miller 1/19/09 4:56 PM
Deleted: ECMAScript

B Viaric S. Miller 1/19/09 4:56 PM

| Mark S. Miller 1/19/09 4:56 PM
Deleted: ECMAScript

I Mark S. Miller 1/19/09 4:56 PM

Deleted: ECMA Script

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

-20 -

\u0009 Tab <TAB>
\u000B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SP>
\u0085 Next Line <NEL>
\u00A0 No-break space <NBSP>
\u200B Zero width space <ZWSP>
\uFEFF Byte Order Mark <BOM>
Other category “Zs” Any other Unicode <USP>
“space separator”

editions of the Unicode Standard may define other white space characters. SES :im})l:enien:taﬁois:méy:’ I Mark S. Miller 1/19/09 4:56 PM
recognize white space characters from later editions of the Unicode Standard. S
Syntax Mark S. Miller 1/19/09 4:57 PM
Deleted: ECMA Script

WhiteSpace ::
<TAB>
<VT>
<FF>
<SP>
<NEL>
<NBSP>
<ZWSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. A line terminator cannot occur within any token, except that line terminators that are preceded by
an escape sequence may occur within a string literal token. Line terminators also affect the process of
automatic semicolon insertion (7.9).

Line terminators are included in the set of white space characters that are matched by the \s class in regular
expressions.

The following characters are considered to be line terminators:

Code Unit Value Name Formal Name
\u000A Line Feed <LF>
\u000D Carriage Return <CR>

vy — — — —

Only the characters in the above table are treated as line terminators. Other new line or line breaking
characters are treated as white space but not as line terminators. The character sequence <CR><LF>
is commonly used as a line terminator. It should be considered a single character for the purpose of
reporting line numbers.

Syntax Mark S. Miller 1/19/09 5:32 PM
Deleted:
LineTerminator :: <LS>

<LF> <PS>

-21 -

LineTerminatorSequence ::
<LF>
<CR> [lookahead & <LF>,
<CR> <LF>

7.4 Comments
Description

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminator character, and because
of the general rule that a token is always as long as possible, a single-line comment always consists of all

characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is

not considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important,
because it implies that the presence or absence of single-line comments does not affect the process of

automatic semicolon insertion (7.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing

by the syntactic grammar.
Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsop * /

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsop
* PostAsteriskCommentCharsop

PostAsteriskCommentChars ::

MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsop:

* PostAsteriskCommentCharsop

MultiLineNotAsteriskChar ::
SourceCharacter but not asterisk *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not forward-slash / or asterisk *

SingleLineComment ::
// SingleLineCommentCharsop

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentChars op

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

7.5 Tokens

Syntax

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral

19 January 200

§ Mark S. Miller 1/19/09 5:32 PM
Deleted: |

<LS>
<PS>

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

7.5.1

Syntax

- 22 -

Reserved Words
Description

Reserved words cannot be used as identifiers.

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.5.2

Syntax

Keywords

The following tokens are SES keywords and may not be used as identifiers in SES programs. B o Miller 1/19/09 4:57 PM
AN

Keyword :: one of

Syntax

break else new var

case finally return void

catch for switch while

continue function this .
default if throw debugger

delete in try eval

do instanceof typeof arguments

The following words are used as keywords in ES3.1 or in proposed extensions and are therefore reserved

FutureReservedWord :: one of

abstract enum int short

boolean export interface static

byte extends long super

char final native synchronized

class float package throws

v gote private transient

implements] =~ protected = volatile

double import public

with yield lambda let
Identifiers
Description

Identifiers are interpreted according to the grammar given in Section 5.16 of the Unicode standard, with
some small modifications. This grammar is based on both normative and informative character categories
specified by the Unicode Standard. The characters in the specified categories in version 3.0 of the Unicode

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted
anywhere in an identifier. except that an identifier cannot end with two consecutive underscores.

Unicode escape sequences are also permitted in identifiers, where they contribute a single character to the
identifier, as computed by the CV of the UnicodeEscapeSequence (see 7.8.4). The \ preceding the
UnicodeEscapeSequence does not contribute a character to the identifier. A UnicodeEscapeSequence
cannot be used to put a character into an identifier that would otherwise be illegal. In other words, if a \
UnicodeEscapeSequence sequence were replaced by its UnicodeEscapeSequence's CV, the result must still
be a valid Identifier that has the exact same sequence of characters as the original Identifier.

19 January 2009 s

Mark S. Miller 1/19/09 4:57 PM
Deleted: ECMA Script

e Mark S. Miller 1/19/09 5:33 PM
Deleted: with

il Mark S. Miller 1/19/09 5:34 PM
Deleted: Future

 Mark S. Miller 1/19/09 5:34 PM

Deleted: allow for the possibility of future adoption of
those extensions

B ok . iller 1/19/09 5:36 PM
N

pratapL 1/19/09 8:57 PM

Comment: This table needs to be repacked to get rid of
the holes.

i Mark S. Miller 1/19/09 5:37 PM

Deleted: Note -

The identifiers ‘const’, ‘let’, and ‘yield” are likely to be
used in a future version of this standard. -

e Mark S. Miller 1/19/09 4:57 PM
Deleted: ECMAScript

Mark S. Miller 1/19/09 5:14 PM
/| _Deleted: 15 January 2009
/

- 23 -

Two identifiers that are canonically equivalent according to the Unicode standard are not equal unless they
are represented by the exact same sequence of code units (in other words, conforming SES implementations |

are only required to do bitwise comparison on identifiers). The intent is that the incoming source text has
been converted to normalised form C before it reaches the compiler.

SES implementations may recognize identifier characters defined in later editions of the I{nigogeistgngarfd.ﬁl
If portability is a concern, programmers should only employ identifier characters defined in Unicode 3.0.
Syntax
Identifier ::
IdentifierName but not Reserved Word
IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart
IdentifierStart ::
UnicodeLetter

\ UnicodeEscapeSequence

IdentifierPart ::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
\ UnicodeEscapeSequence

UnicodeLetter
any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter (L1)”, “Titlecase letter (Lt)”,
“Modifier letter (Lm)”, “Other letter (Lo)”, or “Letter number (N1)”.

UnicodeCombiningMark
any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining spacing mark (Mc)”

UnicodeDigit
any character in the Unicode category “Decimal number (Nd)”

UnicodeConnectorPunctuation

any character in the Unicode category “Connector punctuation (Pc)”
UnicodeEscapeSequence

see 7.8.4.

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e £ A B C D E F

7.7 Punctuators

Syntax

Punctuator :: one of
{ } () [1

; , < > <=

>= == 1= === 1==
+ - * % ++ -
<< >> >>> & | ~
] ~ && 11 2

19 January 2009 J|

l Mark S. Miller 1/19/09 4:57 PM
Deleted: ECMA Script

Il Mark S. Miller 1/19/09 4:57 PM
Deleted: ECMA Script

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

- 24 -

= += -= *= %=

>>=

DivPunctuator :: one of

/ /=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.8.1

Syntax
NullLiteral ::
null

Null Literals

Semantics

>>>= &= 1= A=

<<=

The value of the null literal null is the sole value of the Null type, namely null.

7.8.2

Syntax

BooleanLiteral ::
true
false

Boolean Literals

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely false.

7.8.3
Syntax

Numeric Literals

NumericLiteral ::
DecimalLiteral
HexIntegerLiteral

DecimalLiteral ::
DecimallntegerLiteral . DecimalDigitsop: ExponentPartop
. DecimalDigits ExponentPartyp,
DecimallntegerLiteral ExponentPartop:

DecimallntegerLiteral ::
0

NonZeroDigit DecimalDigitsop:
DecimalDigits ::

DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

19 January 2009,

Mark S. Miller 1/19/09 5:14 PM
) /| _Deleted: 15 January 2009

- 25 -

ExponentPart ::
Exponentlndicator Signedlnteger

Exponentlndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral ::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

The source character immediately following a NumericLiteral must not be an IdentifierStart or
DecimalDigit.

NOTE
For example:

3in
is an error and not the two input elements 3 and in.
Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as
described below.

The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral . is the MV of DecimallntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral plus
(the MV of DecimalDigits times 10 "), where n is the number of characters in DecimalDigits.

The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of DecimallntegerLiteral times
10°, where e is the MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimallntegerLiteral plus (the MV of DecimalDigits times 10™")) times 10°, where n is the number of
characters in DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits times 10", where n is the number of
characters in DecimalDigits.

The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10°", where n is
the number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral is the MV of DecimallntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimallntegerLiteral times
10°, where e is the MV of ExponentPart.

The MV of DecimallntegerLiteral :: 0 is 0.

The MV of DecimallntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10") plus
the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV
of DecimalDigit.

The MV of ExponentPart :: Exponentlndicator SignedInteger is the MV of Signedinteger.

The MV of SignedInteger :: DecimalDigits is the MV of DecimalDigits.

The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.

The MV of SignedInteger :: = DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit :: 0 or of HexDigit :: 0 is 0. Y Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

19 January 200 |

7.8.4

Syntax

- 26 -

The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 is 1.

The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 is 2.

The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 is 3.

The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 is 4.

The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 is 5.

The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 is 6.

The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 is 7.

The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.

The MV of HexDigit :: a or of HexDigit :: A is 10.

The MV of HexDigit :: b or of HexDigit :: B is 11.

The MV of HexDigit :: ¢ or of HexDigit :: C is 12.

The MV of HexDigit :: d or of HexDigit :: D is 13.

The MV of HexDigit :: e or of HexDigit :: E is 14.

The MV of HexDigit :: £ or of HexDigit :: F is 15.

The MV of HexIntegerLiteral :: 0x HexDigit is the MV of HexDigit.

The MV of HexIntegerLiteral :: 0X HexDigit is the MV of HexDigit.

The MV of HexIntegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number

type. If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the number

value for the MV (in the sense defined in 8.5), unless the literal is a DecimalLiteral and the literal has

more than 20 significant digits, in which case the number value may be either the number value for the

MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the number

value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit and

then incrementing the literal at the 20th significant digit position. A digit is significant if it is not part of

an ExponentPart and

it is not 0; or
there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence. All Unicode characters may appear literally in a string literal except
for the closing quote character, backslash, carriage return, line separator, paragraph separator, and line
feed. Any character may appear in the form of an escape sequence.

StringLiteral ::
" DoubleStringCharactersop "
' SingleStringCharactersop; '

DoubleStringCharacters ::
DoubleString Character DoubleStringCharactersop:

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersop

DoubleStringCharacter ::
SourceCharacter but not double-quote " or backslash \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter ::
SourceCharacter but not single-quote ' or backslash \ or LineTerminator
\ EscapeSequence

19 January 200

¥ Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

27 -

LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead & DecimalDigif]
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
oo b £f n r t v

NonEscapeCharacter ::
SourceCharacter but not EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminal HexDigit is given in section 7.8.3. SourceCharacter is described in
sections 2 and 6.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in
terms of character values (CV) contributed by the various parts of the string literal. As part of this
process, some characters within the string literal are interpreted as having a mathematical value (MV), as
described below or in section 7.8.3.

The SV of StringLiteral :: "™ is the empty character sequence.

The SV of StringLiteral :: ' ' is the empty character sequence.

The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV of
DoubleStringCharacter.

The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of the CV
of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order.

The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one character, the CV of
SingleStringCharacter.

The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of the CV of
SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order.

The SV of LineContinuation :: \ LineTerminator is the empty character sequence.

The CV of DoubleStringCharacter :: SourceCharacter but not double-quote " or backslash \ or
LineTerminator is the SourceCharacter character itself.

The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

The CV of SingleStringCharacter :: SourceCharacter but not single-quote ' or backslash \ or
LineTerminator is the SourceCharacter character itself.

The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

19 January 200

¥ Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

8.1

8.2

- 28 -

The CV of EscapeSequence :: 0 [lookahead & DecimalDigit]is a <NUL> character (Unicode value 0000).

The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is
determined by the SingleEscapeCharacter according to the following table:

Escape Sequence Code Unit Value Name Symbol

\b \u0008 backspace <BS>
\t \u0009 horizontal tab <HT>
\n \u000A line feed (new line) <LF>
\v \u000B vertical tab <VT>
\f \u000C form feed <FF>
\r \u000D carriage return <CR>
\" \u0022 double quote "

\' \u0027 single quote !

\\ \u005C backslash \

The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

The CV of NonEscapeCharacter :: SourceCharacter but not EscapeCharacter or LineTerminator is the
SourceCharacter character itself.

The CV of HexEscapeSequence :: x HexDigit HexDigit is the character whose code unit value is (16 times the
MV of the first HexDigit) plus the MV of the second HexDigit.

The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the character whose code unit
value is (4096 (that is, 16”) times the MV of the first HexDigif) plus (256 (that is, 167) times the MV of the
second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

NOTE

A line terminator character cannot appear in a string literal, except when preceded by a backslash \ as

a ‘LineContinuation’ to produce the empty character sequence. The correct way to cause a line

terminator character to be part of the string value of a string literal is to use an escape sequence such as

\nor \u000A.

Mark S. Miller 1/19/09 11:05 PM

Deleted: 7.8.5 . Regular Expression Literals .

| A regular expression literal is an input element that is

| converted to a RegExp object (section 15.10) each time the

| literal is evaluated. Two regular expression literals in a

'| program evaluate to regular expression objects that never

Il compare as === to each other even if the two literals'
contents are identical. A RegExp object may also be created
at runtime by new RegExp (section 15.10.4) or calling the
RegExp constructor as a function (section 15.10.3). -
The productions below describe the syntax for a regular
expression literal and are used by the input element scanner
to find the end of the regular expression literal. The strings
of characters comprising the RegularExpressionBody and
the RegularExpressionFlags are passed uninterpreted to the
regular expression constructor, which interprets them
according to its own, more stringent grammar. An
implementation may extend the regular expression
constructor's grammar, but it should not extend the
RegularExpressionBody and RegularExpressionFlags
productions or the productions used by these productions. -
Syntax -
RegularExpressionLiteral :: -
/ RegularExpressionBody / RegularExpressionFlags -
RegularExpressionBody :: .
RegularExpressionFirstChar RegularExpressionChars .
RegularExpressionChars :: .
[empty]
RegularExpressionChars RegularExpressionChar .
RegularExpressionFirstChar :: -
NonTerminator but not * or \ or / or [
BackslashSequence .
RegularExpressionClass -
RegularExpressionChar :: .
NonTerminator but not\ or / or [
BackslashSequence .
RegularExpressionClass -
BackslashSequence :: .
\ NonTerminator -
NonTerminator :: -
SourceCharacter but not LineTerminator .
RegularExpressionClass :: -
[RegularExpressionClassPreamble
RegularExpressionClassChars '] -
RegularExpressionClassPreamble :: .

\Lempty] ... [12]

Mark S. Miller 1/19/09 4:58 PM
/ | Deleted: ECMAScript

:

// Mark S. Miller 1/19/09 4:58 PM

/ | Deleted: ECMA Script

Algorithms within this specification manipulate values each of which has an associated type. The possible / : ;
value types are exactly those defined in this section. Types are further subclassified into SES language types , / Mark S. Miller 1/1/09 4:58 PM
i e Deleted: ECMA Script
and specification types. /,
y Mark S. Miller 1/19/09 4:58 PM
Deleted: ECMA Script
************* banlialle Mark S. Miller 1/19/09 4:58 PM
Deleted: ECMA Script
B Mark S. Miller 1/19/09 4:58 PM
Deleted: ECMA Script
Mark S. Miller 1/19/09 4:58 PM
Deleted: ECMA Script

g
T
les]
‘1/7
=
=3
aq
e
o8
oo
(¢}
LZ
5=}
(¢}
o
o
=}
-
a
@
=3
1}
1=
o
@
g
<
=
=]
a
@
o
=
£}
8
f<*)
=
(¢}
o
=3
[}
(e}
oy
|
8
|
E,
£
=
g
=
o
=
‘37
=}
fta
lss
2]
e
=
1S
(i)
‘—l
o
1]
i
o
"—l
=
|1&.
*
=
=3
¢
N
N

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
Property ﬁeszriiptgr:Priol;erYy Identifier, Lexical Environment, and Environment Record. Specification type -
values are specification artefacts that do not necessarily correspond to any specific entity within an oES

implementation. Specification type values are used to describe intermediate results of SES expression -

N

evaluation but such values cannot be stored as properties of objects or values of SES language variables. N Mark S. Miller 1/19/09 5:00 PM
The Undefined Type ‘N
The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a Nl Mark S. Miller 1/19/09 5:00 PM
value has the value undefined. \

Mark S. Miller 1/19/09 5:00 PM
Deleted: ECMA Script
Mark S. Miller 1/19/09 5:14 PM
/| _Deleted: 15 January 2009
/

The Null Type
The Null type has exactly one value, called null.

i

19 January 200 .

8.3

8.4

8.5

-29 -

The Boolean Type
The Boolean type represents a logical entity having two values, called true and false.

The String Type
The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values

oy
o
[}
3
(e}
=
2
U{.
<
—
=
a
©n
Z
=3
5
(5
-
<
s}
a
o
0
[}
=
(e}
3
=N
<
=]
13
[¢]
a
o
3
-
[¢]
S
-
a
@
[¢]
=1
2
-
[¢]
X
o8
=
1=
o
i)
2
§++)
=
i)
=}
=
=
2.
=
(3
ta
lea
=}
S
5]
(&}
=
0
2
=

which case each element in the string is treated as a code unit value (see section 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative
integers. The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The
length of a string is the number of elements (i.e., 16-bit values) within it. The empty string has length zero
and therefore contains no elements.

When a string contains actual textual data, each element is considered to be a single UTF-16 unit. Whether
or not this is the actual storage format of a String, the characters within a String are numbered as though
they were represented using UTF-16. All operations on Strings (except as otherwise stated) treat them as
sequences of undifferentiated 16-bit unsigned integers; they do not ensure the resulting string is in
normalised form, nor do they ensure language-sensitive results.

NOTE

The rationale behind these decisions was to keep the implementation of Strings as simple and high-
performing as possible. The intent is that textual data coming into the execution environment from outside
(e.g., user input, text read from a file or received over the network, etc.) be converted to Unicode
Normalised Form C before the running program sees it. Usually this would occur at the same time incoming
text is converted from its original character encoding to Unicode (and would impose no additional

fffffffffffffffffffffffffff |

The Number Type

The Number type has exactly 18437736874454810627 (that is, 2°/-2°%+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that is, 2°°-2) distinct “Not-a-Number” values of the IEEE

NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +oo and —oo, respectively. (Note that these two
infinite number values are produced by the program expressions +Infinity (or simply Infinity) and
-Infinity.)

The other 18437736874454810624 (that is, 2°/~2°%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive number there is a corresponding
negative number having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and —0, respectively. (Note that these two zero number values are
produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2°“~2°3-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2°*~2°*) of them are normalised, having the form
sxmx2°

where s is +1 or =1, m is a positive integer less than 2°° but not less than 2°2, and e is an integer ranging
from —=1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°*~2) values are denormalised, having the form
sxmx2°

where s is +1 or —1, m is a positive integer less than 22 and e is -1074.

19 January 2009 J|

m Mark S. Miller 1/19/09 5:00 PM
Deleted: ECMA Script

ARl Mark S. Miller 1/19/09 5:54 PM

.\ Deleted: recommended

. Nl Mark S. Miller 1/19/09 5:00 PM

N
Mark S. Miller 1/19/09 5:54 PM

Deleted: (if source text is guaranteed to be
normalised)

B Mark S. Miller 1/19/09 5:00 PM

Deleted: ECMA Script

B Mark S. Miller 1/19/09 5:00 PM
Deleted: ECMA Script

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

8.6

8.6.1

-30 -

Note that all the positive and negative integers whose magnitude is no greater than 2°° are representable in
the Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the
two forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the number value for x” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as) means a number value chosen
in the following manner. Consider the set of all finite values of the Number type, with —0 removed and with
two additional values added to it that are not representable in the Number type, namely 2'°** (which is +1 x
253 x 2971 and -2'9%* (which is -1 x 2°° x 2°7"). Choose the member of this set that is closest in value to x.
If two values of the set are equally close, then the one with an even significand is chosen; for this purpose,
the two extra values 2'°** and -2'°?* are considered to have even significands. Finally, if 2'** was chosen,
replace it with +oo; if ~2'°%* was chosen, replace it with —oo; if +0 was chosen, replace it with —0 if and
only if x is less than zero; any other chosen value is used unchanged. The result is the number value for x.
(This procedure corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

through 2°?—1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 2°? integer values. See the descriptions of the ToInt32 and ToUint32 operators in sections
9.5 and 9.6, respectively.

The Object Type

An Object is a collection of properties. Each property is either a named data property, a named accessor
property, or an internal property.

* A named data property associates a name with a value and a set of boolean attributes.

* A named accessor property associates a name with a get method, a set method, and a set of boolean
attributes.

* An internal property has no name and is not directly accessible via the property accessor operators.
Internal properties exist purely for specification purposes. How and when internal properties are used is
specified by the language specification below.

There are two types of access for normal (non-internal) properties: get and put, corresponding to retrieval
and assignment, respectively.

Property Attributes

Attributes are used in this specification to define and explain the state of named properties. A named
data property associates a name with the following attributes:

Table 1 Attributes of a Named Data Property

Attribute Name Value Description
Domain
[[Value]] Any SES | The value retrieved by reading the property. |
language type
[[Writable]] Boolean If false, attempts by SES code to assign the property’s [

[[Enumerable]] | Boolean If true, the property will be enumerated by a for-in
enumeration (section 12.6.4). Otherwise, the property is
said to be non-enumerable.

[[Configurable]] | Boolean If false, attempts to delete the property, change the property
to be an accessor property, or change its attributes will fail.

A named accessor property associates a name with the following attributes:

Table 2 Attributes of a Named Accessor Property

19 January 2009,

Bl \Vark S. Miller 1/19/09 5:00 PM
Deleted: ECMA Script

I Mark S. Miller 1/19/09 5:00 PM

Deleted: ECMAScript

Il Viark S. Miller 1/19/09 5:00 PM

S Deleted: ECMAScript

Mark S. Miller 1/19/09 5:56 PM
Deleted: not succeed

Mark S. Miller 1/19/09 5:14 PM
/| _Deleted: 15 January 2009
/
/

-31 -

Attribute
Name

Value Type Domain

Description

[[Get]]

Object or Undefined

If the value is an Object it must be a function. The
function is called with no-arguments to return the
property value each time the property is read.

[[Set]]

Object or Undefined

If the value is an Object it must be a function. The
function is called with the assigned value as its sole
argument each time the property is assigned. The
effect of a property's [[Set]] method may, but it not
required to, have an effect on the value returned by
subsequent calls to the property's [[Get]] function.

[[Enumerable]]

Boolean

If true, the property is to be enumerated by a for-in
enumeration (section 12.6.4). Otherwise, the property
is said to be non-enumerable.

[[Configurable]]

Boolean

If false, attempts to delete the property, change the
property to be a data property, or change its attributes
will fail.

If the value of an attribute is not explicitly specified for a named property, the default value as defined in
the following table is used:

Table 3 Default Attribute Values

Attribute Name Default Value
[[Value]] undefined

[[Get]] undefined

[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] | false

Object Internal Properties and Methods
This specification uses various internal properties and methods to define the semantics of object values.

I Mark S. Miller 1/19/09 5:00 PM
Mark S. Miller 1/19/09 5:00 PM
Deleted: ECMAScript

and operated upon internal properties in the manner described here. For the purposes of this document, ~
the names of internal properties are enclosed in double square brackets [[]]. When an algorithm uses an
internal property of an object and the object does not implement the indicated internal property, a
TypeError exception is thrown.

The following table summarises the internal properties used by this specification that are applicable to

the [[GetOwnProperty]] method. Host objects may support these internal properties with any
implementation-dependent behaviour, or it may be that a host object supports only some internal
properties and not others.

NI Mark S. Miller 1/19/09 5:01 PM
N
The “Value Type Domain” column of the following tables define the types of values associated with

Mark S. Miller 1/19/09 5:01 PM
Deleted: ECMA Script
internal properties. The type names refer to the types defined in section 8 augmented by the following
additional names. “any” means the value may be any SES language type. “primitive” megnsﬁl.[ndﬁefineﬁd,ﬂ[B \ark S. Miller 1/19/09 5:01 PM
Null, Boolean, String, or Number. “SpecOp” means the internal property is an implementation provided

procedure defined by an abstract operation specification. “SpecOp” is followed by a list of descriptive Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

parameter names. If a parameter name is the same as a type name then the name describes the type of the

19 January 2009,

parameter. If a “SpecOp” returns a value its parameter list is followed by the symbol “— " and the type

-32 -

of the returned value.

Table 4 Internal Properties Common to All Objects

Internal Property Value Type Domain Description
J[Parent]] Object or Null The parent of this object. -
[[Class]] String A string value indicating a specification defined
classification of objects.
[[PrimitiveValue]] primitive Internal state information associated with this object.
[[Extensible]] Boolean If true, own properties may be added to the object.
[[Get]] SpecOp(propertyName) — Returns the value of the named property.
any
[[GetOwnProperty]] SpecOp (propertyName) — Returns the Property Descriptor of the named own
Undefined or Property property of this object, or undefined if absent.
Descriptor
[[GetProperty]] SpecOp (propertyName) — Returns the fully populated Property Descriptor of the
Undefined or Property named property of this object, or undefined if absent.
Descriptor
[[Put]] SpecOp (propertyName, any) | Sets the specified named property to the value of the
second parameter.
[[CanPut]] SpecOp (propertyName) — Returns a Boolean value indicating whether a [[Put]]
Boolean operation with PropertyName can be performed.
[[HasProperty]] SpecOp (propertyName) — Returns a Boolean value indicating whether the object
boolean already has a property with the given name.
[[Delete]] SpecOp (PropertyName), | Removes the specified named own property from the |
object,
[[DefaultValue]] SpecOp (Hint) — primitive Hint is a string. Returns a default value for the object.
[[DefineOwnProperty]] SpecOp (propertyName, Creates or alters the named own property to have the
PropertyDescriptor) state described by a Property Descriptor, |
[[ThrowingPut]] SpecOp (propertyName, any) | Sets the specified named property to the value of the |
second parameter.,

inherited (are visible as properties of the child object) for the purposes of get access, but not for put
access. Named accessor properties are inherited for both get access and put access.

Every object (including host objects) must implement the [[Parent]], [[Class]], and [[Extensible]]
internal data properties and the [[Get]], [[GetProperty]], [[GetOwnProperty]], [[DefineOwnProperty]],
[[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValue]] internal methods. (Note, however,

that the [[DefaultValue]] method may, for some objects, simply throw a TypeError exception.)

have finite length (that is, starting from any object, recursively accessing the [[Parent]] property must

eventually lead to a null value). Whether or not a native object can have a host object as its [[Parent]|)

depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The
value of the [[Class]] property of a host object may be any String value, even a value used by a built-in

different kinds of built-in objects. Note that this specification does not provide any means for a program
to access that value except through Object.prototype.toString (see 15.2.4.2).

For most native objects the common internal methods behave as described in described in 8.12, except
that Array objects have a slightly different implementation of the [[ThrowingPut]] method (see 15.4.5.1)
and String objects have a slightly different implementation of the [[GetOwnProperty]] method (see

N

N Mark S. Miller 1/19/09 6:01 PM
..\ Deleted: [[Prototype]]

Mark S. Miller 1/19/09 6:01 PM
Deleted: prototype

Mark S. Miller 1/19/09 6:02 PM
/\ Deleted: Boolean)
@ Mark S. Miller 1/19/09 6:03 PM
”’/ _Deleted: — Boolean
/// Mark S. Miller 1/19/09 6:03 PM
/// / | Deleted: . The flag controls failure handling
Iy @ \Mark S. Miller 1/19/09 6:04 PM
//// /| Deleted: The flag controls failure handling.

. ,// ¥ \ark S. Miller 1/19/09 6:04 PM
_ // / | Deleted: , Boolean

Mark S. Miller 1/19/09 6:04 PM
Deleted: , Boolean

Mark S. Miller 1/19/09 6:04 PM

Deleted: The flag controls failure handling.

Mark S. Miller 1/19/09 5:01 PM
P Deleted: ECMA Script

rar s Mark S. Miller 1/19/09 6:01 PM
Deleted: [[Prototype]]

Mark S. Miller 1/19/09 6:01 PM
Deleted: [[Prototype]]

s Mark S. Miller 1/19/09 6:01 PM
Deleted: [[Prototype]]

Mark S. Miller 1/19/09 6:01 PM
7 | Deleted: [[Prototype]]

/
P Mark S. Miller 1/19/09 6:01 PM

N Deleted: [[Prototype]]

IR Mark S. Miller 1/19/09 6:01 PM

Deleted: [[Prototype]]

Mark S. Miller 1/19/09 6:01 PM
Deleted: [[Prototype]]

N
N

Deleted: Arguments objects (10.5) have different

implementations of [[Get]], [[ThrowingPut]],
[[GetOwnProperty]], [[DefineOwnProperty]], and

/

- 33 -

example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store

property values but [[HasProperty]] always generates false.|

Table 5 Internal Properties Only Defined for Some Objects

Internal Property

Value Type Domain

Description

[[Construct]]

SpecOp(a List of any) —
Object

Constructs an object. Invoked via the new operator.
The arguments to the SpecOp are the arguments passed
to the new operator. Objects that implement this
internal method are called constructors.

[[Call]]

SpecOp(a List of any) — any
or Reference

Executes code associated with the object. Invoked via a
function call expression. The arguments to the SpecOp
are the arguments passed to the function call
expression. Objects that implement this internal
method are functions. Only functions that are host
objects may return Reference values.

[[HasInstance]]

SpecOp(any) — Boolean

Returns a Boolean value indicating whether the
argument is an Object that delegates behaviour to this
Objects that are instances of the standard built-in
constructor Function implement [[HasInstance]].

[[Scope]]

Lexical Environment

A lexical environment that defines the environment in
which a Function object is executed. Of the standard
the standard built-in constructor Function implement |
[[Scope]].

[[FormalParameters]]

List of Strings

A possibly empty List containing the identifier strings
of a Function’s FormalParameterList. Of the standard

the standard built-in constructor Function implement
[[FormalParameterList]].

[[Code]]

standard built-in constructor Function implement
[[Code]].

[[TargetFunction]]

The target function of a function object created using
the standard built-in Function.prototype.bind method.
Only SES objects that are bound usi

Function.prototype.bind have a [[TargetFunction]]
internal property.

[[BoundThis]]

any

The pre-bound this value of a function Object created
using the standard built-in Function.prototype.bind

Function.prototype.bind have a [[BoundThis]] internal
property.

[[BoundArguments]]

List of any

The pre-bound argument values of a function Object
created using the standard built-in
Function.prototype.bind method. Only SES objects |
bound using Function.prototype.bind have a
[[BoundArguments]] internal property.

[[Match]]

SpecOp(string, index) —
MatchResult

Tests for a regular expression match and returns a
MatchResult value (see section 15.10.2.1). Of the

instances of the standard built-in constructor RegExp

implement [[Match]].

8.7

The Reference Specification Type|

The Reference type is used to explain the behaviour of such operators as delete, typeof, and

assignment operators. For example, the left-hand operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on

19 January 2009,

i Mark S. Miller 1/19/09 8:57 PM

Comment: Need to restrict for SES. Taming must
enforce these restrictions

]

B Viork S. Miller 1/19/09 5:01 PM
Deleted: ECMAScript

|
B \Mark S. Miller 1/19/09 5:01 PM
Deleted: ECMAScript

N \iark S. Miller 1/19/09 5:01 PM
Deleted: ECMAScript

- :J\”’ g Mark S. Miller 1/19/09 5:01 PM
N . | Deleted: ECMAScript

. NI Mark S. Miller 1/19/09 5:01 PM
\ | Deleted: ECMAScript

| Mark S. Miller 1/19/09 5:01 PM
Deleted: ECMAScript

Mark S. Miller 1/19/09 5:01 PM
Deleted: ECMAScript

/

B Viork S. Miller 1/19/09 5:01 PM
Deleted: ECMAScript

B Viork S. Miller 1/19/09 5:01 PM
Deleted: ECMAScript

Jr P Mark S. Miller 1/19/09 5:01 PM
- = Deleted: ECMAScript

PRe Mark S. Miller 1/19/09 6:11 PM
Deleted: [[IsArray]]

... [13]

,,,,,,,,,,,,,,,,,,,,,,,,,,,, e Mark S. Miller 1/19/09 8:57 PM

Comment: It would be good to get rid of this
completely for SES.

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

the

|

8.7.1

8.9

- 34 -

the syntactic form of the left-hand operand of an assignment operator, (A possible reason not to use a _ —

syntactic case analysis is that it would be lengthy and awkward, affecting many parts of the specification.) ﬁ\

. T . \
A Reference is a reference to a resolved name binding. A Reference consists of fwo components, the base

\

an environment record (10.2.1). A base value of null indicates that the reference could not be resolved to ax\ \

binding. The referenced name is a String. \\\\

The following abstract operations are used in this specification to access the components of references: \‘\ \
\

¢ GetBase(V). Returns the base value component of the reference V. W

¢ GetReferencedName(V). Returns the referenced name component of the reference V.
¢ HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.

¢ IsPropertyReference(V). Returns true if the base value is an object and false if the base value is an
environment record.
¢ IsUnresolvableReference(V). Returns true if the base value is null and false otherwise. \

\
\

The following abstract operations are used in this specification to operate on references:

GetValue (V)

1. If Type(V) is not Reference, return V.
2. Let base be the result of calling GetBase(V).
3. If UnresolvableReference(V), throw a ReferenceError exception.
4. If IsPropertyReference(V), then
a. If HasPrimitiveBase(), then let base be ToObject(base) (9.9)
b. Return the result of calling the [[Get]] method of base, passing GetReferencedName(V) for
the argument.
5. Else, base must be an environment record.
a. Return the result of calling the GetBindingValue(¥, S) concrete method of Result(2) passing
GetReferencedName(V) and IsStrictReference(V) as arguments.

NOTE
The object that may be created in step 4a is immediately discarded after its use in that step. An
implementation might choose to avoid the actual creation of the object.

PutValue (V, W)

1. If Type(¥) is not Reference, throw a ReferenceError exception.
2. Let base be the result of calling GetBase(V).
3. If UnresolvableReference(V), then,throw a ReferenceError exception.

4. Else if IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is false, then let put be the [[ThrowingPut]] method of base,
otherwise let put be the special [[ThrowingPut]] method defined below.

b. Call the put method using base as its this object, and passing GetReferencedName(V) for the

/

/

/

5. Else base must be a reference whose base is an environment record. So,

6. Return. K

7
The following [[ThrowingPut]] internal method is used by PutValue when when V is a property reference | /

with a primitive base value. It is called using Base as its this value and with property P, and value ¥, The | ,
following steps are taken:

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in
function calls, and in other algorithms where a simple list of values is needed. Values of the List type are
simply ordered sequences of values. These sequences may be of any length.

N\

The Completion Specification Type

The Completion type is used to explain the behaviour of statements (break, continue, return and

throw) that perform nonlocal transfers of control. Values of the Completion type are triples of the form ,

19 January 2009,

N
\

Mark S. Miller 1/19/09 6:13 PM
Deleted: , but for one difficulty: function calls are
permitted to return references. This possibility is admitted

purely for the sake of host objects. No built-in ECMA Script
function defined by this specification returns a reference
and there is no provision for a user-defined function to
return a reference

Mark S. Miller 1/19/09 6:14 PM
Mark S. Miller 1/19/09 6:14 PM

Deleted: three

Mark S. Miller 1/19/09 6:14 PM
\| Deleted: ,

[Mark S Miler 1/19/09 6:14 PM
Mark S. Miller 1/19/09 6:15 PM

Deleted: <#>IsStrictReference(V). Returns the strict
reference component of the reference V. .

Mark S. Miller 1/19/09 6:17 PM

| Deleted: -
/_If IsStrictReference() is true, then

property name, W for the value, and false for the Throw
flag. -

Mark S. Miller 1/19/09 6:18 PM

| |\ Deleted: ,

Mark S. Miller 1/19/09 6:18 PM

'/l Deleted: , and IsStrictReference(¥) for the Throw flag

Mark S. Miller 1/19/09 6:19 PM

'/ Deleted: ,

Mark S. Miller 1/19/09 6:19 PM

'/ Deleted: ,

Mark S. Miller 1/19/09 6:19 PM
'/|_ Deleted: , and IsStrictReference(¥) for S

Mark S. Miller 1/19/09 6:20 PM
/| Deleted: ,

Mark S. Miller 1/19/09 6:21 PM

'/|_Deleted: , and boolcan flag Throw as arguments

Mark S. Miller 1/19/09 6:25 PM

Deleted: <#>Let O be ToObject(Base). -
<#>If the result of calling the [[CanPut]] internal method of
O with argument P is false, then .

<#>If Throw is true, then throw a TypeError exception. .
<#>Else return. .

<#>Let ownDesc be the result of calling the
[[GetOwnProperty]] method of O with argument P. .

<#>If IsDataDescriptor(ownDesc) is true, then .

<#>If Throw is true, then throw a TypeError exception. .
<#>Else Return. .

<#>Let desc be the result of calling the [[GetProperty]]
method of O with argument P. This may be either an own or
inherited accessor property descriptor or an inherited data
property descriptor. .

<#>If IsAccessorDescriptor(desc) is true, then . [,

14

Mark S. Miller 1/19/09 6:25 PM

Deleted: <#>Return. .
NOTE .

Mark S. Miller 1/19/09 5:14 PM
Deleted: 15 January 2009

- 35 -

(type, value, target), where type is one of normal, break, continue, return, or throw, value is any SES

The term “abrupt completion” refers to any completion with a type other than normal.

8.10 The Property Descriptor and Property Identifier Specification Types

8.10.1

8.10.2

8.10.3

8.10.4

The Property Descriptor type is used to explain the manipulation and reification of named property
attributes. Values of the Property Descriptor type are records composed of named fields where each field’s
name is an attribute name and its value is a corresponding attribute value. In addition, any field may be
present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]], or [[Writable]]. An accessor property descriptor is one that includes any
fields named either [[Get]], or [[Set]]. Any property descriptor may have fields named [[Enumerable]], and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor however it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor.

For notational convenience within this specification, an object literal-like syntax can be used to define a
property descriptor value. For example, Property Descriptor {value: 42, writable: false, configurable: true}
defines a data property descriptor. The order of listing field names is not significant. Any fields that are not
explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property
Descriptor. For example, if D is a property descriptor then D.[[Value]] is short hand for “the field of D
named value”.

The Property Identifier type is used to associate a property name with a Property Descriptor. Values of the
Property Identifier type are pairs of the form (name, descriptor), where name is a string and descriptor is a
Property Descriptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

IsAccessorDescriptor (Desc)
When the abstract operation IsAccessorDescriptor is called with property descriptor Desc the following
steps are taken:

1. If Desc is undefined, then return false.

2. Ifboth Desc.[[Get]] and Desc.[[Set]] are absent, then return false.

3. Return true.

IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desc the following steps
are taken:

1. If Desc is undefined, then return false.
2. Ifboth Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.

IsGenericDescriptor (Desc)
When the abstract operation IsGenericDescriptor is called with property descriptor Desc the following
steps are taken:

1. If Desc is undefined, then return false.
2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
3. Return false.

FromPropertyDescriptor (Desc)
When the abstract operation FromPropertyDescriptor is called with property descriptor Desc the
following steps are taken:, the following steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that
returned from [[GetOwnProperty]].

19 January 2009, /

|

g Mark S. Miller 1/19/09 5:01 PM
:
A Mark S. Miller 1/19/09 5:01 PM
Deleted: ECMA Script

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

8.10.5

8.12.1

N —

5.
6.

7.

-36 -

If Desc is undefined, then return undefined.
Let obj be the result of creating a new object as if by the expression new Object() where Object is the
standard built-in constructor with that name.
If IsDataDescriptor(Desc) is true, then

a. Call the [[Put]] method of 0bj with arguments “value” and Desc.[[Value]].

b. Call the [[Put]] method of 0bj with arguments “writable” and Desc.[[Writable]].
Else, IsAccessorDescriptor(Desc) must be true, so

a. Call the [[Put]] method of 0bj with arguments “get” and Desc.[[Get]].

b. Call the [[Put]] method of 0bj with arguments “set” and Desc.[[Set]].
Call the [[Put]] method of obj with arguments “enumerable” and Desc.[[Enumerable]].
Call the [[Put]] method of 0bj with arguments “configurable” and Desc.[[Configurable]].
Return oby.

ToPropertyDescriptor (Obj)
When the abstract operation ToPropertyDescriptor is called with object Desc, the following steps are
taken:

1.
2.
3.

9.

If Type(Obj) is not Object throw a TypeError exception.
Let desc be the result of creating a new Property Descriptor that initially has no fields.
If the result of calling the [[HasProperty]] method of Obj with argument "enumerable" is true, then
a. Let enum be the result of calling the [[Get]] method of Obj with "enumerable".
b. Set the [[Enumerable]] field of desc to ToBoolean(enum).
If the result of calling the [[HasProperty]] method of Obj with argument "configurable" is true, then
a. Let conf be the result of calling the [[Get]] method of Obj with argument "configurable".
b. Set the [[Configurable]] field of desc to ToBoolean(conf).
If the result of calling the [[HasProperty]] method of Obj with argument "value" is true, then
a. Let value be the result of calling the [[Get]] method of Obj with argument “value”.
b. Set the [[Value]] field of desc to value.
If the result of calling the [[HasProperty]] method of Obj with argument "writable" is true, then
a. Let writable be the result of calling the [[Get]] method of Obj with argument "writable".
b. Set the [[Writable]] field of desc to ToBoolean(writable).
If the result of calling the [[HasProperty]] method of Obj with argument "get" is true, then
a. Let getter be the result of calling the [[Get]] method of Obj with argument "get".
b. IfIsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
c. Set the [[Get]] field of desc to getter.
If the result of calling the [[HasProperty]] method of Obj with argument "set" is true, then
a. Let setter be the result of calling the [[Get]] method of Obj with argument "set".
b. IfIsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.
c. Set the [[Set]] field of desc to setter.
If either desc.[[Get]] or desc.[[Set]] are present, then
a. Ifeither desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.

10. Return desc.

The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name
resolution in nested functions and blocks. These types and the operations upon them are defined in section

10.

Algorithms for Object Internal Methods

Property Description record, AR

[[GetOwnEroperty]] (P) B Mark S. Miller 1/19/09 6:55 PM
ark S. Miller B

When the [[GetOwnProperty]] internal method of O is called with property name P, the following steps Deleted: nd Throw is a Boolean flag

are taken: -

1. If O doesn’t have an own property with name P, return undefined.

2. Let D be a newly created Property Descriptor (Section 8.10) with no fields.

3. Let Xbe O’s own property named P.

4. If X is a data property, then Mark S. Miller 1/19/09 5:14 PM
Deleted: 15 January 2009

Y
Y
/

19 January 2009, /

8.12.2

8.12.3

8.12.4

8.12.5

-37 -

a. Set D.[[Value]] to the value of X’s [[Value]] attribute.

b. Set D.[[Writable]] to the value of X”s [[Writable]] attribute
5. Else X is an accessor property, so

a. Set D.[[Get]] to the value of X”s [[Get]] attribute.

b. Set D.[[Set]] to the value of X’s [[Set]] attribute.
6. Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attribute.
7. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
8. Return D.

Note, however, that if O is a String object it has a more elaborate [[GetOwnProperty]] method (15.5.5.2).

[[GetProperty]] (P)
When the [[GetProperty]] internal method of O is called with property name P, the following steps are

taken:

1. Let prop be the result of calling the [[GetOwnProperty]] internal method of O with property name P.

2. If prop is not undefined, return Result(1).

3. Ifthe[[Parent]] internal property of O is null, return undefined. }

4. Call the [[GetProperty]] internal method of [[Parent]] with property name”. N "
5. Return Result(4). ~ _ | Deleted: [[Prototype]]

[[Get]] (P) Mark S. Miller 1/19/09 6:01 PM
Deleted: [[Prototype]]

When the [[Get]] internal method of O is called with property name P, the following steps are taken:

Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.
If desc is undefined, return undefined.

If IsDataDescriptor(desc) is true, return desc.[[Value]].

Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

If getter is undefined, return undefined.

Return the result calling the [[Call]] internal method of getter providing O as the this value and
providing no arguments.

[[CanPut]] (P)
When the [[CanPut]] internal method of O is called with property name P, the following steps are taken:

NN LN —

1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
2. Ifdesc is not undefined, then
a. IfIsAccessorDescriptor(desc) is true, then
i. Ifdesc.[[Set]] is undefined, then return false.
ii. Else return true.
b. Else, desc must be a DataDescriptor so return the value of desc.[[Writable]].
Let proto be the internal [[Parent]] internal property of O. |

If proto is null, then return the value of the [[Extensible]] internal property of O. "
Let inherited be the result of calling the [[GetProperty]] internal method of proto with property name Deleted: [[Prototype]]
P.
6. If inherited is undefined, return the value of the [[Extensible]] internal property of O.
7. If IsAccessorDescriptor(inherited) is true, then
a. Ifinherited.[[Set]] is undefined, then return false.
b. Else return true.
8. Else, inherited must be a DataDescriptor
a. If the [[Extensible]] internal property of O is false, return false.
b. Else return the value of inherited.[[Writable]].

WA

NOTE "
Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should ,
not allow [[Put]] operations in situations where this definition of [[CanPut]] returns false. Deleted: , Throw

/
/ Mark S. Miller 1/19/09 6:28 PM
77777777777777777777777777777777 JJ I

[[ThrowingPut]] (P, V)
When the [[ThrowingPut]] internal method of O is called with property P,and value V,the following steps | @V DE VI E e o=y

are taken: Deleted: , and boolean flag Throw

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

19 January 2009 J|

8.12.6

8.12.7

8.12.8

- 38 -

2. Let ownDesc be the result of calling the [[GetOwnProperty]] method of O with argument P.
3. If IsDataDescriptor(ownDesc) is true, then ~ UfThrowis true, then

a. Set the [[Value]] attribute of property P of O to V. Mark S. Miller 1/19/09 6:29 PM

b. Return. l Deleted: <#>Else return. . l

4. Let desc be the result of calling the [[GetProperty]] method of O with argument P. This may be either
an own or inherited accessor property descriptor or an inherited data property descriptor.
If IsAccessorDescriptor(desc) is true, then
c. Let setter be desc.[[Set]] which cannot be undefined.
d. Call the [[Call]] method of setter providing O as the this value and providing V" as the sole
argument.
6. Else, create a named data property named P on object O whose attributes are:
e. [[Value]]: V,
f. [[Writable]]: true,
¢. [[Enumerable]]: true,
h. [[Configurable]]: true.
7. Return.

n

Note, however, that if O is an Array object, it has a more elaborate [[ThrowingPut]] method (15.4.5.1).

WPatll B, V) Bl Mark S. Miller 1/19/09 8:57 PM
[[Put]] is primarily used in the specification of built-in methods. Algorithms that require explicit control e .

N . . . N Comment: Redundant in SES, except that it is a
over the handling of invalid property stores should call [[ThrowingPut]] directly. specification error for this to fail in certain ways.

When the [[Put]] internal method of O is called with property P and value V, the following steps are
taken:

1. Call the [[ThrowingPut]] internal method of O with arguments P,and V,

2. Return. N Mark S. Miller 1/19/09 6:31 PM
-
[[HasProperty]] (P) :
. . . . Mark S. Miller 1/19/09 6:31 PM
E’V]?en the [[HasProperty]] internal method of O is called with property name P, the following steps are Deleted: , and false
aken:

Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.
If desc is undefined, then return false.
Else return true.

7777777777777777777777777777777777777 B Vark S. Miller 1/19/09 6:32 PM

When the [[Delete]] internal method of O is called with property name P, the following steps are taken:
1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with property name P. - Mark S. Miller 1/19/09 6:32 PM

2. Ifdesc is undefined, then return true. Deleted: and the boolean flag Throw

3. Ifdesc.[[Configurable]] is true, thengemove the own property with name P fromo.

4. Else throw a TypeError exception. N \ g Mark S. Miller 1/19/09 6:34 PM
77 .\ Deleted: .

When the [[DefaultValue]] internal method of O is called with hint String, the following steps are taken: N N Mark S. Miller 1/19/09 6:34 PM
\ | Deleted: Remove

=)
o
e,
=
=
£
-
<
=
=
=
o
=
=
=
=
2
=
[
[
[
|
[
[
[
[
[
[
[
[
|
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
=
o
~

1. Let toString be the result of calling the [[Get]] internal method of object O with argument "toString". | : ;
2. 1ftofiring s an objct the,)
3. Let str be the result of calling the [[Call]] internal method of foString, with O as the this value and an \ \ \Deleted: <#*Refum truc._.
empty argument list. W Mark S. Miller 1/19/09 6:33 PM
4. If stris a primitive value, return str. \
5. Let valueOf be the result of calling the [[Get]] internal method of object O with argument "valueOf". Mark S. Miller 1/19/09 6:33 PM
6. If valueOfis an object then, ~ _ | Deleted: <#>Return false. .
7. Let val be the resullt of calling the [[Call]] internal method of valueOf, with O as the this value and an Mark S. Miller 1/19/09 8:57 PM
empty argument list. Comment: How do we specify SES’s restrictions on
8. If val is a primitive value, return val. valueOf and toString?
9. Throw a TypeError exception.
When the [[DefaultValue]] method of O is called with hint Number, the following steps are taken: Mark S. Miller 1/19/09 5:14 PM

|

/| _Deleted: 15 January 2009
/

19 January 2009 s

8.12.10

—

-39 -

Let valueOf be the result of calling the [[Get]] internal method of object O with argument "valueOf".

2. If valueOfis an object then,

w

a. Let val be the result of calling the [[Call]] internal method of valueOf , with O as the this
value and an empty argument list.
b. If valis a primitive value, return val.

Let toString be the result of calling the [[Get]] internal method of object O with argument "toString".

4. If toString is an object then,

a. Let str be the result of calling the [[Call]] internal method of foString, with O as the this
value and an empty argument list.
b. If stris a primitive value, return str.

5. Throw a TypeError exception.

When the [[DefaultValue]] internal method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a host
object implements its own [[DefaultValue]] method, it must ensure that its [[DefaultValue]] method can
return only primitive values.

: : CReiant” moaanc “Throw 2 TvneFrrar ogoenf P gl Mark S. Miller 1/19/09 6:34 PM
In the following algorithm, the term “Reject” means “_Throw a TypeError exception,” N m
When the [[DefineOwnProperty]] internal method of O is called with property name P, and property :

\\ Mark S. Miller 1/19/09 6:34 PM
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Y\ | Deleted: If 7irow is true, then t

1.

2.
3.

W

oo

Let current be the result of calling the [[GetOwnProperty]] internal method of O with property
name P.
Let extensible be the value of the [[Extensible]] internal property of O.
If current is undefined and extensible is false, then Reject.
If current is undefined and extensible is true, then
a. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then

i. Create an own data property named P of object O whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If
the value of an attribute field of Desc is absent, the attribute of the newly created
property is set to its default value.

b. Else, Desc must be an accessor Property Descriptor so,

i. Create an own accessor property named P of object O whose [[Get]], [[Set]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If
the value of an attribute field of Desc is absent, the attribute of the newly created
property is set to its default value.

c. Return.
Return, if every field in Desc is absent.
Return, if every field in Desc also occurs in current and the value of every field in Desc is the
same value as the corresponding field in current.
If the [[Configurable]] field of current is false then
a. Reject, if the [[Configurable]] field of Desc is true.
b. Reject, if the [[Enumerable]] field of current and Desc are the Boolean negation of each
other.
If IsGenericDescriptor(Desc) is true, then no further validation is required.
Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Reject, if the [[Configurable]] field of current is false.
b. IfIsDataDescriptor(current) is true, then

i. Convert the property named P of object O from a data property to an accessor
property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s
attributes to their default values.

c. Else,

i. Convert the property named P of object O from an accessor property to a data
property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s
attributes to their default values.

19 January 2009 J|

Mark S. Miller 1/19/09 6:34 PM

'\ | Deleted: , otherwise return false
\

IR Mark S. Miller 1/19/09 6:35 PM
\ | Deleted: ,

Mark S. Miller 1/19/09 6:35 PM
Deleted: , and boolean flag Throw

Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009
/

- 40 -

10. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. If the [[Configurable]] field of current is false, then
i. Reject, if the [[Writable]] field of current is false and the [[Writable]] field of
Desc is true.
ii. If the [[Writable]] field of current is false, then
1. Reject, if the [[Value]] field of Desc is present and
SameValue(Desc.[[Value]], current.[[Value]]) is false.
b. else, the [[Configurable]] field of current is true, so any change is acceptable.
11. Else, IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true so,
a. If the [[Configurable]] field of current is false, then
i. Reject, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]],
current.[[Set]] is false.
ii. Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]],
current.[[Get]]) is false.
12. For each attribute field of Desc that is present, set the correspondingly named attribute of the
property named P of object O to the value of the field.
13. Return true.

9 Type Conversion and Testing

constructs it is useful to define a set of conversion abstract operations. These abstract operations are not a part

of the language; they are defined here to aid the specification of the semantics of the language. The
conversion abstract operations are polymorphic; that is, they can accept a value of any SES language type, but
not of specification types.

9.1 ToPrimitive

The abstract operation ToPrimitive takes a Value argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its value argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to the following table:

9.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to the
following table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, —0, or NaN; otherwise the result is true.

19 January 2009, .

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is retrieved by
calling the internal [[DefaultValue]] method of the object, passing the optional hint
PreferredType. The behaviour of the [[DefaultValue]] method is defined by this
specification for all native SES objects (8.6.26). I

g Mark S. Miller 1/19/09 5:01 PM
Deleted: ECMA Script

B Mark S. Miller 1/19/09 5:01 PM
Deleted: ECMA Script

B Mark S. Miller 1/19/09 5:01 PM
Deleted: ECMAScript

Mark S. Miller 1/19/09 5:14 PM
/| _Deleted: 15 January 2009
/

- 41 -

String The result is false if the argument is the empty string (its length is zero);
otherwise the result is true.

Object true

9.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to the
following table:

Input Type Result
Undefined NaN
Null +0
Boolean The result is 1 if the argument is true. The result is +0 if the argument is false.
Number The result equals the input argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot
interpret the string as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

StringNumericLiteral :::
StrWhiteSpaceop:
StrWhiteSpaceop: StrNumericLiteral StrWhiteSpaceop:

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceop:

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigitsop: ExponentPartop
. DecimalDigits ExponentPartyp
DecimalDigits ExponentPart,p

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9 ¥ Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

19 January 200 |

- 42 -

ExponentPart :::
ExponentIndicator Signedlnteger

Exponentlndicator ::: one of
e E

SignedInteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b c d e £ A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral
(see 7.8.3):

* A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.
* A StringNumericLiteral that is decimal may have any number of leading 0 digits.

* A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

* A StringNumericLiteral that is empty or contains only white space is converted to +0.

The conversion of a string to a number value is similar overall to the determination of the number value
for a numeric literal (see 7.8.3), but some of the details are different, so the process for converting a
string numeric literal to a value of Number type is given here in full. This value is determined in two
steps: first, a mathematical value (MV) is derived from the string numeric literal; second, this
mathematical value is rounded as described below.

¢ The MV of StringNumericLiteral ::: [empty] is 0.

e The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

¢ The MV of StringNumericLiteral ::: StrWhiteSpace,,, StrNumericLiteral StrWhiteSpace,,, is the MV
of StrNumericLiteral, no matter whether white space is present or not.

¢ The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

* The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

e The MV of SwrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral.

e The MV of StrDecimalLiteral::: + StrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral.

e The MV of StrDecimalLiteral::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of
this MV is also 0. The rounding rule described below handles the conversion of this sign less
mathematical zero to a floating-point +0 or —0 as appropriate.)

e The MV of StrUnsignedDecimalLiteral::: Infinity is 10'°°° (a value so large that it will round to
+o0).

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits . is the MV of DecimalDigits.

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits is the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™"), where n is the number of
characters in the second DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits . ExponentPart is the MV of DecimalDigits times 10°,

where e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first

DecimalDigits plus (the MV of the second DecimalDigits times 107™")) times 10°, where n is the number of
characters in the second DecimalDigits and e is the MV of ExponentPart.

¥ Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

19 January 200

9.4

- 43 -

The MV of StrUnsignedDecimalLiteral::: . DecimalDigits is the MV of DecimalDigits times 107", where n is
the number of characters in DecimalDigits.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits ExponentPart is the MV of DecimalDigits times
10°", where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV
of DecimalDigit.

The MV of ExponentPart :::

The MV of Signedinteger :::

The MV of SignedInteger :::

The MV of SignedInteger :::

The MV of DecimalDigit :::

The MV of DecimalDigit

The MV of DecimalDigit

The MV of DecimalDigit :::

The MV of DecimalDigit :::

The MV of DecimalDigit :::

The MV of DecimalDigit

The MV of DecimalDigit

Exponentlndicator SignedInteger is the MV of SignedInteger.

DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.

0 or of HexDigit ::: 0 is 0.

1 or of HexDigit ::: 1 is 1.

2 or of HexDigit ::: 2 is 2.

3 or of HexDigit ::: 3 is 3.

4 or of HexDigit ::: 4 is 4.

5 or of HexDigit ::: 5 is 5.

6 or of HexDigit ::: 6 is 6.

7 or of HexDigit ::: 7 is 7.

The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.

The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.

The MV of HexDigit ::: a or of HexDigit ::: A is 10.

The MV of HexDigit ::: b or of HexDigit ::: B is 11.

::: ¢ or of HexDigit ::: C is 12.

:: d or of HexDigit ::: D is 13.

The MV of HexDigit ::: e or of HexDigit ::: E is 14.

The MV of HexDigit ::: £ or of HexDigit ::: F is 15.

The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.

The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

The MV of HexIntegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MV of HexDigit.

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the

Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in

the string numeric literal is ‘=, in which case the rounded value is —0. Otherwise, the rounded value

must be the number value for the MV (in the sense defined in 8.5), unless the literal includes a

StrUnsignedDecimalLiteral and the literal has more than 20 significant digits, in which case the number

value may be either the number value for the MV of a literal produced by replacing each significant digit

after the 20th with a 0 digit or the number value for the MV of a literal produced by replacing each

significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A

digit is significant if it is not part of an ExponentPart and

it is not 0; or
there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

I N S

Call ToNumber on the input argument.

If Result(1) is NaN, return +0.

If Result(1) is +0, —0, +oo, or —oo, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

19 January 200

¥ Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

9.5

9.6

9.7

- 44 -

TolInt32: (Signed 32 Bit Integer)

The abstract operation TolInt32 converts its argument to one of 2°% integer values in the range -2°' through
23'_1, inclusive. This abstract operation functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, -0, +oo, or —oo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2%%; that is, a finite integer value k of Number type with positive sign and
less than 2°? in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 22,

5. If Result(4) is greater than or equal to 2°!, return Result(4)- 232, otherwise return Result(4).

NOTE
Given the above definition of ToInt32:

The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property that + and —c
are mapped to +0.)

Tolnt32 maps -0 to +0.

ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2°% integer values in the range 0 through
2%2_1, inclusive. This abstraction operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, -0, +oo, or —oo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2*%; that is, a finite integer value k of Number type with positive sign and
less than 2°? in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 22,

5. Return Result(4).

NOTE
Given the above definition of ToUInt32:

Step 5 is the only difference between ToUint32 and Tolnt32.

The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +e and —co
are mapped to +0.)

ToUint32 maps -0 to +0.

ToUint16: (Unsigned 16 Bit Integer)

The abstract operation ToUintl16 converts its argument to one of 2'¢ integer values in the range 0 through
2'%_1, inclusive. This abstract operation functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, -0, +o, or —o, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2'%; that is, a finite integer value k of Number type with positive sign and
less than 2'® in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 2'°.

5. Return Result(4).

NOTE
Given the above definition of ToUintl6:

19 January 200

¥ Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

9.8

9.8.1

- 45 -

The substitution of 2'° for 2°? in step 4 is the only difference between ToUint32 and ToUintI6.

ToUintl6 maps -0 to +0.

ToString
The abstract operation ToString converts its argument to a value of type String according to the following
table:
Input Type Result
Undefined "undefined"
Null "null"
Boolean If the argument is true, then the result is "true".
If the argument is false, then the result is "false".
Number See note below.
String Return the input argument (no conversion)
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint String).
2. Call ToString(Result(1)).
3. Return Result(2).

ToString Applied to the Number Type

The abstract operation ToString converts a number m to string format as follows:

I S S

If m is NaN, return the string "NaN".

If m is +0 or —0, return the string "0".

If m is less than zero, return the string concatenation of the string "-" and ToString(-m).
If m is infinity, return the string "Infinity".

. Otherwise, let n, k, and s be integers such thatk = 1, 10! < 5 < 10, the number value for s x 10" is

m, and k is as small as possible. Note that £ is the number of digits in the decimal representation of s,
that s is not divisible by 10, and that the least significant digit of s is not necessarily uniquely
determined by these criteria.

. If k= n <21, return the string consisting of the & digits of the decimal representation of s (in order,

with no leading zeroes), followed by n—k occurrences of the character ‘0°.

. If 0 <n =21, return the string consisting of the most significant n digits of the decimal representation

of s, followed by a decimal point *.’, followed by the remaining k-n digits of the decimal
representation of s.

. If -6 <n = 0, return the string consisting of the character ‘0’, followed by a decimal point *.”,

followed by —n occurrences of the character ‘0°, followed by the & digits of the decimal
representation of s.

. Otherwise, if k = 1, return the string consisting of the single digit of s, followed by lowercase

character ‘e’, followed by a plus sign ‘+’ or minus sign ‘=" according to whether n—1 is positive or
negative, followed by the decimal representation of the integer abs(n—1) (with no leading zeros).

10.Return the string consisting of the most significant digit of the decimal representation of s, followed

by a decimal point °.”, followed by the remaining k-1 digits of the decimal representation of s,
followed by the lowercase character ‘e’, followed by a plus sign ‘+ or minus sign ‘=’ according to
whether n-1 is positive or negative, followed by the decimal representation of the integer abs(n-1)
(with no leading zeros).

NOTE
The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

If x is any number value other than -0, then ToNumber(ToString(x)) is exactly the same number value as x.

The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

19 January 200

¥ Mark S. Miller 1/19/09 5:14 PM
/| Deleted: 15 January 2009

9.9

- 46 -

For implementations that provide more accurate conversions than required by the rules above, it is recommended
that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k = 1, 10 <5 < 10k, the number value for s x 10" is m, and k is
as small as possible. If there are multiple possibilities for s, choose the value of s for which s x 10"™* is closest in
value to m. If there are two such possible values of s, choose the one that is even. Note that k is the number of
digits in the decimal representation of s and that s is not divisible by 10.

of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as

http://cm.bell-labs.com/netlib/fp/g fmt.c.gz and may also be