cecma

Ecma/TC39/2009/050

Final

Draft aAnNGdlGl ECMA-262
I -- 5t Edition/ October 2009

ECMAScript Language
Specification

-,

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2009

secma

Contents Page
LA 0T LUT o] 10 o [P Vii
1 Yo o] oSO PP PP P PPPPPPPUTPPP 1
2 (000 01 10] £ 10 T=1 1o =TT 1
3 Lo 8 4 E= AV = L= A=Y A o1 T 1
4 (@Y 2= VAT T 1
4.1 LTAT L= o RS Toa § 1] {1 o PSSR 2
4.2 (= T LU F= Vo [T @AY= VA= PRSP PRRPR 2
S T @ | o= o3 SRR 3
4.2.2 The Strict Variant 0f ECMASCIIPTuviiiii it e e e s s s re e e e e s s st e e e e e e e sssnnnreeeeaeaeannnnens 4
4.3 Lo 1 1 A Y 1 4
5 NLo) e=Y A Lo Y b= Y @ e] AV =1 0L {10] TP 7
5.1 Syntactic and LeXiCal GramMMarS.......ooccuuiiiiee et e e e e s seee et e e e ssteae e e e e e s s st e e e e e e s asstaeneaeeesnnsneneeeeeesans 7
LT I A O] ¢ (=) G S =TS =10 010 = 7
5.1.2 The Lexical and REGEXDP GIamIMEAIsScocueiiiiiiieeiiiieeaiitiee et e it e et e s st e s aibe e e e abre e e asnbeeesanbneeeannes 8
5.1.3 The NUMEIIC SHNG GIaMIMAeeiiiiiieeiiiie ettt e et e ettt e et e e s atbe e e e st be e e e abb e e e e asbe e e e anbreeeaasbeeeeannreeeannns 8
ST S B TS a1 = Lo A Tl €1 =T 011 = |G O TP UP P PPPPTPPP 8
T T B SO IS 1O] N €] =10 1] 0 = T 9
TN I =10 g 0= Vg o) €= (0] o [T 9
5.2 AlGOTtRM CONVENTIONS ...t e et e e e e e s bbb et e e e e e s ab e e e e e e e e e nnnees 11
6 Yo 10 L oL =T =G AP 12
7 [IS) (Tox= L @Y o LYZ=T 01 {T0] o F T 13
7.1 Unicode FOrmat-Control CRAraCterSuuuuiiiiiiiiiiieeeee et e e e s e e e s e e e e e bt e s e e e e aesanens 14
7.2 RTAY LT (=TS o - o = USSP 14
7.3 (IR TSI =T LT F= oY 15
7.4 (070 010 211 11 K= 16
7.5 B 0 1G] L 1T 17
7.6 Identifier NamMeES anNd IH@NEITIEISu.iiieeeee ettt e et e e et e e e et s e e s eaa e e e eabeeeeeanaaees 17
S 0 R = =YY =Y RV =To VAT Lo] o =T 18
7.7 [U Lo AU = 1oL =T 19
7.8 [T = 1 E TR 19
RS T R V0 | 1 =] = 1 £ 19
VRS I = Yo Yo] (Y= 1o T I (=T = | 20
RS R T V10 1o (L= g o I (=) = £ 20
A= T S 4 T Lo =T =1 22
7.8.5 Regular EXPresSSion LItEralS........ccciiiiiie ittt s st e e e e st e e e e e s s st ae e e e e e s s nnanbaaeeaeeeannnnees 24
7.9 AUtOMALIC SEMICOION INSEITION couvtiiiii it e e e e e et s e e e s e e e esa b seeessessesbbraaseeeaaees 25
7.9.1 Rules of Automatic SEMICOION INSEITION ...uuiiiiiiiiieeeee e e e e e s e e e s e e e e aeeenees 26
7.9.2 Examples of Automatic SEMICOION INSEITIONcceviiiiiee e 27
8 157/ 1= 28
8.1 LI L o 11 1 0= To R 114 o L= SR 28
8.2 LI L 11 14 1SS 28
8.3 LA = e To] F=T= U o T 1Y L= SRR 28
8.4 LIRS (T Yo TR 57 = SRR 28
8.5 LA LT o= Y7 o L= SRRSO 29
8.6 R L O] o] [Tt 1Y o= I T TP PU PPN 30
8.6.1 ProOPerty AlFIDULES ..ottt ettt e e e ettt e e e e e s nbebe e e e e e e e e nnbe e e e e e e e anneees 30
8.6.2 Object Internal Properties and MethOdScoiiiiiiiiiiii e 31
8.7 The Reference SPeCIifiCaAtION TY PO .. it e e b e e e e e e e annees 34

© Ecma International 2009 |

8.7.1
8.7.2
8.8
8.9
8.10
8.10.1
8.10.2
8.10.3
8.10.4
8.10.5
8.11
8.12
8.12.1
8.12.2
8.12.3
8.12.4
8.12.5
8.12.6
8.12.7
8.12.8
8.12.9

9.1
9.2
9.3
9.3.1
9.4
9.5
9.6
9.7
9.8
9.8.1
9.9
9.10
9.11
9.12

10
10.1
10.1.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.4
10.4.1
10.4.2
10.4.3
10.5
10.6

11
111
1111
11.1.2
11.1.3
1114
11.1.5

»eCna

LTS Y= 1L T= I (Y) TP 35
PULVAIUE (M, W) ittt ettt ettt e s sttt e e sttt e e e st e e s a bt e e e e enbb e e e anbbe e e e anseeeeanseaeennnnaeas 35
L LR S S o 1= ToT i T o3= U o o T 114 o L= SRR 36
The Completion SPECITICAtION TYPE i e e e s e e e e e e s s sntareeeaeesannnnes 36
The Property Descriptor and Property Identifier Specification TYPesccccvveveeiviciieee e, 37
ISACCESSOIDESCIIPLOr (DESC) woiiieiiiiiiiiiie e e ittt s s e e e e s e e e e e s et e e e e e s e snnreeeeeessannnneneeaeeeans 37
D 11D of T o] o] gl @ B 1= ol PSPPI 37
] eT=ToT=T g Tol BT ol g o) (o] g (B 1T Y o PRSPPI 37
FromPropertyDeSCIIPLOr (DESC) .uuiii ittt ettt ettt e e snbn e e e s nenneas 38
TOPropertyDeSCIIPLOr (OD]) oottt et e e st e e e s sebr e e e s nnneee e 38
The Lexical Environment and Environment Record Specification TYPesS......ccccccvvveeiiiieeiiiieeene 39
Algorithms for Object Internal MethodsSvii i 39
TEET O o] = o] o 1= 4 Y | I () PRSP RRP TP 39
T2 o) o=l YA | I () PP URRP TP 39
TEETE I T TP P PR PR 39
[1OZ= L ST | I PSR PRP 39
[[PULTT (P, V, TRFOW) ittt ettt ettt e et e e st e e s mb e e e ansbe e e e entbe e e enbeeeeanseeeeennee 40
gzt md oY o= 8V) TSR 40
TR ECL = | B L 1 TSR 40
[[DefaultValUE]] (NINT) ..uuriiieee it e s e r e e e e s e e e e e e e s s asnb e e e e e e e s snnrneeeeeessnnsnnnnnees 41
[[DefineOwnProperty]] (P, DESC, TRIOW) ..ciiuuiiiiiiiiieiieie ettt 41
LY/ oL 0] g hVZ=T =1 To T = Ua Lo B I =S o o PR 42
L1015 T L= PSSR 43
L0 = e o] == T o PR 43
L1011 0T 1 o= PR 43
ToNumber Applied tO the StHNG TYPe ..o et ee e 44
e d L1 =To =] TP TP TP U TP U PP T T TR 46
ToINt32: (SIGNEA 32 Bt INTEOET) ...neeieiiieiee ittt ettt e e e e e e bbb e e e e e s e e bnbe e e e e e e e anneees 46
ToUint32: (UNSIgNed 32 Bit INTEOEI) ..eeiiiiiiiiiiiii ettt ettt e et e e e e e sibe e e e e e e e e nnees 47
ToUintl6: (UNSigned 16 Bit INTEOET) .uuviiiiiiiiiiiiie ettt e ettt e e s et e e e e e e st e e e e e e s snrareeeeeesannnnes a7
LI035 1 1 o SO PERPR a7
ToString Applied t0 the NUM DG TY PO . e e e s e e e e e e e anneees 48
101 = SRR 49
(0 T=Tod (@] o [=Tox (@01 =] o3 | o] 1= SR 49
L1072 11 =1 o] 1= PR 49
The SameValue AIGOTTRM ... e 50
Executable Code and EXeCULION CONTEXES ...cciiuiiiiiiiiiiiiiiiiie ettt 50
TYPES Of EXECULADIE COUR ...uiiiiiiiiiiiiii ettt e e et e e e e e s st e e e e e s s anenaeeeeeeeeennneees 50
Y {[od 1, oo L= @ Lo 1T PP RPN 50
o (o= I = g VT o] o]y T=T PR PR ORTPPRRRN 51
= NV oY ol g aY=T o] A = =To] o] o E= 3P RPPPURRPPRRR 51
Lexical ENVIronMeNnt OPEIratioNsSuiiiiiiiiiiiieiae ettt e et e e e e et be e e e e e s e snbbe e e e e e s s snnbeeeaaaeeaans 55
The GloDal ENVIFONMENTeuiiiiiie ettt e e e e s et e e e e e s e s abbe e e e e e e e e annees 56
EXE@CULION CONTEXLES ...uiiiiiiiiiiiitiie ettt oottt e e ettt e e e e e s ek bbbt e e e e e e e bbb bt e e e e e s e aanbbeee e e e e s anbbeeeeaeeeanns 56
o LY o NN =T g = (T Yo (01 Yo o PRSP 57
Establishing an EXECULION CONTEXLuuiiiiiiiiiiiieiie e ceciieee e e e s e e e e s seae e e e e e s e snnae e e e e e s s snnneaeeaeeeanns 57
S LT g aTo I] Fo o - | I @0 Lo = PP P O SPPRRR 57
LT g g To A= | O o o L= SRR 58
=LY =T g aTo I W [Ted 4o Y T o o L= SRRSO 58
Declaration Binding INSTANTIALIONeeiiiiiiiiiiiiic e e e 58
ATGUIMENTS ODJECT .. ittt ettt b e e e s bt e e e sbb e e e st be e e e aabee e e s abbe e e s sabeeeeabaeeeeas 60
0TI 0] 1 PRSPPI 62
PriMary EXPrESSIONS ...ttt ettt ettt e s bttt e e s bb e e e s b b et e e aabe e e e sabbe e e s annne s 62
TRE TNIS K@Y WOIT ...ttt et e e b e e ek et e e sabe e e e s abb e e e e sabe e e e sbneeeea 62
T =T N L =T = =] (=T =T o o] PRSPPI 62
L =T = R Lo =T =T oL = TR 63
ATTAY INTTIAITS O ettt b e bt e e st e e sk b et e e st e e e e s abb e e e e sabeeeeabneeeeas 63
(0o [T a L TN L= LY] U ERP TP 64

© Ecma International 2009

secma

11.1.6 THEe GrOUPING OPEIALOTciiii i iitiieeie ettt e ettt e e e e e bbbt e e e e e e e aab b ettt e e e e e aanbbe et e aeeeaanbbbbeeeeeeaannbneeeeas 66
11.2 Left-Hand-Side EXPrESSIONSuviiiiiiiiiiiiiie e sttt e s e e e e e e st e e e e e e s tbbeeeeeessaanteeeeeaeeesannrnnees 66
0 R o Y 1T VA Ao o =LY 1 SRR 67
2 I g Lo T A @ T 1= - o) PSS 67
11.2.3 FUNCHON CAIIS .. ittt sttt e bt e s b e e e s h b e e st e e e b e e sabe e e abe e e snbeesnneesnneeanes 68
2 A N 01U 1= o = S 68
11.2.5 FUNCHION EXPIrESSIONS . .uutiiiiii e ittt iie e e sttt ee e e e s e st e e e e e s sttt e et e e e s s ast e et aaeaesnsbeaeeaeessansssaeeeeeesasnnnneeens 69
TG T =0 1o D = o] (=TT o] 1 S 69
11.3.1 POSHiX INCrEMENT OPEIALOT ..ociitiiei ittt et e ettt e st e e e sbb e e e e sabe e e s anbaeeeeneee 69
11.3.2 POStiX DECIEMENT OPEIALOLviiiiiiiiie ittt ettt et e e bt e e e sabe e e e abb e e e e sbbeeeesabeeeeesabeeeeane 69
114 UNGBIY OPEIATOIS .ooiiieiiiiitieiie e ettt e ettt e e e s e s et e e e e s s bttt e e e s e b e b ettt e e e s e an e e e e e e e e e snnn e e e et e e e nannnneeeeas 70
I R I o Lol o [=1 1= L= @ T o =T =1 o | O ST PP TP PP TPRPN 70
N N T [o 1o B @ 01T - | o] G PP PR PPP PR 70
e B I g Lo 1Y/ o T=To) B @ T o =T =1 o | PSR PPPTPRR 70
11.4.4 PrefiXx INCreMENT OPEIALOT ...coiiiiiiee ittt ettt e et e e e e bt e e et b e e e e anbe e e e anbeeeeeanbeeesanbeeeeennee 71
11.4.5 PrefiXx DECIremMENt OPEIALOL ..ocoiuiiiiiiiie ettt ettt ettt e et b e e e et bt e e et b e e e aabe e e e abbe e e e aabeeeeanbaeeeaneee 71
L11.4.6 UNAIY 4 OPEBIALOI ..ciiiiiiiiiieiiei e ettt et e e e e e et e e e s e sttt e e e s e s et et e e e e e ab e e e et e e e e e s nnnnreeeeessannrneeeeas 71
L1147 UNABIY = OPEBIATON ..eiiiiiiiiiieiieee ettt e e ettt e e e s e e e e e e s e s bttt e e e s e b e e e et e e e s e ass e e et e e e e e snnnn e e e e e e s aannrneeeeas 72
11.4.8 BitWiS@ NOT OPEIrAtOF (=) tireeiiictreeeieesiiitiieeeeessasuteeereeesssstreeeeeeessansssreeeaeeaaasssaeeeeaesasasssseeeeeessnnsssnneeees 72
I e T o To T Tot= U N @ B @] o Y= = 1 (o] S (G S 72
11.5 MUILIPHCALIVE OPEIALOTS ..eiiiie i iiiiiieeee et e e e e st e e e e e s e e e e e s s e sttt e et e e e s s sntteaeeaeessnnsetaeeeeessansnnnneeens 72
T RN o] o A AT a Lo IR 1= IRl @ o 1= = Lo S 73
T AN o] o A A T aTo IR a1 I A @] o =T = Lo G S 73
T I AN o] o A A T aTo I A I T @] =] = Lo G S 73
i I Ao o [YL @ o 1=T = (o] = T U PPPT PR 74
11.6.1 The Addition OPEIALOr (F) ciieiiiiiiiiieie e e e e e e e e e e e e st e e e e e e e s satbeeeeaeeesntaaeeeeeeesasnannreeas 74
11.6.2 The SUubtraction OPEIrAtOr (=) iicieeeieeiiiiiiieie e e e s e st e e e e e s er e e e e s s st e e e e e e s e sarbeeeeaeessantraeeeeeessansrnnereens 74
11.6.3 Applying the Additive Operators t0 NUMDErSoooiiiii e 75
O A =Y Y Ty =B a1 A @] =1 &= Lo =SSR 75
O R I o Lo I =] a1 A @ =T = o T G () T S 75
11.7.2 The Signed Right Shift OPErator (>3). a e e s rar e e e e s s narraeeeeas 76
11.7.3 The Unsigned Right Shift Operator (S>3) .o 76
IR B S L P T o] g o N @ o 1= = Lo] = T PR 76
11.8.1 The LeSS-TNan OPEIAtOr (<) .iiiiueieeieeeiiiiiiiiie e et e ittt et e e e s ieb e e e e e e e s aasbe s et e ae e e s bbeseeaeeeaaaanbeeeeeaeeeannbneeeas 77
11.8.2 The Greater-than OPEIrator (3) ..uuueiii ittt e et e e e e e e s bbb e e e aa e s s aabbeeeeaeesaannreeeeas 77
11.8.3 The Less-than-or-equal OPEIrator (ST) .uuueeiiaoiiieiiiiiae ettt e et e e e e e s e sabeeee e e e e s sabbseeeeaessaneeaeeeeas 77
11.8.4 The Greater-than-or-equal OPErator (>).iiiiiiiiiiiiee et ere e s e e e et e e e sbee e e snreeeennes 77
11.8.5 The Abstract Relational Comparison AlGOrthm ... 78
11.8.6 The INSTANCEOT OPEIALOTeiiiiiiiie ettt e et e e et e e et b e e e e aab e e e s anbreeeeneee 79
N T A I o T T g o o= =1 o | G O PP PP PP PPPPPPRPN 79
IR I o [V -1 1] A O o 1= =1 o] £ TP 79
11.9.1 The EQUAIS OPEIaAtOr (S0) tiiiiiiiiiiieete e ittt ettt e e et e e e e e e et bbbt e e e e e e e aaabbeee e e e e e anbbseeeeeeesannbneeeeas 79
11.9.2 The D0oes-Not-equals OPerator (15)ittt e e e e e e bbb e e e e e s e nneneeeeas 80
11.9.3 The Abstract Equality Comparison AlgOrithmcooiiiiiiiii e 80
11.9.4 The Strict EQUAIS OPEratOr (Smm) uiiiiiiiiiiiiiiie ettt e ettt e e e tb et e e e s s e aanbbe e e e e e e e snbbseeeaeeeaanbeaneeeeas 81
11.9.5 The Strict Does-not-equal OPErator (157) oo 81
11.9.6 The Strict Equality Comparison AIGOrithm ... 81
11.10 BiNaAry BitWiS@ OPEIALOIS ...uieiiiitiieeitieee it ettt e ettt e ettt e e ab et e e et bt e e e et et e e abbe e e s asbe e e e abr e e e e anbeeeeanbreeeannee 81
11.11 BiNaAry LOGICAl OPEIALOIS ...eiiiiiiiiieiiiiie ettt ettt ettt e bt e e ek e e e e s e e e e abr e e e e anbe e e e annneeeanees 82
I 6o Y o To [N Te Yo P U@ o 1= &= 1o] g (R U PPPUPR R 83
11.13 ASSIGNMENT OPEIATOTS . .uteiiiie ettt et e ettt e e e e et e et e e e e e ettt et e ea e e s s aab b eeeeaaeaaaanbbeeeaaeeesannbbeeeeaesaasnbneeeans 84
11.13.1 SIMPIE ASSIGNMENT (D) weiiiiiiiiiiitiiieie ettt e e ettt e e e e e e bbb e e ee e e e e aab b bt et e e e s e aanbbeeeaaeeeanbbbeeeeaeesannbneeeans 84
11.13.2 ComMPOUN ASSIGNMENT (O) uuttriteieeiiiiiiieite e e i et ettt e e e e et b e e e e e e e e aatbbeeeaaaeaaaanbeeeeaaeesaanbsseeeeeeaaaasneneeeans 84
11,14 COMMEA OPEIALOT (|,) teeeirrrieeiiieieeitiee e ettt e e at et e e ettt e e e et be e e e abe e e e s aabe e e e abeeeeaabbe e e e anbe e e e aabbeeeaanbeeesannneeeannes 85
12 Y= L] 4=] KPP PPPPPTRT 85
2 A =1 [T SRR 86
12.2 Variable SEAEMENTttt oottt e e e e e e ab e e et e e e e e aan e e eeaaeeesannbeeeeeaeeaannnneeaens 86

© Ecma International 2009 1

secmd

12.2.1 Strict MOAE RESIIICTIONS ...ueiiiiiiiiiiiiiiii ettt e e e et et e e e e e e bbb e e e e e e e s e bnbeeeee e e e e annnees 88
12.3 EMPLY STAEMENT ..ot e e e et e e et e r e e e e et e e e e e et arr e e e e e e e eaa b b e e aaae 88
R b {0 =T Y=Y T T A S =1 =] o 1= o) SRR 88
DT N o Lo S £= 14T 0 0 =T o PSP OUPRTTR 88
12,6 [Eration STALEMENTS .uviiiiiiiii ettt et e e et e e e sttt e e s bt e e e ssbe e e e s baeeeeabbeeeesnbeeeesabbeeeesnbeeeesnneaeans 89
12.6.1 The dO-While STALEMENT.......iiiiiiiii ettt e e e sbb e e e e sabeeeesbeeeeesnbeeeesanneeeeas 89
12.6.2 The WhiIle SEALEMENToiiiiiiie ettt ettt e e s stb e e e snbeeeeasbbeeeesnbeeeesnaeeeens 89
12.6.3 The fOr SAtEMENT ..ot e et e e sttt e e st et e e e st be e e e snbeeeesatbeeeesnbeeeesnneeeens 89
12.6.4 The for -iN SEALEMENTuiiii e e et e et e e e s e bbb e e e e e e e s aaa bbb e e e e e e e s abbbeeeeeeeeannnees 90
12.7 The CONLINUE STALEMENT.....oi ettt e e e e e e e e et b e e e e e e e e s anbe e e e e e e e annnees 91
12.8 The break STat@mMENTttt e e e e ettt et e e e e s an b e e e e e e e e e e annsbeeeeaeeeanneees 91
D2 I N o Lo = (U] g S =1 =10 1 Y) TR 92
12,10 The With SEAtEMENT ... e e e e e e e ettt e e e e e e e ann b teeeeeeeaannnteeeeeeeeanneees 92
2 0 T S o o3 A\ o o L= =S Tod o] SRR 93
12,11 The SWItCh SETALEMENTeeiiii it e e et e e e e e e s e te bttt e e e e s annbeeeeaeeessanbnbeeeeeeesannnees 93
2 I Lo 1o =T IS = 0 =T 0 SR 94
12.13 The thrOWw STAtEMIENT et e e e e e s ettt e e e e e e s ann b et e e e e e e e s anbnbeeeeeeeeannrees 95
12,14 TRE Y STALEMENT ..ottt e e bt e e sh b et e e st e e e e e ab b e e e e aabeeeeeabbeeeeanbeeeesbneeeea 95
12.14.1 Strict MOAE RESIIICIIONS ...viiiiiiiiiiiiiiie et ee e st e e e e s e e e e e s s e st a e e e e e s ssnnbeaeeeeeesaanntaneeeeeeennnnees 96
12.15 The debugger STATEMENTooo ittt e sab et e e sbb e e e e anbaeeesanreeeea 96
13 FUNCEION DEFINITION ...ttt e e e e s e e e e e s et e e e e e s s snnsaeeeeeeeesnnannneaeeennns 97
R 20 R o o3 1Y o o L= =S o Tod T] SRR 98
13.2 Creating FUNCLION ODJECTScii ittt ettt e e sb e e e st e e e sbr e e e e aabeeeesanneee e 98
R T A | 0 11 SRS URPROPPR 99
R T | (o] 1111 U To] | | OO PP P PP PPPPPROPPPPRPOPPR 99
13.2.3 The [[ThrowTypeError]] FUNCLION ODJECTcoi i 99
14 e oo =1 o PP TP PP TP PP PP P TP TP 100
14.1 Directive Prologues and the USe StriCt DIr€CHIVEciii i 100
15 Standard Built-in ECMASCIIPt ODJECES ...uuiiiiieiiiiiiiiiee ettt et e e e e st bre e e e e e e nannees 101
70 R I o L= €1 o o - I @] o =T o SRR 102
15.1.1 Value Properties of the Global ObjJECT ... e 102
15.1.2 Function Properties of the Global ODJECTccoi i 102
15.1.3 URIHaNdling FUNCLION PrOPEITIES ..uuiiiiiiiiiiiiii ettt e e s st e e e e e e e et e e e e e e s sntnaeeeaeeeannnnes 104
15.1.4 Constructor Properties of the Global ObJECT........c..vveiiiii e 109
15.1.5 Other Properties of the Global ODJECT ... 110
T @ o= Toa A O] o] 1= o £ T PSP PU PP PP 110
15.2.1 The Object Constructor Called as a FUNCLIONccuiiiiiiiiii e 110
15.2.2 The ODJECT CONSIIUCTON .iiiiiiiiiiiiii ettt e e skt e s anbb e e et ae e e enbe e e e anreas 110
15.2.3 Properties of the ODJECT CONSTIUCTON ...couuiiiiiiiiie it 111
15.2.4 Properties of the Object Prototype ODJECT.........ooi i 114
15.2.5 Properties Of ODJECT INSTANCESuuiiiiiiiiiiiiii ettt e et e e e e e e anbbre e e e e e e e annes 115
TG B o U1 T3 (o] g @ o [T o €T PP 115
15.3.1 The Function Constructor Called as @ FUNCLIONoiiiiiiiiiiiii e 115
15.3.2 The FUNCLION CONSIIUCTON ...viiiiiiiiie ittt ettt ettt e st e e e et e e s st e e e snsbe e e s nbee e e esbeeeeaneeas 115
15.3.3 Properties of the FUNCLION CONSIIUCTONuuiiiiii it er e srre e e e e e e e s s e e e e e e e e nnneees 116
15.3.4 Properties of the FUNCtion Prototype ObjJECT.......ccuiiiiiii i 117
15.3.5 Properties 0f FUNCLION INSTANCESiiii it e e e e e e et ar e e e e s s st e e e e e e e annnnes 119
T R N -V @ o =T o £ EERS 120
15.4.1 The Array Constructor Called as a FUNCLIONcooiiiiiiiie e 121
15.4.2 THe AITaY CONSIIUCTON .uuiiiiiiiiiiiiiie ettt ettt ettt e sttt e e s bt e e s bt et e e sabb e e e sabbe e e s sabbeeesnbbeeesnnnneas 121
15.4.3 Properties Of the Array CONSIIUCTONoiuiiiiiiiiie e 122
15.4.4 Properties of the Array Prototype ODJECTcoueiiiiiiiii e 122
15.4.5 Properties Of Array INSTANCESooo it et e e e 138
J T T S 1] o [o I @ o =T o £ OO PO P PP PU PP PUPPPO 140
15.5.1 The String Constructor Called as a FUNCLIONuiiiiiiiii e 140
15.5.2 The STHNQG CONSTIUCTOTuiiiiiiiiiiiiitii ettt e ettt e e e e e sttt e e e e e s abebe e e e e e e e ansbeeeeaaeesanbbbeeeaeeeaannnes 140
15.5.3 Properties of the String CONSIIUCTONo..uiiiiiie e e e e e e 140

v © Ecma International 2009

secma

15.5.4 Properties of the String Prototype ODJECTcoo i 141
15.5.5 Properties Of SIriNG INSTANCESuuiiii i e e e e s e e e e e s stare e e e e e e s e nanreees 150
ST ST = Yo Yo 1= T- U I @ o =T o PSR 151
15.6.1 The Boolean Constructor Called as @ FUNCLIONcoociiiiiiiiieiiiee e 151
15.6.2 The BOOIEAN CONSIIUCTON ..uiiiiiiiiie ittt ettt sttt ettt e e sttt e e saae e e e snbte e e s annaeeesnneeeas 151
15.6.3 Properties of the BO0OIean CONSIIUCTONciiiiiiiiciiiieiee et r e s e e e e e s e e e e e s ee e e e e e s e nnnenees 151
15.6.4 Properties of the Boolean Prototype ODJECTcuuiiiiiiiiiiiiie e 151
15.6.5 Properties 0f BOOIEAN INSTANCEScoiiiiiiiiiiiiie ettt sneeeas 152
T A V(01401 o 1= G @ o] [T o £ PSP O PP PTPPTP 152
15.7.1 The Number Constructor Called @s @ FUNCLIONocoooiiiiiiiiie e 152
15.7.2 The NUMBDEI CONSIIUCTON ..ciiiiiiiiiiii ittt e e e e e e e ettt e e e e e e sntteeeeaeesanenneeeeeeeaannnenees 152
15.7.3 Properties of the NUMBDer CONSTIUCTIONcoouiiiiiiiiii s 152
15.7.4 Properties of the Number Prototype ODjJeCT.........uuiiiiiiii e 153
15.7.5 Properties Of NUMDEr INSTANCESccooi it a e e e e e e aeeeees 157
15.8 The Math ODJECT ...co ittt ettt e e e e et b et e e e e e e s bbb e e e e e e e s annenees 157
15.8.1 Value Properties of the Math ODBJECTuvviii i e 158
15.8.2 Function Properties of the Math ODJECT.........cooiiiiiiii e 159
TR N B T 1 = @ o 1 =T PSR 163
15.9.1 Overview of Date Objects and Definitions of Abstract Operatorsccccccvvveeeeeeiviiineeeeeeevesnine 163
15.9.2 The Date Constructor Called as @ FUNCLIONoiuiiiiiiiiie et 168
15.9.3 The Date CONSIIUCTON .. uuutiiiiiee s ittt ite e e ceet e e e e s e ettt e e e e e s st eeeeeesasstaeeeeeeesasssaneaeeeeeannsssneeeeesannsnsnnes 168
15.9.4 Properties Of the Date CONSTIUCTONccoiuiiiiiiiii it sneeees 169
15.9.5 Properties of the Date Prototype ODJECT.......c.ueiiiiiiiiiii s 170
15.9.6 Properties Of DAte INSTANCESciiiiuiiiiiiiie ettt et e e b e e e sneeeas 178
15.10 RegExp (Regular EXpression) ODJECTSccciiiiiiiiiiieiiiie ettt 178
ST O A = 11 1= o 0 P PP TUTU TP PP TTTP PP 178
15.20.2 PAEIN SEIMANTICS ieiiiieiiiiiee ettt ettt e e e e ettt e e e e s o bttt e e e e e e s e abbeeeeaaeaaaanbbeeeeaeeesannbbaeeaaesaannnrnees 180
15.10.3 The RegExp Constructor Called as a FUNCLION ... 192
15.10.4 The REGEXP CONSTIUCTON ..ciiiiiiiiiiit ettt ettt e e e e st e et e e e e e sasbb e e e e e e e e anbbbeeeaeeesannenees 192
15.10.5 Properties of the REGEXP CONSIIUCIOT ...uuviiiiiiii et e e e e e e e e e narae e e e e e s anenees 193
15.10.6 Properties of the RegEXp Prototype ODJECTcuviiiiii i 193
15.10.7 Properties 0f REGEXP INSTANCESiiviii ittt s e e e e e e st e e e e e s st ee e e e e e e s nnnnneees 195
LT I R oY G oY =T o] £ P EER 195
15.11.1 The Error Constructor Called @s @ FUNCHIONoocuiiiiiiiiii e 195
LT 2 g Lol Y o] g @Y] 4 1 (o] (0] S PSP R 196
15.11.3 Properties Of the Error CONSTIUCTONoiuiiiiiiiiii ettt 196
15.11.4 Properties of the Error Prototype ODJECT.........uii ittt 196
15.11.5 Properties Of ErTOr INSTANCESoii ittt ettt et e et e e e sbne e e e snneeas 197
15.11.6 Native Error Types Used in This Standardcccccoiiiiiiiiiie it 197
15.11.7 NatiVEEITOr ODJECT STIUCTUIEeiiiiiiiiii ittt ettt ettt ettt et e e snn e e e snneeas 198
LT N LI 1T @ NV @ o] =T] SRS 199
LT R N LI 1@ N] T 4 0 - RSP TPSP 200
15.12.2 PArSE (TEXE [, FEVIVEE |) uutitiiiiiiiiitiitete oottt ettt e e ettt e e e e oo e abb bt et e e e e e aanbbe e e e e e e e annnbrbeeaeeesannenees 201
15.12.3 stringify (value [, replacer [, SPACE []) ettt et 202
16 T 0 TR PPPPPPPTPP 206
Annex A (informative) Grammar SUMIMEAIYc.ueeeiiieeeeiieeeeiieeeessiieeessteeeessteeeessieeessssseesssseeessnsseesssseessans 208
Annex B (informative) CompPatibDilityeeiiiiiiiieiic e 228
Annex C (informative) The Strict Mode Of ECMASCIIPE ...uviiiiiiiee ittt 232
Annex D (informative) Corrections and Clarifications in the 5" Edition with Possible 3" Edition
ComPAtiDIlItY IMPACT ...coiiiiieii ettt et e e e bt e e s sabe e e e sbbeeessnbeeeeans 234

Annex E (informative) Additions and Changes in the 5" Edition that Introduce Incompatibilities
VL d AR =T A e T4 Yo SRR 236

© Ecma International 2009 V

Vi

oecmna

© Ecma International 2009

secmd

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that companyds Navigator 2.0 browser. It
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not
completed and not published! as the fourth edition of ECMAScript, it informs continuing evolution of the
language. The present fifth edition of ECMAScript (published as ECMA-262 5% edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecmastandar d numb-262AEGMAIi on 40 was r
used in the Ecma publicat i-2hM2 pEdicteisen dheaefane EABEMANt er |
exist.

© Ecma International 2009 Vil

secmd

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

VIII © Ecma International 2009

»ecma

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall interpret characters in conformance with the
Unicode Standard, Version 3.0 or later and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted
encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is
presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it
presumed to be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use@&l2offthistsgedficafidn.ut ur e

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages i C, including amendment 1 and technical corrigenda 1 and 2

ISO/IEC 10646-1:1993, Information Technology i Universal Multiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific host objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2009 1

secma

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Javad , Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java® Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
2271 241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScriptd not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be usedd for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These

built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the

2 © Ecma International 2009

»ecma

JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
thathas a pr o p e mpiotgtype adthatds used to implement prototype-based inheritance and shared
properties. Objects are created by using constructors in new expressions; for example, new
Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date() produces a string representation of the current date and
time rather than an object.

Every object created by a constructor has an implicit reference (called the o b j e pratofyse) to the value of

its consprototypet Or psofperty. Furt her mor e,-nuaimpiait cetererceytpits ma
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,

that reference is to the property of that name in the first object in the prototype chain that contains a property

of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain

the named property, the prototype for that object is examined next; and so on.

A A ... >
""""" CE implicit prototype link
prototype Tch o .
P1
. CEP1 explicit prototype property

......... oh el py o o
ql ql ql ql ql
g2 q2 g2 g2 g2

Figure 1 0 Object/Prototype Relationships

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, and structure, behaviour, and state are all inherited.

© Ecma International 2009 3

secma

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfy,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfz0 prototype is CF,. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFy, cfy, cfs, cfs, cfs, or cfs. The property named CFP1in CF,
is shared by cfy, cf,, cfs, cfs, and cfs (but not by CF), as are any properties found in CFy,0 @mplicit prototype
chain that are not named g1, g2, or CFPL1 Notice that there is no implicit prototype link between CF and CF;.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to

them. That i s, constructors are not required to name

properties. In the above diagram, one could add a new shared property for cfi, cf,, cfs, cfs, and cfs by
assigning a new value to the property in CFy.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Definitions

For the purposes of this document, the following terms and definitions apply.

43.1

type

set of data values as defined in Clause 8 of this specification.

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8.
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object.

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2009

or

secma

4.3.4

constructor

Function object that creates and initialises objects.

NOTE The value of protaypen sot rpucotpoerrétsy fi s thatip usedttoirmplement inbidritaneec t
and shared properties.

435

prototype

object that provides shared properties for other objects.

NOTE When a constructor creates an object, t pratotyp® by epcrto pi enmrpt
forthe purpose of resol ving pr ope protgtyper edf eprreonpceerst.y Tchaen cboen srt @
program expression constructor .prototype and properties added to an object

inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object.create built-in function.

4.3.6

native object

object in an ECMAScript implementation whose semantics are fully defined by this specification rather than by
the host environment.

NOTE Standard native objects are defined in this specification. Some native objects are built-in; others may be
constructed during the course of execution of an ECMAScript program.

4.3.7

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program.

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. Every built-in object is a native object. A built-in constructor is a built-in object that is also a constructor.

4.3.8
host object
object supplied by the host environment to complete the execution environment of ECMAScript.

NOTE Any object that is not native is a host object.

4.3.9
undefined value
primitive value used when a variable has not been assigned a value.

4.3.10
Undefined type
type whose sole value is the undefined value.

43.11
null value
primitive value that represents the intentional absence of any object value.

4.3.12

Null type

type whose sole value is the null value.
4.3.13

Boolean value

member of the Boolean type.

NOTE There are only two Boolean values, true and false.

© Ecma International 2009 5

secma

4.3.14
Boolean type
type consisting of the primitive values true and false.

4.3.15
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor.

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal property whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.3.16
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer.

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.17
String type
set of all possible String values.

4.3.18
String object
member of the Object type that is an instance of the standard built-in String constructor.

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as
an argument. The resulting object has an internal property whose value is the String value. A String object can be coerced
to a String value by calling the String constructor as a function (15.5.1).

4.3.19
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value.

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.20

Number type

set of all possible Number values including the specia | faNatmber 0 (NaN) val ues, posit

negative infinity.

4.3.21
Number object
member of the Object type that is an instance of the standard built-in Number constructor.

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal property whose value is the Number value. A Number object can be
coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.22
Infinity
Number value that is the positive infinite Number value.

4.3.23

NaN
Number value thatisal EEE 7 5a&N uinNboear 0 v al ue.

6 © Ecma International 2009

secma

4.3.24

function

member of the Object type that is an instance of the standard built-in Function constructor and that may be
invoked as a subroutine.

NOTE In addition to its named properties, a function contains executable code and state that determine how it
behaves when i nvoked. orayha beavtitteromeCKIAScriptd e may

4.3.25
built-in function
built-in object that is a function.

NOTE Examples of built-in functions include parseint and Math.exp . An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.26

property
association between a name and a value that is a part of an object.

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.27
method
function that is the value of a property.

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.28
built-in method
method that is a built-in function.

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.29
attribute
internal value that defines some characteristic of a property.

4.3.30
own property
property that is directly contained by its object.

4.3.31
inherited property

property of an object t hat is not an own property

prototype.

5 Notational Conventions
5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars
A context-free grammar consists of a number of productions. Each production has an abstract symbol called a

nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

© Ecma International 2009 7

b

secma

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharactedefined in Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDivor InputElementRegExpthat describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for

ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and

punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,

also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).

Simple white space and single-line comments are discarded and do not appear in the stream of input

elements for the syntactic grammar. A MultiLineCommen{ t hat i s, a c onfnée*hda mdégarhel d o9
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineCommentontains one or more line terminators, then it is replaced by a single line terminator, which

becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacterit defines a set of productions, starting from the goal symbol Pattern
that describe how sequences of characters are translated into regular expression patterns.

Productions of the 1l exical and RegExp gr ammarss sarpear @it s tn
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter This
grammar appears in 9.3.1.

Productionsof t he numeric string grammar ar e:odiasst ipnugnuci tsuhaetdi obny.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Program that describe how sequences of tokens can form syntactically correct
ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript program, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by
a single application of the syntactic grammar. The program is syntactically in error if the tokens in the stream
of input elements cannot be parsed as a single instance of the goal nonterminal Program with no tokens left
over.

Productions of the syntactic grammar :0araes ¢iustcitrugauiiomed b

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
fakwardo places.

8 © Ecma International 2009

secma

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON Il exical gr ammar ::0areaes ddespad rne
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions of the JSON
syntactic grammar are di std nagsuissehpeadr abtyi nugs i pnugn cotnwea tciod rno

5.1.6 Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown in fixed width font, both in the productions of the grammars and throughout this
specification whenever the text directly refers to such a terminal symbol. These are to appear in a program
exactly as written. All terminal symbol characters specified in this way are to be understood as the appropriate
Unicode character from the ASCII range, as opposed to any similar-looking characters from other Unicode
ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar
the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on
succeeding lines. For example, the syntactic definition:

WhileStatement
while (Expression Statement

states that the nonterminal WhileStatementepresents the token while , followed by a left parenthesis token,
followed by an Expressionfollowed by a right parenthesis token, followed by a StatementThe occurrences of
Expressiorand Statemenare themselves nonterminals. As another example, the syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList, AssignnentExpression

states that an ArgumentListmay represent either a single AssignmentExpressiam an ArgumentListfollowed by
a comma, followed by an AssignmentExpressioithis definition of ArgumentLists recursive, that is, it is defined
in terms of itself. The result is that an ArgumentListmay contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpressiorSuch recursive definitions of
nonterminals are common.

The subscr iot,e dwihsiyefitear afterfa terminal or nonterminal, indicates an optional symbol.
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclardion :
Identifier Initialiserop

is a convenient abbreviation for:
VariableDeclaration:

Identifier
Identifier Initialiser

© Ecma International 2009 9

secma

and that:

IterationStatement
for (ExpressionNolg: ; Expressiog: ; Expressiog) Statement

is a convenient abbreviation for:
lterationStatement
for (; Expressiopy: ; Expressiog:) Statement

for (ExpressionNoln; Expressiog, ; Expressiog:) Statement

which in turn is an abbreviation for:

IterationStatement
for (;; Expressiog,) Statement
for (; Expression; Expressiony) Statement
for (ExpressionNoln; ; Expressiog:) Statement

for (ExpressionNoln; Expression; Expressiog:) Statement

which in turn is an abbreviation for:

IterationStatement
for(;;) Statement
for (;; Expression) Statement
for (; Expression;) Statement
for (; Expression; Expression) Statement

for (ExpressionNoln ;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Stakment

so the nonterminal IterationStatemenractually has eight alternative right-hand sides.

I f t he [epphylo aapp @ar s -hand stddvaf a pradgction, it indicates that the production's right-
hand side contains no terminals or nonterminals.

If t he [podkaheads eel0fi ap pe ar s -hamd silehoka produgtibrt, it indicates that the production
may not be used if the immediately following input token is a member of the given set The setcan be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit:: one of
012345678 9

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit
the definition
LookaheadExample
N [lookahead i {1,3,5,7,9}] DecimalDigits
DecimalDigit [lookahead I DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

10 © Ecma International 2009

secma

| f t he [hpLheTeandawmherfl0 app e ar s -hamd sidetolea produgtibntof the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminatoroccurs in the
input stream at the indicated position. For example, the production:

ReturnStatement
return [no LineTerminatorhere] EXpI’eSSiOQ)t ;

indicates that the production may not be used if a LineTerminatoroccurs in the program between the return
token and the Expression

Unless the presence of a LineTerminatoris forbidden by a restricted production, any number of occurrences of
LineTerminatormay appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the program.

When t heonwofodd ofil ow the colon(s) in a grammar defini
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::

O©CoO~NOOUITD,WNPE

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
foutnotd and then indicating the expansions to be exclud

Identifier ::
IdentifierNamebut not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not replace ReservedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter.
any Unicode code unit

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available to implement a given feature.

© Ecma International 2009 11

secma

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations,
are named and written in parameterized functional form so that they may be referenced by name from within
other algorithms.

When an algorithm is to producreéurnad viasl uuwes eads tao reenidfilcta t et htel

the algorithm is the value of x and that the algorithm should terminate. The notation Resultf) is used as
short handesultofstepidt h e

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.
b. Substep
i. Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep
A step or substep may be w tten as an #Aif
are only appli
the negation o [

t he ppratethe sathe lavgl. 0 predicate ste

A step may specify the iterative application of its substeps.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or - 0 then the corresponding mathematical value is simply O.

The mathematical function absgk) yields the absolute value of x, which is - x if x is negative (less than zero) and
otherwise is x itself.

The mathematical function sign() yields 1 if x is positive and - 1 if x is negative. The sign function is not used in
this standard for cases when x is zero.

The notxmodulayd y rfiust be finite and nonzero) computes a value k of the same sign as y (or zero)
such that absk) < absy) andx- k=q3 yfor some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.

NOTE floor(x) = x- (x modulo 1).

| f an algorithm is defined to Athrow an exceptiono,

returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals

with the exception, usingter mi nol ogy such as #Alf an exception was

has been encountered the exception is no longer considered to have occurred.

6 Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding,
version 3.0 or later. The text is expected to have been normalised to Unicode Normalised Form C (canonical

12 © Ecma International 2009

roi 0O predicate that conditi
ed if the predicate is true. I f a step
f i f

or

e xe

t hr

secma

composition), as described in Unicode Technical Report #15. Conforming ECMAScript implementations are
not required to perform any normalisation of text, or behave as though they were performing normalisation of
text, themselves. ECMAScript source text is assumed to be a sequence of 16-bit code units for the purposes
of this specification. Such a source text may include sequences of 16-bit code units that are not valid UTF-16
character encodings. If an actual source text is encoded in a form other than 16-bit code units it must be
processed as if it was first convert to UTF-16.

SourceCharacter.
any Unicode code unit

Throughouttherest of t hi s document, the phrase ficode unito a
16-bit unsigned value used to represent a single 16-b i t unit of text. The phrase
used to refer to the abstract linguistic or typographical unit represented by a single Unicode scalar value

(which may be longer than 16 bits and thus may be represented by more than one code unit). The phrase
Afcode pointo refers to such a Unicode scal apresemtedlby e .
single Unicode scalar values: the components of a col
characters, 0 even though a user might think of the wh

In string literals, regular expression literals, and identifiers, any character (code unit) may also be expressed
as a Unicode escape sequence consisting of six characters, namely \ u plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or
regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE Although this documentsomet i mes refers to a Atransformationd betw
16-b i t unsigned integer that is the code wunit of that char a
within a fAstringo i s tha t6étbihundignedvalue.pr esented using

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java
program, if the Unicode escape sequence \ uO00A, for example, occurs within a single-line comment, it is interpreted as a
line terminator (Unicode character O00A is line feed) and therefore the next character is not part of the comment. Similarly,
if the Unicode escape sequence \ uO0O0A occurs within a string literal in a Java program, it is likewise interpreted as a line
terminator, which is not allowed within a string literald one must write \ n instead of \ uOOOA to cause a line feed to be part
of the string value of a string literal. In an ECMAScript program, a Unicode escape sequence occurring within a comment
is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence
occurring within a string literal in an ECMAScript program always contributes a character to the String value of the literal
and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. The InputElementDivsymbol is used in those syntactic
grammar contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExgymbol is used in other syntactic grammar contexts.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteradre permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the
following:

a=b

/hi/g.exec(c).map(d);
where the first non-whitespace, non-comment character after a LineTerminatoris slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator That is, the above example is interpreted in
the same way as:

a=b/hi/g. exec (c).map(d);

© Ecma International 2009 13

secma

Syntax

InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

7.1 Unicode Format-Control Characters

The Unicode format-c ont r ol characters (i.e., t he dcbda rChacatter r s

Database such as LEFT-TO-RIGHT MARK Of RIGHT-TO-LEFT MARK) are control codes used to control the formatting
of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals and regular expression literals.

<ZWNJ>and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ>and <ZWJ> may also be used in
an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarized in Table 1.

Table 10 Format-Control Character Usage

Code Unit Value Name Formal Name Usage

\ u200C Zero width non-joiner <ZWNJ> IdentifierPart
\ u200C Zero width joiner <ZWJ> IdentifierPart
\ UFEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may also occur within a StringLiteral or a
RegularExpressioriteral (where they are considered significant characters forming part of the literal value) or
within a Commentbut cannot appear within any other kind of token.

The ECMAScript white space characters are listed in Table 2.

14 © Ecma International 2009

»ecma

Table 283 Whitespace Characters

Code Unit Value Name Formal Name

\ u0009 Tab <TAB>

\ uo00B Vertical Tab <VT>

\ u0d0oC Form Feed <FF>

\ u0020 Space <Sp>

\ uOOAO No-break space <NBSP>

\ UFEFF Byte Order Mark <BOM>

Ot her <cat eg Any other Unicode <USP>
ispace sepa

ECMAScript implementations must recognize all of the white space characters defined in Unicode 3.0. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognize white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral Line terminators may only occur within a StringLiteral
token as part of a LineCoriinuation

A line terminator can occur within a MultiLineCommen(7.4) but cannot occur within a SingleLineComment

Line terminators are included in the set of white space characters that are matched by the \ s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.

Table 38 Line Terminator Characters

Code Unit Value Name Formal Name
\ uOOOA Line Feed <LF>
\ uod00D Carriage Return <CR>
\ u2028 Line separator <LS>
\ u2029 Paragraph separator <PS>

Only the characters in Table 3 are treated as line terminators. Other new line or line breaking characters are
treated as white space but not as line terminators. The character sequence <CR><LF> is commonly used as
a line terminator. It should be considered a single character for the purpose of reporting line numbers.

© Ecma International 2009 15

secma

Syntax

LineTerminator::
<LF>
<CR>
<S>
<PS>

LineTerminatorSequence
<LF>
<CR>[lookahead | <LF>]
<LS>
<PS>
<CR> <LF>

7.4 Comments
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminatorcharacter, and because of
the general rule that a token is always as long as possible, a single-line comment always consists of all
characters from the // marker to the end of the line. However, the LineTerminatorat the end of the line is not
considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineCommentcontains a line
terminator character, then the entire comment is considered to be a LineTerminatorfor purposes of parsing by
the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:
/* MultiLineCommentChaesg: */

MultiLineCommentChars:
MultiLineNotAsteriskChar MultiLineCommentChayis
* PostAsteriskCommentChags

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChags

MultiLineNotAsteriskChar:
SourceChaacterbut not asterisk*

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not forward-slash/ or asterisk*

SingleLineComment
/I SingleLineCommentChags

SingleLineCommentChars
SingleLineCommentChar SingleLineCommentClars

16 © Ecma International 2009

secma

SingleLine@mmentChar:
SourceCharactebut not LineTerminator

7.5 Tokens

Syntax

Token::
IdentifierName
Punctuator
NumericLiteral
StringLiteral

NOTE The DivPunctuatorand RegularExpressionLiterabroductions define tokens, but are not included in the Token
production.

7.6 ldentifier Names and ldentifiers

ldentifier Names are tokens that are interpreted acc:
chapter 5 of the Unicode standard, with some small modifications. An Identifier is an IdentifierNamethat is not

a ReservedWordsee 7.6.1). The Unicode identifier grammar is based on both normative and informative
character categories specified by the Unicode Standard. The characters in the specified categories in version

3.0 of the Unicode standard must be treated as in those categories by all conforming ECMAScript
implementations.

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted
anywhere in an ldentifierName

Unicode escape sequences are also permitted in an IdentifierName where they contribute a single character to
the IdentifierName as computed by the CV of the UnicodeEscapeSequen¢gee 7.8.4). The \ preceding the
UnicodeEscapeSequendees not contribute a character to the IdentifierName A UnicodeEscapeSequencannot
be used to put a character into an IdentifierNamethat would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequensequence were replaced by its UnicodeEscapeSequere€V, the result must still be
a valid IdentfierNamethat has the exact same sequence of characters as the original ldentifierName All
interpretations of identifiers within this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two IdentifierNamethat are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values). The intent is that the
incoming source text has been converted to normalised form C before it reaches the compiler.

ECMAScript implementations may recognize identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in Unicode
3.0.

Syntax
Identifier ::
IdentifierNamebut not ReservedWord

IdentifierName::
IdentifierStart
IdentifierName IdgtifierPart

© Ecma International 2009 17

secma

IdentifierStart::

UnicodeLetter
$

\ UnicodeEscapeSequence

IdentifierPart::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
<ZWNJ>
<ZWJ>

UnicodeLetter

any character in the Unicode) cdatfelgowercasidplpetrtcar e(U le)

(Lt) o, AModi fier letter (Lm)o, fAOther | etter (Lo)o, o
UnicodeCombiningMark

any character i n the-slpmicciondge ntaartke gioMni)eds ofr NoinCo mbi ni ng
UnicodeDigit

any character in the Unicode category fDecimal number
UnicodeConnectorPunctuation

any character in the Unicode category fiConnector punc

UnicodeEscapeSequence
see 7.8.4.

7.6.1 Reserved Words

A reserved word is an IdentifierNamethat cannot be used as an ldentifier.

Syntax

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiersin ECMAScript programs.

Syntax

Keyword:: one of
break do instanceof typeof
case else new var
catch finally return void
continue for switch while
debugger function this with
default if throw
delete in try

18 © Ecma International 2009

secma

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

Syntax

FutureReservedWord one of
class enum extends super
const export import

The following tokens are also considered to be FutureReservedWordshen they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the
occurrence of a FutureReservedWonrdould produce an error must also produce an equivalent error:

implements let private public yield
interface package protected static

7.7 Punctuators

Syntax
Punctuator:: one of

: , < > <=
>= == I= === I==

+ - * % ++ -
<< >> >>> & | n

I ~ && I 2

= += - = *= %= <<=
>>= >>>= &= |: N=

DivPunctuator:: one of
/ /=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral
RegularExpressionLiteral

7.8.1 Null Literals
Syntax

NullLiteral ::
null

© Ecma International 2009 19

secma

Semantics

The value of the null literal null is the sole value of the Null type, namely null.
7.8.2 Boolean Literals

Syntax

BooleanLiteral::
true
false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely false.
7.8.3 Numeric Literals

Syntax

NumericLiteral::
DecimalLiteral
HexIntegerLiteral

DecimalLiteral::
DecimalintegerLiteral DecimalDigitsy: ExponentPatky:
. DecimalDigits ExponentPay:
DecimalintegerLiteral ExponentPapt

DecimalintegerLiterat:
0

NonZeroDigit DeamnalDigitSopt

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
Exponentindicator Signedinteger

Exponentindicator: one of
e E

Signedinteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

20 © Ecma International 2009

»ecma

HexDigit:: one of

0123456789abcdefABCDEF

The source character immediately following a NumericLiteralmust not be an IdentifierStartor DecimalDigit

NOTE For example:

3in

is an error and not the two input elements 3 and in .

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as described
below.

= =4 =4 =4

]

=4 =4 =4 4 4 -4 4 5 -8 -4 -4 -4 -4 -8 -4 -9

The MV of NumericLiteral:: DecimalLiteralis the MV of DecimalLiteral

The MV of NumericLiteral:: HexIntegerLiterals the MV of HexInegerLiteral

The MV of DecimallLiteral:: DecimalintegerLiteral is the MV of DecimalintegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral. DecimalDigitsis the MV of DecimallntegerLiteralplus
(the MV of DecimalDigitstimes 10"), where n is the number of characters in DecimalDigit.

The MV of DecimalLiteral:: DecimallntegerLiteral. ExponentPartis the MV of DecimallntegerLiteratimes
10°, where e is the MV of ExponentPart

The MV of DecimalLiteral :: DecimalintegerLiteral . DecimalDigits EponentPart is (the MV of
DecimalintegerLiteralplus (the MV of DecimalDigits times 10") times 10°, where n is the number of
characters in DecimalDigisand e is the MV of ExponentPart

The MV of DecimalLiteral::. DecimalDigitsis the MV of DecimalDigit times 10", where n is the number of
characters in DecimalDigiss.

The MV of DecimalLiteral::. DecimalDigits ExponentPait the MV of DecimalDigitstimes 10", where n is
the number of characters in DecimalDigits and e is the MV of ExponentPart

The MV of DecimalLiteral:: DecimalintegerLiterals the MV of DecimallntegerLiteral

The MV of DecimallLiteral:: DecimallntegerLiteral ExponentPai$ the MV of DecimalintegerLiteratimes 107,
where eis the MV of ExponentPart

The MV of DecimallntegerLiterat: 0 is 0.

The MV of DecimallntegerLiteral: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10") plus
the MV of DecimalDigits where n is the number of characters in DecimalDigits

The MV of DecimalDigits:: DecimalDigitis the MV of DecimalOgit.

The MV of DecimalDigits:: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart: Exponentindicator Signedintegsrthe MV of Signedinteger
The MV of Signedinteger: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: - DecimalDigitsis the negative of the MV of DecimalDigits
The MV of DecimalDigit:: 0 or of HexDigit:: 0 is 0.

The MV of DecimalDOgit :: 1 or of NonZeroDigit:: 1 or of HexDigit:: 1 is 1.

The MV of DecimalDigit:: 2 or of NonZeroDigit:: 2 or of HexDigit:: 2 is 2.

The MV of DecimalDigit:: 3 or of NonZeroDigit:: 3 or of HexDigit:: 3 is 3.

The MV of DecimalDigit:: 4 or of NonZeoDigit :: 4 or of HexDigit:: 4 is 4.

The MV of DecimalDigit:: 5 or of NonZeroDigit:: 5 or of HexDigit:: 5 is 5.

The MV of DecimalDigit:: 6 or of NonZeroDigit:: 6 or of HexDigit:: 6 is 6.

The MV of DecimalDigit:: 7 or of NonZeroDigit:: 7 or of HexDgit :: 7 is 7.

The MV of DecimalDigit:: 8 or of NonZeroDigit:: 8 or of HexDigit:: 8 is 8.

The MV of DecimalDigit:: 9 or of NonZeroDigit:: 9 or of HexDigit:: 9 is 9.

The MV of HexDigit:: a or of HexDigit:: Ais 10.

The MV of HexDigit:: b or of HexDigit :: Bis 11.

© Ecma International 2009 21

secma

The MV of HexDigit:: ¢ or of HexDigit:: Cis 12.
The MV of HexDigit:: d or of HexDigit:: Dis 13.
The MV of HexDigit:: e or of HexDigit:: Eis 14.
The MV of HexDigit:: f or of HexDigit:: Fis 15.
The MV of HexIntegerLiterat: Ox HexDigitis the MV of HexDigit
The MV of HexIntegerLiteral: 0X HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral: HexIntegerLiteraHexDigitis (the MV of HexIntegerLiteratimes 16) plus the
MV of HexDigit

= =4 =4 =4 -4 A -

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteraland the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a O digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentPar&and

1 itisnotO;or
1 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
NumericLiteralto include OctallntegerLiteralas described in B.1.1.

7.8.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence. All characters may appear literally in a string literal except for the closing
guote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character
may appear in the form of an escape sequence.

Syntax

StringLiteral::
" DoubleStringCharactegs: "
' SingleStringCharactess: '

DoubleStringCharacters
DoubleStrngCharacter DoubleStringCharactegs

SingleStringCharacters
SingleStringCharacter SingleStringCharactgrs

DoubleStringCharacter:
SourceCharactebut not doublequote" or backslash or LineTerminator
\ EscapeSequence
LineContinuation

SingleString@aracter::
SourceCharactebut not singlequote’ or backslash or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation:
\ LineTerminatorSequence

22 © Ecma International 2009

secma

EscapeSequence
CharacterEscapeSequence
O [lookahead T DecimalDigif
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of
t \' bfnrtyv

NonEscapeCharacter
SourceCharactebut not EscapeCharacteor LineTerminator

EscapeCharacter.
SingleEscapCharacter
DecimalDigit
X
u

HexEscapeSequence
x HexDigit HexDigit

UnicodeEscapeSequence
u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminal HexDigitis given in 7.6. SourceCharacteis defined in clause 6.

Semantics

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some
characters within the string literal are interpreted as having a mathematical value (MV), as described below or
in 7.8.3.

1 The SV of StringLiteral:: ™ is the empty character sequence.

1 The SV of StringLiteral:: " is the empty character sequence.

1 The SV of StringLiteral:: " DoubleStringCharacter$ is the SV of DoubleStringCharacters

1 The SV of StringLiteral:: ' SingleStringCharacters is the SV of SingleStringCharacters

1 The SV of DoubleStringCharacters: DoubleStringCharacteis a sequence of one character, the CV of
DoubleStringCharacter

1 The SV of DoubleStringCharacters DoubleStringCharacteDoubleStringCharacters a sequence of the CV

of DoubleStringCharactefollowed by all the characters in the SV of DoubleStringCharacters order.

1 The SV of SingleStringCharacters: SingleStringCheacter is a sequence of one character, the CV of
SingleStringCharacter

1 The SV of SingleStringCharacters SingleStringCharacteBingleStringCharacters is a sequence of the CV
of SingleStringCharactefollowed by all the characters in the SV of SingleStmngCharactersn order.

1 The SV of LineContinuatiorn: \ LineTerminatorSequendgthe empty character sequence.

1 The CV of DoubleStringCharacter. SourceCharactebut not doublequote" or backslasi or LineTerminator
is the SourceCharactecharacter itself.

1 The CV of DoubleStringCharacter: \ EscapeSequenégthe CV of the EscapeSequence

1 The CV of SingleStringCharacter: SourceCharactebut not singlequote' or backslash or LineTerminator
is the SourceCharactecharacter itself.

1 The CV of SingleStnmgCharacter.: \ EscapeSequendégthe CV of the EscapeSequence

1 The CV of EscapeSequenceCharacterEscapeSequenisghe CV of the CharacterEscapeSequence

© Ecma International 2009 23

secma

1 The CV of EscapeSequence0 [lookaheadT DecimalDigif is @ <NUL> character (Unicode value 0000).
1 The CV of EscapeSequenceHexEscapeSequenitthe CV of the HexEscapeSequence
1 The CV of EscapeSequenceUnicodeEscapeSequenisaghe CV of the UnicodeEscapeSequence
1 The CV of CharacterEscapeSequenceSingleEscapeCharactas the character whose code unit value is
determined by the SingleEscapeCharactaccording to Table 4:
Table 4 8 String Single Character Escape Sequences
Escape Sequence Code Unit Value Name Symbol

\b \ u0008 backspace <BS>

\t \ u0009 horizontal tab <HT>

\n \ uOOOA line feed (new line) <LF>

\v \ u000B vertical tab <VT>

\ f \'uoooC form feed <FF>

\r \ uod00D carriage return <CR>

\ " \ u0022 double quote)

\' \ u0027 single quote '

\\ \ u005C backslash \
1 The CV of CharacterEscapeSequencéNonEscapeCharactés the CV of the NonEscapeCharacter

1 The CV of NonEscapeCharacter: SourceCharacterbut not EscapeCharacteror LineTerminatoris the
SourceCharactecharacter itself.

1 The CV of HexEscapeSequencex HexDigit HexDigit is the character whose code unit value is (16 times
the MV of the first HexDigit) plus the MV of the second HexDigit.

1 The CV of UnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the character whose code
unit value is (4096times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus
(16times the MV of the third HexDigit) plus the MV of the fourth HexDigit

A conforming implementation, when processing strict mode code (see 10.1.1), may not extend the syntax of
EscapeSequende include OctalEscapeSequenes described in B.1.2.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuationto produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \ n or \ uO0OA.

7.8.5 Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that
never compare as === to each other even if the two literals' contents are identical. A RegExp object may also
be created at runtime by new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The Strings of characters comprising the
RegularExpressionBodgnd the RegularExpressionFlagare passed uninterpreted to the regular expression
constructor, which interprets them according to its own, more stringent grammar. An implementation may
extend the regular expression constructor's grammar, but it must not extend the RegularExpressionBodsnd
RegularExpressionFlagsroductions or the productions used by these productions.

Syntax

RegularExpressionLiterat
/ RegularExpressionBody RegularExpressionFlags

24 © Ecma International 2009

secma

RegularExpressionBody
RegularExpressionFirstChar RegularExgsionChars

RegularExpressionChars
[empty] _ _
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar
RegularExpressionNonTerminatout not * or\ or/ or |
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar
RegularExpressionNonTerminatbut not\ or/ or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator
SourceCharactebut not LineTerminator

RegularExpressionClass
[RegularExpressionClassChais

RegularExpressionClassChars
[empty]
RegularExpressionClassCham®RegularExpressionClassChar

RegularExpressionClassChar
RegularExpressionNonTerminatbut not] or\
RegularExpressionBackslasttfiience

RegularExpressionFlags
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/

Semantics

A regular expression literal evaluates to a value of the Object type that is an instance of the standard built-in
constructor RegExp. This value is determined in two steps: first, the characters comprising the regular
expression's RegularExpressionBodyand RegularExpressionFlagsproduction expansions are collected
uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a new
object is created as if by the expression new RegExp(Pattern, Flags) where RegExp is the standard
built-in constructor with that name. The newly constructed object becomes the value of the
RegularExpressionLiteralf the call to new RegExp would generate an error as specified in 15.10.4.1, the error
must be treated as an early error (Clause 16).

7.9 Automatic Semicolon Insertion

Certain ECMASCcript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

© Ecma International 2009 25

secma

7.9.1 Rules of Automatic Semicolon Insertion
There are three basic rules of semicolon insertion:

1. When, as the program is parsed from left to right, a token (called the offending token) is encountered that
is not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

1 The offending token is separated from the previous token by at least one LineTerminator
1 The offending token is } .

2. When, as the program is parsed from left to right, the end of the input stream of tokens is encountered
and the parser is unable to parse the input token stream as a single complete ECMAScript Program then
a semicolon is automatically inserted at the end of the input stream.

3. When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production and the token would be the first
token for a terminal or nonterminal immediately following the annotation fino LineTerminatorhere]0 within the
restricted production (and therefore such a token is called a restricted token), and the restricted token is
separated from the previous token by at least one LineTerminator then a semicolon is automatically
inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression
LeftHandSideExpressioimo LineTerminatomere] ++
LeftHand SideExpressiomo LineTerminatothere] --

ContinueStatement
continue [no LineTerminatorhere] ldentifieropt ;

BreakStatement
break [no LineTerminatotere] ldentifieropt ;

ReturnStatement
return [no LineTerminatorhere] EXpressiosyt ;

ThrowStatement
throw [no LineTerminatorhere] EXpression

The practical effect of these restricted productions is as follows:
When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminatoroccurred between the preceding token and the ++ or -- token, then a semicolon is automatically inserted

before the ++ or -- token.

When a continue , break , return , or throw token is encountered and a LineTerminatoris encountered before the
next token, a semicolon is automatically inserted after the continue , break , return , or throw token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.
An Expressionin areturn or throw statement should start on the same line as the return or throw token.

A ldentifierin a break or continue statement should be on the same line as the break or continue token.

26 © Ecma International 2009

secma

7.9.2 Examples of Automatic Semicolon Insertion

The source

{1213
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2}3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

2313,
which is a valid ECMAScript sentence.

The source

for(a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a+b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminatorseparates it from the token return

The source
a=b
++C

is transformed by automatic semicolon insertion into the following:
a=b;
++C;

NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminatoroccurs
between b and ++.

The source
if (a>b)
elsec=d
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,

even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=b+c

(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=b+c(d+ e).print()

© Ecma International 2009 27

secma

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Object.

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Property Identifier, Lexical Environment, and Environment Record.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

Withint hi s specificaType®@a, i s hasadt ast thetype ¢ikd h & h gpe® oriie flier s

ECMAScript language and specification types defined in this clause.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.2 The Null Type

The Null type has exactly one value, called null.

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(Ael ementso). The String type is generally wused t
which case each element in the String is treated as a code unit value (see Clause 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers.
The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The length of a
String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore
contains no elements.

When a String contains actual textual data, each element is considered to be a single UTF-16 code unit.
Whether or not this is the actual storage format of a String, the characters within a String are numbered by
their initial code unit element position as though they were represented using UTF-16. All operations on
Strings (except as otherwise stated) treat them as sequences of undifferentiated 16-bit unsigned integers;
they do not ensure the resulting String is in normalised form, nor do they ensure language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. The intent is that textual data coming into the execution environment from outside (e.g., user input, text read
from a file or received over the network, etc.) be converted to Unicode Normalised Form C before the running program

28 © Ecma International 2009

(o]

to t

repr e

secma

sees it. Usually this would occur at the same time incoming text is converted from its original character encoding to
Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in
Normalised Form C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long
as they do not contain any Unicode escape sequences.

8.5 The Number Type

The Number type has exactly 1843773687445480627 (that is, 254 25%+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 900719925474099(Qthat is, 2°%-2) di st raNatmb @ Not v &d IEEESStarwldrd ate
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +a and - &, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity J)

The other 1843773687445481062¢hat is, 254 25 values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and - 0.)

The 1843773687445481064fhat is, 264 253 2) finite nonzero values are of two kinds:
1842872967520006963fhat is, 254 254 of them are normalised, having the form

s3 m3 2°

where sis +1 or - 1, mis a positive integer less than 253 but not less than 2%, and e is an integer ranging from
- 1074to 971, inclusive.

The remaining 900719925474099Qhat is, 2°* 2) values are denormalised, having the form

s3 ms3 2°

where sis +1 or - 1, mis a positive integer less than 2% and eis - 1074

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in
the Number type (indeed, the integer 0 has two representations, +0 and - 0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

I n t his speci fi ctl@etNumber,valug forexo p Wh R sepreseiits an exact nonzero real
mathematical quantity (which might even be an irrational number such as p) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with - 0 removed and with two
additional values added to it that are not representable in the Number type, namely 2124 (which is +13 2533
29 and - 21024 (which is - 13 233 2971, Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 2024 and - 21924 are considered to have even significands. Finally, if 2192 was chosen, replace it
with +o ; if - 21924was chosen, replace it with - o ; if +0 was chosen, replace it with - 0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the | EEE 754

© Ecma International 2009 29

secma

Some ECMAScript operators deal only with integers in the range - 2% through 23! 1, inclusive, or in the range
0 through 2%2- 1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 2% integer values. See the descriptions of the Tolnt32 and ToUint32 operators in 9.5 and 9.6,
respectively.

8.6 The Object Type

An Object is a collection of properties. Each property is either a nhamed data property, a named accessor
property, or an internal property:

1 A named data property associates a nhame with an ECMAScript language value and a set of Boolean
attributes.

1 A named accessor property associates a name with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

1 An internal property has no name and is not directly accessible via ECMAScript language operators.
Internal properties exist purely for specification purposes.

There are two kinds of access for named (non-internal) properties: get and put, corresponding to retrieval and
assignment, respectively.

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of named properties. A named data
property associates a name with the attributes listed in Table 5

Table 538 Attributes of a Named Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript The value retrieved by reading the property.
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the
pr o p e[pValuglpadtribute using [[Put]] will not succeed.
[[Enumerable]] Boolean If true, the property will be enumerated by a for-in

enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other than [[Value]]) will fail.

A named accessor property associates a hame with the attributes listed in Table 6.

30 © Ecma International 2009

»ecma

Table 6 8 Attributes of a Named Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or If the value is an Object it must be a function Object. The
Undefined functonbs [[Cal I]] i ntiscalladavithame t
empty arguments list to return the property value each time
a get access of the property is performed.
[[Set]] Object or If the value is an Object it must be a function Object. The
Undefined functiondb s [[Cal I] 1 i ntisecalledavithame t

empty arguments list containing the assigned value as its
sole argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be a data property, or change its attributes will
fail.

If the value of an attribute is not explicitly specified by this specification for a named property, the default value
defined in Table 7 is used.

Table 7 0 Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.6.2 Object Internal Properties and Methods

This specification uses various internal properties to define the semantics of object values. These internal
properties are not part of the ECMAScript language. They are defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
internal properties in the manner described here. The names of internal properties are enclosed in double
square brackets [[]]. When an algorithm uses an internal property of an object and the object does not
implement the indicated internal property, a TypeError exception is thrown.

The Table 8 summarises the internal properties used by this specification that are applicable to all
ECMAScript objects. The Table 9 summarises the internal properties used by this specification that are only
applicable to some ECMAScript objects. The descriptions in these tables indicates their behaviour for native
ECMAScript objects, unless stated otherwise in this document for particular kinds of native ECMAScript
objects. Host objects may support these internal properties with any implementation-dependent behaviour as
long as it is consistent with the specific host object restrictions stated in this document.

The fAValue Type Domaino columns of the following tab
properties. The type names refer to the types defined in Clause 8 augmented by the following additional

nameanyd0 imeansvaltlhe may be any ECMA Sdmitivgdt mleamgu dgndletf y p
Bool ean, Stri BpecOpdr méNaimb etr he Ai nt einterral method,@p implemgntatios a n
provided procedure defined by anOphhstrsadtol d pavieat byn as

© Ecma International 2009 31

parameter names. If a parameter name is the same as a type name then the name describes the type of the
parameter. I f a 0 S pispatameter listid fallowadsby the symibol vedand the type of the

returned value.

Table 8 0 Internal Properties Common to All Objects

Internal Property Value Type Domain Description
[[Prototype]] Object or Null The prototype of this object.
[[Class]] String A String value indicating a specification defined
classification of objects.
[[Extensible]] Boolean If true, own properties may be added to the
object.
[[Get]] SpecOp(propertyName) Y Returns the value of the named property.
any
[[GetOwnProperty]] SpecOp (propertyName) Y | Returns the Property Descriptor of the named
Undefined or Property own property of this object, or undefined if
Descriptor absent.
[[GetProperty]] SpecOp (propertyName) Y | Returns the fully populated Property Descriptor
Undefined or Property of the named property of this object, or
Descriptor undefined if absent.
[[Put]] SpecOp (propertyName, Sets the specified named property to the value
any, Boolean) of the second parameter. The flag controls
failure handling.
[[CanPut]] SpecOp (propertyName) Y | Returns a Boolean value indicating whether a
Boolean [[Put]] operation with PropertyName can be
performed.
[[HasProperty]] SpecOp (propertyName) Y | Returns a Boolean value indicating whether the
Boolean object already has a property with the given
name.
[[Delete]] SpecOp (propertyName, Removes the specified named own property
Boolean) Y Boolean from the object. The flag controls failure
handling.
[[DefaultValue]] SpecOp (Hint) Y primitive Hint is a String. Returns a default value for the
object.
[[DefineOwnProperty]] | SpecOp (propertyName, Creates or alters the named own property to
PropertyDescriptor, have the state described by a Property
Boolean) Y Boolean Descriptor. The flag controls failure handling.

Every object (including host objects) must implement all of the internal properties listed in Table 8. However,
the [[DefaultValue]] internal method may, for some objects, simply throw a TypeError exception.

All objects have an internal property called [[Prototype]]. The value of this property is either null or an object
and is used for implementing inheritance. Whether or not a native object can have a host object as its
[[Prototype]] depends on the implementation. Every [[Prototype]] chain must have finite length (that is, starting
from any object, recursively accessing the [[Prototype]] internal property must eventually lead to a null value).
Named data properties of the [[Prototype]] object are inherited (are visible as properties of the child object) for
the purposes of get access, but not for put access. Named accessor properties are inherited for both get
access and put access.

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls whether or not
named properties may be added to the object. If the value of the [[Extensible]] internal property is false then
additional named properties may not be added to the object. In addition, if [[Extensible]] is false the value of
the [[Class]] and [[Prototype]] internal properties of the object may not be modified. Once the value of an
[[Extensible]] internal property has been set to false it may not be subsequently changed to true.

NOTE
modi fy an

This specification defines no ECMAScript language operators or built-in functions that permit a program to
object s [[CIl as s je$ or mchangd tRervalue oft[[Exersibl¢]] from falsertontiaué.

32 © Ecma International 2009

proper:t

secma

Implementation specific extensions that modify [[Class]], [[Prototype]] or [[Extensible]] must not violate the invariants
defined in the preceding paragraph.

The value of the [[Class]] internal property is defined by this specification for every kind of built-in object. The
value of the [[Class]] internal property of a host object may be any String value except one of "Arguments"
"Array" , "Boolean" , "Date" , "Error" , "Function" , "JSON", "Math" , "Number" , "Object"
"RegExp" , and "String" . The value of a [[Class]] internal property is used internally to distinguish different
kinds of objects. Note that this specification does not provide any means for a program to access that value
except through Object.prototype.toString (see 15.2.4.2).

Unless otherwise specified, the common internal methods of native ECMAScript objects behave as described
in 8.12. Array objects have a slightly different implementation of the [[DefineOwnProperty]] internal method
(see 15.4.5.1) and String objects have a slightly different implementation of the [[GetOwnProperty]] internal
method (see 15.5.5.2). Arguments objects (10.6) have different implementations of [[Get]], [[GetOwnProperty]],
[[DefineOwnProperty]], and [[Delete]]. Function objects (15.3) have a different implementation of [[Get]].

Host objects may implement these internal methods in any manner unless specified otherwise; for example,
one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store property values but
[[HasProperty]] always generates false. However, if any specified manipulation of a host object's internal
properties is not supported by an implementation, that manipulation must throw a TypeError exception when
attempted.

The [[GetOwnProperty]] internal method of a host object must conform to the following invariants for each
property of the host object:

1 If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

1 If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

1 If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

1 If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

T I'f the value of the host objectds [[Extensible]]
to be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of a host object must not permit the addition of a new property to a

host object if the [[Extensible]] internal property of that host object has been observed by ECMAScript code to

be false.

If the [[Extensible]] internal property of that host object has been observed by ECMAScript code to be false
then it must not subsequently become true.

© Ecma International 2009 33

secma

Table 90 Internal Properties Only Defined for Some Objects

Internal Property Value Type Description
Domain
[[PrimitiveValue]] primitive Internal state information associated with this object. Of the

standard built-in ECMAScript objects, only Boolean, Date,
Number, and String objects implement [[PrimitiveValue]].

[[Construct]]

SpecOp(a List of
any) Y Object

Creates an object. Invoked via the new operator. The
arguments to the SpecOp are the arguments passed to the
new operator. Objects that implement this internal method
are called constructors.

[[Call]]

SpecOp(any, a List
of any) Y any or
Reference

Executes code associated with the object. Invoked via a
function call expression. The arguments to the SpecOp are
a this object and a list containing the arguments passed to
the function call expression. Objects that implement this
internal method are callable. Only callable objects that are
host objects may return Reference values.

[[HasInstance]]

SpecOp(any) Y
Boolean

Returns a Boolean value indicating whether the argument is
likely an Object that was constructed by this object. Of the
standard built-in ECMAScript objects, only Function objects
implement [[HasInstance]].

[[Scope]]

Lexical Environment

A lexical environment that defines the environment in which
a Function object is executed. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Scope]].

[[FormalParameters]]

List of Strings

A possibly empty List containing the identifier Strings of a
Funct iFormadPamameterList Of the standard built-in
ECMAScript objects, only Function objects implement
[[FormalParameterList]].

[[Code]]

ECMAScript code

The ECMAScript code of a function. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Codel]].

[[TargetFunction]]

Object

The target function of a function object created using the
standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[TargetFunction]] internal property.

[[BoundThis]]

any

The pre-bound this value of a function Object created using
the standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[BoundThis]] internal property.

[[BoundArguments]]

List of any

The pre-bound argument values of a function Object created
using the standard built-in Function.prototype.bind method.
Only ECMAScript objects created using
Function.prototype.bind have a [[BoundArguments]] internal

property.

[[Match]]

SpecOp(String,
index) Y
MatchResult

Tests for a regular expression match and returns a
MatchResult value (see 15.10.2.1). Of the standard built-in
ECMAScript objects, only RegExp objects implement
[[Match]].

[[ParameterMap]]

Object

Provides a mapping between the properties of an arguments
object (see 10.6) and the formal parameters of the
associated function. Only ECMAScript objects that are

arguments objects have a [[ParameterMap]] internal
property.

8.7 The Reference Specification Type

The Reference type is used to explain the behaviour of such operators as delete , typeof , and the

assignment operators. For example, the left-hand operand of an assignment is expected to produce a

34

© Ecma International 2009

secma

reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on
the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls are
permitted to return references. This possibility is admitted purely for the sake of host objects. No built-in
ECMAScript function defined by this specification returns a reference and there is no provision for a user-
defined function to return a reference. (Another reason not to use a syntactic case analysis is that it would be
lengthy and awkward, affecting many parts of the specification.)

A Reference is a resolved name binding. A Reference consists of three components, the basevalue, the
referenced namand the Boolean valued strict referencelag. The base value is either undefined, an Object, a
Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined indicates that the
reference could not be resolved to a binding. The referenced name is a String.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.
GetReferencedName(V). Returns the referenced name component of the reference V.
IsStrictReference(V). Returns the strict reference component of the reference V.
HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.

IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

1 IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

=A =4 =4 =4 A

The following abstract operations are used in this specification to operate on references:

8.7.1 GetValue (V)

If Type(V) is not Reference, retuivi.
Let basebe the result of calling GetBas&(
If IsUnresolvableReference], throw aReferenceError exception.
If IsPropertyReferenc#f), then
a. If HasPrimitiveBaseY) is false, then letgetbe the [[Get]] internal method difase otherwise leget
be the special [[Get]] internal method defined below.
b. Return the result of callindhegetinternal method usingaseas itsthis value andpassing
GetReferencedNam¥] for the argument.
5. Else,basemust be an environment record.
a. Return the result of calling the GetBindingValue (see 10.2.1) concrete mettedegassing
GetReferencedNuae(V) and IsStrictReferenc¥] as arguments.

PN PE

The following [[Get]] internal method is used by GetValue when V is a property reference with a primitive base
value. It is called using baseas its this value and with property P as its argument. The following steps are
taken:

1. LetO be ToObjectljase.

2. Letdescbe the result of calling the [[GetProperty]] internal methodofith property namé.

3. If descis undefined, returnundefined.

4. |If IsDataDescriptordesq is true, returndesc[[Value]].

5. Otherwise, IsAccessDescriptorflesq must betrue so, letgetterbedesc[[Get]].

6. If getteris undefined, returnundefined.

7. Return the result calling the [[Call]] internal methodg#tterproviding baseas thethis value and providing
no arguments.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of the object. The only situation where such an actual property access that uses
this internal method can have visible effect is when it invokes an accessor function.

8.7.2 PutValue (V, W)

1. If Type(V) is not Reference, throwReferenceError exception.

© Ecma International 2009 35

secma

2. Letbasebe the result of calling GetBasé(
3. If IsUnresolvableReferenc¥}, then
a. If IsStrictReference() is true, then
i Throw ReferenceError exception.
b. Call the [[Put]] internal method of the global object, passing GetReferencedNaifoethe
property name for the value, andalse for the Throwflag.
4. Else if IsPropertyReferencé), then
a. If HasPrimitiveBaseY) is false, then letput be the [[Put]] internal method dfase otherwise leput
be the special [[Put]] internal method defined below.
b. Call theputinternalmethod usingaseas itsthis valug andpassing GetReferencedNargfor the
property nameV for the value, and IsStiReference) for theThrowflag.
5. Elsebasemust be a reference whose base is an environment record. So,
a. Call the SetMutableBinding (10.2.1) concrete methoba$e passing GetReferencedNarag(W,
and IsStrictReferenc¥] as arguments.
6. Return.

The following [[Put]] internal method is used by PutValue when V is a property reference with a primitive base
value. It is called using baseas its this value and with property P, value W, and Boolean flag Throw as
arguments. The following steps are taken:

1. LetO be ToObjectbase.
2. If the result of calling the [[CanPut]] internal method@fwith argumentP is false, then
a. If Throwis true, then throw alypeError exception.
b. Else return.
3. LetownDesche the result of calling the [[GetOwnProperty]] internal metho®av¥ith argumentP.
4. |If IsDataDescriptodwnDes¢ is true, then
a. If Throwis true, then throw arypeError exception.
b. Else Return.
5. Letdescbe the result of calling the [[GetProperty]] internal methodokith argumentP. This may be
either an own or inheritedccessor property descriptor or an inherited data property descriptor.
6. If IsAccessorDescriptodesq is true, then
a. Letsetterbedesc[[Set]] which cannot beindefined.
b. Call the [[Call]] internal method afetterproviding baseas thethis value and an aigment list
containing onlyv.
7. Else, this is a request to create an own property on the transient Gbject
a. |If Throwis true, then throw alypeError exception.
8. Return.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of that transient object. The only situations where such an actual property
assignment that uses this internal method can have visible effect are when it either invokes an accessor function or is in
violation of a Throw predicated error check. When Throwis true any property assignment that would create a new property
on the transient object throws an error.

8.8 The List Specification Type
The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function

calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

8.9 The Completion Specification Type

The Completion type is used to explain the behaviour of statements (break , continue , return and throw)
that perform nonlocal transfers of control. Values of the Completion type are triples of the form (type, value,
target), where type is one of normal, break, continue, return, or throw, value is any ECMAScript language
value or empty, and target is any ECMAScript identifier or empty.

The term fiabrupt compl et i on fypertberthan sormab any compl eti on wi

36 © Ecma International 2009

secma

8.10 The Property Descriptor and Property ldentifier Specification Types

The Property Descriptor type is used to explain the manipulation and reification of hamed property attributes.

Values of the Property Descriptor type are recdarads

attribute name and its value is a corresponding attribute value as specified in 8.6.1. In addition, any field may
be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.6.1 Table 5 or Table 6.

For notational convenience within this specification, an object literal-like syntax can be used to define a
property descriptor value. For example, Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]:
true} defines a data property descriptor. Field nhame order is not significant. Any fields that are not explicitly
listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property

c

Descriptor. For exampl e, i f D is a property descript

[[Valuel]o .

The Property Identifier type is used to associate a property name with a Property Descriptor. Values of the
Property Identifier type are pairs of the form (name, descriptor), where name is a String and descriptor is a
Property Descriptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

8.10.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desg the following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDesc[[Get]] andDesc[[Set]] areabsent, then returfalse.
3. Returntrue.

8.10.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desg the following steps are
taken:

1. If Descis undefined, thenreturnfalse
2. If bothDesc|[[Valu€]] and Desc[[Writabl€]] are absent, then retufalse
3. Returntrue.

8.10.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc the following steps
are taken:

1. |If Descis undefined, thenreturnfalse

2. If IsAccessorDescriptdbesqg and IsDataDescriptddesq arebothfalse then returrtrue.
3. Returnfalse

© Ecma International 2009 37

secma

8.10.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desg the following
steps are taken:

The following algorithm assumes that Descis a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1. If Descis undefined, then returrundefined.
2. Let obj be the result of creating new object aff by the expressiomew Object() where Object is the standard
built-in constructor with that name.
3. If IsDataDescriptoiesq is true, then
a. Call the [DefineOwnPropertl} internalmethod ofobj with argumentsvalue ", Property Descriptor
{[[Value]]: Desc[[Value]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
b. Call the [DefineOwnPropertl} internalmethod ofobjwith argumentswritable ", Property Descriptor
{[[Value]]: Desc[[Writabld], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
4. Else,IsAccessorDescriptddesq must berue, so
a. Call the [DefineOwnPropertl internalmethod ofobjwith argumentsget ", Property Descriptor
{[[Value]]: Desc[[Get]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
b. Call the [DefineOwnPropertl} internalmethod ofobjwith argumentsset ", Property Descriptor
{[[Value]]: Desc[[Set]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
5. Call the [DefineOwnPropert]] internalmethod ofobj with argumentsenumerable ", Property Descriptor
{[[value]]: Desc[[Enumerablf, [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
6. Call the [DefineOwnPropertl} internalmethod ofobj with argumentSconfigurable ", Property Descriptor
{[[value]]: Descl[[Configurablg], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
7. Returnobj.

8.10.5 ToPropertyDescriptor (Obj)
When the abstract operation ToPropertyDescriptor is called with object Desg the following steps are taken:

1. If Type(Obj) is not Object throw dypeError exception.
2. Letdesche the result of creating a new Property Descriptor that initially has no fields.
3. If the result of calling the [[HasProperty]]t@rnal method oObj with argument énumerable " is true,
then
a. Letenumbe the result of calling the [[Get]] internal methodQij with "enumerable "
b. Setthe [[Enumerable]] field alescto ToBooleanénun).
4. |If the result of calling the [[HasProperty]] imeal method ofObj with argument €onfigurable " is true,
then
a. Letconf be the result of calling the [[Get]] internal method@ij with argument
"configurable
b. Setthe [[Configurable]] field oflescto ToBoolean¢onf).
5. If the result of calling the [[Hag®perty]] internal method oDbj with argument Value " is true, then
a. Letvaluebe the result of calling the [[Get]] internal method@Bjwi t h a rv@lueme.nt A
b. Setthe [[Value]] field ofdescto value
6. If the result of calling the [[HasProperty]] intednaethod ofObj with argument Writable " is true, then
a. Letwritable be the result of calling the [[Get]] internal methodQ@ifj with argument Writable
b. Setthe [[Writable]] field ofdescto ToBooleangritable).
7. If the result of calling the [[HasProperfyinternal method ofObj with argument et " is true, then
a. Letgetterbe the result of calling the [[Get]] internal method@ifj with argument get ".
b. If IsCallable@etter) is false andgetteris notundefined, then throw alypeError exception.
c. Setthe [[@t]] field of descto getter.
8. If the result of calling the [[HasProperty]] internal methodQifj with argument et " is true, then
a. Letsetterbe the result of calling the [[Get]] internal method@bj with argument et ".
b. If IsCallable§ette)) is false and setteris notundefined, then throw arypeError exception.
c. Setthe [[Set]] field oflescto setter
9. If eitherdesc[[Get]] or desc[[Set]] are present, then
a. If eitherdesc[[Value]] or desc[[Writable]] are present, then throwTeypeError exception.
10. Returndesc

38 © Ecma International 2009

»ecma

8.11 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.12 Algorithms for Object Internal Methods

In the following algorithm descriptions, assume O is a native ECMAScript object, P is a String, Descis a
Property Description record, and Throwis a Boolean flag.

8.12.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property name P, the following steps are
taken:

fOdoesndt have an ownretypnurdefieedt v wi t h name
Let D be a navly created Property Descriptarith no fields.
LetXbeO6s own proPerty named
If Xis a data property, then
a. SetD.[[Value]]tothevalueoXds [[Val ue]] attribute.
b. SetD.[[Writable]]tothevalueoX6s [[Writable]] attri
5. ElseXis an accessor property, so
a. SetD.[[Get]] to the value oXd fGet]] attribute.
b. SetD.[[Set]] to the value oXd §Set]] attribute.
6. SetD.[[Enumerable]]tothevalueofés [[Enumer abl e]] attribute.
7. SetD.[[Configurable]]tothevalueokds [[Confi gur abl e]] attribute.
8. ReturnD.

PwnPE

but e

However, if O is a String object it has a more elaborate [[GetOwnProperty]] internal method defined in 15.5.5.2.

8.12.2 [[GetProperty]] (P)
When the [[GetProperty]] internal method of O is called with property name P, the following steps are taken:

Let prop be the result of calling the [[GetOwnPreqpy]] internal method 0O with property name.
If propis notundefined, returnprop.

Let proto be the value of the [[Prototype]] internal propertyf

If protois null, returnundefined.

Return the result of calling the [[GetProperty]] internal mekiod proto with argumentP.

Al

8.12.3 [[Get]] (P)
When the [[Get]] internal method of O is called with property name P, the following steps are taken:

8. Letdescbe the result of calling the [[GetProperty]] internal methodofith property namé.

9. If descis undefined, returnundefined.

10. If IsDataDescriptordesq is true, returndesc[[Value]].

11. Otherwise, IsAccessorDescriptdgsg must be true so, lgetterbedesc[[Get]].

12. If getteris undefined, returnundefined.

13. Return the result calling the [[Call]] inteal method ofyetterproviding O as thethis value and providing no
arguments.

8.12.4 [[CanPut]] (P)
When the [[CanPut]] internal method of O is called with property name P, the following steps are taken:
1. Letdescbe the result of calling the [[GetOwnPrapgd] internal method ofO with argumentP.

2. If descis notundefined, then
a. If IsAccessorDescriptodesq is true, then

© Ecma International 2009 39

secma

i If desc[[Set]] is undefined, then returrfalse.
il Else returrtrue.
b. Else,descmust be a DataDescriptor so return the valudadc[[Writable]].
Let proto be the [[Prototype]] internal property @f.
If protois null, then return the value of the [[Extensible]] internal propertpof
Letinheritedbe the result of calling the [[GetProperty]] internal methogmfto with property name>.
If inheritedis undefined, return the value of the [[Extensible]] internal propertyf
If IsAccessorDescriptoniherited) is true, then
a. If inherited[[Set]] is undefined, then returrfalse.
b. Else returrtrue.
8. Else,inheritedmust be a DataDescriptor
a. Ifthe [[Extensible]] internal property d is false, returnfalse.
b. Else return the value ahherited[[Writable]].

Nookw

Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should not
allow [[Put]] operations in situations where this definition of [[CanPut]] returns false.

8.12.5 [[Put]] (P, V, Throw)

When the [[Put]] internal method of O is called with property P, value V, and Boolean flag Throw, the following
steps are taken:

1. If the result ofcalling the [[CanPut]jnternal method o® with argumentP is false, then
a. If Throwis true, then throw arypeError exception.
b. Else return.
2. LetownDesdbe the result of calling the [[GetOwnPropertyjternalmethod ofO with argumentP.
3. If IsDataDescriptordwnDesg is true, then
a. LetvalueDesde the Property Descriptor {[[Value]\}.
b. Call the [[DefineOwnProperty]] internal method ©fpassingP, valueDes¢candThrow as
arguments
c. Return.
4. Letdescbe the result of calling the [[GetPropertyhiternalmethod ofO with argumentP. This may be
either an own or inherited accessor property descriptor or an inherited data property descriptor.
5. If IsAccessorDescriptodesqg is true, then
a. Letsetterbedesc[[Set]] which cannot beindefined.
b. Call the [[Call]]internalmethod ofsetterproviding O as thethis value and providing/ as the sole
argument.
6. Else, create a named data property naiea objectO as follows
a. LetnewDesde the Property Descriptor
{[[Value]]: V, [[Writable]]: true, [[Enumerable]]itrue, [[Configurable]]:true}.
b. Callthe [[DefineOwnProperty]] internal method 6f passingP, newDes¢candThrowas arguments
7. Reurn.

8.12.6 [[HasProperty]] (P)
When the [[HasProperty]] internal method of O is called with property name P, the following steps are taken:

1. Letdescbe the resit of calling the[[GetProperty]linternalmethod ofO with property namé.
2. If descis undefined, then returrfalse.
3. Else retirntrue.

8.12.7 [[Delete]] (P, Throw)

When the [[Delete]] internal method of O is called with property name P and the Boolean flag Throw, the
following steps are taken:

1. Letdescbe the result of callinghe [[GetOwnPrperty]] internalmethod ofO with property name.
2. If descis undefined, then returrtrue.
3. If desc[[Configurable]] istrue, then

a. Remove the own property with narRefrom O.

40 © Ecma International 2009

secma

b. Returntrue.
4, Else ifThrow, then throw arypeError exception.
5. Returnfalse.

8.12.8 [[DefaultValue]] (hint)

When the [[DefaultValue]] internal method of O is called with hint String, the following steps are taken:

1. LettoStringbe the result of callig the [[Get]] internal method of obje& with argument toString "
2. If IsCallabletoString is true then,
a. Letstr be the result of calling the [[Call]] internal methodtofstring with O as thethis value and
an empty argument list.
b. If stris a primitivevalue, returrstr.
3. LetvalueOfbe the result of calling the [[Get]] internal method of obj@avith argument ValueOf "
4. |If IsCallablefalueO} is true then,

a. Letvalbe the result of calling the [[Call]] internal methodw#lueOf with O as the this vale and
an empty argument list.
b. If valis a primitive value, returmal.
5. Throw aTypeError exception.

When the [[DefaultValue]] internal method of O is called with hint Number, the following steps are taken:

1. LetvalueOfbe the result of calling the [[Get]hternal method of obje@ with argument valueOf

2. If IsCallablefalueO} is true then,
a. Letvalbe the result of calling the [[Call]] internal methodw#lueOf with O as thethis value and
an empty argument list.
b. If valis a primitive value, returmal.
3. LettoStringbe the result of calling the [[Get]] internal method of obj@awith argument toString "
4. If IsCallablefoString) is true then,

a. Letstrbe the result of calling the [[Call]] internal methodtofString, with O as the this value and
an emptyargument list.
b. If stris a primitive value, returstr.
5. Throw aTypeError exception.

When the [[DefaultValue]] internal method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9.6), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a host object
implements its own [[DefaultValue]] internal method, it must ensure that its [[DefaultValue]] internal method
can return only primitive values.

8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algor it hifhrowis bree, there thhrow & B peEreoc exdeptione a n s
otherwise return falseo The algorithm contains steps that test various fields of the Property Descriptor Descfor
specific values. The fields that are tested in this manner need not actually exist in Desc If a field is absent

then its value is considered to be false.

When the [[DefineOwnProperty]] internal method of O is called with property name P, property descriptor Desg
and Boolean flag Throw the following steps are taken:

Let currentbe the result of calling the [[GetOwnProperty]] internal metho®av¥ith property name.

Let extensiblebe the value of the [[Brnsible]] internal property o®.

If currentis undefined andextensibles false, then Reject.

If currentis undefined andextensiblds true, then

a. If IsGenericDescriptoijesq or IsDataDescriptoEjesq is true, then
i Create an own data property nanfedf objectO whose [[Value]], [[Writable]],

[[Enumerable]] and [[Configurable]] attribute values are describe®ésc If the value of
an attribute field oDescis absentthe attribute of the newly created property is set to its
default value.

PN e

© Ecma International 2009 41

secma

b. Else,Descmust be an accessor Property Descriptor so,

i Create an own accessor property narReaf objectO whose [[Get]], [[Set]],
[[Enumerable]] and [[Configurable]] attribute values are describe®ésc If the value of
an attribute field oDescis absent, thet&ribute of the newly created property is set to its
default value.

c. Returntrue.

5. Returntrue, if every field inDescis absent.

6. Returntrue, if every field inDescalso occurs ircurrentand the value of every field iDescis the same
value as the correspding field incurrentwhen compared usinhe SameValue algorithm (9.12).

7. Ifthe [[Configurable]] field ofcurrentis falsethen

a. Reject, if the [[Configurable]] field oDescis true.
b. Reject, if the [[Enumerable]] field ddescis present and the [[Enumable]] fields ofcurrentand
Descare the Boolean negation of each other.
8. If IsGenericDescriptoiesq is true, then no further validation is required.
9. Else, if IsDataDescriptoc{irrent) and IsDataDescriptobesq have different results, then
a. Reject, if he [[Configurable]] field ofcurrentis false.
b. If IsDataDescriptorgurrent) is true, then
i Convert the property namdelof objectO from a data property to an accessor property.

Preserve the existing values of the converted

[Enumer abl e]] attributes and set the rest

c. Else,
i Convert the property namdelof objectO from an accessor property to a data property.

Preserve the existing val uesrabteffandt he converted

[[Enumer abl e]] attributes and set the rest
10. Else, if IsDataDescriptocrrent) and IsDataDescriptobesg are bothtrue, then
a. Ifthe [[Configurable]] field ofcurrentis false, then
i Reject, f the [[Writable]] field of currentis false and the [[Writable]] field ofDescis true.
ii. If the [[Writable]] field of currentis false, then
1. Reject, if the [[Value]] field oDescis present and SameValldsc[[Value]],
current[[Value]]) is false.
b. else,the [[Configurable]] field ofcurrentis true, so any change is acceptable.
11. Else, IsAccessorDescriptanfrrent) and IsAccessorDescript@ésqg are bothtrue so,
a. If the [[Configurable]] field ofcurrentis false, then
i Reject, if the [[Set]] field oDescis present and SameVallbxsc[[Set]], current[[Set]]) is
false.
il Reject, if the [[Get]] field ofDescis present and SameValsc[[Get]], current[[Get]])
is false.
12. For each attribute field dbescthat is present, set the correspondingly named ateibtithe property
namedP of objectO to the value of the field.
13. Returntrue.

However, if O is an Array object, it has a more elaborate [[DefineOwnProperty]] internal method defined in
15.4.5.1.

NOTE Step 10.b allows any field of Desc to be different fromt he corresponding field
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false.
This is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is
first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

9 Type Conversion and Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion abstract operations. These abstract operations are
not a part of the language; they are defined here to aid the specification of the semantics of the language. The
conversion abstract operations are polymorphic; that is, they can accept a value of any ECMAScript language
type, but not of specification types.

42 © Ecma International 2009

eCina

9.1 ToPrimitive

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredTypeto favour that type.
Conversion occurs according to Table 10:

Table 10 8 ToPrimitive Conversions

Input Type Result

Undefined The result equals the inputargument (no conversion).

Null The result equals the inputargument (no conversion).

Boolean The result equals the inputargument (no conversion).

Number The result equals the inputargument (no conversion).

String The result equals the inputargument (no conversion).

Object Return a default value for the Object. The default value of an object is
retrieved by calling the [[DefaultValue]] internal method of the object,
passing the optional hint PreferredType The behaviour of the
[[DefaultValue]] internal method is defined by this specification for all native
ECMAScript objects in 8.12.8.

9.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 11:

Table 11 6 ToBoolean Conversions

Argument Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, - 0, or NaN; otherwise the result is
true.

String The result is false if the argument is the empty String (its length is zero);
otherwise the result is true.

Object true

9.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 12:

© Ecma International 2009

43

secma

Table 126 To Number Conversions

Argument Type Result

Undefined NaN

Null +0

Boolean The result is 1 if the argument is true. The result is +0 if the argument is
false.

Number The result equals the input argument (no conversion).

String See grammar and note below.

Object Apply the following steps:
1. LetprimValuebe ToPrimitive{nput argumenthint Number).
2. Return ToNumbegrimValué.

9.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret

the String as an expansion of StringNumericLiteralthen the result of ToONumber is NaN.

StringNumericLiteral::
StrWhiteSpacg:

StrwhiteSpacg: StrNumericLiteral StrWhiteSpage

StrWhiteSpace:

StrwhiteSpaceChartiSVhite Spacg

StrWhiteSpaceChar:
WhiteSpace
LineTerminator

StrNumericLiteral::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral:::

StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiterat:

Infinity

DecimalDigits. DecimalDigitsp: ExponentPaiy:
. DecimalDigits ExponentPay:
DecimalDigits ExponentPay:

DecimalDigits:::
DecimalDigit

DecimalDigitsDecimalDigit

DecimalDigit::: one of

0123456789

ExponentPart::

Exponetindicator Signedinteger

Exponentindicator:: one of

e E

44

© Ecma International 2009

»ecma

Signedinteger::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0123456789abcd efABCDEF

Some differences should be noted between the syntax of a StringNumericLiteraland a NumericLiteral (see
7.8.3):

A StringNumericLiteraimay be preceded and/or followed by white space and/or line terminators.
A StringNumericLiterathat is decimal may have any number of leading 0 digits.

A StringNumericLiterathat is decimal may be preceded by + or - to indicate its sign.

A StringNumericLiterathat is empty or contains only white space is converted to +0.

=A =4 =4 =4

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

1 The MV of StringNumericLiterat:: [empty] is 0.

1 The MV of StringNumericLiteal ::: StrWhiteSpaceés O.

1 The MV of StringNumericLiteral ::: StrWhiteSpacg: StrNumericLiteral StrwWhiteSpacg: is the MV of

StrNumericLiteral no matter whether white space is present or not.

The MV of StrNumericLiteral:: StrDecimalLiteralis the MV of StrDecimalLiteral

The MV of StrNumericLiteral:: HexIntegerLiteralis the MV of HexIntegerLiteral

The MV of StrDecimalLiteral::: StrUnsignedDecimallLiterak the MV of StrUnsignedDecimalLiteral

The MV of StrDecimallLiteral::: + StrUnsignedDecimallLétral is the MV of StrUnsignedDecimalLiteral

The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteralis the negative of the MV of

StrUnsignedDecimalLiteralNote that if the MV of StrUnsignedDecimalLiterak O, the negative of this MV is

also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a

floating-point +0 or - 0 as appropriate.)

The MV of StrUnsignedDecimalLiteral: Infinity is 1010900 (a value so large that it will round to +&).

The MV of StrUnsignedDecimalLiteral: DecimalDigits is the MV of DecimalDigits

1 The MV of StrUnsignedDecimalLiteral: DecimalDigits. DecimalDigitsis the MV of the first DecimalDigits
plus (the MV of the second DecimalDigitstimes 10'"), where n is the number of characters in the second
DecimalDigits

1 The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentPartis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiterat DecimalDigits DecimalDigits ExponentParis (the MV of the first
DecimalDigitsplus (the MV of the secondecimalDigitstimes 10") times 106, wheren is the number of characters
in the secondecimalDigit andeis the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiterat. DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is the
number of characters DecimalDigits.

1 The MV of StrUnsignedDecimallLiterat. DecimalDigits ExponentPaiis the MV of DecimalDigitstimes 16",
wheren is the number of charactersrecimalDigits andeis the MV of ExponentPart

1 The MV of StrUnsignedDecimallLiteral DecimalDigitsis the MV of DecimalDigits

1 The MV of StrUnsignedDecimallLiterat DecimalDigits ExponentPartis the MV of DecimalDigitstimes 10,
whereeis the MV of ExponentPart

1 The MV of DecimalDigits::: DecimalDigitis the MV of DecimalDigit

E R

= =4

© Ecma International 2009 45

ecma

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart:: Exponentindicator Signedintegisrthe MV of Sigredinteger
The MV of Signedinteger:: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: - DecimalDigitsis the negative of the MV decimalDigits
The MV of DecimalDigit ::: 0 or of HexDigit::: 0 is 0.

The MV of DecimalDigit::: 1 or of HexDigit::: 1is 1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

The MV of DecimalDigit::: 3 or of HexDigit::: 3 is 3.

The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

The MV of DecimalDigit::: 5 or of HexDigit::: 5 is 5.

The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV of DecimalDigit::: 9 or of HexDigit::: 9is 9.

The MV of HexDigit::: a or of HexDigit::: Ais 10.

The MV of HexDigit::: b or of HexDigit::: Bis 11.

The MV of HexDigit::: ¢ or of HexDigit::: Cis 12.

The MV of HexDigit::: d or of HexDigit::: Dis 13.

The MV of HexDigit::: e or of HexDigit::: Eis 14.

The MV of HexDigit::: f or of HexDigit::: Fis 15.

The MV of HexIntegerLiteral:: Ox HexDigitis the MV of HexDigit

The MV of HexlIntegerLiterat:: 0X HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral::: HexIntegerLiteralHexDigit is (the MV of HexIntegerLiteraltimes 16) plus the
MV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
String nume+6i,c ilni twehriaclh icsa sée -0.lf0therwise,the doended valué must be tke
Number value for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimalLiteral
and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

1 itisnotO; or

1 thereis a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

=

=4 =4 =4 4 -4 4 -4 -4 -4 A A - -a -8 h s a e

9.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

1. Letnumberbe the reult of calling ToNumber on the input argument.
2. If numberis NaN, return+0.

3. If numberis +0, - 0, +o, or - &, returnnumber

4. Return the result of computing signmbej * floor(absumbey)).

9.5 TolInt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its argument to one of 2%2 integer values in the range - 23! through
231, inclusive. This abstract operation functions as follows:

46 © Ecma International 2009

secma

Let numberbe the result of calling ToNumber on the input argument.

If numberis NaN, +0, -0, +a, or- &, return+0.

Let posintbe signumbej * floor(absfiumbe)).

Let int32bit be posintmodulo 22 that is, a finite integer value k of Number type with positive sign and less
than 22 in magnitude such that the mathematical differencepadintand k is mathematicallan integer
multiple of 22,

5. If int32bitis greater than or equal té'2returnint32bit- 232, otherwise returint32bit

Pwb PR

NOTE Given the above definition of TolInt32:

1 The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

1 TolInt32(ToUint32K)) is equal to Tolnt32() for all values of x. (It is to preserve this latter property that +& and - & are
mapped to +0.)

T ToInt32 maps - 0 to +0.

9.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 22 integer values in the range 0 through 232 1,
inclusive. This abstraction operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

If numberis NaN, +0, - 0, +a, or- o, return+0.

Let posintbe signumbej * floor(absfiumbe)).

Let int32bit be posintmodulo 22 that is, a finite integer value k of Number type with positive sign and less
than 22 in magnitude such that the mathematical differenceasfint and k is mathematically an integer
multiple of 22,

5. Returnint32bit.

Pob PR

NOTE Given the above definition of ToUInt32:

1 Step 5 is the only difference between ToUint32 and Tolnt32.

1 The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

T ToUint32(ToInt32K)) is equal to ToUint32() for all values of x. (It is to preserve this latter property that +o and - & are
mapped to +0.)

1 ToUint32 maps - 0 to +0.

9.7 ToUintl6: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 226 integer values in the range 0 through 26- 1,
inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

If numberis NaN, +0,- 0, +a, or- o, return+0.

Let posintbe signfumbe) * floor(absfiumbe)).

Let int16bit be posintmodulo 2% that is, a finite integer valule of Number type with positive sign and less
than 2% in magnitude such that the mathematical eli€hnce ofposintand k is mathematically an integer
multiple of 28

5. Returnint16bit.

Pwn PR

NOTE Given the above definition of ToUint16:

1 The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.
1 ToUintl6 maps - 0 to +0.

9.8 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 13:

© Ecma International 2009 47

ecimd

Table 138 ToString Conversions

Argument Type Result

Undefined "undefined"”

Null "null"

Boolean If the argument is true, then the result is "tr ue" .
If the argument is false, then the result is "false"

Number See 9.8.1.

String Return the input argument (no conversion)

Object Apply the following steps:

1. LetprimValuebe ToPrimitive(input argument, hint String).
2. Return ToString{rimValue.

9.8.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number mto String format as follows:

ohrLONOE

10.

If mis NaN, return the StringNaN" .

If mis +0 or- 0, return the String0" .

If mis less than zero, return the String concatiemabf the String' -
If mis infinity, return the StrindInfinity"

Otherwise, len, k, ands be integers such th&tz 1, 10! ¢ s< 10¢, the Number value fas3 10™*is m, and

kis as small as possible. Note tlkas the number bdigits in the decimal representation $fthats is not

divisible by 10, and that the least significant digitsaé not necessarily uniquely determined by these

criteria.

If k¢ n¢ 21, return the String consisting of thaligits of the decimal repsentation of s (in order, with no

leading zeroes), followed bhy-koccurrences dd6.t he character 6

If0 <n¢ 21, return the String consisting of the most significauligits of the decimal representation $f

foll owed by addet obyldhe repaning-n digits of the decimal representation of

If-6<n¢ O, return the Stri ngO006confsoilsltoiwegd obfybétah dd @dcHi aomaat atpdory
-noccurrences db6,t hel t bkdigit oftthe dacitha remsentation os.

Otherwise, itk = 1, return the String consisting of the single digispf f ol | owed by Ilebwer case
foll owed byéaop!| ms nbda sagcsciodrnd i 6nrg 1 i$ positiwehoe rtedpative, followed by

the decimal repremntation of the integer abs(1) (with no leading zeros).

Return the String consisting of the most significant digit of the decimal representation of s, followed by a

deci mal point 6. 06, f Dbdigitscohteedecbnmgl representationaytoliowead byghe k

| owercase character oO0eb6, f ol o waedc dryd ian gllisymsithedioggtnh er+ 6n
negative, followed by the decimal representation of the integer abs(with no leading zeros).

and ToString{m).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

f
1

If x is any Number value other than - 0, then ToNumber(ToString(x)) is exactly the same Number value as x.
The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, len, k, ands be integers such th&e 1, 161 ¢ s< 10¢, theNumbervalue fors3 10" is m, andk is as small as
possible. If there are multiple possibilities &rchoose the value sffor whichs3 10" is closest in valugo m. If there are
two such possible values gfchoose the one that is even. Note kiatthe number of digits in the decimal representation of
sand thas s not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:

48

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as

© Ecma International 2009

eCina

http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as

http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib

9.9 ToObject

mirror sites.

The abstract operation ToObject converts its argument to a value of type Object according to Table 14:

Table 14 8 ToObject

Argument Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Create a new Boolean object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.6 for a description of Boolean
objects.

Number Create a new Number object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.7 for a description of Number
objects.

String Create a new String object whose [[PrimitiveValue]] internal property is set
to the value of the argument. See 15.5 for a description of String objects.

Object The result is the input argument (no conversion).

9.10 CheckObijectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 15:

Table 158 CheckObjectCoercible Results

Argument Type Result
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return
Number Return
String Return
Object Return
9.11 IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language value,
is a callable function Object according to Table 16:

Table 16 0 IsCallable Results

Argument Type Result

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Object If the argument object has an [[Call]] internal method, then return true,

© Ecma International 2009

49

secma

| | otherwise return false.

9.12 The SameValue Algorithm

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

If Type(x) is different from Typey), returnfalse.
If Type(x) is Undefined, returtrue.
If Type(x) is Null, returntrue.
If Type(x) is Number, then.
a. If xis NaN andy is NaN, returntrue.
b. If xis +0 andy is -0, returnfalse.
c. If xis-0 andy is +0, returnfalse.
d. If xis the same Number value gsreturntrue.
e. Returnfalse,
5. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same length and
same characters in corresponding positiond)eotise, returrfalse.
6. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse; otherwise, returfialse.
7. Return true ifx andy refer to the same object. Otherwise, rettalse.

PonpE

10 Executable Code and Execution Contexts

10.1 Types of Executable Code
There are three types of ECMAScript executable code:

1 Global code is source text that is treated as an ECMAScript Program The global code of a
particular Programdoes not include any source text that is parsed as part of a FunctionBody

1 Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a String, it is treated as an ECMAScript Program The eval code for a
particular invocation of eval is the global code portion of that Program

1 Function code is source text that is parsed as part of a FunctionBody The function code of a
particular FunctionBody does not include any source text that is parsed as part of a nested
FunctionBody Function code also denotes the source text supplied when using the built-in
Function object as a constructor. More precisely, the last parameter provided to the Function
constructor is converted to a String and treated as the FunctionBody If more than one parameter is
provided to the Function constructor, all parameters except the last one are converted to Strings
and concatenated together, separated by commas. The resulting String is interpreted as the
FormalParameterListfor the FunctionBodydefined by the last parameter. The function code for a
particular instantiation of a Function does not include any source text that is parsed as part of a
nested FunctionBody

10.1.1 Strict Mode Code

An ECMAScript Program syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict
global code, strict eval code, and strict function code. Code is interpreted as strict mode code in the following
situations:

1 Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.12).

1 Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if
the call to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

50 © Ecma International 2009

»ecma

1 Function code that is part of a FunctionDeclaration FunctionExpressionor accessor PropertyAssignmens
strict function code if its FunctionDeclaration FunctionExpressianor PropertyAssigmentis contained in strict
mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

1 Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBodybegins with a Directive
Prologue that contains a Use Strict Directive.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiersto specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration a WithStatementor a Catch clause of a TryStatemenand a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclarationcontains two nested FunctionDeclarationghen the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current execution of the surrounding function.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

10.2.1 Environment Records

There are two kinds of Environment Record values used in this specification: declarative environment records
and object environment records. Declarative environment records are used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarationsVariableDeclarationsand Catchclauses that directly
associate identifier bindings with ECMAScript language values. Object environment records are used to
define the effect of ECMAScript elements such as Program and WithStatementhat associate identifier
bindings with the properties of some object.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with two concrete subclasses, declarative
environment record and object environment record. The abstract class includes the abstract specification
methods defined in Table 17. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

© Ecma International 2009 51

secma

Table 17 8 Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D)

Create a new mutable binding in an environment record. The
String value N is the text of the bound name. If the optional
Boolean argument D is true the binding is may be subsequently
deleted.

SetMutableBinding(N,V, S)

Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. Sis a Boolean flag. If Sis true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S)

Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. Sis used to identify strict mode references. If Sis true
and the binding does not exist or is uninitialized throw a
ReferenceError exception.

DeleteBinding(N)

Delete a binding from an environment record. The String value N
is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

ImplicitThisValue()

Returns the value to use as the this value on calls to function
objects that are obtained as binding values from this
environment record.

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable
and/or function declarations. A declarative environment record binds the set of identifiers defined by the

declarations contained within its scope.

In addition to the mutable bindings supported by all Environment Records, declarative environment records
also provide for immutable bindings. An immutable binding is one where the association between an identifier
and a value may not be modified once it has been established. Creation and initialization of immutable binding
are distinct steps so it is possible for such bindings to exist in either an initialized or uninitialized state.
Declarative environment records support the methods listed in Table 18 in addition to the Environment Record

abstract specification methods:

Table 18 8 Additional Methods of Declarative Environment Records

Method Purpose

CreatelmmutableBinding(N) Create a new but uninitialized immutable binding in an

environment record. The String value N is the text of the bound
name.

InitializelmmutableBinding(N,V)

Set the value of an already existing but uninitialized immutable
binding in an environment record. The String value N is the text
of the bound name. V is the value for the binding and is a value
of any ECMAScript language type.

The behaviour of the concrete specification methods for Declarative Environment Records are defined by the

following algorithms.

52

© Ecma International 2009

secma

10.2.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. LetenwRecbe the declarative environment record for which the method was invoked.
2. If envRedas a binding for the name that is the valudpfeturntrue.
3. If it does not have such a binding, retdatse

10.2.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is initialized to the value undefined. A binding must not already
exist in this Environment Record for N. If Boolean argument D is provided and has the value true the new
binding is marked as being subject to deletion.

1. LetenvRede the declarative environment record for which the method was invoked.

2. Assert:envRedoes not already have a binding fér

3. Create a mutable binding envRedor N and set its bound value tmdefined. If D is true record that the
newly created binding may be deleted by a subsequent DeleteBinding call.

10.2.1.1.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeError is always thrown. The Sargument is ignored because strict mode does not change the meaning of
setting bindings in declarative environment records.

Let envRede the declarative environment record for which the method was invoked.
Assert:envReanusthave a binding foN.

If the binding forN in envReds a mutable binding, change its bound valu&/'to

Else this must be an attempt to change the value of an immutable binding so thyp&Eror exception.

PoODPE

10.2.1.1.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. The binding must already
exist. If Sis true and the binding is an uninitialized immutable binding throw a ReferenceError exception.

1. LetenvRede the declarative environment record for which the method was invoked.
2. Assert:envRedas a binding foN.
3. Ifthe binding forN in envReds an uninitialized immutable binding, then
a. If Sisfalse, return the valueindefined, otherwise throw &eferenceError exception.
4. Else, return the value currently boundNdan envRec

10.2.1.1.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

Let envRede the declarative environment record for which the method was invoked.
If envReaoes not have a binding for the name that is the vali¢ oéturntrue.

If the binding forN in envReds cannot be deleted, retufalse.

Remove the binding foN from envRec

Returntrue.

aoakrwdE

10.2.1.1.6 ImplicitThisValue()

Declarative Environment Records always return undefined as their ImplicitThisValue.

© Ecma International 2009 53

secma

1. Returnundefined.

10.2.1.1.7 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is initialized to the value undefined. A binding must not
already exist in this environment record for N.

1. LetenvRede the declarative environment record for which the method was invoked.
2. Assert:envRedoes not already have a binding fér
3. Create an immutable binding envRedor N and record that it is uninitialized.

10.2.1.1.8 InitializelmmutableBinding (N,V)

The concrete Environment Record method InitializelmmutableBinding for declarative environment records is
used to set the bound value of the current binding of the identifier whose name is the value of the argument N
to the value of argument V. An uninitialized immutable binding for N must already exist.

1. LetenvRede the declarative environment record for which the method was invoked.
2. Assert:envReanust have an uninitialized immutable binding for N.

3. Setthe bound value fd¥ in envRedo V.

4. Record that the immutable binding firin envRedhas been initialized.

10.2.1.2 Object Environment Records

Each object environment record is associated with an object called its binding object. An object environment
record binds the set of identifier names that directly correspond to the property names of its binding object.
Property names that are not an IdentifierNameare not included in the set of bound identifiers. Both own and
inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because
properties can be dynamically added and deleted from objects, the set of identifiers bound by an object
environment record may potentially change as a side-effect of any operation that adds or deletes properties.
Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if
the Writable attribute of the corresponding property has the value false. Immutable bindings do not exist for
object environment records.

Object environment records can be configured to provide their binding object as an implicit this value for use
in function calls. This capability is used to specify the behaviour of With Statement (12.10) induced bindings.
The capability is controlled by a provideThisBoolean value that is associated with each object environment
record. By default, the value of provideThisis false for any object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. LetenvRecbe the object environment record for which the method was invoked.
2. Lethindingsbe the binding object fognvRec
3. Return the result of calling the [[HasProperty]] internal methobinflings passingN as the property name.

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates in

an environment recordds associated binding object a prop
to the value undefined. A property named N must not already exist in the binding object. If Boolean argument

D is provided and has the value truet he new propertyods [[Conrrug ggherwvigehtlise]] at t
set to false.

54 © Ecma International 2009

secma

Let envRede the object environment record for whithe method was invoked.

Let bindingsbe the binding object foenvRec

Assert: The result of calling the [[HasProperty]] internal methodinflings passing\ as the property
name, isfalse.

4. If D is true then letconfigValuebetrue otherwise letonfigValuebefalse.

5. Call the [[DefineOwnProperty]] internal method bihdings passingN, Property Descriptor

{[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]:true , [[Configurable]]:configValué, andfalse
as arguments.

wNh e

10.2.1.2.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to set
the value of the environment recordds associated
argument N to the value of argument V. A property named N should already exist but if it does not or is not
currently writable, error handling is determined by the value of the Boolean argument S,

1. LetenvRede the object environment record for which the method was invoked.
2. Letbindingsbethe binding object foenvRec
3. Call the [[Put]] internal method dfindingswith arguments\, V, andS.

10.2.1.2.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value
of its associated bi ndi ng objectds property whose name NiThe
property should already exist but if it does not the result depends upon the value of the Sargument:

1. LetenvRede the object environment record for which the Imoet was invoked.
2. Letbindingsbe the binding object foenvRec
3. Letvaluebe the result of calling the [[HasProperty]] internal methodioflings passing\ as the property
name.
4. If valueis false, then
a. If Sisfalse, return the valueindefined, otherwisethrow aReferenceError exception.
5. Return the result of calling the [[Get]] internal methodbaridings passingN for the argument.

10.2.1.2.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

1. LetenvRede the object environment record for which the method was invoked.

2. Letbindingsbe the binding object foenvRec
3. Returnthe result of calling the [[Delete]] internal methodhifdings passingN andfalseas arguments.

10.2.1.2.6 ImplicitThisValue()
Object Environment Records return undefined as their ImplicitThisValue unless their provideThisflag is true.
1. LetenvRedethe object environment record for which the method was invoked.

2. If the provideThisflag of envReds true, return the binding object fanvRec
3. Otherwise, returrundefined.

10.2.2 Lexical Environment Operations

The following abstract operations are used in this specification to operate upon lexical environments:

10.2.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, an identifier String
name and a Boolean flag strict. The value of lexmay be null. When called, the following steps are performed:

© Ecma International 2009 55

t

bin

he

secma

1. If lexis the valuenull, then
a. Return a value of type Reference whose base valuadsefined, whose referenced nameriame
and whose strict mode flag &trict.
2. LetenvRedelexbs environment record.
3. Letexistsbe the result of calling the HasBindid)(concrete method anvRegassingnameas the
argumenti.
4. |If existsis true , then
a. Return a value of type Reference whose base valamviRe¢cwhose referenced nameriame and
whose strict mode flag istrict.
5. Else
a. Letouterbe the value of e >oudtes environment reference.
b. Retun the result of calling GetldentifierReference passinger, name andstrict as arguments

10.2.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null
as argument E the following steps are performed:

Let envbe a new Lexical Environment.

Let envRede a newdeclarativeenvironmentrecord containing no bindings.
Sete n wedvironment record to benvRec

Set the outer lexical emmonment reference oénvto E.

Returnenv.

orwdE

10.2.2.3 NewObjectEnvironment (O, E)

When the abstract operation NewObjectEnvironmentis called with an Object O and a Lexical Environment E
(or null) as arguments, the following steps are performed:

Let envbe a new Lexical Environment.

LetenvRede a new object environment record containigs the binding object.
Sete n veavsronment record to benvRec

Set the outer lexical environment referencen¥to E.

Returnenv.

aorwdE

10.2.3 The Global Environment

The global environment is a unique Lexical Environment which is created before any ECMAScript code is
executed. The gl obal environmentds Environment Record i
object is the global object (15.1). The ognulbbal environmer

As ECMAScript code is executed, additional properties may be added to the global object and the initial
properties may be modified.

10.3 Execution Contexts

When control is transferred to ECMAScript executable code, control is entering an execution context. Active
execution contexts logically form a stack. The top execution context on this logical stack is the running
execution context. A new execution context is created whenever control is transferred from the executable
code associated with the currently running execution context to executable code that is not associated with
that execution context. The newly created execution context is pushed onto the stack and becomes the
running execution context.

An execution context contains whatever state is necessary to track the execution progress of its associated
code. In addition, each execution context has the state components listed in Table 19.

56 © Ecma International 2009

»ecma

Table 19 8 Execution Context State Components

Component

Purpose

LexicalEnvironment

Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment

Identifies the Lexical Environment whose environment record holds
bindings created by VariableStatementand FunctionDeclarationswithin
this execution context.

ThisBinding

The value associated with the this keyword within ECMAScript code
associated with this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical

Environments. When an execution context is created

its LexicalEnvironment and VariableEnvironment

components initially have the same value. The value of the VariableEnvironment component never changes
while the value of the LexicalEnvironment component may change during execution of code within an

execution context.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within t his specification. H e
AVariabl eEnvironmento and AThi sBindingo are u
components of the running execution context.

sed Wi

An execution context is purely a specification mechanism and need not correspond to any particular artefact

of an ECMAScript implementation.

context.

10.3.1 Identifier Resolution

It is impossible for an ECMAScript program to access an execution

Identifier resolution is the process of determining the binding of an Identifier using the LexicalEnvironment of
the running execution context. During execution of ECMAScript code, the syntactic production
PrimaryExpression Identifier is evaluated using the following algorithm:

1. Letenvbe t he running execution contextés Lexical Envir
2. If the syntactic production that is being evaluated is contained in a strict mode code, thteictlbe true,

else letstrict befalse.

3. Return the result of calling GetldentifierReference functioasprageny, ldentifier, andstrict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component

equal to the Identifier String.

10.4 Establishing an Execution Context

Evaluation of global code or code using the eval function (15.1.2.1) establishes and enters a new execution
context. Every invocation of an ECMAScript code function (13.2.1) also establishes and enters a new
execution context, even if a function is calling itself recursively. Every return exits an execution context. A
thrown exception may also exit one or more execution contexts.

When control enters an execution context, the
and initial LexicalEnvironment are defined, and declaration binding instantiation (10.5) is performed. The exact
manner in which these actions occur depend on the type of code being entered.

10.4.1 Entering Global Code

The following steps are performed when control enters the execution context for global code:

1. Initialize the execution context using the global code as described in 10.4.1.1.
2. PerformDeclaration Binding Instantiation as described in 10.5 using the global code.

© Ecma International 2009

execut i

57

secma

10.4.1.1 Initial Global Execution Context
The following steps are performed to initialize a global execution context for ECMAScript code C:

1. Set the VariableEnvironment to the Global Environment.
2. Set the LexicalEnvironment to the Global Environment.
3. Set the ThisBinding to the global object.

10.4.2 Entering Eval Code
The following steps are performed when control enters the execution context for eval code:

1. If there is no calling context or if the eval code is not being evaluated by a direct call (15.1.2.1.1) to the eval
function then,
a. Initialize the execution context as if it was a ghblexecution context using the eval codeCass
described in 10.4.1.1.
2. Else,
a. Setthe ThisBinding to the same value as the ThisBinding of the calling execution context.
b. Setthe LexicalEnvironment to the same value as the LexicalEnvironment of the cakicgtion
context.
c. Setthe VariableEnvironment to the same value as the VariableEnvironment of the calling execution
context.
3. Ifthe eval code is strict code, then
a. LetstrictVarEnvbe the result of calling NewDeclarativeEnvironmepdissing the
LexicalEnvionment as the argument.
b. Setthe LexicalEnvironment tetrictVarEnv
c. Setthe VariableEnvironment ®drictVarEnv
4. Perform Declaration Binding Instantiation as described in 10.5 using the eval code.

10.4.2.1 Strict Mode Restrictions
The eval code cannot instantiate variable or function bindings in the variable environment of the calling

context that invoked the eval if either the code of the calling context or the eval code is strict code. Instead
such bindings are instantiated in a new VariableEnvironment that is only accessible to the eval code.

10.4.3 Entering Function Code

The following steps are performed when control enters the execution context for function code contained in
function object F, a caller provided thisArg and a caller provided argumentsLst

1. If the function code is strict code, set the ThisBindinghisArg.

2. Else ifthisArgis null or undefined, set the ThisBinding to the global object.

3. Else if TypethisArg) is not Object, set the ThisBinding to ToObjehi§Arg).

4. Else set the ThisBindintp thisArg.

5. LetlocalEnvbe the result of calling NewDeclarativeEnvironmepaissing the value of the [[Scope]] internal
property ofF as the argument.

6. Setthe LexicalEnvironment tocalEnv.

7. Setthe VariableEnvironment tocalEnv.

8. LetcodebethevaluefF6s [[Code]] i nternal property.

9. Perform Declaration Binding Instantiation using the function coodeandargumentListas described in
10.5.

10.5 Declaration Binding Instantiation
Every execution context has an associated VariableEnvironment. Variables and functions declared in

ECMAScript code evalwuated in an execution context ar e
Environment Record. For function code, parameters are also added as bindings to that Environment Record.

58 © Ecma International 2009

eCina

Which Environment Record is used to bind a declaration and its kind depends upon the type of ECMAScript
code executed by the execution context, but the remainder of the behaviour is generic. On entering an
execution context, bindings are created in the VariableEnvironment as follows using the caller provided code
and, if it is function code, argument List args

Letenvbe the environment record component of the run
If codeis eval code, then letonfigurableBindingdetrue else letconfigurableBindingdbefalse.
If codeis strict mode code, then Istrict betrue else letstrict befalse.
If codeis function code, then
a. Letfuncbe the function whose [[Call]] internal method initiated executiocarfe Let namesbhe
the value ofuncés [[FormalParameters]] internal property.
b. LetargCountbe the number of elements amgs.
c. Letn be the number 0.
d. For each StringirgNamein namesin list order do
i Let n be the current value af plus 1.
ii. If nis greater thamrgCount letv beundefined otherwise letv be the value of thed t h
element ofargs.
iii. Let argAlreadyDeclaredbe the result of calling n vHasBinding concrete method passing
argNameas the argument.
iv. If argAlreadyDeclareds false, calle n vCiesteMutableBinding concrete method pags
argNameas the argument.
V. Calle n vS&tMutableBinding concrete method passamgName v, andstrict as the
arguments.
5. For eachFunctionDeclarationf in code in source text order do
a. Letfnbe theldentifierin FunctionDeclarationf.
b. Letfobe the reslt of instantiatingFunctionDeclaration fas described in Clause 13.
c. LetfuncAlreadyDeclarede the result of calling n vHasBinding concrete method passiimgas
the argument.
d. If funcAlreadyDeclareds false, calle n vCoemteMutableBinding concrete nheid passindn and
configurableBindingsas the arguments.
e. Calle n vS@tMutableBinding concrete method passfingfo, andstrict as the arguments.
6. For eachvariableDeclarationandVariableDeclarationNolrd in code in source text order do
a. Letdnbe theldentifierin d.
b. LetvarAlreadyDeclarede the result of calling n vHasBinding concrete method passihgas the
argument.
c. If varAlreadyDeclareds false, then
i Callends CreateMutabl eBi ndi nmgandconfigurabdeBirdingsst h o d
the arguments.
ii. Callends Set Mutabl eBi ndi ng dncundefinedeandstrichaessthb od p a
arguments.
7. LetargumentsAlreadyDeclareble the result of calling n vHasBinding concrete method passing
"arguments” as the argument
8. If codeis function code andrgumentsAlreadyDeclareid false, then
a. LetargsObjbe the result of calling the abstract operation CreateArgumentsObject (10.6) passing
func, names, arggnvandstrict as arguments.
b. If strictis true, then
i Callends Creat el mmut abl thdipassing thg Stringafigumergst "eas me
the argument.
ii. Callends I nitializelmmutabl eBi arguiments "andargsObg t e
as arguments.

PwOD P

i Callends CreateMutabl eBinding c¢ omargumertse" asitbet h o d
argument.

iI. Callends SetMutabl eBindi ng amgomecs & argsObpantfalsed p a
as arguments.

© Ecma International 2009 59

secma

10.6 Arguments Object

When control enters an execution context for function code, an arguments object is created unless (as
specified in 10.5) the identifier arguments occurs as an Identifieri n t h e fFarmalParancete.istor
occurs as the Identifier of a VariableDeclarationor FunctionDeclarationcontained in the function code.

The arguments object is created by calling the abstract operation CreateArgumentsObject with arguments func

the function object whose code is to be evaluated, namesa Li st containing the functio
names, argsthe actual arguments passed to the [[Call]] internal method, envthe variable environment for the

function code, and strict a Boolean that indicates whether or not the function code is strict code. When
CreateArgumentsObiject is called the following steps are performed:

Letlenbe the number of elements amngs.

Let obj be the result of creating a new ECMASairbbject.
Setall the internal methodef obj as specified in 8.12
Set the [[Class]] internal property objto " Arguments
Let Objectbe the standard buiibh Object constructor (15.2.2).

Set the [[Prototype]] internal property obj to the standarthuilt-in Object prototype object (15.2.4).

Call the [[DefineOwnProperty]] internal method obj passing'length ", the Property Descriptor
{[[Value]]: len, [[Writable]]: true, [[Enumerable]]false, [[Configurable]]:true}, andfalseas arguments.
Let mapbe the result of creating a new object as if by the expressgonObject() whereObject is

the standard builin constructor with that name

9. LetmappedNameke an empty List.

10. Letindx=1len - 1.

11. Repeat whildndx>= 0,

a. Letvalbe the element adirgsat O-origined list positionndx.

b. Call the [[DefineOwnProperty]] internal method obj passing ToStrinddx), the property
descriptor {[[Value]]:val, [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:true}, and
falseas arguments.

c. If indxis lessthan the number of elementsniames then

i Let namebe the element afamesat O-origined list positionndx.
il If strictis falseandnameis not an element omappedNameghen
1. Addnameas an element of the listappedNames
2. Letgbe the result of callinghe MakeArgGettermbstract operation with arguments
nameandenv.
3. Letp be the result of calling thelakeArgSetteabstract operation with arguments
nameandenv.
4. Call the [[DefineOwnProperty]] internal method wiap passing ToStringgdx), the
Property Cescriptor {[[Set]]:p, [[Get]]: g, [[Configurable]]:true}, andfalseas
arguments.
d. Letindx=indx-1
12. If mappedNameis not empty, then

a. Setthe [[ParameterMap]] internal propertyadfj to map

b. Setthe [[Get]], [[GetOwnProperty]], [[DefineOwnPropertydind [[Delete]] internal methods ob)
to the definitions provided below.

13. If strict is false, then

a. Call the [[DefineOwnProperty]] internal method obj passing tallee ", the property descriptor
{[[Value]]: func, [[Writable]]: true, [[Enumerable]]false, [[Configurable]]:true}, andfalseas
arguments.

14. Else,strictis true so

a. Letthrowerbe the [[ThrowTypeError]] function Object (13.2.3).

b. Call the [[DefineOwnProperty]] internal method albj with arguments'caller”
PropertyDescriptor {[[Get]]thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:
false}, andfalse.

c. Call the [[DefineOwnProperty]] internal method olfj with argumentscallee"
PropertyDescriptor {[[Get]]thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:
false}, andfalse.

15. Returnobj

NogokrwbpE

o

60 © Ecma International 2009

»ecma

The abstract operation MakeArgGetter called with String nameand environment record envcreates a function
object that when executed returns the value bound for namein env. It performs the following steps:

1. Letbodybe the resulbf concatenating the Stringseturn “, name and "
2. Return the result of creating a function object as described in 13.2 usiRgrnalParameterListbodyfor
FunctionBody envasScope andtrue for Strict.

The abstract operation MakeArgSetter called with String nameand environment record envcreates a function
object that when executed sets the value bound for namein env. It performs the following steps:

1. Letparambe the Stringhameconcatenated with the String drg "

2. Letbodybe the String'<name> = <param>; " with <name>replaced by the value sfameand<param>
replaced by the value glaram

3. Return the result of creating a function object as described in 13.2 using a List containing the single String
paramasFormalParameterListbodyfor FunctionBody envasScope andtrue for Strict.

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when
called with a property name P performs the following steps:

1. Letmapbe the value of the [[ParameterMamternal property of the arguments object.
2. LetisMappedbe the result of calling the [[GetOwnProperty]] internal methodhappassingP as the
argument.
3. If the value ofisMappedis undefined, then
a. Letvbe the result of calling the default [[Get]] imb@l method (8.12.3) on the arguments object
passingP as the argument.
b. If Pis"caller" andv is astrict modeFunction object, throw d&ypeError exception.
c. Returnv.
4. Else,mapcontains a formal parameter mapping Pso,
a. Return the result of callinthe [[Get]] internal method ahappassingP as the argument.

The [[GetOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P performs the following steps:

1. Letdescbe he result of calling the default [[GetOwnProperty]] internal method (8.12.1) on the arguments
object passing as the argument.
2. If descis undefinedthen returndesc
3. Letmapbe the value of the [[ParameterMap]] internal property of the arguments object.
4. LetisMappedbe the result of calling the [[GetOwnProperty]] internal methodhappassingP as the
argument.
5. If the value ofisMappedis notundefined, then
a. Setdesc[[Value]] to the result of calling the [[Get]] internal methodrafppassingP as the
argument.
6. Returndesc

The [[DefineOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P, Property Descriptor Des¢ and Boolean flag Throw performs
the following steps:

1. Letmapbe the value of the [[ParameterMap]] internal property of the arguments object.
2. LetisMappedbe the result of calling the [[GetOwnProperty]] internal methodhappassingP as the
argument.
3. Letallowedbe the result of calling the default [[Oe€OwnProperty]] internal method (8.23.on the
arguments objeqtassingP, Desg andfalseas the arguments.
4. |If allowedis false, then
a. If Throwis true then throw aTypeError exception, otherwise retufialse.
5. If the value ofisMappedis notundefined, then
a. If IsAccessorDescriptoBesq istrue, then
i. Call the [[Delete]] internal method ehappassingP, andfalse as the arguments.
b. Else
i If Desc[[Value]] is present, then

© Ecma International 2009 61

secma

1. Call the[[Put]] internal method omap passingP, Desc[[Value]], andThrowas the
arguments.
il If Desc[[Writable]] is present and its value false, then
1. Call the [[Delete]] internal method afiappassingP andfalse as arguments.
6. Retun true.

The [[Delete]] internal method of an arguments object for a non-strict mode function with formal parameters
when called with a property name P and Boolean flag Throwperforms the following steps:

1. Letmapbe the value of the [[ParameterMap]] internal property of the arguments object.

2. LetisMappedbe the result of calling the [[GetOwnProperty]] intarrmethod ofmappassingP as the
argument.

3. Letresultbe the result of calling the default [[Delete]] internal method (8.12.7) on the arguments object
passingP andThrowas the arguments.

4. |If resultis true and the value ofsMappedis notundefined, then

a. Call the [[Delete]] internal method ehappassingP, andfalse as the arguments.
5. Returnresult

NOTE 1 For non-strict mode functions the array index (defined in 15.4) named data properties of an arguments object

whose numeric name values are less than the number of formal parameters of the corresponding function object initially

share their values with the corresponding argument bindings in
the property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if

such a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode
functions, the values of the ar gumefithe argumdnts passeditcthegunatignendt i es ar e
there is no dynamic linkage between the property values and the formal parameter values.

NOTE 2 The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller " and
"callee " which throw a TypeError exception on access. The "callee " property has a more specific meaning for non-
strict mode functions and a “"caller " property has historically been provided as an implementation-defined extension by
some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is
defined in any other manner by conforming ECMAScript implementations.

11 Expressions
11.1 Primary Expressions

Syntax

PrimaryExpression
this
Identifier
Literal
ArrayLiteral
ObjectLiteral
(Expression

11.1.1 The this Keyword

The this keyword evaluates to the value of the ThisBinding of the current execution context.

11.1.2 Identifier Reference

An |dentifier is evaluated by performing Identifier Resolution as specified in 10.3.1. The result of evaluating an
Identifier is always a value of type Reference.

62 © Ecma International 2009

secma

11.1.3 Literal Reference

A Literal is evaluated as described in 7.8.

11.1.4 Array Initialiser

An array initialiser is an expression describing the initialisation of an Array object, written in a form of a literal.
It is a list of zero or more expressions, each of which represents an array element, enclosed in square
brackets. The elements need not be literals; they are evaluated each time the array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the
element list is not preceded by an AssignmentExpressiofi.e., a comma at the beginning or after another
comma), the missing array element contributes to the length of the Array and increases the index of
subsequent elements. Elided array elements are not defined. If an element is elided at the end of an array,
that element does not contribute to the length of the Array.

Syntax

ArrayLiteral :
[Elisiony:]
[ElementList]
[ElementList Elisiongp:]

ElementList
Elisionyp: AssignmentExpression
ElementList Elisionyp: AssignmentExpression

Elision:

Elision,

Semantics

The production ArrayLiteral: [Elisiony:] is evaluated as follows:

1. Letarray be the result of creating a new object as if by the expressanArray() where Array is
the standard bu#in constructor with that name.

2. Letpadbe the result of evaluatinglision; if not present, use the numeric value zero.

3. Call the [[Put]] internal method dadrray with arguments length ", pad, andfalse.

4. Returnarray.

The production Arrayliteral : [ElemeitlList] is evaluated as follows:

1. Return the result of evaluatir§lementList
The production ArrayLiteral : [ElementList Elisionop:] is evaluated as follows:

Let array be the result of evaluatinglementList

Let padbe the result of evaluatinglision; if not present, use the numeric value zero.

Let lenbe the result of calling the [[Get]] internal methodasfay with argument length

Call the [[Put]] internal method drray with arguments length ", ToUint32pad+len), andfalse.
Returnarray.

Ok wNE

The production ElementList Elisiony: AssignmentExpressiors evaluated as follows:

1. Letarray be the result of creating a new object as if by the expressanArray() where Array is
the standard buiin constructor with that name.

2. Letfirstindexbe he result of evaluatinglision; if not present, use the numeric value zero.

3. LetinitResultbe the result of evaluatingssignmentExpression

© Ecma International 2009 63

secma

4. LetinitValuebe GetValuefitResul).

5. Call the [[DefineOwnProperty]] internal method afray with arguments ToS$ing(firstindeX), the Property
Descriptor { [[Value]]:initValue, [[Writable]]: true, [[Enumerable]]itrue, [[Configurable]]:true}, and
false.

6. Returnarray.

The production ElementList ElementList Elisions: AssignmentExpressiois evaluated as follows:

Let array be the result of evaluatinglementList

Let padbe the result of evaluatinglision; if not present, use the numeric value zero.

LetinitResultbe the result of evaluatingssignmentExpression

LetinitValue be GetValuefitResul).

Letlenbe the result of calling the [[Get]] internal methodasfay with argument' length

Call the [[DefineOwnProperty]] internal method afray with arguments ToString(ToUint334ad+len)) and
the Property Descriptor { [[Value]jnitValue, [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:
true}, andfalse.

7. Returnarray.

oak~wnNE

The production Elision: , is evaluated as follows:
1. Return the numeric valuk
The production Elision: Elision, is evaluated as follows:

1. Letprecedingbe the result of evahtingElision.
2. Returnpreceding1.

NOTE [[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the standard
built-in Array prototype object has been modified in a manner that would preclude the creation of new own properties
using [[Put]].

11.1.5 Obiject Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a
literal. It is a list of zero or more pairs of property hames and associated values, enclosed in curly braces. The
values need not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

ObjectLiteral:

{}
{ PropertyNameAndValueLis}

{ PropertyNameAndValueList }

PropertyNameAndValueList
PropertyAssignment
PropertyNameAndValueList PropertyAssignment

PropertyAssignment
PropertyName AssignmentExpression
get PropertyNamd) { FunctionBody}
set PropertyNamd PropertySetParameterLi3{ FunctionBody}

PropertyName
IdentifierName
StringLiteral
NumericLiteal

PropertySetParameterList
Identifier

64 © Ecma International 2009

secma

Semantics

The production ObijectLiteral: { } is evaluated as follows:

1. Return a new object created as if by the expressam Object() whereObject is the standard buHt
in construcor with that name

The productions ObjectLiteral: { PropertyNameAndValueLi$tand
ObjectLiteral: { PropertyNameAndValuelList} are evaluated as follows:

1. Return the result of evaluatifigropertyNameAndValueList
The production PropertyNameAndValueList PropertyAssignmerns evaluated as follows:

1. Letobjbe the result of creating a new object as if by the expresgonObject() whereObject is the
standard builin construcor with that name

2. Letpropldbe the result of evaluatingropertyAssignment

3. Call the [[DefineOwnProperty]]nternal method obbj with argumentgpropld.name,propld.descriptor, and
false.

4. Returnobij.

The production
PropertyNameAndValueList PropertyNameAndValueListPropertyAssignment
is evaluated as follows:

1. Letobjbe the result of evaluatingropertyNameAndValueList

2. Letpropldbe the result of evaluatingropertyAssignment

3. Letpreviousbe the result of calling the [[GetOwnProperty]] internal methodlgfwith argument
propld.name.

4. If previousis notundefined then throw aSyntaxError exception if ay of the following conditions are true

a. This production is contained in strict code and IsDataDescriptev{oug is true and
IsDataDescriptoggropld.descriptor) isrue.

b. IsDataDescriptofreviousg is true and IsAccessorDescriptgn(opld.descriptor) igrue.

c. IsAccessorDescriptopfevioug is true and IsDataDescriptopfopld.descriptor) idrue.

d. IsAccessorDescriptopfevious is true and IsAccessorDescriptgn(opld.descriptor) igrue and
either bothpreviousandpropld.descriptor have [[Get]] fields or boffreviousand propld.descriptor
have [[Set]] fields

5. Call the [[DefineOwnProperty]] internal method olbj with argumentgpropld.name,propld.descriptor, and
false.
6. Returnobj.

If the above steps would throw a SyntaxError then an implementation must treat the error as an early error
(Clause 16).

The production PropertyAssignmentPropertyName AssignmentExpressias evaluated as follows:

Let propNamebe the result of evaluatingropertyName

Let exprValuebe the result of evaluatingssignmentExpression

Let propValuebe GetValuegéxprvalug.

Let descbe the Property Descriptor{[[Value]propValue [[Writable]]: true, [[Enumerable]]:true,
[[Configurable]]: true}

5. Return Property ldentifiepfopName desq.

PwnE

The production PropertyAssignmentget ProperyName(){ FunctionBody} is evaluated as follows:

1. LetpropNamebe the result of evaluatingropertyName

2. Letclosurebe the result of creating a new Function object as specified in 13.2 with an empty parameter list
and body specified bifunctionBody Pas in the LexicalEnvironment of the running execution context as the
Scope Pass irtrue as theStrict flag if the PropertyAssignmeris contained in strict code or if its
FunctionBodyis strict code.

© Ecma International 2009 65

secma

3. Letdesche the Property Descriptor{[[Get]Elosure [[Enumerable]]true, [[Configurable]]:true}
4. Return Property ldentifiepropName desq.

The production PropertyAssignment set PropertyName(PropertySetParameterLisj { FunctionBody} is
evaluated as follows:

1. LetpropNamebe the result of evaluatingropertyName

2. Letclosurebe the result of creating a new Function object as specified in 13.2 with parameters specified by
PropertySetParameterListnd body specified bifunctionBody Pass in the LexicalEnvironment of the
running execution context as tigeope Pass irtrue as theStrict flag if the PropertyAssignmeris contained
in strict code or if itdcunctionBodyis strict code.

3. Letdescbe the Property Descriptor{[[Set]Elosure [[Enumerable]]itrue, [[Configurable]]:true}

4. Return Property Identifie(propName desq.

It is a SyntaxError if the Identifier "eval" or the Identifier "arguments” occurs as the Identifier in a
PropertySetParameterLisof a PropertyAssignmerthat is contained in strict code or if iBunctionBodyis strict code

The production PropertyName IdentifierNameis evaluated as follows:

1. Return the String value containing the same sequence of charactersi@sntifgerName
The production PropertyName StringLiteral is evaluated as follows:

1. Return the SV of th&tringLiteral.

The production PropertyName NumericLiteral is evaluated as follows:

1. Letnbrbe the result of forming the value of thleimericLiteral
2. Return ToStringtgbr).

11.1.6 The Grouping Operator
The production PrimaryExpression (Expression) is evaluated as follows:

1. Return the result of evaluatirigxpression This may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this
is so that operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression
PrimaryExpression
FunctionExpression
MemberExpressiop Expression
MemberExpression IdentifierName
new MemberExpressiorPArguments

NewExpression
MembeExpression
new NewExpression

CallExpression
MemberExpressiorArguments
CallExpression Arguments
CallExpressior] Expression
CallExpression IdentifierName

66 © Ecma International 2009

secma

Arguments

()
(ArgumentList)

ArgumentList
AssignmentExpression
ArgumentList Assignmentkpression

LeftHandSideExpressian
NewExpression
CallExpression

11.2.1 Property Accessors
Properties are accessed by name, using either the dot notation:

MemberExpression IdentifierName
CallExpression IdentifierName
or the bracket notation:

MemberExprssion][Expressior]
CallExpressior] Expression

The dot notation is explained by the following syntactic conversion:
MemberExpression IdentifierName

is identical in its behaviour to
MemberExpressioh <identifier-namestring> |

and similarly
CallExpression. IdentifierName

is identical in its behaviour to

CallExpressior] <identifier-namestring>]

where <identifier-namestring> is a string literal containing the same sequence of characters after processing

of Unicode escape sequences as the IdentifielName

The production MemberExpressionMemberExpressioh Expression is evaluated as follows:

Let baseValudbe GetValudfaseReferenge

Let propertyNameValube GetValuggropertyNameReferenge
Call CheckObjectCoerciblbgseValug
Let propertyNameStringpe ToStringpropertyNameValue

NoohwbE

strict befalse.

©

propertyNameStringand whose strict mode flag s¢rict.

Let baseReferencke the result of evaluatinglemberExpressian

Let propertyNameReferend® the result of evaluatingxpression

If the syntactic production that is being evaluated is contained in strict mode cosdiclelbe true, else let

Return a value of type Reference whose base valbesé/alueand whose referenced name is

The production CallExpression CallExpressior] Expressior] is evaluated in exactly the same manner, except

that the contained CallExpressioris evaluated in step 1.

11.2.2 The new Operator

The production NewExpression new NewExpressiois evaluated as follows:

© Ecma International 2009

oronPE

ecma

Let ref be the result of evaluatingewExpression

Let constructorbe GetValuefef).

If Type(constructo) is not Object, throw dypeError exception.

If constructordoes not implement the [[Construct]] internal method, throWwpeError exception.

Return the result of calling the [[Construct]] internal metheadconstructor providing no arguments (that
is, an empty list of arguments).

The production MemberExpressionnew MemberExpressioArgumentds evaluated as follows:

oakwnE

Letref be the result of evaluatinglemberExpressian

Let constructorbe GetValuefef).

LetargList be the result of evaluatingrguments producing an internal list of argument values (11.2.4).
If Type(constructo) is not Object, throw dypeError exception.

If constructordoes not implement the [[Construct]] internal method, throWypeError exception.

Return the result of calling the [[Construct]] internal methodconstructor providing the listargListas the
argument values.

11.2.3 Function Calls

The production CallExpression MemberExpressioArgumentss evaluated as follows:

ogankwnpE

Let ref be the result of evaluatinglemberExpressian
Let funcbe GetValuerfef).
Let argList be the result of evaluatingrguments producing an internal list of argument values (see 11.2.4).
If Type(func) is not Object, throw &ypeError exception.
If IsCallablgfunc) is false, throw aTypeError exception.
If Type(ref) is Reference, then
a. |If IsPropertyReferenceéf) is true, then
i Let thisValuebe GetBase€f).
b. Else, the base okfis an Environment Record
i Let thisValuebe the result of calling the ImplicitThis\Via¢ concrete method of
GetBase(ef).
Else, Typelef) is not Reference.
a. LetthisValuebe undefined.
Return the result of calling the [[Call]] internal method famc, providingthisValueas thethis value and
providing the listargListas the argument values

The production CallExpression CallExpressiomPArgumentsis evaluated in exactly the same manner, except that
the contained CallExpressionis evaluated in step 1.

NOTE The returned result will never be of type Reference if funcis a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementation-dependent. If a value of type Reference is returned, it
must be a non-strict Property Reference.

11.2.4 Argument Lists

The evaluation of an argument list produces a List of values (see 8.8).

The production Arguments () is evaluated as follows:

1.

Return an empty List.

The production Arguments (ArgumentList) is evaluated as follows:

1.

Return the result of evaluatingrgumentList

The production ArgumentList AssignnentExpressionis evaluated as follows:

1.

68

Let ref be the result of evaluatingssignmentExpression

© Ecma International 2009

secma

2. Letargbe GetValuefef).
3. Return a List whose sole item asg.

The production ArgumentList ArgumentList, AssignmentExpressiois evaluated as follows:

Let precedingArgse the result of evaluatingrgumentList

Letref be the result of evaluatingssignmentExpression

Letarg be GetValueef).

Return a List whose length is one greater than the lengpnezfedingArgsand whose items are the items of
precedirgArgs in order, followed at the end karg which is the last item of the new list.

PwOd P

11.2.5 Function Expressions
The production MemberExpressionFunctionExpressiofs evaluated as follows:

1. Return the result of evaluatifgunctionExpression
11.3 Postfix Expressions

Syntax

PostfixExpression
LeftHandSideExpression
LeftHandSideExpressiofno LineTerminatorhere] ++
LeftHandSideExpressiofo LineTerminatorhere] --

11.3.1 Postfix Increment Operator
The production PostfixExpression LeftHandSideExpressiofno LineTerminatorhere] ++ is evaluated as follows:

1. Letlhsbe the result of evaluatinigeftHandSideExpression
2. Throw aSyntaxError exception if the following conditions are all true:
i Type(hs) is Reference isrue
1 IsStrictReferencghs) is true
1 Type(GetBae(hs)) is Enviroment Record
1 GetReferencedNamig@) is either'eval” or "arguments
3. Letoldvaluebe ToNumber(GetValué{s)).
4. LetnewValuebe the result of adding the valdeto oldValueg using the same rules as for th@perator (see
11.6.3).
Call PutvVale(hs, newValug.
ReturnoldValue

5.
6.
11.3.2 Postfix Decrement Operator

The production PostfixExpression LeftHandSideExpressiofno LineTerminatothere] -- is evaluated as follows:

1. Letlhsbe the result of evaluatinigeftHandSide Expression
2. Throw aSyntaxError exception if the following conditions are all true:
i Type(hs) is Reference isrue
i IsStrictReferencghs) is true
i Type(GetBasdlis)) is Enviroment Record
i GetReferencedNamig@) is either'eval” or "arguments
3. LetoldVvaluebe ToNumber(GetValué{s)).
4. LetnewValuebe the result of subtracting the valldrom oldValue using the same rules as for the
operator (11.6.3).
5. Call PutValuelhs, newValug.
6. ReturnoldValue

© Ecma International 2009 69

secma

11.4 Unary Operators

Syntax

UnaryExpression
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

11.4.1 The delete Operator
The production UnaryExpression delete UnaryExpressioris evaluated as follows:

1. Letrefbe the result of evaluatingnaryExpression
2. If Type(ref) is not Reference, retuitnue.
3. If IsUnresolvableReferencedf) then,
a. If IsStrictReferenceéf) is true, throw aSyntaxError exception.
b. Else, returrtrue.
4. |If IsPropertyReferencegf) is true, then
a. Return the result of calling the [[Delete]] internal method on ToObject(GetBafyeproviding
GetReferencedNameedf) and IsStrictReferencedf) as the arguments.
5. Else,refis a Reference tan EnvironmentRecordbinding, so
a. If IsStrictReferene(ref) is true, throw aSyntaxError exception.
b. Letbindingsbe GetBaséref).
c. Return the result of calling the DeleteBinding concmetethodof bindings providing
GetReferencedNameHf) as the argument.

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its
UnaryExpressioris a direct reference to a variable, function argument, or function name. In addition, if a delete operator

occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError
exception is thrown.

11.4.2 The void Operator

The production UnaryExpression void UnaryExpressiorns evaluated as follows:
1. Letexprbe the result of evaluatingnaryExpression

2. Call GetValueéxpn.

3. Returnundefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.
11.4.3 The typeof Operator

The production UnaryExpression typeof UnaryExpressions evaluated as follows:

1. Letvalbe the result of evaluatingnaryExpression

2. If Type(val) is Reference, then
a. If IsUnresolvableReferencedl) is true, return"undefined”

b. Letvalbe GetValuegal).
3. Return a String determined by Type() according tolrable 20

70 © Ecma International 2009

»ecma

Table 20 & typeof Operator Results

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean”
Number "number"
String "string"
Object (native and does "object"

not implement [[Call]])

Object (native or host and | "function”
does implement [[Call]])

Object (host and does not | Implementation-defined except may
implement [[Call]]) not be "undefined" , "boolean"
"number ", or "string".

11.4.4 Prefix Increment Operator
The production UnaryExpression ++ UnaryExpressions evaluated as follows:

1. Letexprbe the result of evaluating UnaryExpression.
2. Throw aSyntaxError exception if the following conditions are all true:
i Type(expr is Reference isrue
i IsStrictReferenc@xpy) is true
i Type(GetBasedxpr) is Enviroment Record
i GetReferencedNamexpr) is either"eval" or "arguments
3. LetoldValuebe ToNumber(GetMae(expr)).
4. LetnewValuebe the result of adding the valdeto oldValue using the same rules as for th@perator (see
11.6.3).
5. Call PutValueéxpr, newValug.
6. ReturnnewValue

11.4.5 Prefix Decrement Operator
The production UnaryExpression -- UnaryExpessionis evaluated as follows:

1. Letexprbe the result of evaluating UnaryExpression.
2. Throw aSyntaxError exception if the following conditions are all true:
i Type(expn is Reference isrue
i IsStrictReferenc@xpy) is true
1 Type(GetBasea(xpr)) is EnviromentRecord
1 GetReferencedNamexpr) is either"eval" or "arguments
3. LetoldValuebe ToNumber(GetValuekpr)).
4. LetnewValuebe the result of subtractirthe valuel from oldValuge using the same rules as for the
operator (see 11.6.3).
5. Call PutValueéxpr, newalue).
6. ReturnnewValue

11.4.6 Unary + Operator
The unary + operator converts its operand to Number type.
The production UnaryExpression + UnaryExpressions evaluated as follows:

1. Letexprbe the result of evaluating UnaryExpression.

© Ecma International 2009 71

secma

2. Return ToNumber(Gé&talue(expr)).

11.4.7 Unary - Operator

The unary - operator converts its operand to Number type and then negates it. Note that negating +0
produces - 0, and negating - O produces +0.

The production UnaryExpression - UnaryExpressiornis evaluated as follows:

Let exprbe the result of evaluating UnaryExpression.

Let oldValuebe ToNumber(GetValuekpr)).

If oldValueis NaN, returnNaN.

Return the result of negatirgdValue that is, compute a Number with the same magnitude but opposite
sign.

PwbPE

11.4.8 Bitwise NOT Operator (~)
The production UnaryExpression ~ UnaryExpressioris evaluated as follows:
1. Letexprbe the result of evaluatingnaryExpression

2. LetoldValuebe Tolnt32(GetValuefxpr)).
3. Return the result of applying bitwise complementtdValue The reslt is a signed 3zbit integer.

11.4.9 Logical NOT Operator (!)

The production UnaryExpression ! UnaryExpressiornis evaluated as follows:
Let exprbe the result of evaluatingnaryExpression

Let oldValuebe ToBoolean(GetValuekpr)).

If oldValueis tru e, returnfalse.
Returntrue.

PwbdPE

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression
UnaryExpression
MultiplicativeExpressiorf UnaryExpression
MultiplicativeExpressiot UnaryExpression
MultiplicativeExpressio®UnaryExpression

Semantics

The production MultiplicativeExpression MultiplicativeExpression@ UnaryExpressionwhere @ stands for one
of the operators in the above definitions, is evaluated as follows:

Let left be the result of evaluating MultiplicativeExpression.

Let leftValuebe GetValie(eft).

Letright be the result of evaluating UnaryExpression.

LetrightValuebe GetValuefght).

Let leftNumbe ToNumbergftvValue.

Let rightNumbe ToNumbenightValue).

Return the result of applying the specified operation (*, /, or %gfitéNumandrightNum See the Notes
below 11.5.111.5.2,11.5.3

NogokrwNPE

72 © Ecma International 2009

secma

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.
Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision
arithmetic:

1 If either operand is NaN, the result is NaN.

1 The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

1 Multiplication of an infinity by a zero results in NaN.

1 Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the
rule already stated above.

1 Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is
determined by the rule already stated above.

1 In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.2 Applying the/ Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

1 If either operand is NaN, the result is NaN.

1 The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

1 Division of an infinity by an infinity results in NaN.

1 Division of an infinity by a zero results in an infinity. The sign is determined by the rule
already stated above.

1 Division of an infinity by a non-zero finite value results in a signed infinity. The sign is
determined by the rule already stated above.

1 Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.

9 Division of a zero by a zero results in NaN; division of zero by any other finite value results
in zero, with the sign determined by the rule already stated above.

1 Division of a non-zero finite value by a zero results in a signed infinity. The sign is
determined by the rule already stated above.

1 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
guotient is computed and rounded to the nearest representable value using IEEE 754 round-
to-nearest mode. If the magnitude is too large to represent, the operation overflows; the
result is then an infinity of appropriate sign. If the magnitude is too small to represent, the
operation underflows and the result is a zero of the appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

11.5.3 Applying the %Operator

The %operator yields the remainder of its operands from an implied division; the left operand is the dividend
and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-
point operands.

© Ecma International 2009 73

secma

The result of a floating-point remainder operation as computed by the % operator is not the same as the
Airemainder 0 fomedatbiyon EEE 754. The | EEE 754 Aremaindero
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual

integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to

behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the

C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
9 If either operand is NaN, the result is NaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r = n - (d * q) where g is an integer that is negative only if n/d is negative and
positive only if n/d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d.

= =4 =4 -4 4

11.6 Additive Operators

Syntax

AdditiveExpression
MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

11.6.1 The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression AdditiveExpressior MultiplicativeExpressioris evaluated as follows:

1. Letlref be the result of evaluating AdditiveExpression.
2. Letlval be GetValue(ref).
3. Letrref be the result of evaluating MultiplicativeExpression.
4. Letrval be GetValuefef).
5. Letlprim be ToPrimitive(val).
6. Letrprim be ToPrimitive(val).
7. If Type(lprim) is String or Typefprim) is String, then
a. Return the String that is thresult of concatenating ToString(im) followed by ToString(prim)
8. Return the result of applying the addition operation to ToNunijpént) and ToNumberprim). See the

Note below 11.6.3.

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the
hint String were given. Host objects may handle the absence of a hint in some other manner.

NOTE 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.5), by using the
logical-or operation instead of the logical-and operation.

11.6.2 The Subtraction Operator (-)
The production AdditiveExpression AdditiveExpression MultiplicativeExpressiorns evaluated as follows:

1. Letlref be the result of evaluating AdditiveExpression.
2. Letlval be GetValudfef).

74 © Ecma International 2009

secma

Noas®

Let rref be the result of evaluating MultiplicativeExpression.

Letrval be GetValuefef).

Let Inumbe ToNumber{val).

Letrnumbe ToNumbenfval).

Return the result of applying the subtraction operatiomtn and num See the note below 11.6.3.

11.6.3 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:

il

=A =4 4 =4

= =

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeros is -0. The sum of two positive zeros, or of two zeros of
opposite sign, is +0.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the same sign or have different magnitudes, the sum is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the operation overflows and the result is then an infinity
of appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the difference
of its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric
operands a and b, it is always the case that ai b produces the same resultasa+(1ib) .

11.7 Bitwise Shift Operators

Syntax

ShiftExpression
AdditiveExpression
ShiftExpressior< AdditiveExpression
ShiftExpressiorr> AdditiveExpression
ShiftExpressiorr>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

The production ShiftExpression ShiftExpressior< AdditiveExpressiois evaluated as follows:

oakwnE

Let Iref be the result of evaldimg ShiftExpression
Let lval be GetValudfef).

Let rref be the result of evaluatingdditiveExpression
Letrval be GetValuea(ef).

Let Inumbe Tolnt32[val).

Let rnumbe ToUint32¢val).

© Ecma International 2009 75

7.

8.

eCmna

Let shiftCountbe the result of masking out all but the least gigant 5 bits ofrnum, that is, computenum
& Ox1F.
Return the result of left shiftinlpum by shiftCountbits. The result is a signed 3#t integer.

11.7.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression ShiftExpressiorr> AdditiveExpressiolis evaluated as follows:

NoagkrwnE

c

Let Iref be the result of evaluatinghiftExpression

Letlval be GetValudtef).

Let rref be theresult of evaluatinghdditiveExpression

Letrval be GetValuefref).

LetInumbe Tolnt32(val).

Letrnumbe ToUint32(val).

Let shiftCountbe the result of masking out all but the least significant 5 bitswin, that is, computenum
& Ox1F.

Return theresult of performing a sigextending right shift ofnumby shiftCountbits. The most significant
bit is propagated. The result is a signedi@Rinteger.

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression ShiftExpressiorn>> AdditiveExpressiois evaluated as follows:

NogokwhPE

©

Let Iref be the result of evaluatinghiftExpression

Letlval be GetValudtef).

Let rref be the result of evaluatingdditiveExpression

Letrval be GetValuefef).

Letlnumbe ToUint32(val).

Letrnumbe ToUint32¢val).

Let shiftCountbe the result of masking out all but the least significant 5 bitswifn, that is, computenum
& Ox1F.

Return the result of performing a zefiling right shift of Inumby shiftCountbits. Vacated bits are filled
with zero. The result is an unsigned-BR integer.

11.8 Relational Operators

Syntax

RelationalExpression

76

ShiftExpression

RelationalExpressior ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressioimstanceof ShiftExpression
RelationalExpressiom ShiftExpression

© Ecma International 2009

secma

RelationalExpressionNoin
ShifExpression
RelationalExpressionNola ShiftExpression
RelationalExpressionNoln ShiftExpression
RelationalExpressionNola= ShiftExpression
RelationalExpressionNolr= ShiftExpression
RelationalExpressionNolimstanceof ShiftExpression

NOTE The A Noidnts @re meaded to avoid confusing the in operator in a relational expression with the in
operator in a for statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The RelationalExpressionNolmproductions are evaluated in the same manner as the RelationalExpression
productions except that the contained RelationalExpressionNolns evaluated instead of the contained
RelationalExpresion

11.8.1 The Less-than Operator (<)
The production RelationalExpression RelationalExpressior ShiftExpressiolis evaluated as follows:

Let Iref be the result of evaluatingelationalExpression

Let lval be GetValud¢ef).

Let rref be the result bevaluatingShiftExpression

Letrval be GetValuefef).

Letr be the result of performing abstract relational comparisah< rval. (see 11.8.5)
If r is undefined, returnfalse. Otherwise, returm.

oakrwNE

11.8.2 The Greater-than Operator (>)

The production RelationalExpression : RelationalExpressior ShiftExpressioris evaluated as follows:

1. Letlref be the result of evaluatingelationalExpression

2. Letlval be GetValueef).

3. Letrref be the result of evaluatinghiftExpression

4. Letrval be GetValuefref).

5. Letr be the result of performing abstract relational comparisah < Ival with LeftFirst equal tofalse. (see
11.8.5).

6. If r is undefined, returnfalse. Otherwise, returm.

11.8.3 The Less-than-or-equal Operator (<=)
The production RelationalExpression : RelationalExpressior= ShiftExpressiolis evaluated as follows:

Let Iref be the result of evaluatingelationalExpression

Let lval be GetValud¢ef).

Let rref be the result of evaluatinghiftExpression

Let rval be GetValuefef).

Letr be the resli of performing abstract relational comparisioral < Ival with LeftFirst equal tofalse. (see
11.8.5).

If r is true or undefined, returnfalse. Otherwise, returtrue.

arwbdPE

o

11.8.4 The Greater-than-or-equal Operator (>=)

The production RelationalExpression : RelationalExpressior= ShiftExpressiolis evaluated as follows:

© Ecma International 2009 77

secma

Let Iref be the result of evaluatingelationalExpression

Letlval be GetValudtef).

Let rref be the result of evaluatinghiftExpression

Letrval be GetValuefef).

Letr be the resulbf performing abstract relational comparisleal < rval. (see 11.8.5)
If r is true or undefined, returnfalse. Otherwise, returtrue.

oakwnpE

11.8.5 The Abstract Relational Comparison Algorithm

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirstis true and indicates that the x parameter corresponds to an expression that
occurs to the left of the y parameter6 s cor r es pondi haftFirgtis false thesreverse.is the tase
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. If the LeftFirstflag is true, then

a. Letpxbe the result of calling ToPrimitive(hint Number).

b. Letpybe the result of calling ToPrimitivg(hint Number).

2. Else the order of evaluation needs to be reversed to preserve left to right evaluation

a. Letpybe the result of calling ToPrimitivg(hint Number).

b. Letpxbe the result of calling ToRmitive(x, hint Number).

3. Ifitis not the case that both Typge(is String and Type(y) is String, then
a. Letnxbe the result of calling ToNumbgxX). Becausgx andpy are primitive values evaluation
order is not important.
Let ny be the result of callingoNumberpy).
If nxis NaN, returnundefined.
If nyis NaN, returnundefined.
If nxandny are the samdlumbervalue, returrfalse.
If nxis +0 andnyis - 0, returnfalse.
If nxis - 0andnyis +0, returnfalse.
If nxis +a, returnfalse.
If nyis +a, reurntrue.
If nyis - &, returnfalse
If nxis - @, returntrue.
If the mathematical value ofxis less than the mathematical valuengfd note that these
mathematical values are both finite and not both @emturntrue. Otherwise, returfialse.
4. Else, bothpx andpy are Strings

a. If pyis a prefix ofpx, returnfalse. (A Stringvaluep is a prefix ofStringvalueq if g can be the
result of concatenating and some othe$tringr. Note that anystringis a prefix of itself, because
may be the empt$tring.)

b. If pxis a prefix ofpy, returntrue.

c. Letkbe the smallest nonnegative integer such that the character at pésitithin px is different
from the character at positidnwithin py. (There must be suchka for neitherStringis a prefix of
the other.)

d. Letmbe the integer that is the code unit value for the character at pokitighin px.

Let n be the integer that is the code unit value for the character at pokitithin py.
If m<n, returntrue. Otherwise, returfalse.

TRT T S@m0oa00

o

NOTE 1 Step 3 differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

78 © Ecma International 2009

secma

11.8.6 The instanceof operator
The production RelationalExpressianRelationalExpressiomstanceof ShiftExpressioris evaluated as follows:

Let Iref be the result of evaluatingelationalExpression

Let lval be GetValud¢ef).

Let rref be the result of evaluatinghiftExpression

Letrval be GetValuefef).

If Type(rval) is not Object, throw dypeError exception.

If rval does not have a [[HasInstance]] internal method, thraw@eError exception.
Return the result of callinthe [[HasInstance]] internal method ofal with argumentval.

NookrwdE

11.8.7 The in operator
The production RelationalExpression RelationalExpressiom ShiftExpressiois evaluated as follows:

Let Iref be the result of evaluatingelationalExpression

Let lval be GetValud(ef).

Let rref be the result of evaluatinghiftExpression

Letrval be GetValuefef).

If Type(rval) is not Object, throw dypeError exception.

Call ToString(val).

Return the result of callinthe [[HasProperty]] internal method ofal with argument ToStrindyal).

NogohwbE

11.9 Equality Operators

Syntax

EqualityExpression
RelationalExpression
EqualityExpressiomr= RelationalExpression
EqualityExpressiot~ RelationalExpression
EqualityExpressior== RelationalExpression
EqualityExpressiot== RelationalExpression

EqualityExpressionNoln
RelationalExpessionNoln
EqualityExpressionNolr= RelationalExpressionNoln
EqualityExpressionNolt= RelationalExpressionNoln
EqualityExpressionNolr== RelationalExpressionNoln
EqualityExpressionNoltr= RelationalExpressionNoln

Semantics

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The EqualityExpressionNolnproductions are evaluated in the same manner as the EqualityExpression

productions except that the contained EqualityExpressionNolrand RelationalExpressionNolrare evaluated
instead of the contained EqualityExpressiomnd RelationalExpressigrrespectively.

11.9.1 The Equals Operator (==
The production EqualityExpression : EqualityExpressiorr= RelationalExpressiois evaluated as follows:

1. Letlref be the result of evaluatingqualityExpression
2. Letlval be GetValudfef).
3. Letrref be the result of evaluatingelationalExpression

© Ecma International 2009 79

secma

4. Letrval be GetValuefef).
5. Return the result of performing abstteequality comparisorval == Ival. (see 11.9.3).

11.9.2 The Does-not-equals Operator (!=)
The production EqualityExpression : EqualityExpressiof= RelationalExpressiors evaluated as follows:

LetIref be the result of evaluatingqualityExpression

Letlval be GetValudtef).

Let rref be the result of evaluatingelationalExpression

Letrval be GetValuefref).

Letr be the result of performing abstract equality comparis@h == Ival. (see 11.9.3).
If r is true, returnfalse. Otherwise, returnrue.

ogakwnhpE

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Typg(then
a. If Type(x) is Undefined, returrirue.
b. If Type(x) is Null, returntrue.
c. If Type(x) is Number, then
i. If X is NaN, returnfalse.
il If y is NaN, returnfalse.
iii. If xis the saméNumbervalue asy, returntrue.

iv. If xis +0andy is - 0, returntrue.
V. If xis-0andy is +0, returntrue.
Vi. Returnfalse.

d. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, fiadaen
e. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse. Otherwise, reirnfalse.
f. Returntrue if x andy refer to the same object. Otherwise, rettaise.
2. If xis null andy is undefined, returntrue.
3. If xis undefined andy is null, returntrue.
4. If Type(x) is Number and Typg] is String,
return the result of the comparisgs== ToNumbery).
5. If Type(x) is String and Typsf is Number,
return the result of the comparison ToONumbge=y.
6. If Type(x) is Boolean, return the result of the comparison ToNumderfy.
7. If Type(y) is Boolean, return the result of the comparisor= ToNumbery).
8. If Type(X) is either String or Number and Typ#(s Object,
return the result of the comparisarr= ToPrimitivef).
9. If Type(x) is Object and Typgj is either String or Number,
return the result of the comparison ToPrimitdet=y.
10. Retum false.

NOTE 1 Given the above definition of equality:
9 String comparison can be forced by: "™ +a==""+b
1 Numeric comparison can be forced by: +a == +b .
1 Boolean comparison can be forced by: 'la ==b

NOTE 2 The equality operators maintain the following invariants:

1 A!= Bis equivalentto !(A ==B).
1 A==Bis equivalent to B== A, except in the order of evaluation of A and B.

80 © Ecma International 2009

eCina

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each
representing the same String value; each String object would be considered equal to the String value by the == operator,
but the two String objects would not be equal to each other.

NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to
use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalised form.

11.9.4 The Strict Equals Operator (===
The production EqualityExpression : EqualityExpressiosr== RelationalExpressiois evaluated as follows:

Let Iref be the result of evaluatingqualityExpression

Let Ival be GetValud(ef).

Let rref be the result of evaluatingelationalExpression

Letrval be GetValuefef).

Return the result of performing the strict equality comparisa@i === lval. (See 1.9.6)

arwNE

11.9.5 The Strict Does-not-equal Operator (!==
The production EqualityExpression : EqualityExpressioft== RelationalExpressiois evaluated as follows:

Let Iref be the result of evaluatingqualityExpression

Let Ival be GetValud(ef).

Let rref be the result of evaluatingelationalExpression

Letrval be GetValuefef).

Letr be the result of performing strict equality compariseal === Ival. (See 11.9.6)
If r is true, returnfalse. Otherwise, returtrue.

ok wnpE

11.9.6 The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

1. If Type(x) is different from Typey), returnfalse.

2. If Type(x) is Undefined, returitrue.

3. If Type(x) is Null, returntrue.

4. If Type(x) is Number, then

If X is NaN, returnfalse.

If y is NaN, returnfalse.

If x is the saméNumbervalue asy, returntrue.

If xis +0andy is -0, returntrue.

If xis-0andy is +0, returntrue.

Returnfalse.

5. If Type(x) is String, then returirue if x andy are exactly the same sequence of characters (same length and
same characters in corresponding positions); otherwise, rédlsm

6. If Type(x) is Boolean, returrue if x andy are bothtrue or bothfalse; otherwise, returirialse.

7. Returntrue if x andy refer to the same object. Otherwise, rettalse.

"0 oo T

NOTE This algorithm differs from the SameValue Algorithm (9.12) in its treatment of signed zeroes and NaNs.
11.10 Binary Bitwise Operators

Syntax

BitwiseANDEXxpression
EqualityExpression
BitwiseANDEyression& EqualityExpression

© Ecma International 2009 81

secma

BitwiseANDEXxpressionNoIn
EqualityExpressionNoln
BitwiseANDExpressionNol& EqualityExpressionNoln

Bitwise XOREXxpression
BitwiseANDEXpression
BitwiseXOREXxpressioh BitwiseANDEXxpression

Bitwise XORExpressionNoln
BitwiseANDEpressionNoln
Bitwise XORExpressionNoBitwiseANDEXxpressionNoln

BitwiseOREXxpression
BitwiseXOREXxpression
BitwiseORExpressioh BitwiseXOREXxpression

BitwiseORExpressionNotn
BitwiseXORExpressionNoln
BitwiseORExpressionNoln Bitwise XORExpressionNoln

Semantics

The production A: A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

LetIref be the result of evaluating.

Letlval be GetValudfef).

Let rref be the result of evaluating.

Letrval be GetValuef ef).

LetInumbe Tolnt32(val).

Letrnumbe Tolnt32f¢val).

Return the result of applying the bitwise operator @ntanandrnum. The result is a signed 32 bit integer.

NoagkrwnE

11.11 Binary Logical Operators

Syntax

LogicalANDEXxpression
BitwiseOREXxpression
Logicd ANDExpressior&& BitwiseOREXxpression

LogicalANDEXxpressionNoln
BitwiseORExpressionNoln
LogicalANDExpressionNol&& BitwiseOREXxpressionNoln

LogicalORExpression
LogicalANDExpression
LogicalORExpressiof] LogicalANDExpression

LogicalORExpressionNoln
LogicalANDExpressionNoln
LogicalORExpressionNoljj LogicalANDExpressionNoln

Semantics

The production LogicalANDExpression LogicalANDExpressiod.& BitwiseORExpressiois evaluated as follows:

1. Letlref be the result of evaluatingogical ANDEXxpression
2. Letlval be GetValudfef).
3. If ToBoolean(val) is false, returnlval.

82 © Ecma International 2009

secma

4. Letrref be the result of evaluatingitwiseORExpressian
5. Return GetValueatef).

The production LogicalORExpression LogicalORExpressiol] LogicalANDExpressiois evaluated as follows:

Let Iref be the result of evaluatingogical ORExpression
Let lval be GetValud(ef).

If ToBoolean(val) is true, returnlval.

Let rref be the result of evaluatingogical ANDEXxpression
Return GetValuetef).

arwdPE

The LogicalANDExpressionNoland LogicalORExpressiaNoln productions are evaluated in the same manner
as the LogicalANDExpression and LogicalORExpression productions except that the contained
LogicalANDExpressionNo|rBitwiseORExpressionNoland LogicalORExpressionNolare evaluated instead of the
contained LogicalANDExpressionBitwiseORExpressioand LogicalORExpressigrrespectively.

NOTE The value produced by a &&or || operator is not necessarily of type Boolean. The value produced will always
be the value of one of the two operand expressions.

11.12 Conditional Operator (? :)

Syntax

ConditionalExpression
LogicalOREXxpression
LogicalORExpression? AssignmentExpressianAssignmentExpression

ConditionalExpressionNoln
LogicalORExpressionNoln
LogicalORExpressionNolr? AssignmentExpressionAssignmerExpressionNoln

Semantics

The production ConditionalExpression LogicalORExpressiof? AssignmentExpressianAssignmentExpressias
evaluated as follows:

1. Letlref be the result of evaluatingogicalORExpression
2. If ToBoolean(GetValud(ef)) is true, then
a. LettrueRefbe the result of evaluatintpe firstAssignmentExpression
b. Return GetValudfueREej.
3. Else
a. LetfalseRefe the result of evaluatinipe secondssignmentExpression
b. Return GetValudglseReY.

The ConditionalExpressionNolrproduction is evaluated in the same manner as the ConditionalExpression
production except that the contained LogicalORExpressionNojn AssignmentExpression and

AssignmentExpressionNoln are evaluated instead of the contained LogicalORExpressign first

AssignmentExpressia@and second AssignmentExpressiprespectively.

NOTE The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java, which
each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression.
The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a
conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

© Ecma International 2009 83

secma

11.13 Assignment Operators

Syntax

AssignmentExpressian
ConditionalExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoin
ConditionalExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExprisedio

AssignmentOperatarone of
= *= /= %= += -= <<= >>= >>>= &= A= =

Semantics

The AssignmentExpressionNoljroductions are evaluated in the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoland AssignmentExpressionNobre evaluated
instead of the contained ConditionalExpressiomand AssignmentExpressiprespectively.

11.13.1 Simple Assignment (=)
The production AssignmentExpressiarLeftHandSideExpression AssignmentExpressias evaluated as follows:

Let Iref be the result of evaluatinigeftHandSideExpression
Let rref be the result of evaluatingssignmentExpression
Letrval be GetValuefef).
Throw aSyntaxError exception if the following conditions are all true:
i Type(ref) is Referencesitrue
i IsStrictReferencéief) is true
i Type(GetBaséfef)) is Enviroment Record
i GetReferencedNamie€f) is either"eval® or "arguments
5. Call PutValuelref, rval).
6. Returnrval.

PwbPE

NOTE When an assignment occurs within strict mode code, its LeftHandSidanust not evaluate to an unresolvable
reference. If it does a ReferenceError exception is thrown upon assignment. The LeftHandSidealso may not be a
reference to a data property with the attribute value {[[Writable]]: fals€}, to an accessor property with the attribute value
{l[S4]]:undefined}, nor to a non-existent property of an object whose [[Extensible]] internal property has the value false. In
these cases a TypeError exception is thrown.

11.13.2 Compound Assignment (op=)

The production AssignmentExpressia LeftHandSideExpressio@ = AssignmentExpressipwhere @ represents
one of the operators indicated above, is evaluated as follows:

Let Iref be the result of evaluatinigeftHandSideExpression
Letlval be GetValudfef).
Let rref be the result of evaltismmg AssignmentExpression
Letrval be GetValuefef).
Letr be the result of applying operator @Iv@al andrval.
Throw aSyntaxError exception if the following conditions are all true:
i Type(ref) is Reference isrue
i IsStrictReferencéief) is true
i Type(GetBasédfef)) is Enviroment Record
i GetReferencedName(lref) &ther"eval® or "arguments
7. Call Putvaluelfef, r).

ounkwnpE

84 © Ecma International 2009

secma

8. Returnr.

NOTE See NOTE 11.13.1.
11.14 Comma Operator (,)

Syntax

Expression
AssignmentExpression
Expression AssignmentExpression

ExpressionNoln
AssignmentExpressionNoln
ExpressionNoln AssignmentExpressionNoln

Semantics

The production Expression Expression AssignmentExpressids evaluated as follows:

Let Iref be the result of evaluatingxpression

Call GetValuelref).

Letrref be the result of evaluatingssignmentExpression
Return GetValuatef).

PwOd P

The ExpressionNolrproduction is evaluated in the same manner as the Expressionproduction except that the
contained ExpressionNolrand AssignmentExpressionNoéme evaluated instead of the contained Expressionand
AssignmentExpressiprespectively.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

12 Statements

Syntax

Statement
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
lterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement
DebuggerStatement

Semantics

A Statementan be part of a LabelledStatementvhich itself can be part of a LabelledStatementand so on. The

| abels introduced this way are collectively referred
of individual statements. A LabelledStatemeriias no semantic meaning other than the introduction of a label to

a label set. The label set of an lterationStatemenbr a SwitchStatemeninitially contains the single element
empty. The label set of any other statement is initially empty.

© Ecma International 2009 85

secma

NOTE Several widely used implementations of ECMAScript are known to support the use of FunctionDeclaratioras a
StatementHowever there are significant and irreconcilable variations among the implementations in the semantics applied
to such FunctionDeclarationsBecause of these irreconcilable difference, the use of a FunctionDeclarationas a Statement
results in code that is not reliably portable among implementations. It is recommended that ECMAScript implementations
either disallow this usage of FunctionDeclarationor issue a warning when such a usage is encountered. Future editions of
ECMAScript may define alternative portable means for declaring functions in a Statementontext.

12.1 Block

Syntax

Block:
{ StatementLig: }

StatementList
Statement
StatementList Statement

Semantics

The production Block: { } is evaluated as follows:

1. Return formal, empty, empty).

The production Block: { StatementLis}is evaluated as follows:
1. Return the result of evaluatirgtatementList

The production StatementList Statemenis evaluated as follows:

1. Letsbe the resulof evaluatingStatement

2. If an exception was thrown, returth(ow, V, empty) whereV is the exception. (Execution now proceeds as
if no exception were thrown.)

3. Returns.

The production StatementList StatementList Statementevaluated as follows:

Let sl be the result of evaluatingtatementList

If slis an abrupt completion, retush

Let s be the result of evaluatingtatement

If an exception was thrown, returth(ow, V, empty) whereV is the exception. (Execution now proceeds as
if no exceptionwere thrown.)

If s.value isempty, letV = sl.value, otherwise |le¥ = s.value.

Return é.type,V, s.target).

PwbdPE

oo

12.2 Variable Statement

Syntax

VariableStatement
var VariableDeclarationList

VariableDeclarationList
VariableDeclaration
VariableDeclaratioist, VariableDeclaration

VariableDeclarationListNoln

VariableDeclarationNoln
VariableDeclarationListNoln VariableDeclarationNoln

86 © Ecma International 2009

secma

VariableDeclaration:
Identifier Initialiseropt

VariableDeclarationNoln
Identifier InitialiserNolny:

Initialiser :
= AssignmentExpression

InitialiserNoln:
= AssignmentExpressionNoln

A variable statement declares variables that are created as defined in 10.5. Variables are initialised to

undefined when created. A variable with an Initialiser is assigned the value of its AssignmentExpressionhen
the VariableStatemeris executed, not when the variable is created.

Semantics

The production VariableStatementvar VariableDeclarationList is evaluated as follows:

1. EvaluateVariableDeclarationList
2. Return fiormal, empty, empty).

The production VariableDeclarationList VariableDeclarationis evaluated as follows:
1. EvaluateVariableDeclaration
The production VariableDeclarationList VariableDeclarationList VariableDeclarationis evaluated as follows:

1. EvaluateVariableDeclaratbnList
2. EvaluateVariableDeclaration

The production VariableDeclaration: Identifieris evaluated as follows:

1. Return aString value containing the same sequence of characters as idahgfier.
The production VariableDeclaration: Identifier Initialiser is evaluated as follows:

Let Ihs be the result of evaluatiniglentifier as described in 11.1.2.

Let rhs be the result of evaluatinigitialiser.

Let valuebe GetValueths).

Call PutValuelhs, value).
Return aString value containing the same sequencelwdracters as in tHdentifier.

aOhrwdE

NOTE The String value of a VariableDeclarationis used in the evaluation of for-in statements (12.6.4).

If a VariableDeclarationis nested within a with statement and the Identifier in the VariableDeclarationis the
sameasa property name of the binding object of the wit
will assign value to the property instead of to the VariableEnvironment binding of the Identifier.

The production Initialiser : = AssignmentExpressias evaluated as follows:

1. Return the result of evaluatimgssignmentExpression

The VariableDeclarationListNoln VariableDeclarationNolnand InitialiserNoln productions are evaluated in the
same manner as the VariableDeclarationList VariableDeclarationand Initialiser productions except that the
contained VariableDeclarationListNoln VariableDeclarationNoln InitialiserNoln and AssignmentExpressionNoln
are evaluated instead of the contained VariableDeclarationList VariableDeclaration Initialiser and
AssignmatExpressionrespectively.

© Ecma International 2009 87

secma

12.2.1 Strict Mode Restrictions

It is a SyntaxError if a VariableDeclarationor VariableDeclarationNolnoccurs within strict code and its Identifier
is either "eval" or "arguments"

12.3 Empty Statement

Syntax
EmptyStatement

Semantics

The production EmptyStatement; is evaluated as follows:

1. Return(normal, empty, empty).
12.4 Expression Statement

Syntax
ExpressionStatement
[lookahead T {{, function }] Expression

NOTE An ExpressionStatemengannot start with an opening curly brace because that might make it ambiguous with a
Block Also, an ExpressionStatemenannot start with the function keyword because that might make it ambiguous with a
FunctionDeclaration

Semantics
The production ExpressionStatementiookahead T {{, function }] Expression is evaluated as follows:

1. LetexprRefbe the result of evaluatinigxpression
2. Return fiormal, GetValueéxprRef, empty).

12.5 Theif Statement

Syntax

IfStatement
if (Expression Statementelse Statement
if (Expression) Statenent

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible
if that would otherwise have no corresponding else .

Semantics
The production IfStatement if (Expressior) Statemenglse Statementis evaluated as follows:
1. LetexprRefbe the result of evaluatingxpression
2. If ToBoolean(GetValuefxprReJ) is true, then
a. Return the result of evaluating the filStatement

3. Else,
a. Return the result of evaluating the sec@tdtement

The production IfStatement if (Expressior) Statemenis evaluated as follows:

88 © Ecma International 2009

secma

1. LetexprRefbe the result of evaluatinigxpression
2. If ToBoolean(GetValuedxprReJ) is false, return formal, empty, empty).
3. Return the result of evaluatirstatement

12.6 lteration Statements

Syntax

IterationStatement
do Statementwhile (Expression;
while (Expression Statement
for (ExpressionNolgy; Expressiogy.; Expressiogy,) Statement
for (var VariableDeclarationListNoln Expressiog, ; Expressiog,) Statement
for (LeftHandSideExpressmin Expression Statement
for (var VariableDeclarationNolrin Expressior) Statement

12.6.1 The do-while Statement
The production do Statementvhile (Expression; is evaluated as follows:

1. LetV=-empty.
2. Letiteratingbetrue.
3. Repeat, whildterating is true
a. Letstmtbe the result of evaluatingtatement
b. If stmtvalue is noempty, letV = stmtvalue
c. If stmttype is notcontinue || stmttarget is not in the current label set, then

i. If stmttype isbreak andstmttarget is in the current label set,ugt (hormal, V, empty).

ii. If stmtis an abrupt completion, retustmt
d. LetexprRefbe the result of evaluatingxpression
e. If ToBoolean(GetValuefxprReJ) is false, setiterating to false.
4. Return formal, V, empty);

12.6.2 The while Statement
The production IterationStatementwhile (Expressior) Statemenis evaluated as follows:

1. LetV=empty.

2. Repeat
a. LetexprRefbe the result of evaluatingxpressio.
b. If ToBoolean(GetValuedxprRej) is false, return formal, V, empty).
c. Letstmtbe the result of evaluatinStatement
d. If stmtvalue is noempty, letV = stmtvalue.
e. If stmttype is nofcontinue || stmttarget is not in the current label set, then

i If stmttype isbreak andstmttarget is in the current label set, then
1. Return formal, V, empty).
ii. If stmtis anabrupt completion, returstmt

12.6.3 The for Statement

The production
IterationStatement for (ExpressionNolgy ; Expressiogy; Expressiogy) Statement
is evaluated as follows:

1. If ExpressionNolns present, then.
a. LetexprRefbe the result of evaating ExpressionNoln
b. Call GetValueéxprRe}. (This value is not used.)

2. LetV=-empty.

3. Repeat

© Ecma International 2009

89

secma

a. If the first Expressionis present, then
i Let testExprRebe the result of evaluating the filBkpressio.
il If GetValuetestExprRefis false, return formal, V, empty).
Let stmtbe the result of evaluatingtatement
If stmtvalue is noempty, letV = stmtvalue
If stmttype isbreak andstmttarget is in the current label set, retunomal, V, empty).
If stmttype is notcontinue || stmttarget is not in theurrent label set, then
i If stmtis an abrupt completion, retugtmt
If the secondExpressioris present, then
i LetincExprRefbe the result of evaluating the secdixpressia.
ii. Call GetValueilncExprRej. (This value is not used.)

®oo0oT

—h

The production
IterationStatement for (var VariableDeclarationListNoln Expressiogy; Expressiogy) Statement
is evaluated as follows:

1. EvaluateVariableDeclarationListNoln
2. LetV =empty.
3. Repeat
a. If the first Expressionis present, then
i Let testExprRebe the result oévaluating the firsExpression
il If GetValuetestExprRefis false, then returniformal, V, empty).
Let stmtbe the result of evaluatingtatement
If stmtvalue is noempty, let V =stmtvalue.
If stmttype isbreak andstmttarget is in the current l&bset, returnrformal, V, empty).
If stmttype is notcontinue || stmttarget is not in the current label set, then
i If stmtis an abrupt completion, retugtmt
If the seconcExpressions present, then.
i LetincExprRefbe the result of evaluating the s&d Expression
ii. Call GetValueilncExprRej. (This value is not used.)

®oo0oT

—h

12.6.4 The for -in Statement

The production IterationStatement for (LeftHandSideExpressioim Expression) Statemenis evaluated as
follows:

Let exprRefbe the result of evaluating thepression
Let experValuebe GetValuegxprRe].
If experValuds null or undefined, return formal, empty, empty).
Let objbe ToObjectéxperValug.
Let V= empty.
Repeat
a. LetP be the name of the next propertyaldj whose [[Enumerable]] attribute tsue. If there is no

such property, returmprmal, V, empty).
Let IhsRefbe the result of evaluating theeftHandSideExpressionit may be evaluated repeatedly).
Call PutValuelhsRef P).
Let stmtbe the result of evaluatingtatement
If stmtvalue is noempty, letV = stmtvalue.
If stmttype isbreak andstmttarget is in the current label set, retuno(mal, V, empty).
If stmttype is notcontinue || stmttarget is not in the current label set, then

i If stmtis an abrupt completion, retugtmt

ognk~wnE

@~ooooT

The production
IterationStatementfor (var VariableDeclarationNolrin Expressior) Statement

is evaluated as follows:
1. LetvarNamebe the result of evaluatingariableDeclarationNoln

2. LetexprRefbe the result of evaluating thexpression
3. LetexperValuebe GetValuegxprRe}.

90 © Ecma International 2009

secma

If experValues null or undefined, return formal, empty, empty).
Let obj be ToObjectéxperValué.
Let V = empty.
Repeat

a. LetP be the name of the next propertyaddj whose [[Enumerable]] attribute tsue. If there is no

such propertyreturn formal, V, empty).

b. LetvarRefbe the result of evaluatingarNameas if it were an Identifier Reference (11.1.2); it may
be evaluated repeatedly.
Call PutValueyarRef P).
Let stmtbe the result of evaluatingtatement
If stmtvalue is noempty, let V = stmtvalue.
If stmttype isbreak andstmttarget is in the current label set, retuno(mal, V, empty).
If stmttype is notcontinue || stmttarget is not in the current label set, then

i If stmtis an abrupt completion, retustmt

No ok

Q@ —™"ooo0

The mechanics and order of enumerating the properties (step 6.a in the first algorithm, step 7.a in the second)
is not specified. Properties of the object being enumerated may be deleted during enumeration. If a property
that has not yet been visited during enumeration is deleted, then it will not be visited. If new properties are
added to the object being enumerated during enumeration, the newly added properties are guaranteed not to
be visited in the active enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of
the prototype, and so on, recursively; but a proper:
because some previous object in the prototype chain has a property with the same name.

NOTE See NOTE 11.13.1.
12.7 The continue Statement

Syntax

ContinueStatement
continue [no LineTerminatothere] ldentifiery: ;

Semantics
A program is considered syntactically incorrect if either of the following is true:
1 The program contains a continue statement without the optional Identifier, which is not

nested, directly or indirectly (but not crossing function boundaries), within an
IterationStatement

1 The program contains a continue statement with the optional Identifier, where Identifier
does not appear in the label set of an enclosing (but not crossing function boundaries)
IterationStatement

A ContinueStatementithout an Identifier is evaluated as follows:
1. Return €ontinue, empty, empty).

A ContinueStatementith the optional Identifier is evaluated as follows:

1. Return €ontinue, empty, ldentifier).
12.8 The break Statement

Syntax

BreakStatement
break [no LineTerminatorhere] Identifierop ;

© Ecma International 2009 91

secma

Semantics

A program is considered syntactically incorrect if either of the following is true:

il

The program contains a break statement without the optional Identifier, which is not
nested, directly or indirectly (but not crossing function boundaries), within an
IterationStatemenbr a SwitchStatement

The program contains a break statement with the optional Identfier, where Identifier does
not appear in the label set of an enclosing (but not crossing function boundaries) Statement

A BreakStatememwithout an ldentifier is evaluated as follows:

1.

Return preak, empty, empty).

A BreakStatememith an ldentifier is evaluated as follows:

1.

Return preak, empty, Identifier).

12.9 Thereturn Statement

Syntax

ReturnStatement
return [no LineTerminatomere] EXpressiosy: ;

Semantics

An ECMAScript program is considered syntactically incorrect if it contains a return statement that is not
within a FunctionBody A return statement causes a function to cease execution and return a value to the
caller. If Expressionis omitted, the return value is undefined. Otherwise, the return value is the value of

Expression

The production ReturnStatementreturn [no LineTerminatothere] Expressiogy ; is evaluated as:

1.
2.

If the Expressioris not present, returrréturn, undefined, empty).
Let exprRefbe the result of evaluatingxpression
3. Return teturn, GetValueéxprRejf, empty).

12.10 The with Statement

Syntax

WithStatement
with (Expressior) Statement

The with
the current execution context. It then executes a statement using this augmented lexical environment. Finally,
it restores the original lexical environment.

Semantics

statement adds an object environment record for a computed object to the lexical environment of

The production WithStatementwith (Expressior) Statemenis evaluated as follows:

ogakwnpE

92

Let val be the result of evaluatingxpression

Let obj be ToObject(GetValu®@l)).

LetoldEnvbe t he running execution contextds Lexical
Let newEnvbe the result of calling NewObjectEnvironment passibgandoldEnvas the arguments

Set theprovideThisflag of newEnvto true.

Set

the running execuhbmenthonewbnut ext 6 s Lexi cal Envi

© Ecma International 2009

Envi

r

(0]

r

0

secma

7. Let C be the result of evaluatin§tatementut if an exception is thrown during the evaluation, Gebe
(throw, V, empty), whereV is the exception. (Execution now proceeds as if no exception were thrown.)

8. Set the running executioncoxté 6 s Lexi cal oldEnw i r onment t o
9. ReturnC.
NOTE No matter how control leaves the embedded Statement whether normally or by some form of abrupt

completion or exception, the LexicalEnvironment is always restored to its former state.

12.10.1 Strict Mode Restrictions

Strict mode code may not include a WithStatementThe occurrence of a WithStatementn such a context is
treated as a SyntaxError.

12.11 The switch Statement

Syntax

SwitchStatement
switch (Expressio CaseBlock

CaseBlock
{ CaseClauses: }
{ CaseClauseg: DefaultClause CaseClausgs}

CaseClauses
CaseClause
CaseClauses CaseClause

CaseClause
case Expression StatementLigft

DefaultClause
default : StatementLig:

Semantics

The production SwitchStatementswitch (Expressior) CaseBlockis evaluated as follows:

Let exprRefbe the result of evaluatingxpression

Let Rbe the result of evaluatinQaseBlock passing it GetValuekprReJ as a parameter.
If Ritype isbreak andR.target is in the current label set, retunofmal, R.value, empty).
ReturnR.

PonE

The production CaseBlock { CaseClauseg: } is given an input parameter, input, and is evaluated as follows:

1. LetV=empty.
2. LetAbe the list ofCaseClausé&ems in source text order.
3. Letsearchingbetrue.
4. Repeat, whilesearchings true
a. LetCbe the nexCaseClausén A. If there is no suclaseClausgreturn ormal, V, empty).
b. LetclauseSelectdbe the result of evaluating.
c. If inputis equal taclauseSelectoas defined by the== operator, then
i. Setsearchingto false
ii. If C has aStatementListhen
1. EvaluateCo StatementLisand letR be the result.
2. If Ris an abrupt completion, then retuRn
3. LetV=Ruvalue.
5. Repeat

a. LetCbe the nexCaseClausdn A. If there is no suclaseClausgreturn(normal, V, empty).

© Ecma International 2009 93

secma

b. If Chas aStatenentList then
i. EvaluateCé StatementLisand letR be the result.
ii. If Rvalue is noempty, then letV = Rvalue.
iii. If Ris an abrupt completion, then retfitype,V, R.target).

The production CaseBlock { CaseClauses: DefaultClause CaseClausgs} is given an input parameter, input,
and is evaluated as follows:

1. LetV=empty.
2. LetAbe the list ofCaseClauséems in the firsCaseClausesn source text order.
3. LetBbe the list of CaseClause items in the second CaseClauses, in source text order.
4, Letfoundbefalse
5. Repeat lettingC be in order eacaseClausén A
a. If foundis false then
i. Let clauseSelectape the result of evaluating
. If inputis equal taclauseSelectoas defined by the== operator, then sébundto true.
b. If foundis true, then
i If C has a StatementList, then
1. EvaluateCd StatementLisand letR be the result.
2. If Rvalue is noempty, then letV = Rvalue.
3. Ris an abrupt completion, then retyftype,V, Rtarget).
6. LetfoundIinBbefalse
7. If foundis false then

a. Repeat, whildoundInBis falseand all elements @ have not been processed
i. Let C be the nex€CaseClausén B.
ii. Let clauseSelectape the result of evaluating,
iii. If inputis equal taclauseSelectoas defined by the== operator, then
1. SetfoundinBtotrue.
2. If Chas aStaementListthen
a EvaluateCd StatementLisand letR be the result.
b If Rvalue is noempty, then letV = R.value.
¢ Ris an abrupt completion, then retyftype,V, Rtarget).
8. If foundInBis false and theDefaultClausehas aStatementListhen
a. EvaluateaheDe f a u |l t SldtemnentishddsletR be the result.
b. If Rvalue is noempty, then letV = Rvalue.
c. If Ris an abrupt completion, then retufdtype,V, Rtarget).
9. Repeat (Note that if step 7.a.i has been performed this loop does not start girthimdp®fB)
a. LetCbe the nexCaseClausén B. If there is no suclCaseClausgreturn formal, V, empty).
b. If Chas a StatementList, then
i. EvaluatecC6 s St at e meRbethérssult. and | et
ii. If Rvalue is noempty, then letV = Rvalue.
iii. If Ris an abruptompletion, then returrRtype,V, R.target).

The production CaseClause case Expression StatementList: is evaluated as follows:

1. LetexprRefbe the result of evaluatinigxpression
2. Return GetValuefxprRef.

NOTE Evaluating CaseClausaloes not execute the associated StatementListlt simply evaluates the Expressionand
returns the value, which the CaseBloclalgorithm uses to determine which StatementListo start executing.

12.12 Labelled Statements

Syntax

LabelledStatement
Identifier: Statement

94 © Ecma International 2009

secma

Semantics

A Statemenmnay be prefixed by a label. Labelled statements are only used in conjunction with labelled break
and continue statements. ECMAScript has no goto statement.

An ECMAScript program is considered syntactically incorrect if it contains a LabelledStatementhat is enclosed
by a LabelledStatementith the same Identifier as label. This does not apply to labels appearing within the body
of a FunctionDeclaratiorthat is nested, directly or indirectly, within a labelled statement.

The production ldentifier : Statemenis evaluated by adding Identifier to the label set of Statementand then
evaluating StatementlIf the LabelledStatemeritself has a non-empty label set, these labels are also added to
the label set of Statemenbefore evaluating it. If the result of evaluating Statements (break, V, L) where L is
equal to Identifier, the production results in (normal, V, empty).

Prior to the evaluation of a LabelledStatementhe contained Statemenis regarded as possessing an empty
label set, unless it is an lterationStatemenbr a SwitchStatementn which case it is regarded as possessing a
label set consisting of the single element, empty.

12.13 The throw Statement

Syntax

ThrowStatement
throw [no LineTerminatomere] EXxpression

Semantics
The production ThrowStatementthrow [no LineTerminatohere] Expression is evaluated as:

1. LetexprRefbe the result of evaluatingxpression
2. Return throw, GetValueéxprRef, empty).

12.14 Thetry Statement

Syntax

TryStatement
try Block Catch
try Block Fnally
try Block Catch Finally

Catch:
catch (Identifier) Block

Finally :
finally Block

The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime
error or a throw statement. The catch clause provides the exception-handling code. When a catch clause
catches an exception, its Identifieris bound to that exception.

Semantics
The production TryStatement try Block Catchis evaluated as follows:
1. LetBbe the result of evaluatinglock

2. If B.type is notthrow, return B.
3. Return the result of evaluatir@atchwith parameteB.

© Ecma International 2009 95

secma

The production TryStatement try Block Finally is evaluated as follows:

1. LetBbe the result of evaluatinglock
2. LetF be the result of evaluatinginally.
3. If F.type isnormal, returnB.

4. RetunF.

The production TryStatement try Block CatchFinally is evaluated as follows:

1. LetBbe the result of evaluatinglock
2. |If B.type isthrow, then
a. LetC be the result of evaluatinQatchwith parameteB.
3. Else,B.type is notthrow,
a. LetCbeB.
4. LetF bethe result of evaluatinginally.
5. If F.type isnormal, returnC.
6. ReturnF.

The production Catch: catch (Identifier) Blockis evaluated as follows:

1. LetC be the parameter that has been passed to this production.

2. LetoldEnvbe the running executioncoxte 6 s Lexi cal Envi ronment .

3. LetcatchEnvbe the result of calling NewDeclarativeEnvironment passigdEnvas the argument.

4. Call the CreateMutableBinding concrete methodcatchEnvpassing theldentifier String value as the
argument.

5. Call the SetMutableBinidg concrete method afatchEnvpassing thddentifier, C, andfalse as arguments.
Note that the last argument is immaterial in this situation.

6. Set the running executioncatchhent ext 6s Lexi cal Environmen

7. LetBbe the result of evaluatinglock

8. Sett he running execution colEne xt 6s Lexical Enhvironment

9. ReturnB.

NOTE No matter how control leaves the Blockthe LexicalEnvironment is always restored to its former state.

The production Finally : finally Blockis evaluated as follows:

1. Return the esult of evaluatindlock

12.14.1 Strict Mode Restrictions

It is an SyntaxError if a TryStatementvith a Catch occurs within strict code and the Identifier of the Catch
production is either "eval* or "arguments"

12.15 The debugger statement

Syntax

DebuggrStatement
debugger,

Semantics

Evaluating the DebuggerStatememroduction may allow an implementation to cause a breakpoint when run
under a debugger. If a debugger is not present or active this statement has no observable effect.

The production DebugyerStatementdebugger ; is evaluated as follows:

1. If an implementation defined debugging facility is available and enabled, then
a. Perform an implementation defined debugging action.

96 © Ecma International 2009

secma

b. Letresultbe an implementation defined Completion value.
2. Else

a. Letresultbe (hormal, empty, empty).
3. Returnresult

13 Function Definition

Syntax

FunctionDeclaration
function Identifier (FormalParameterList:) { FunctionBody}

FunctionExpression
function Identifierop: (FormalParameterLisk:) { FunctionBody}

FormalParameterList
Identifier
FormalParameterList ldentifier

FunctionBody.
SourceElemends

Semantics

The production
FunctionDeclarationt function Identifier (FormalParameterLisk:) { FunctionBody}
is instantiated as follows during Declaration Binding instantiation (10.5):

1. Return the result of creating a new Function object as specified in 13.2 with parameters specified b
FormalParameterList:, and body specified byunctionBody Pass in the VariableEnvironment of the running
execution context afié Scope Pass irtrue as theStrict flag if the FunctionDeclarationis contained in strict code
or if its FunctionBodyis strict code.

The production
FunctionExpressionfunction (FormalParameterList:) { FunctionBody}
is evaluated as follows:

1. Return the result of creating a new Function object as specified in 13.2 with parameters specified by
FormalParameterList: and body specified byunctionBody Pass in the LexicalEnvironment of the running
execution context as tt&cope Pass irtrue as tte Strict flag if the FunctionExpressiois contained in strict code or
if its FunctionBodyis strict code.

The production
FunctionExpression function Identifier (FormalParameterLish:) { FunctionBody}
is evaluated as follows:

1. LetfuncEnvbe thee s ul t of calling NewDeclarativeEnvironment
Environment as the argument

2. LetenvRedef u n c Emvivodnsent record.

3. Call the CreatelmmutableBinding(N) concrete methodepn¥Recpassing theString value of Idertifier as the
argument.

4. Let closure be the result of creating a new Function object as specified in 13.2 with parameters specified by
FormalParameterList: and body specified b¥unctionBody Pass infuncEnvas theScope Pass intrue as the
Strictflag if the FunctionExpressiors contained in strict code or if ilunctionBodyis strict code.

5. Call the InitializelmmutableBindind\,V) concrete method oénvRecpassing theString value of Identifier and
closureas the arguments.

6. Returnclosure

© Ecma International 2009 97

secma

NOTE The Identifier in a FunctionExpressiortan be referenced from inside the FunctionExpression'sunctionBodyto
allow the function to call itself recursively. However, unlike in a FunctionDeclaration the Identifier in a FunctionExpression
cannot be referenced from and does not affect the scope enclosing the FunctionExpression

The production FunctionBody. SourceElemends: is evaluated as follows:

1. The code of thigunctionBodyis strict mode code if it is part offeunctionDeclarationor FunctionExpressiomthat
is contained in strict mode code or if the Directive Prologue (14.1) @adtsceElementsontains a Use Strict
Directive or if any of the conditions in 10.1.1 apply. If the code of EactionBodyis strict mode code,
SourceElementis evaluated in théollowing steps as strict mode code. OtherwiSeurceElements evaluated in
the following steps as nestrict mode code.

2. If SourceElements present return the result of evaluat®murceElements

3. Else returnformal, undefined, empty).

13.1 Strict Mode Restrictions

It is a SyntaxError if any Identifier value occurs more than once within a FormalParameterLisof a strict mode
FunctionDeclarationor FunctionExpression

It is a SyntaxError if the Identifier "eval" or the Identifier "arguments” occurs within a FormalParameterList
of a strict mode FunctionDeclarationor FunctionExpression

It is a SyntaxError if the Identifier "eval" or the Identifier "arguments" occurs as the Identifier of a strict
mode FunctionDeclarationor FunctionExpression

13.2 Creating Function Objects

Given an optional parameter list specified by FormalParameterLista body specified by FunctionBody a Lexical
Environment specified by Scopeand a Boolean flag Strict, a Function object is constructed as follows:

Create a new nativeCMAScript object and |ef be that object.

Set all the internal methods, except for [[Get]]Faisdescribedn 8.12.

Set the [[Class]] internal property Bfto "Function”

Set the [[Prototype]] internal property Bto the standard buiih Functionprototype object as specified in 15.3.3.1.

Set the [[Get]] internal property &fas described in 15.3.5.4.

Set the [[Call]] internal property df as described in 13.2.1.

Set the [[Construct]] internal property Bfas described in 13.2.2.

Set the [[Haslatance]] internal property &f as described in 15.3.5.3.

Set the [[Scope]] internal property Bfto the value oScope

0. Let namesbe a List containing, in left to right textual order, tB&ings corresponding to the identifiers of

FormalParameterList

11. Set the [[FormalParameters]] internal propertyrdb names

12. Set the [[Code]] internal property &fto FunctionBody

13. Set the [[Extensible]] internal property Bfto true.

14. Letlenbe the number of formal parameters specifieBarmalParameterListlf no parameters are specified, len
be 0.

15. Call the [[DefineOwnProperty]] internal method Bfwith arguments' length
len, [[Writable]]: false, [[Enumerable]]false [[Configurable]]:false}, andfalse

16. Let proto be the reslt of creating a new object as would be constructed by the expressio®bject() where

Object is the standard builh constructor with that name.

BOONOGO A~ WNE

', Property Descriptor {[[Value]]:

17. Call the [[DefineOwnProperty]] internal method foto with arguments' constructor ", Property Descriptor
{[[Value]]: F, { [[Writable]]: true, [[Enumerable]]false, [[Configurable]]:true}, andfalse
18. Call the [[DefineOwnProperty]] internal method & with arguments” prototype ", Property Descriptor

{[[value]]: proto, { [[Writable]]: true, [[Enumerable]]false, [[Configurable]]:false}, andfalse
19. If Strictis true, then
a. Letthrowerbe the [[ThrowTypeError]] function Object (13.2.3).
b. Call the [[DefineOwnProperty]] internal method &f with arguments'caller” , PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:false}, andfalse.

98 © Ecma International 2009

secma

c. Call the [[DefineOwnProperty]] internal method Bfwith argumentsarguments” , PropertyDescriptor

{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:false}, andfalse
20. ReturnF.

NOTE A prototype property is automatically created for every function, to allow for the possibility that the function
will be used as a constructor.

13.2.1 [[Call]]

When the [[Call]] internal method for a Function object F is called with a this value and a list of arguments, the
following steps are taken:

1. LetfuncCtxbe the result of establishing a new execution context for function code using the v&l'se of
[[FormalParameters]] internal property, the passed argumentaigstand thethis value as described in
10.4.3.

2. Letresultbe the result of evaluating tainctionBodythat is the value oF's [[Code]] internal property. If

F does not have a [[Code]] internal property or if its value is an efAptctionBody thenresultis (normal,

undefined, empty).

Exit the execution contexXtincCtx restoring the previous execution context.

If resulttype isthrow then throwresultvalue.

If resulttype isreturn then returrresultvalue.

Otherwiseresulttype must baormal. Returnundefined.

o0k w

13.2.2 [[Construct]]

When the [[Construct]] internal method for a Function object F is called with a possibly empty list of arguments,
the following steps are taken:

1. Letobjbe a newly created native ECMAScript object.

2. Set all the internal methods obj as sgcified in 8.12.

3. Setthe [[Class]] internal property objto "Object"

4. Set the [[Extensible]] internal property albj to true.

5. Letprotobe the value of calling the [[Get]] internal propertyFofvith argument’prototype”

6. If Type(proto) is Object, sethe [[Prototype]] internal property abj to proto.

7. If Type(proto) is not Object, set the [[Prototype]] internal propertyobf to the standard builh Object prototype
object as described in 15.2.4.

8. Letresultbe the result of calling the [[Call]] inteal property of, providingobj as thethis value and providing the

argument list passed into [[Construct]]ags.
9. If Type(resul) is Object then returresult
10. Returnobj.

13.2.3 The [[ThrowTypeError]] Function Object

The [[ThrowTypeError]] object is unique function object that is defined once as follows:
Create a new native ECMAScript object andHdte that object.
Set all the internal methoad F asdescribedn 8.12.
Set the [[Class]] internal property Bfto "Function”
Set the [[Prototypelinternal property of to the standard buiih Function prototype object as specified in 15.3.3.1.
Set the [[Call]] internal property d¢f as described in 13.2.1.
Set the [[Scope]] internal property Bfto the Global Environment.
Set the [[FormalParame#d] internal property of to an empty List.
Set the [[Code]] internal property &fto be aFunctionBodythat unconditionally throws &ypeError exception and
performs no other action.
. Call the [[DefineOwnProperty]] internal method Bfvith arguments | ength ", Property Descriptor {[[Value]]o,
[[Writable]]: false, [[Enumerable]]false, [[Configurable]]:false}, andfalse
11. Set the [[Extensible]] internal property Bfto false
12. Let [[ThrowTypeError]] ber.

CoNoO~WNE

(=Y
o

© Ecma International 2009 99

secma

14 Program

Syntax

Program:
SourceElemends

SourceElements
SourceElement
SourceElements SourceElement

SourceElement
Statement
FunctionDeclaration

Semantics

The production Program: SourceElemends is evaluated as follows:

1. The code of thirogramis strictmodecode if the Directive Prologud ¢.1) of itsSourceElementsontains
a Use Strict Directive or if any of the conditions of 10.1.1 apply. If the code oPtlmgramis strict mode
code,SourceElements evaluated in the following steps as strict mode code. OtheSdseceElements
evaluated in the following steps as netrict mode code.

If SourceElementis not present, returmérmal, empty, empty).

Let progCxtbe a newexecutioncontext for global code as described in 10.4.1.

Letresultbe the result of evaluatingourceElements

Exit the execution contextrogCxt

Returnresult

oakwN

NOTE The processes for initiating the evaluation of a Programand for dealing with the result of such an evaluation
are defined by an ECMAScript implementation and not by this specification.

The production SourceElementsSourceElementSourceElemernis evaluated as follows:

Let headResulbe the result oévaluatingSourceElements

If headResulis an abrupt completion, retutreadResult

Let tailResultberesult of evaluatingourceElement

If tailResultvalue isempty, letV = headResultvalue, otherwise le¥ = tailResultvalue.
Return (ailResulttype V, tailResulttarge)

oronPE

The production SourceElementStatemenis evaluated as follows:

1. Returnthe result of evaluatin§tatement

The production Sour@Element FunctionDeclarations evaluated as follows:

1. Return formal, empty, empty).

14.1 Directive Prologues and the Use Strict Directive

A Directive Prologue is the longest sequence of ExpressionStatemergroductions occurring as the initial
SourceElerant productions of a Program or FunctionBodyand where each ExpressionStatemeirt the sequence
consists entirely of a StringLiterd token followed a semicolon. The semicolon may appear explicitly or may be
inserted by automatic semicolon insertion. A Directive Prologue may be an empty sequence.

A Use Strict Directive is an ExpressionStatememt a Directive Prologue whose StringLiteral is either the exact

character sequences "use strict" or 'use strict '. A Use Strict Directive may not contain an
EscapeSaggnceor LineContinuation

100 © Ecma International 2009

secma

A Directive Prologue may contain more than one Use Strict Directive. However, an implementation may issue
a warning if this occurs.

NOTE The ExpressionStatememroductions of a Directive Prologue are evaluated normally during evaluation of the
containing SourceElements production. Implementations may define implementation specific meanings for
ExpressionStatememgroductions which are not a Use Strict Directive and which occur in a Directive Prologue. If an
appropriate notification mechanism exists, an implementation should issue a warning if it encounters in a Directive
Prologue an ExpressionStatemerhat is not a Use Strict Directive or which does not have a meaning defined by the
implementation.

15 Standard Built-in ECMAScript Objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the
global object, is part of the lexical environment of the executing program. Others are accessible as initial
properties of the global object.

Unless specified otherwise, the [[Class]] internal property of a built-in object is "Function" if that built-in
object has a [[Call]] internal property, or "Object" if that built-in object does not have a [[Call]] internal
property. Unless specified otherwise, the [[Extensible]] internal property of a built-in object initially has the
value true.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with the new operator. For each built-in function, this
specification describes the arguments required by that function and properties of the Function object. For each
built-in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned by a new expression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this clause is given fewer arguments than the function is specified to require, the function or constructor shall
behave exactly as if it had been given sufficient additional arguments, each such argument being the
undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this clause is given more arguments than the function is specified to allow, the extra arguments are evaluated
by the call and then ignored by the function. However, an implementation may define implementation specific
behaviour relating to such arguments as long as the behaviour is not the throwing of a TypeError exception
that is predicated simply on the presence of an extra argument.

NOTE Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Every built-in function and every built-in constructor has the Function prototype object, which is the initial value
of the expression Function.prototype (15.3.4), as the value of its [[Prototype]] internal property.

Unless otherwise specified every built-in prototype object has the Object prototype object, which is the initial
value of the expression Object.prototype (15.2.4), as the value of its [[Prototype]] internal property,
except the Object prototype object itself.

None of the built-in functions described in this clause that are not constructors shall implement the
[[Construct]] internal method unless otherwise specified in the description of a particular function. None of the
built-in functions described in this clause shall have a prototype property unless otherwise specified in the
description of a particular function.

This clause generally describes distinctbe havi our s f or when a constructor

when it is Acahewekpaesphbonhoof Tme ficalled as a funct
i nvocation of the constructordéds [[Cad lidw iextpereasadi omed
corresponds to the invocation of the constructoroés []|

© Ecma International 2009 101

secma

Every built-in Function object described in this claused whether as a constructor, an ordinary function, or
bothd has a length property whose value is an integer. Unless otherwise specified, this value is equal to the
largest number of named arguments shown in the subclause headings for the function description, including
optional parameters.

NOTE For example, the Function object that is the initial value of the slice property of the String prototype object is
described under the subclause headi ng fAString. prototype.slice (start, end) 0 wt
and end; therefore the value of the length property of that Function object is 2.

In every case, the length property of a built-in Function object described in this clause has the attributes
{ [[writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }. Every other property described in this

clause has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true } unless otherwise
specified.

15.1 The Global Object
The unique global object is created before control enters any execution context.

Unless otherwise specified, the standard built-in properties of the global object have attributes {[[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}.

The global object does not have a [[Construct]] internal property; it is not possible to use the global object as a
constructor with the new operator.

The global object does not have a [[Call]] internal property; it is not possible to invoke the global object as a
function.

The values of the [[Prototype]] and [[Class]] internal properties of the global object are implementation-
dependent.

In addition to the properties defined in this specification the global object may have additional host defined
properties. This may include a property whose value is the global object itself; for example, in the HTML
document object model the window property of the global object is the global object itself.

15.1.1 Value Properties of the Global Object

15.1.1.1 NaN

The value of NaNis NaN (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

15.1.1.2 Infinity

The value of Infinity is +a (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

15.1.1.3 undefined

The value of undefined is undefined (see 8.1). This property has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

15.1.2 Function Properties of the Global Object

15.1.2.1 eval (x)

When the eval function is called with one argument x, the following steps are taken:

102 © Ecma International 2009

N

©oNOO O RWw

ecna

If Type) is notString, returnx.

Let prog be the ECMAScript code that is the result of parsings aProgram If the parse fails, throw a
SyntaxError exception (but see also clause 16).

Let evalCtxbe the result of establishing a new execution context (10.4.2) for the evadrogde

Let resultbe the result of evaluating the progranog.

EXxit the running execution context evalCtx, restoring the previous execution context.

If resulttype isnormal and its completion value is a valMethen return the valué.

If resulttype isnormal andits completion value ismpty, then return the valuendefined.

Otherwiseresulttype must béhrow. Throwresultvalue as an exception.

15.1.2.1.1 Direct Call to Eval

A direct call to the eval function is one that is expressed as a CallExpressionthat meets the following two
conditions:

The Reference that is the result of evaluating the MemberExpressiom the CallExpressiorhas an environment
record as its base value and its reference name is "eval ".

The result of calling the abstract operation GetValue with that Reference as the argument is the standard built-
in function defined in 15.1.2.1.

15.1.2.2 parselnt (string , radix)

The parselnt function produces an integer value dictated by interpretation of the contents of the string
argument according to the specified radix. Leading white space in string is ignored. If radix is undefined or 0,
it is assumed to be 10 except when the number begins with the character pairs Ox or 0X, in which case a radix
of 16 is assumed. If radix is 16, number may also optionally begin with the character pairs Ox or 0OX.

When the parselnt function is called, the following steps are taken:

1.
2.

E

No

10.

11.

12.
13.

14.
15.

Let inputStringbe ToStringétring).
Let S be a newly created substring @fputString consisting of the first character that is not a

Strwhité&SpaceCharand all characters following that character. (In other words, remove leading white

space.)
Letsignbe 1.
If Sis not empty and the first character®fs a minus sign , letsignbe- 1.
If Sis not empty and the first character 8fis a plus gn + or a minus sign, then remove the first
character frons.
Let R= Tolnt32¢adix).
Let stripPrefixbetrue.
If R, 0, then
a. If R<2orR> 36, then returmNaN.
b. If R, 16, letstripPrefixbefalse.
Else,R=0
a. LetR=10.
If stripPrefixis true, then
a. If the length ofSis at least 2 and the first two charactersSa&r e e0xd h &Ko ,i t hen
the first two characters froi&and letR = 16.
If S contains any character that is not a raRixligit, then letZ be the substring o8 consisting ofall
characters before the first such character; otherwise, betS.
If Zis empty, returrNaN.
Let mathintbe the mathematical integer value that is represented ibyradix-R notation, using the letters
A-Z and a-z for digits with values 10 through 3§However, if R is 10 andZ contains more than 20
significant digits, every significant digit after the 20th may be replaced Dydigit, at the option of the
implementation; and iR is not 2, 4, 8, 10, 16, or 32, thenathint may be an implementatietlependent
approximation to the mathematical integer value that is represent&drbsadix-R notation.)
Let numberbe the Number value fanathint
Returnsign3 number

© Ecma International 2009 103

r

e

secma

NOTE parseint may interpret only a leading portion of string as an integer value; it ignores any characters that
cannot be interpreted as part of the notation of an integer, and no indication is given that any such characters were
ignored.

15.1.2.3 parseFloat (string)

The parseFloat function produces a Number value dictated by interpretation of the contents of the string
argument as a decimal literal.

When the parseFloat function is called, the following steps are taken:

1. LetinputStringbe ToStringétring).

2. Let trimmedString be a substring ofinputString consisting of the leftmost charactehat is not a
StrWhiteSpaceChaand all characters to the right of that character.(In other words, remove leading white
space.)

3. If neither trimmedsStringnor any prefix oftrimmedStringsatisfies the syntax of &trDecimalLiteral (see
9.3.1), returrNaN.

4. Let numberStringbe the longest prefix afimmedString which might betrimmedStringitself, that satisfies
the syntax of é&trDecimalLiteral

5. Return the Number value for the MV otimberString

NOTE parseFloat may interpret only a leading portion of string as a Number value; it ignores any characters that
cannot be interpreted as part of the notation of an decimal literal, and no indication is given that any such characters were
ignored.

15.1.2.4 isNaN (number)
Returns true if the argument coerces to NaN, and otherwise returns false.

1. If ToNumberfiumbej is NaN, returntrue.
2. Otherwise, returrialse.

NOTE A reliable way for ECMAScript code to test if a value X is a NaN is an expression of the form X ==X . The
result will be true if and only if X is a NaN.

15.1.2.5 isFinite (humber)
Returns false if the argument coerces to NaN, +&, or - @, and otherwise returns true.

1. If ToNumberbiumbe) is NaN, +a, or- o, returnfalse.
2. Otherwise, returrrue.

15.1.3 URI Handling Function Properties

Uniform Resource lIdentifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and
transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language
itself does not provide any support for using URIs except for functions that encode and decode URIs as
described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and 15.1.3.4.

NOTE Many implementations of ECMAScript provide additional functions and methods that manipulate web pages;
these functions are beyond the scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form is:

Scheme: First / Second; Third ? Fourth

where the italicised names :Deprie §ia Add alroemproenseenrt se da nadh a rhaec
as separators. The encodeURI and decodeURI functions are intended to work with complete URIs; they

assume that any reserved characters in the URI are intended to have special meaning and so are not
encoded. The encodeURIComponent and decodeURIComponent functions are intended to work with the

104 © Ecma International 2009

secma

individual component parts of a URI; they assume that any reserved characters represent text and so must be
encoded so that they are not interpreted as reserved characters when the component is part of a complete
URI.

The following lexical grammar specifies the form of encoded URIs.

uri i
uriCharacterspt

uriCharacters:::
uriCharacter uriCharactersgy

uriCharacter:::
uriReserved
uriUnescaped
uriEscaped

uriReserved:: one of
I ? @ & =+ 9,

uriUnescaped::
uriAlpha
DecimalDigit
uriMark

uriEscaped::
%HexDigit HexDigit

uriAlpha::: one of
abcdef ijklm
K

g h rs VWXYZ
ABCDEFGHIJ

nopaq tu
LMNOPQRSTUVWXYZ

uriMark ::: one of

- =)

When a character to be included in a URI is not listed above or is not intended to have the special meaning
sometimes given to the reserved characters, that character must be encoded. The character is transformed
into its UTF-8 encoding, with surrogate pairs first converted from UTF-16 to the corresponding code point
value. (Note that for code units in the range [0,127] this results in a single octet with the same value.) The
resulting sequence of octets is then transformed into a String with each octet represented by an escape
sequence ofsxxdhe form i

The encoding and escaping process is described by the abstract operation Encode taking two String
arguments string and unescapedSet

Let strLenbe the number of charactersstring.
Let Rbe the empty String.
Letk be O.
Repeat
a. If kequalsstrLen returnR.
b. LetC be the character at positigwithin string.
c. If CisinunescapedSethen
i. Let Sbe a String containing only the characgr
ii. Let Rbe a new String value computed by concaterggthe previous value d®® andS.
d. Else,Cis not inunescapedSet
i If the code unit value o€ is not less than OxDCOO0 and not greater than OXDFFF, throw a
URIError exception.
ii. If the code unit value of is less than 0xD800 or greater than OXDBFF, then
1. LetV be the code unit value &.
ili. Else,

PR

© Ecma International 2009 105

secma

1. Increasek by 1.

2. If kequalsstrLen throw aURIError exception.

3. LetkCharbe the code unit value of the character at posiki@nthin string.

4. If kChar is less than 0xDCOO or greater than OxDFFF, throwJRIError
exception.

5. LetV be (((the code unit value a) i 0xD800) * 0x400 + KChari 0xDCO00) +
0x10000).

iv. Let Octetsbe the array of octets resulting by applying the LBrEansformation to/, and
letL be the array size.
V. Letj be 0.
Vi. Repeat, whilg < L
1. LetjOctetbethe value at positiopwithin Octets
2. LetSbe a String cont ai¥Yd n gvhX¥Ylare év® uppdrcasea ct er s
hexadecimal digits encoding the valuejOttet
3. LetRbe anew String value computed by concatenating the previous vakRiaraf
S
4. Increasd by 1.
e. Increase&k by 1.

The unescaping and decoding process is described by the abstract operation Decode taking two String
arguments string and reservedSet

Let strLenbe the number of charactersstring.
Let Rbe the empty String.
Letk be O.
Repeat
a. |If kequalsstrLen, returnR.
b. LetC be the character at positiéawithin string.
c. IfCi s #bo,t téhen
i Let Sbe the String containing only the character
d. Else,Ci % 6
i Let startbek.
il If k+ 2 is greater than or equal $trLen throw aURIError exception.
iii. If the characters at positiork€1) and k + 2) within string do not represent hexadecimal
digits, throw aURIError exception.
iv. Let B be the 8bit value represented by the two hexadecimal digits at posikenl) and k

PwbPE

+ 2).
V. Incrementk by 2.
Vi. If the most significant bit i is 0, then

1. LetC be the character with code unit valBe
2. If Cis not inreservedSetthen
a LetSbe the String containing only the character
3. Else,Cis inreservedSet
a LetSbe the substring ddtring from positionstartto positionk included.
Vii. Else, the most significant bit iB is 1
Let n be the smallest nenegative number such tha® €< n) & 0x80 is equal to 0.
If n equals 1 onis greater than 4, throw@dRIError exception.
Let Octetsbe an array of ®it integers ofizen.
PutB into Octetsat position 0.
If k+ (3*(ni 1)) is greater than or equal strLen throw aURIError exception.
Letj be 1.
Repeat, whilg <n
a Incrementk by 1.
b If the character at positioki s n ot 0 YWRIErrot éxception. a
¢ |If the characters at positionk(+1) and k + 2) within string do not
represent hexadecimal digits, throWw&IError exception.
d Let B be the 8bit value represented by the two hexadecimal digits at
position kK + 1) and k + 2).
e |If the two most significant bits inB are not 10, throw aJRIError
exception.

NogrwNhE

106 © Ecma International 2009

secma

f Incrementk by 2.
g PutBinto Octetsat position.
h Increment by 1.
8. LetV be the value obtained by applying the UBRransformation t®ctets that is,
from an array of octets into a 38t value.If Octectsdoesnot contain a valid UTF
8 encoding of a Unicode code point throRIError exception.
9. If Vis less than 0x10000, then
a Let C be the character with code unit value
b If Cis notinreservedSetthen
i Let Sbe the String containing only the character
¢ Else,Cis inreservedSet
i. Let S be the substring o$tring from positionstart to positionk
included.
10.Else,Vis O 0x10000
a |If Vis greater than Ox10FFFF, thromRIError exception.
b LetLbe (((/7 0x10000) & Ox3FF) + 0xDCO0O).
¢ LetH be ((((v/7 0x10000) >> 19 & Ox3FF) + 0xD800).
d Let Sbe the String containing the two characters with code unit vatues
andL.
e. LetRbe a new String value computed by concatenating the previous vaRianafS.
f. Increase&k by 1.

NOTE The syntax of Uniform Resource Identifiers is given in RFC 2396. A formal description and implementation of
UTF-8 is given in RFC 3629.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence” of one has the higher-
order bit set to 0, the remaining 7 bits being used to encode the character value. In a sequence of n octets, n>1, the initial
octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that octet contain bits from the
value of the character to be encoded. The following octets all have the higher-order bit set to 1 and the following bit set to
0, leaving 6 bits in each to contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript
characters are specified in Table 21.

Table 216 UTF-8 Encodings

Code Unit Value Representation 15t Octet 2" Octet 39 Octet 4™ Octet
0x0000 - OxO07F 00000000 O0zzzzzzz 0zzzzz7zz
0x0080 - OXO7FF 00000 yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYYY YYyzZ2z2227 1110 xxxx 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110 vv VWWWWWXX
followed by followed by 11110 uuu 10uuwwww | 10xxyyyy 10zzzzzz
0xDCO0 7 OxDFFF 110111 yy yyzzzzzz
0xD800 - OxDBFF
not followed by causes URIError
0xDCO00 i OxDFFF
0xDCO0 i OxDFFF causes URIError
OxEO00 - OxFFFF XXXXYYYY VY 277777 1110 xxxx 10yyyyyy 10zzzzzz
Where

uuuuu =vvw +1

to account for the addition of 0x10000 as in Surrogates, section 3.7, of the Unicode Standard.

The range of code unit values 0xD800-OxDFFF is used to encode surrogate pairs; the above transformation combines a
UTF-16 surrogate pair into a UTF-32 representation and encodes the resulting 21-bit value in UTF-8. Decoding
reconstructs the surrogate pair.

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence CO 80 must not
decode into the character U+0000. Implementations of the Decode algorithm are required to throw a URIError when
encountering such invalid sequences.

© Ecma International 2009 107

secma

15.1.3.1 decodeURI (encodedURI)

The decodeURI function computes a new version of a URI in which each escape sequence and UTF-8
encoding of the sort that might be introduced by the encodeURI function is replaced with the character that it
represents. Escape sequences that could not have been introduced by encodeURI are not replaced.

When the deco deURI function is called with one argument encodedURIthe following steps are taken:
1. LeturiString be ToStringéncodedUR)

2. LetreservedURISebe aStringcontaining one instance of each character validriReservedp | u#® . i
3. Return the result of calljnDecodegriString, reservedURISgt

NOTE The cha#odacitsernoft decoded from escape sequences even

15.1.3.2 decodeURIComponent (encodedURIComponent)

The decodeURIComponent function computes a new version of a URI in which each escape sequence and
UTF-8 encoding of the sort that might be introduced by the encodeURIComponent function is replaced with
the character that it represents.

When the decodeURIComponent function is called with one argument encodedURICompong the following
steps are taken:

1. LetcomponentStringpe ToStringéncodedURIComponent
2. LetreservedURIComponentSe¢ the empt\string.
3. Return the result of calling DecoasmponentStringreservedURIComponentSet

15.1.3.3 encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain characters is
replaced by one, two or three escape sequences representing the UTF-8 encoding of the character.

When the encodeURI function is called with one argument uri, the following steps are taken:

1. LeturiString be ToString(ri).

2. LetunescapedURISdte aString containing one instance of each character validriReservedand
uriUnescaped | u#® . i

3. Return the result of calling Encode(String, unescapedURISgt

NOTE The character #0fi i s not encoded to an escape sequence even

character.

15.1.3.4 encodeURIComponent (uriComponent)

The encodeURIComponent function computes a new version of a URI in which each instance of certain
characters is replaced by one, two or three escape sequences representing the UTF-8 encoding of the
character.

When the encodeURIComponent function is called with one argument uriComponentthe following steps are
taken:

1. LetcomponentStrindgpe ToStringgriComponeny.

2. LetunescapedURIComponent3est aString containing one instance of each character valid in
uriUnescaped

3. Return the result of calling Encod®mponentStringunescapedURIComponentget

108 © Ecma International 2009

t hougt

thoug

oecnd

15.1.4 Constructor Properties of the Global Object

15.1.4.1 Object (...)

See 15.2.1 and 15.2.2.

15.1.4.2 Function(...)

See 15.3.1 and 15.3.2.

15.1.4.3 Array (...)

See 15.4.1 and 15.4.2.

15.1.4.4 String (...)

See 15.5.1 and 15.5.2.

15.1.45 Boolean(...)

See 15.6.1 and 15.6.2.

15.1.4.6 Number (...)

See 15.7.1 and 15.7.2.

15.1.4.7 Date(...)

See 15.9.2.

15.1.4.8 RegExp(...)

See 15.10.3 and 15.10.4.

15.1.49 Error(...)

See 15.11.1 and 15.11.2.

15.1.4.10 EvalError (...)

See 15.11.6.1.

15.1.4.11 RangeError (...)

See 15.11.6.2.

15.1.4.12 ReferenceError (...)

See 15.11.6.3.

15.1.4.13 SyntaxError (...)

See 15.11.6.4.

© Ecma International 2009 109

secma

15.1.4.14 TypeError (...)

See 15.11.6.5.

15.1.4.15 URIError (...)

See 15.11.6.6.
15.1.5 Other Properties of the Global Object

15.1.5.1 Math

See 15.8.

15.1.5.2 JSON

See 15.12.
15.2 Object Objects

15.2.1 The Object Constructor Called as a Function

When Object is called as a function rather than as a constructor, it performs a type conversion.

15.2.1.1 Object ([value])

When the Object function is called with no arguments or with one argument valug the following steps are
taken:

1. If valueis null, undefined or not supplied, create and return a new Object object exactly as if the standard
built-in Object constructor had been called with the same arguments (115.2.2
2. Return ToObject(alue).

15.2.2 The Object Constructor

When Object is called as part of a new expression, it is a constructor that may create an object.

15.2.2.1 new Object ([value])

When the Object constructor is called with no arguments or with one argument valug the following steps are
taken:

1. If valueis supplied, then
a. If Type(value) is Object, then
i If the valueis a native ECMAScript object, do not create a new object but simply return
value
il If the valueis a host object, then actions aredaland a result is returned in an
implementationdependent manner that may depend on the host object.
b. If Type(value) is String, return ToObjectélue).
c. If Type(value) is Boolean, return ToObjectglue).
d. If Type(value) is Number, return ToObjeactélue).
Asset: The argumenvaluewas not supplied or its type was Null or Undefined.
Let obj be a newly ceatel native ECMAScript object.
Set he [[Prototype]] internal property afbjt to the standard butiin Object prototype object (15.2.4).
Set he [[Class]] nternal property obbjto "Object"
Set he [[Extensible]] internal property afbj to true.

ogakwN

110 © Ecma International 2009

secma

7. Set he all the internal methods obj as specified in 8.12
8. Returnobi.

15.2.3 Properties of the Object Constructor

The value of the [[Prototype]] internal property of the Object constructor is the standard built-in Function
prototype object.

Besides the internal properties and the length property (whose value is 1), the Object constructor has the
following properties:

15.2.3.1 Object.prototype
The initial value of Object.prototype is the standard built-in Object prototype object (15.2.4).

This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.2.3.2 Object.getPrototypeOf (O)
When the getPrototypeOf function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw dypeError exception.
2. Return thevalue of the[[Prototype]]internalproperty ofO.

15.2.3.3 Object.getOwnPropertyDescriptor (O, P)
When the getOwnPropertyDescriptor function is called, the following steps are taken:

1. If Type(O) is not Object throw dypeError exception.

2. Letnamebe ToStringP).

3. Letdescbe the result of calling the [[GetOwnProperty]] internal metho®a¥ith argumentname
4. Return the result of callin§romPropertyDescriptodesq (8.10.4).

15.2.3.4 Object.getOwnPropertyNames (O)
When the getOwnPropertyNames function is called, the following steps are taken:

1. If Type(O) is not Object throw dypeError exception.

2. Letarray be the result of creating &w object as if by the expressiaew Array () whereArray is the
standard builin constructor with that name.

3. Letnbeo.

4. For each named own propef®yof O

a. Letnamebe theStringvalue that is the name &%.

b. Call the [[DefineOwnProperty]] internal mettdmf array with arguments ToStringy{, the
PropertyDescriptor {[[Value]]name [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:
true}, andfalse.

c. Incrementn by 1.

5. Returnarray.

NOTE If O is a String instance, the set of own properties processed in step 4 includes the implicit properties defined
in 15.5.5.2 that correspond to charact8tringpositions within t

15.2.3.5 Object.create (O [, Properties])

The create function creates a new object with a specified prototype. When the create function is called, the
following steps are taken:

1. If Type(O) is not Object or Null throw &ypeError exception.

© Ecma International 2009 111

secma

2. Letobjbe the result of creating a new object as if by the expression new Object() where Object is the
standard buikin constructor with that name

3. Set the [[Prototype]] internal property objto O.

4. |If the argumen®Propertiesis present and naindefined, add own properties tabj as if by calling the
standard buikin function Object.defineProperties with argument®bj and Properties

5. Returnobij.

15.2.3.6 Object.defineProperty (O, P, Attributes)

The defineProperty function is used to add an own property and/or update the attributes of an existing own
property of an object. When the defineProperty function is called, the following steps are taken:

If Type(O) is not Object throw &ypeError exception.

Let namebe ToStringP).

Let descbe the resulbf calling ToPropertyDescriptorith Attributesas the argument.
Call the [[DefineOwnProperty]] internal method Ofwith agumentsname des¢ andtrue.
ReturnO.

okrwnRE

15.2.3.7 Object.defineProperties (O, Properties)

The defineProperties function is used to add own properties and/or update the attributes of existing own
properties of an object. When the defineProperties function is called, the following steps are taken:

If Type(O) is not Object throw &ypeError exception.
Let propsbe ToObjectPropertieg.
Let namesbe an internal list containing the names of each enumerable own prop @rtypaf
Let descriptorsbe an empty inteal List.
For eachelementP of namesin list order,
a. LetdescObjbe the result of calling the [[Get]] internal methodpsbpswith P as the argument.
b. Letdescbe the result of calling ToPropertyDescriptor witescObjas the argument.
c. Appenddescto theend ofdescriptors
6. For each elemerttescof descriptorsin list order,
a. Call the [[DefineOwnProperty]] internal method ©fwith arguments, des¢ andtrue.
7. RewurnO.

aorwnNPE

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration
order must be used to order the list elements in step 3 of this algorithm.

15.2.3.8 Object.seal (O)
When the seal function is called, the following steps are taken:

1. If Type(O) is not Object throw dypeError exception.
2. For each nanteown property name of O,
a. Letdescbe the result of calling the [[GetOwnProperty]] internal metho®afith P.
b. If desc[[Configurable]] istrue, setdesc[[Configurable]] tofalse.
c. Call the [[DefineOwnProperty]] internal method Ofwith P, des¢ andtr ue as arguments.
3. Set the [[Extensible]] internal property 6fto false.
4. ReturnO.

15.2.3.9 Object.freeze (O)
When the freeze function is called, the following steps are taken:

1. If Type(O) is not Object throw &ypeError exception.
2. For each named own pregty nameP of O,
a. Letdescbe the result of calling the [[GetOwnProperty]] internal metho®atith P.
b. If IsDataDescriptordesq is true, then
i If desc[[Writable]] is true, setdesc[[Writable]] to false.
c. If desc[[Configurable]] istrue, setdesc[[Configurable]] tofalse.

112 © Ecma International 2009

secma

d. Call the [[DefineOwnProperty]] internal method Ofwith P, des¢ andtrue as arguments.
3. Set the [[Extensible]] internal property @fto false.
4. ReturnO.

15.2.3.10 Object.preventExtensions (O)
When the preventExtensions function is called, the following steps are taken:

1. If Type(O) is not Object throw dypeError exception.
2. Set the [[Extensible]] internal property 6fto false.
3. ReturnO.

15.2.3.11 Object.isSealed (O)
When the isSealed function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw d&ypeError exception.

2. For each named own propemgmeP of O,
a. Letdescbe the result of calling the [[GetOwnProperty]] internal metho®atith P.
b. If desc[[Configurable]] istrue, then returrfalse.

3. If the [[Extensible]] internal property @ is false, then returrtrue.

4. Otherwise, returrialse.

15.2.3.12 Object.isFrozen (0O)
When the isFrozen function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw dypeError exception.
2. For each named own propemgmeP of O,
a. Letdescbe the result of calling the [[GetOwnProperty]] internal metho®atith P.
b. If IsDataDescriptodesq is true then
i If desc[[Writable]] is true, returnfalse.
c. If desc[[Configurable]] istrue, then returnfalse.
3. If the [[Extensible]] internal property d is false, then returrtrue.
4. Otherwise, returrialse.

15.2.3.13 Object.isExtensible (O)
When the isExtensible function is called with argument O, the following steps are taken:

1. If Type(O) is na Object throw al'ypeError exception.
2. Return the Boolean value of the [[Extensible]] internal propert@®of

15.2.3.14 Object.keys (0O)
When the keys function is called with argument O, the following steps are taken:

1. Ifthe TypeQ) is not Object, throw dypeError exception.
2. Letn be the number of own enumerable propertie® of
3. Letarray be the result of creating a new Object as if by the expressganArray(n) whereArray is
the standard bu#in constructor with that name.
4. Letindexbe 0.
5. For each ownmumerable property d whose namétringis P
a. Call the [[DefineOwnProperty]] internal method afray with arguments ToStringfdey, the
PropertyDescriptor {[[Value]]P, [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true},
andfalse.
b. Incrementindexby 1.
6. Returnarray.

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration
order must be used in step 5 of this algorithm.

© Ecma International 2009 113

secma

15.2.4 Properties of the Object Prototype Object

The value of the [[Prototype]] internal property of the Object prototype object is null, the value of the [[Class]]
internal property is "Object” , and the initial value of the [[Extensible]] internal property is true.

15.2.4.1 Object.prototype.constructor

The initial value of Object.prototype.constructor is the standard built-in Object constructor.

15.2.4.2 Object.prototype.toString ()
When the toString method is called, the following steps are taken:
1. LetO be the result of calling ToObject passing thes value as the argnent.

2. Letclassbe the value of the [[Class]] internal property@f
3. Return theStringvalue that is the result of concatenating the tt8&@egs"[object " , Class and"]"

15.2.4.3 Object.prototype.toLocaleString ()

When the toLocaleString method is called, the following steps are taken:

1. LetO be the result of calling ToObject passing this value as the argument.

2. LettoStringbe the result of calling the [[Get]] internal method@passing'toString” as the argument.

3. If IsCallabletoString) is false throw aTypeError exception.

4. Return the result of calling the [[Call]] internal methodto6tring passingO as thethis value and no
arguments.

NOTE 1 This function is provided to give all Objects a generic toLocaleString interface, even though not all may

use it. Currently, Array , Number, and Date provide their own locale-sensitive toLocaleString methods.

NOTE 2 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

15.2.4.4 Object.prototype.valueOf ()
When the valueOf method is called, the following steps are taken:

1. LetO be the result of calling ToObject passing this value as the argument.
2. If Ois the result of alling the Object constructor with a host object (15.2.2.1), then
a. Return eithelO or another value such as the host object originally passed to the constructor. The
specific result that is returned is implementatibefined.
3. ReturnO.

15.2.4.5 Object.prototype.hasOwnProperty (V)
When the hasOwnProperty method is called with argument V, the following steps are taken:

Let P be ToStringV).

Let O be the result of calling ToObject passing this value as the argument.

Let descbe the result of calling the [[&OwnProperty]] internal method & passingP as the argument.
If descis undefined, returnfalse.

Returntrue.

aorwdPE

NOTE 1 Unlike [[HasProperty]] (8.12.6), this method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

114 © Ecma International 2009

secma

15.2.4.6 Object.prototype.isPrototypeOf (V)
When the isPrototypeOf method is called with argument V, the following steps are taken:

1. If Vis not an object, returfalse.
2. Let O be the result of calling ToObject passing this value as the argument.
3. Repeat

a. LetVbe the value of the [[Prototype]] internal property\of

b. if Vis null, returnfalse

c. If OandVrefer to the same object, retutnue.

NOTE The ordering of steps 1 and 2 is chosen to preserve the behaviour specified by previous editions of this
specification for the case where V is not an object and the this value is undefined or null.

15.2.4.7 Object.prototype.propertylsEnumerable (V)
When the propertylsEnumerable method is called with argument V, the following steps are taken:

Let P be ToStringy).

Let O be the result of calling ToObject passing thé value as tk argument.

Let descbe the result of calling the [[GetOwnProperty]] internal metho®gfassingP as the argument.
If descis undefined, returnfalse.

Return the value oflesc[[Enumerable]].

arwdE

NOTE 1 This method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

15.2.5 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.
15.3 Function Objects

15.3.1 The Function Constructor Called as a Function
When Function is called as a function rather than as a constructor, it creates and initialises a new Function

object. Thus the function call Function(é) is equivalent to the object creation expression new
Function(€) with the same arguments.

15.3.1.1 Function (p1, p2, é , pn, body)

When the Function function is called with some arguments pl, p2, é , pn, body (where n might be 0, that is,
t her e por earngou nile nt s hodyanighd alse hoebe provided), the following steps are taken:

1. Create and return a new Function object as if the standardibuitinstructof~unction was used in @ew
expression with the same arguments (15.3.2.1).

15.3.2 The Function Constructor
When Function s called as part of a new expression, it is a constructor: it initialises the newly created object.

15.3.2.1 new Function (p1, p2, é , pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify formal
parameters.

© Ecma International 2009 115

secma

When the Function constructor is called with some arguments pl, p2, € , pn, body(where n might be 0, that
i s, thempe ar @umen fisbhodyaighd alsw hoebe provided), the following steps are taken:

Let argCountbe the total number of arguments passed to this function invocation.
Let P be the emptystring.
If argCount= 0, letbodybe the empt\string.
Else ifargCount= 1, letbodybe that argument.
Else,argCount> 1

a. LetfirstArg be the first argument.

b. LetP be ToString{irstArg).

c. Letkbe 2.

d. Repeat, whil&k < argCount

i. LetnextArgbe thekd" argument.
ii. Let P be the result of concatenating the previous valuB,dhe String"," (a comma), and
ToString(extArg.
iii. Increase&k by 1.

e. Letbodybe thekd"argument.
Let bodybe ToStringbody).
If Pis not parsable asformalParameterLisdy then throw aSyntaxError exception.
If bodyis not parsable aBunctionBodythenthrow aSyntaxError exception.
If bodyis strict mode codésee 10.1.1jhen letstrict betrue, else letstrict befalse.

. If strictis true, throw any exceptions specified in 13.1 that apply.
. Return a new Function object created as specified in 13.2rgpRsas theFormalParameterLisandbodyas

the FunctionBody Pass in the Global Environment as Swopeparameter andtrict as theStrict flag.

oronPE

=

= O

A prototype property is automatically created for every function, to provide for the possibility that the
function will be used as a constructor.

NOTE It is permissible but not necessary to have one argument for each formal parameter to be specified. For
example, all three of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")

new Function("a, b, c", "return a+b+c")

new Function("a,b", "c", "return a+b+c")
15.3.3 Properties of the Function Constructor
The Function constructor is itself a Function object and its [[Class]] is "Function® . The value of the
E[lF;r.?.cht))fpe]] internal property of the Function constructor is the standard built-in Function prototype object

The value of the [[Extensible]] internal property of the Function constructor is true.

The Function constructor has the following properties:

15.3.3.1 Function.prototype

The initial value of Function.prototype is the standard built-in Function prototype object (15.3.4).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.3.3.2 Function.length

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

116 © Ecma International 2009

secma

15.3.4 Properties of the Function Prototype Object

The Function prototype object is itself a Function object (its [[Class]] is "Function”) that, when invoked,
accepts any arguments and returns undefined.

The value of the [[Prototype]] internal property of the Function prototype object is the standard built-in Object
prototype object (15.2.4). The initial value of the [[Extensible]] internal property of the Function prototype
object is true.

The Function prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the Object prototype Object.

The length property of the Function prototype object is 0.

15.3.4.1 Function.prototype.constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.

15.3.4.2 Function.prototype.toString ()

An implementation-dependent representation of the function is returned. This representation has the syntax of
a FunctionDeclaration Note in particular that the use and placement of white space, line terminators, and
semicolons within the representation String is implementation-dependent.

The toString function is not generic; it throws a TypeError exception if its this value is not a Function
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.3.4.3 Function.prototype.apply (thisArg, argArray)

When the apply method is called on an object func with arguments thisArg and argArray, the following steps
are taken:

1. If IsCallablefunc) is false, then throw a'ypeError exception.
If argArray is null or undefined, then
a. Return the result of calling the [[Call]] internal methodfohc, providingthisArgas thethis value
and an empty list of arguments.
If Type(argArray) is not Object, then throw BypeError exception.
Letlenbe the result of calling the [[Get]] internal methodas§Array with argument'length”
If lenis null or undefined, then throw alypeError exception.
Letn be ToUint32(en).
If nis not equal to ToNumbdgn), then throw arypeError exception.
LetarglList be an empty List.
Letindexbe 0.
0. Repeat whiléndex< n
a. LetindexNamée ToStringindex).
b. LetnextArgbe the result of calling the [[Get]] internal methodasfArray with indexNameas the
argument.
c. AppendnextArgas the last element afgList
d. Setindextoindex+ 1.
11. Return the result of calling the [[Call]] internal methodfohc, providingthisArgas hethis value and
argListas the list of arguments.

BOONO O AW

The length property of the apply method is 2.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

© Ecma International 2009 117

secma

15344 Function.prototype.call (thisArg [, argl [, arg?2,

When the call method is called on an object func with argument thisArg and optional arguments argl, arg2
etc, the following steps are taken:

=

If IsCallablefunc) is false, then throw al'ypeError exception.

2. LetargListbe an empty List.

3. If this method was called with more than one argument then in left to right order startingrgdtappend
each argument as the last elemenaxfList

4. Return the result of calling the [[Call]] internal methodfohc, providingthisArgas thethis value and

argListas the list of arguments.

The length property of the call method is 1.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

15345 Function.prototype.bind (thisArg [, argl [, arg2, €]

The bind method takes one or more arguments, thisArg and (optionally) argl, arg2, etc, and returns a new
function object by performing the following steps:

Let Targetbe thethis value.
If IsCallable(Target) is false, throw aTypeError exception.
Let Abe a new (possibly empty) internal list of all of the argument values providedtlaitérg (argl, arg2
etc), in order.
Let F be a new native ECMAScript object .
Setall the internal methodsexcept for [Get]], of F as specified in 8.12
Set the [[Gef] internal property ofF asspecifiedin 15.35.4.
Set the [[TargetFunction]] internal property Bfto Target
Set the [[BoundThis]] internal property &fto the value othisArg.
Set the [[BoundArgs]] indrnal property of to A.
. Set the [[Class]] internal property &fto "Function" .
. Set the [[Prototype]] internal property Bfto the standard buiin Function prototype object as specified in
15.3.3.1.
12. Set the [[Call]] internal property df as describedh 15.3.4.5.1.
13. Set the [[Construct]] internal property Bfas described in 15.3.4.5.2.
14. Set the [[HasInstance]] internal propertyhs described in 15.3.4.5.3.
15. If the [[Class]] internal property ofargetis "Function" , then
a. LetL be thelength propery of Targetminus the length oA.
b. Setthelength own property ofF to either 0 oL, whichever is larger.
16. Else set théength own property ofF to 0.
17. Set the attributes of tHength own property ofF to the values specified in 15.3.5.1.
18. Set the [[Extesible]] internal property oF to true.
19. Letthrowerbe the [[ThrowTypeError]] function Object (13.2.3).
20. Call the [[DefineOwnProperty]] internal method Bfwith arguments'caller" , PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:false}, and false.
21. Call the [[DefineOwnProperty]] internal method Bfwith arguments'arguments” , PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:false}, and false.
22. ReturnF.

wn e

RBOOoNo O M

= O

The leng th property of the bind method is 1.

NOTE Function objects created using Function.prototype.bind do not have a prototype property or the
[[Code]], [[FormalParameters]], and [[Scope]] internal properties.

118 © Ecma International 2009

secma

15.3.4.5.1 [[Call]]

When the [[Call]] internal method of a function object, F, which was created using the bind function is called
with a this value and a list of arguments ExtraArgs the following steps are taken:

Let boundArgsbe the value oF 6[[BoundArgs]] internal property.

Let boundThisbe the valuef F 6[[BoundThis]] internal property.

Lettargetbe the value oF &[FTargetFunction]] internal property.

Letargsbe a new list containing the same values as thétahdArgsin the same order followed by the
same values as the liEktraArgsin thesame order.

Return the result of calling the [[Call]] internal methodtarfget providing boundThisas thethis value and
providing argsas the arguments.

PwnPE

o

15.3.4.5.2 [[Construct]]

When the [[Construct]] internal method of a function object, F that was created using the bind function is called
with a list of arguments ExtraArgs the following steps are taken:

Lettargetbe the value oF &[FTargetFunction]] internal property.

If targethas no [[Construct]] internal method,TgpeError exception is thrown.

Let boundArgsbe the value oF 8[BoundArgs]] internal property.

Letargsbe a new list containing the same values as thétahdArgsin the same order followed by the
same values as the liEktraArgsin the same order.

5. Reurn the result otalling the [[Construct]] internal method eoérgetprovidingargsas the arguments.

PwOd P

15.3.4.5.3 [[HaslInstance]] (V)

When the [[HasInstance]] internal method of a function object F, that was created using the bind function is
called with argument V, the following steps are taken:

1. Lettargetbe the value oF d[FTargetFunction]] internal property.
2. |If targethas no [[HasInstance]] internal method]gpeError exception is thrown.
3. Return the result of calling the [[HaslInstance]] internal methoduafetprovidingV as the argument.

15.3.5 Properties of Function Instances

In addition to the required internal properties, every function instance has a [[Call]] internal property and in
most cases use a different version of the [[Get]] internal property. Depending on how they are created (see
8.6.2 ,13.2, 15, and 15.3.4.5), function instances may have a [[Haslnstance]] internal property, a [[Scope]]
internal property, a [[Construct]] internal property, a [[FormalParameters]] internal property, a [[Code]] internal
property, a [[TargetFunction]] internal property, a [[BoundThis]] internal property, and a [[BoundArgs]] internal

property.
The value of the [[Class]] internal property is "Function".

Function instances that correspond to strict mode functions (13.2) and function instances created using the
Function.prototype.bind method (15. 3. 4. 5) have properties named
TypeError exception. An ECMAScript implementation must not associate any implementation specific
behaviour with accesses of these properties from strict mode function code.

15.3.5.1 length

The value of thelength property is an integer that indicates
the function. However, the language permits the function to be invoked with some other number of arguments.
The behaviour of a function when invoked on a number of arguments other than the number specified by its
length property depends on the function. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

© Ecma International 2009 119

=13

t

he

secma

15.3.5.2 prototype

The value of the prototype property is used to initialise the [[Prototype]] internal property of a newly created
object before the Function object is invoked as a constructor for that newly created object. This property has
the attribute { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Function objects created using Function.prototype.bind do not have a prototype property.

15.3.5.3 [[HasInstance]] (V)
Assume F is a Function object.
When the [[HasInstance]] internal method of F is called with value V, the following steps are taken:

If Vis not an object, returfalse.
Let O be the result of calling the [[Get]] internal methodFofvith property naméprototype”
If Type(©) is notObject, throwa TypeError exception.
Repeat
a. LetVbe the value of the [[Prototype]] internal property\of
b. If Visnull , returnfalse.
c. If O andVrefer to the same object, retutnue.

PoNPE

NOTE Function objects created using Function.prototype.bind have a different implementation of
[[HaslInstance]] defined in 15.3.4.5.3.

15.3.5.4 [[Get]] (P)

Function objects use a variation of the [[Get]] internal method used for other native ECMAScript objects
(8.12.3).

Assume F is a Function object. When the [[Get]] internal method of F is called with property name P, the
following steps are taken:

1. Letvbe the result of calling the default [[Get]] internal method (8.12.3F @assingP as the property name

argument.
2. If Pis"caller" andv is a strict mode Function object, throwfgpeError exception.
3. Returnv.
NOTE Function objects created using Function.prototype.bind use the default [[Get]] internal method.

15.4 Array Objects

Array objects give special treatment to a certain class of property names. A property name P (in the form of a
String value) is an array index if and only if ToString(ToUint32P)) is equal to P and ToUint32(P) is not equal to
2%2-1. A property whose property name is an array index is also called an element. Every Array object has a
length property whose value is always a nonnegative integer less than 232 The value of the length
property is numerically greater than the name of every property whose name is an array index; whenever a
property of an Array object is created or changed, other properties are adjusted as necessary to maintain this
invariant. Specifically, whenever a property is added whose name is an array index, the length property is
changed, if necessary, to be one more than the numeric value of that array index; and whenever the length
property is changed, every property whose name is an array index whose value is not smaller than the new
length is automatically deleted. This constraint applies only to own properties of an Array object and is
unaffected by length or array index properties that may be inherited from its prototypes.

An object, O, is said to be sparse if the following algorithm returns true:

1. Letlenbe the result of calling the [[Getihternal method oD with argument’length” .
2. For eachintegerinth e r a xTHolint82(&n)

120 © Ecma International 2009

secma

a. Let elembe the result of calling the [[GetOwnPropertyfiternal method ofO with argument
ToString().
b. If elemis undefined, returntrue.
3. Returnfalse.

15.4.1 The Array Constructor Called as a Function

When Array is called as a function rather than as a constructor, it creates and initialises a new Array object.
Thus the function call Array(€é) is equivalent to the object creation expression new Array(€) with the
same arguments.

15.4.1.1 Array ([item1],item2[,é]]1])
When the Array function is called the following steps are taken:

1. Create and return a new Array object exactly as if the standardibuwitinstructorArray was used in a
new expression with the same arguments (15.4.2).

15.4.2 The Array Constructor

When Array is called as part of a new expression, it is a constructor: it initialises the newly created object.

15.4.2.1 new Array ([itemO[,item1[,é])] 1]
This description applies if and only if the Array constructor is given no arguments or at least two arguments.

The [[Prototype]] internal property of the newly constructed object is set to the original Array prototype object,
the one that is the initial value of Array.prototype (15.4.3.1).

The [[Class]] internal property of the newly constructed object is set to "Array"”
The [[Extensible]] internal property of the newly constructed object is set to true.
The length property of the newly constructed object is set to the number of arguments.

The 0 property of the newly constructed object is set to itemO (if supplied); the 1 property of the newly
constructed object is set to iteml (if supplied); and, in general, for as many arguments as there are, the k
property of the newly constructed object is set to argument k, where the first argument is considered to be
argument number 0. These properties all have the attributes {[[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

15.4.2.2 new Array (len)

The [[Prototype]] internal property of the newly constructed object is set to the original Array prototype object,
the one that is the initial value of Array.prototype (15.4.3.1). The [[Class]] internal property of the newly
constructed object is set to "Array" . The [[Extensible]] internal property of the newly constructed object is set
to true.

If the argument len is a Number and ToUint32(en) is equal to len, then the length property of the newly
constructed object is set to ToUint32(en). If the argument lenis a Number and ToUint32(en) is not equal to len,
a RangeError exception is thrown.

If the argument len is not a Number, then the length property of the newly constructed object is set to 1 and
the O property of the newly constructed object is set to len with attributes {[[Writable]]: true, [[Enumerable]]:
true, [[Configurable]]: true}..

© Ecma International 2009 121

secma

15.4.3 Properties of the Array Constructor

The value of the [[Prototype]] internal property of the Array constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Array constructor has the
following properties:

15.4.3.1 Array.prototype
The initial value of Array.prototype is the Array prototype object (15.4.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.4.3.2 Array.isArray (arg)

The isArray function takes one argument arg, and returns the Boolean value true if the argument is an object
whose class internal property is " Array " ; otherwise it returns false. The following steps are taken:

1. If Type(arg) is not Object, returmalse.

2. |If the value of the [[Class]] internal property afg is " Array ", then returrtrue.
3. Returnfalse.

15.4.4 Properties of the Array Prototype Object

The value of the [[Prototype]] internal property of the Array prototype object is the standard built-in Object
prototype object (15.2.4).

The Array prototype object is itself an array; its [[Class]] is "Array” , and it has a length property (whose
initial value is +0) and the special [[DefineOwnProperty]] internal method described in 15.4.5.1.

In following descriptons of functions that are properties of the Arr
refers to the object that is the this value for the invocation of the function. It is permitted for the this to be an
object for which the value of the [[Class]] internal property is not "Array"

NOTE The Array prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the standard built-in Object prototype Object.

15.4.4.1 Array.prototype.constructor

The initial value of Array.prototype.constructor is the standard built-in Array constructor.

15.4.4.2 Array.prototype.toString ()

When the toString method is called, the following steps are taken:

1. Letarray be the result of calling ToObject on th@s value.

2. Letfuncbe the result of calling the [[Get]] internal methodasfay with argument'join"

3. If IsCallablefunc) is false, then letfuncbe the standard builh method Object.prototype.toString (15.2.4.2).

4. Return the result of calling the [[Call]] internal methofifunc providing array as thethis value and an
empty arguments list.

NOTE The toString function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the toString function can be
applied successfully to a host object is implementation-dependent.

122 © Ecma International 2009

secma

15.4.4.3 Array.prototype.toLocaleString ()

The elements of the array are converted to Strings using their toLocaleString methods, and these Strings
are then concatenated, separated by occurrences of a separator String that has been derived in an
implementation-defined locale-specific way. The result of calling this function is intended to be analogous to
the result of toString , except that the result of this function is intended to be locale-specific.

The result is calculated as follows:

1. LetO be the result of calling ToObject passing thi value as the argument.

2. LetarrayLenbe the result of calling the [[Get]] internal methodasfay with argument"length”

3. Letlenbe ToUint32é&rrayLen).

4. Letseparatorbe the String value for the listeparatoStringappr opri ate for the host
locale (this is derived in an implementatidefined way).

5. If lenis zero, return the empi$tring.

6. LetfirstElementbe the result of calling the [[Get]] internal methodawfay with argument'0" .

7. If firstElementis undefined or null, then
a. LetRbe the emptystring
8. Else
a. LetelementObpe ToObjectiirstElemenj.
b. Letfuncbe the result of calling thgGet]] internal method o&lementObjith argument
"toLocaleString"
c. If IsCallablefunc) is false, throw aTypeError exception.
d. LetRbe the result of calling the [[Call]] internal methodfafic providing elementObpgs thethis
value and an empty arguntsrlist.
9. Letkbel.
10. Repeat, whilk < len
a. LetSbe aStringvalue produced by concatenatiRjandseparator
b. LetnextElemenbe the result of calling the [[Get]] internal methodasfay with argument
ToStringk).
c. If nextElements undefined or null, then
i Let Rbe the emptystring.
d. Else
i Let elementObjpe ToObjectiextElement
ii. Let funcbe the result of calling the [[Get]] internal methodeddmentObjwith argument
"toLocaleString"
iii. If IsCallablefunc) is false, throw aTypeError exception.
iv. Let R be theresult of calling the [[Call]] internal method d&dinc providingelementObps
thethis value and an empty arguments list.
e. LetRbe aStringvalue produced by concatenatiS@andR.
f. Increasek by 1.
11. ReturnR.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleString function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the toLocaleString function can
be applied successfully to a host object is implementation-dependent.

15.4.4.4 Array.prototype.concat ([item1[,item2[, é 1 1 1)

When the concat method is called with zero or more arguments iteml item2 etc., it returns an array
containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

1. LetO bethe result of calling ToObject passing tties value as the argument.

© Ecma International 2009 123

secma

2. LetAbe anew array created as if by the express@mn Array() whereArray is the standard buin
constructor with that name.
3. LetnbeO.
4. Letitemsbe an internal List whose firgilement iSO and whose subsequent elements are, in left to right
order, the arguments that were passed to this function invocation.
5. Repeat, whiletemsis not empty
a. Remove the first element froitemsand letE be the value of the element.
b. If the value ofthe [[Class]] internal property dE is "Array" , then
i. Letk be 0.
il Letlenbe the result of calling the [[Get]] internal methodEfvith argument'length”
iii. Repeat, whil&k < len
1. LetP be ToStringk).
2. Letexistsbe the result of calling the [[HasPropertyiternal method oE with P.
3. If existsis true, then
a LetsubElemenbe the result of calling the [[Get]] internal methodef
with argumentP.
b Call the [[DefineOwnProperty]] internal method Afwith arguments
ToString(), Property Descriptor {[[Value]]subElement[[Writable]]:
true, [[Enumerable]]:itrue, [[Configurable]]:true}, and false.
4. Increasen by 1.
5. Increase& by 1.
c. Else,Eis not an Array
i Call the [[DefineOwnProperty]] internal method Afwith arguments ToStringj, Property
Descriptor {[[Value]: E, [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:true},
andfalse.
il Increase n by 1.
6. ReturnA.

The length property of the concat method is 1.

NOTE The concat function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the concat function can be applied
successfully to a host object is implementation-dependent.

15.4.4.5 Array.prototype.join (separator)

The elements of the array are converted to Strings, and these Strings are then concatenated, separated by
occurrences of the separator If no separator is provided, a single comma is used as the separator.

The join method takes one argument, separator and performs the following steps:

1. LetO be the result of calling ToObject passing thes value as the argument.
2. LetlenValbe the result of calling the [[Get]] internal method®fvith argument'length”
3. Letlenbe ToUint32[enVal).
4. |If separatoris undefined, let separatorbethe singlecharacteiString","
5. Letsepbe ToStringéeparato).
6. If lenis zero, return the emptytring.
7. Letelement(e the result of calling the [[Get]] internal method@fvith argument'0" .
8. If element(Os undefined or null, let R be the emptystring, otherwise, LeR be ToStringélement{.
9. Letkbel.
10. Repeat, whil&k < len
a. LetSbe theStringvalue produced by concatenatiRgandsep
b. Letelemente the result of calling the [[Get]] internal method@fvith argument ToStrind).
c. If elements undefined or null, Let nextbe the emptystring, otherwise, lenextbe
ToStringelemeny.
d. LetRbe aStringvalue produced by concatenatiB@ndnext
e. Increase& by 1.
11. ReturnR.

124 © Ecma International 2009

secma

The length property of the join method is 1.

NOTE The join function is intentionally generic; it does not require that its this value be an Array object. Therefore,
it can be transferred to other kinds of objects for use as a method. Whether the join function can be applied successfully
to a host object is implementation-dependent.

15.4.4.6 Array.prototype.pop ()
The last element of the array is removed from the array and returned.

Let O be the result of calling ToObject passing thes value as the argument.
Let lenValbe the result of callinghe [[Get]] internal method oD with argument" length
Letlenbe ToUint32[enVal).
If lenis zero,
a. Call the [[Put]] internal method dD with arguments length ", 0, andtrue.
b. Returnundefined.
5. Else,len>0
Letindx be ToStringleni 1).
Let elementbe the result of calling the [[Get]] internalethod ofO with argumenindx.
Call the [[Delete]] internal method @ with argumentsndx andtrue.
Call the [[Put]] internal method d® with arguments length ", indx, andtrue.
Returnelement

PwNE

®oooT

NOTE The pop function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method. Whether the pop function can be applied successfully to
a host object is implementation-dependent.

15.4.4.7 Array.prototypepush ([iteml [, item2 [, é& 1 1 1)

The arguments are appended to the end of the array, in the order in which they appear. The new length of the
array is returned as the result of the call.

When the push method is called with zero or more arguments item1, item2 etc., the following steps are taken:

1. LetO be the result of calling ToObject passing this value as the argument.

2. LetlenValbe the result of callinghe [[Get]] internal method oD with argument length ".

3. Letnbe ToUint32(enVal).

4. Letitemsbe an internal List whose elements are, in left to right order, the arguments that were passed to thi:
function invocation.

5. Repeat, whilégtemsis not empty

a. Remove the first element froitemsand letE be the value of the element.
b. Call the [[Put]] internaimethod ofO with arguments ToString{, E, andtrue.
c. Increasen by 1.

6. Call the [[Put]] internal method dD with arguments length ", n, andtrue.

7. Returnn.

The length property of the push method is 1.
NOTE The push function is intentionally generic; it does not require that its this value be an Array object. Therefore

it can be transferred to other kinds of objects for use as a method. Whether the push function can be applied successfully
to a host object is implementation-dependent.

15.4.4.8 Array.prototype.reverse ()

The elements of the array are rearranged so as to reverse their order. The object is returned as the result of
the call.

1. LetO be the result of calling ToObject passing this value as the argument.

© Ecma International 2009 125

secma

2. LetlenValbe the result of callinghe [[Get]] internal method oD with argumentlength”
3. Letlenbe ToUint32[enVal).
4. Letmiddlebe floor(en/2).
5. Letlower beO.
6. Repeat, whildower, middle
a. Letupperbelen- lower-1.
b. LetupperPbe ToString@pper).
c. LetlowerPbe ToStringlower).
d. LetlowerValuebe the result of calling the [[Get]] internal method@fvith argumentlowerP.
e. LetupperValuebe the result of calling the [[Get]] internal method@fvith argumentupperP.
f. LetlowerExistsbe the result of calling the [[HasProperty]] internal nasthof O with argument
lowerP.
g. LetupperExistshe the result of calling the [[HasProperty]] internal metho®afith argument
upperP
h. If lowerExistsis true andupperExistds true, then
i. Call the [[Put]] internal method d® with argumentdowerP, upperVaue, andtrue .
ii. Call the [[Put]] internal method d® with argumentaipperP, lowerValue andtrue .
i. Else iflowerExistsis false andupperExistds true, then
i Call the [[Put]] internal method dD with argumentdowerP, upperValue andtrue .
ii. Call the [[Dekte]] internal method oD, with argumentaipperPandtrue.
j- Else iflowerExistsis true andupperExistss false, then
i Call the [[Delete]] internal method @, with argumentdowerPandtrue .
il Call the [[Put]] internal method dD with argumentsipperP, lowerValue andtrue .
k. Else, bothowerExistsandupperExistsarefalse
i No action is required.
I. Increasdower by 1.
7. ReturnO.
NOTE The reverse function is intentionally generic; it does not require that its this value be an Array object.

Therefore, it can be transferred to other kinds of objects for use as a method. Whether the reverse function can be
applied successfully to a host object is implementation-dependent.

15.4.4.9 Array.prototype.shift ()

The first element of the array is removed from the array and returned.

1. LetO be the result of calling ToObject passing thes value as the argument.
2. LetlenValbe the result of callinghe [[Get]] internal method o® with argument length
3. Letlenbe ToUint32[enVal).
4. |If lenis zero, then
a. Call the [[Put]] nternal method o® with arguments length ", 0, andtrue.
b. Returnundefined.
5. Letfirst be the result of calling the [[Get]] internal method®@fvith argument 0" .
6. Letkbe 1.
7. Repeat, whil&k < len

a. Letfrombe ToStringk).
b. Lettobe ToStringki 1).
c. LetfromPresentbe the result of calling the [[HasProperty]] internal metho®aftith argument
from.
d. If fromPresenis true, then
i Let fromValbe the result of calling the [[Get]] internal method®fvith argumentrom.
il Call the [[Put]] internal method dD with argumentsto, fromVal, andtrue.
e. Else, fromPresent ifalse
i. Call the [[Delete]] internal method @ with argumentgo andtrue.
f. Increase& by 1.
8. Call the [[Delete]] internal method @ with arguments ToStrindgni 1) andtrue.
9. Call the [[Put]] internal métod of O with arguments length ", (leni 1) , andtrue.
10. Returnfirst.

126 © Ecma International 2009

secma

NOTE The shift function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the shift function can be applied
successfully to a host object is implementation-dependent.

15.4.4.10 Array.prototype.slice (start, end)

The slice method takes two arguments, start and end and returns an array containing the elements of the
array from element start up to, but not including, element end (or through the end of the array if endis
undefined). If start is negative, it is treated as lengthtstart where length is the length of the array. If endis
negative, it is treated as lengthtrendwhere lengthis the length of the array. The following steps are taken:

Let O be the result of calling ToObject passing this value as the argument.

Let Abe a new array created as if by the expressmm Array() whereArray is the standard bukHin
constructor with that name.

3. LetlenValbe the result of calling the [[Get]] internal method@fvith argument length

4, Letlenbe ToUint32[(enVal).

5. LetrelativeStartbe Tolntegergtart).

6. If relativeStartis negative, lek be max(len + relativeStar},0); dse letk be mingelativeStart len).
7

8

9

1

N

If endis undefined, letrelativeEndbelen; else letrelativeEndbe Tolntegernd.
If relativeEndis negative, lefinal be max({en + relativeEng,0); else lefinal be minfelativeEnd len).
. LetnbeO.
0. Repeat, wHhi k < final
a. LetPkbe ToStringK).
b. LetkPresente the result of calling the [[HasProperty]] internal metho®atith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method@fvith argumentPk.
ii. Call the [DefineOwnProperty]] internal method &f with arguments ToStringj, Property
Descriptor {[[Value]]: kValue [[Writable]]: true, [[Enumerable]]:itrue, [[Configurable]]:
true}, andfalse.
d. Increase by 1.
e. Increasen by 1.
11. ReturnA.

The length property of the slice method is 2.
NOTE The slice function is intentionally generic; it does not require that its this value be an Array object. Therefore

it can be transferred to other kinds of objects for use as a method. Whether the slice function can be applied
successfully to a host object is implementation-dependent.

15.4.4.11 Array.prototype.sort (comparefn)

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare equal
do not necessarily remain in their original order). If comparefnis not undefined, it should be a function that
accepts two arguments x and y and returns a negative value if x <y, zero if X =y, or a positive value if x> y.

Let obj be the result of calling ToObject passing the this value as the argument.

Let len be the result of applying Uint32 to the result of calling the [[Get]] internal method of obj with argument
"length "

If comparefnis not undefined and is not a consistent comparison function for the elements of this array (see
below), the behaviour of sort is implementation-defined.

Let proto be the value of the [[Prototype]] internal property of obj. If proto is not null and there exists an integer
j such that all of the conditions below are satisfied then the behaviour of sort is implementation-defined:

1 objis sparse (15.4)
T O0¢j<len

© Ecma International 2009 127

secma

1 The result of calling the [[HasProperty]] internal method of proto with argument ToString{) is true.

The behaviour of sort is also implementation defined if objis sparse and any of the following conditions are
true:

1 The [[Extensible]] internal property of obj is false.
1 Any array index property of obj whose name is a nonnegative integer less than lenis a data property
whose [[Configurable]] attribute is false.

The behaviour of sort is also implementation defined if any array index property of obj whose name is a
nonnegative integer less than len is an accessor property or is a data property whose [[Writable]] attribute is
false.

Otherwise, the following steps are taken.

1. Perform an implementatiedependent semence of calls to the [[Get]], [[Put]], and [[Delete]] internal
methods obbjand to SortCompare (described below), where the first argument for each call to [[Get]],
[[Put]], or [[Delete]] is a nonnegative integer less than and where the argumentsrfcalls to SortCompare
are results of previous calls to the [[Get]] internal method. The throw argument to the [[Put]] and [[Delete]]
internal methods will be the valudeue. If objis notsparse then [[Delete]] must not be called.

2. Returnobij.

The returned object must have the following two properties.

1 There must be some mathematical permutation p of the nonnegative integers less than len, such that
for every nonnegative integer j less than len, if property old[j] existed, then new[p(j)] is exactly the
same value as old[j],. But if property old[j] did not exist, then new[p(j)] does not exist.

1 Then for all nonnegative integers j and k, each less than len, if SortComparg(k) < 0 (see SortCompare
below), then p(j) < p(k).

Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] internal method of obj
with argument j before this function is executed, and the notation new[j] to refer to the hypothetical result of
calling the [[Get]] internal method of obj with argument j after this function has been executed.

A function comparefnis a consistent comparison function for a set of values Siif all of the requirements below
are met for all values a, b, and c (possibly the same value) in the set S The notation a<ceb means
comparefiia,b) < 0; a=ce b means comparefifa,b) = 0 (of either sign); and a >c¢b means comparefiia,b) > 0.

9 Calling comparefifa,b) always returns the same valaghen given a specific pair of valuasandb as its two
arguments. Furthermor&ype() is Number, ad vis not NaN. Note that this implies that exactly ona &t b,
a=crb, anda >ce b will be true for a given pair af andb.

Calling comparefifa,b) does not modify théhis object.

a=cra (reflexivity)

If a=ceb, thenb=cra (symmetry)

If a=crbandb=cec, thena=cec (transitivity of =)

If a<cepbandb <cec, thena<cec (transitivity of <cp)

If a>cebandb >cec, thena>cec (transitivity of >f)

E R I]

NOTE The above conditions are necessary and sufficient to ensure that comparefndivides the set Sinto equivalence
classes and that these equivalence classes are totally ordered.

When the SortCompare abstract operation is called with two arguments j and k, the following steps are taken:

LetjString be ToStringj).

Let kStringbe ToSting(k).

Let hasjbe the result of calling the [[HasProperty]] internal methoadmfwith argumenjString.
Let haskbe the result of calling the [[HasProperty]] internal methoalgfwith argumenkString
If hasjandhaskare bothfalse, then returnt0.

If hasjis false, then return 1.

ogakwnpE

128 © Ecma International 2009

10.
11.
12.
13.

14.
15.
16.
17.
18.

ecna

If haskis false, then returri 1.
Let x be the result of calling the [[Get]] internal methododij with argumen{String.
Lety be the result of calling the [[Get]] internal methododoj with argumenkString
If x andy are bothundefined, return+0.
If X is undefined, return 1.
If y is undefined, return- 1.
If the argumentomparefns notundefined, then
a. If IsCallablecomparefiis false, throw aTypeError exception.
b. Return the result of calling the [[Call]] internalethod ofcomparefnpassingundefined as thethis
value and with argumentsandy.
Let xStringbe ToStringx).
Let yStringbe ToStringy).
If xString< yString return- 1.
If xString> yString return 1.
Return+0.

NOTE 1 Because non-existent property values always compare greater than undefined property values, and
undefined always compares greater than any other value, undefined property values always sort to the end of the result,
followed by non-existent property values.

NOTE 2 The sort function is intentionally generic; it does not require that its this value be an Array object. Therefore,
it can be transferred to other kinds of objects for use as a method. Whether the sort function can be applied successfully
to a host object is implementation-dependent.

154412 Arr ay. prototype.splice (start, deleteCount [, i

When the splice method is called with two or more arguments start, deleteCountnd (optionally) item1, item2
etc., the deleteCounkelements of the array starting at array index start are replaced by the arguments iteml,
item2 etc. An Array object containing the deleted elements (if any) is returned. The following steps are taken:

N

o0k w

© 0N

10.

11.
12.

Let O be the result of calling ToObject passing thes value as the argument.
Let Abea new array created as if by the expressiew Array() whereArray is the standard buHin
constructor with that name.
Let lenValbe the result of calling the [[Get]] internal method@{vith argument' length .
Letlenbe ToUint32[enVal).
Let relativeSart be Tolntegergtart).
If relativeStartis negative, letctualStartbe max(len + relativeStar},0); else letactualStartbe
min(relativeStart len).
Let actualDeleteCounbe min(max(TolntegedeleteCount0), leni actualStarj.
Letk be 0.
Repeat, whe k < actualDeleteCount
a. Letfrombe ToStringfelativeStartk).
b. LetfromPresenbe the result of calling the [[HasProperty]] internal metho®afith argument
from.
c. If fromPresenis true, then
i Let fromValuebe the result of calling the [[Get]] internalethod ofO with argumentrom.
ii. Call the [[DefineOwnProperty]] internal method Afwith arguments ToStringj, Property
Descriptor {[[Value]]: fromValue [[Writable]]: true, [[Enumerable]]itrue,
[[Configurable]]: true}, andfalse.
d. Incrementk by 1.
Letitemsbe an internal List whose elements are, in left to right order, the portion of the actual argument list
starting withitem1 The list will be empty if no such items are present.
LetitemCountbe the number of elementsitems
If itemCount< actualDdeteCount then
a. LetkbeactualStart
b. Repeat, whilk < (lenT actualDeleteCount
i Let from be ToStringk+actualDeleteCount
ii. Letto be ToStringk+itemCoun}.
iii. Let fromPresenbe the result of calling the [[HasProperty]] internal metho®afith
argumentrom.

© Ecma International 2009 129

secma

iv. If fromPresenis true, then
1. LetfromValuebe the result of calling the [[Get]] internal method@fvith
argumentrom.

2. Call the [[Put]] internal method dD with argumentgo, fromValue andtrue.
V. Else,fromPresenis false
1. Call the [[Delete]] interal method ofO with argumentdo andtrue.
Vi. Increase k by 1.
c. Letkbelen.
d. Repeat, whilk > (leni actualDeleteCount itemCoun}
i. Call the [[Delete]] internal method @ with arguments ToString(1) andtrue.
ii. Decreas& by 1.
13. Else ifitemCount> actualDdeteCount then
a. Letkbe (eni actualDeleteCount
b. Repeat, whil&k > actualStart
i Let from be ToStringk + actualDeleteCount 1).
ii. Letto be ToStringk + itemCounti 1)
iii. Let fromPresenbe the result of calling the [[HasProperty]] internal metho®afith
argumentrom.
iv. If fromPresenis true, then
1. LetfromValuebe the result of calling the [[Get]] internal method@fvith
argumentrom.
2. Call the [[Put]] internal method d® with argumentgo, fromValue andtrue.
V. Else,fromPresenis false
1. Call the [[Delee]] internal method o© with argumento andtrue.
Vi. Decreas& by 1.
14. Let k beactualStart
15. Repeat, whilétemsis not empty
a. Remove the first element froitemsand letE be the value of that element.
b. Call the [[Put]] internal method dD with arguments T8tringk), E, andtrue.
c. Increase&kby 1.
16. Call the [[Put]] internal method dd with arguments length ", (leni actualDeleteCount itemCoun},
andtrue.
17. ReturnA.

The length property of the splice method is 2.

NOTE The splice function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the splice function can be applied
successfully to a host object is implementation-dependent.

154413 Array. prototype.unshift ([iteml [, item2 |

The arguments are prepended to the start of the array, such that their order within the array is the same as the
order in which they appear in the argument list.

When the unshift method is called with zero or more arguments iteml, item2 etc., the following steps are
taken:

1. LetO be the result of calling ToObject passing the value as the argument.
2. LetlenValbe the result of callinghe [[Get]] internal method o with argument length
3. Letlenbe ToUint32[enVal).
4. LetargCountbe the number of actual arguments.
5. Letkbelen.
6. Repeat, whil&k > 0,
a. Letfrombe ToStringki 1).
b. Lettobe ToStringk+argCounti 1).
c. LetfromPresenbe the result of calling the [[HasProperty]] internal metho®afith argument
from.
d. If fromPresenis true, then
i Let fromValuebe the result of calling the [[Get]] internal method@ivith argumentrom.

130 © Ecma International 2009

secma

ii. Call the [[Put]] internal method d® with argumentgo, fromValue andtrue.
e. Else,fromPresenis false
i Call the [[Dekte]] internal method o® with argumentdo, andtrue.
f. Decreas&k by 1.
7. LetjbeO.
8. Letitemsbe an internal List whose elements are, in left to right order, the arguments that were passed to thi:
function invocation.
9. Repeat, whilétemsis not empty
a. Remove the first element frortemsand letE be the value of that element.
b. Call the [[Put]] internal method d® with arguments ToString), E, andtrue.
c. Increasq by 1.
10. Call the [[Put]] internal method d® with arguments length ", lentargCount andtrue.
11. Returnlen+argCount

The length property of the unshift method is 1.

NOTE The unshift function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift function can be
applied successfully to a host object is implementation-dependent.

15.4.4.14 Array.prototype.indexOf (searchElement [, fromiIndex])

indexOf compares searchElemento the elements of the array, in ascending order, using the internal Strict
Equality Comparison Algorithm (11.9.6), and if found at one or more positions, returns the index of the first
such position; otherwise, -1 is returned.

The optional second argument fromindexdefaults to O (i.e. the whole array is searched). If it is greater than or
equal to the length of the array, -1 is returned, i.e. the array will not be searched. If it is negative, it is used as
the offset from the end of the array to compute fromindex If the computed index is less than 0, the whole array
will be searched.

When the indexOf method is called with one or two arguments, the following steps are taken:

1. LetO be the result of calling ToObject passing this value as the argument.
2. LetlenValue be the result of calling the [[Get]] iatnal method oD with the argument length ".
3. Letlenbe ToUint32(enValug.
4. If lenis 0, return-1.
5. If argumentfromindexwas passed lat be Tolntegeiffomindey; else letn be 0.
6. If nOlen, return-1.
7. fnO 0, then
a. Letkben.
8. Else,n<0

a. Letkbelen- absg).
b. If kis less than O, then l&tbe O.
9. Repeat, whilk<len
a. LetkPresente the result of calling the [[HasProperty]] internal metho®afith argument
ToStringk).
b. If kPresents true, then
i Let elementKbe the result of calling the [[Get]] intemhmethod ofO with the argument
ToStringK).
ii. Let samebe the result of applying the Strict Equality Comparison Algorithm to
searchElemenandelementK
ili. If sameis true, returnk.
c. Increase by 1.
10. Return-1.

The length property of the indexOf method is 1.

© Ecma International 2009 131

secma

NOTE The indexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the indexOf function can be
applied successfully to a host object is implementation-dependent.

15.4.4.15 Array.prototype.lastindexOf (searchElement [, fromIndex])

lastindexOf compares searchElemento the elements of the array in descending order using the internal
Strict Equality Comparison Algorithm (11.9.6), and if found at one or more positions, returns the index of the
last such position; otherwise, -1 is returned.

The optional second argument fromindexdefaults to the array's length (i.e. the whole array is searched). If it is
greater than or equal to the length of the array, the whole array will be searched. If it is negative, it is used as
the offset from the end of the array to compute fromindex If the computed index is less than 0, -1 is returned.

When the lastindexOf method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing thes value as the argument.
LetlenValue be the result of calling the [[Get]] internal method®fvith the argument length " .
Letlenbe ToUint32[enValusg.
If lenis 0, return-1.
If argumentfromIindexwas passed lat be Tolntegeffomindey; else letn belen.
If n OO0, then letk be ming, len’i 1).
Else,n< 0
a. Letkbelen- absg).
Repeat, whil&kO0
a. LetkPresente the result of calling the [[HasProperty]] internal metho®afith argument
ToStringK).
b. If kPresents true, then
i Let elementKbe the result of déng the [[Get]] internal method oD with the argument
ToStringk).
ii. Let samebe the result of applying the Strict Equality Comparision Algorithm to
searchElemenandelementkK
iii. If sameis true, returnk.
c. Decreasék by 1.
9. Return-1.

NogokwbNE

©

Thelength property ofthelastl ndexOf method isl.

NOTE The lastindexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the lastindexOf function can be
applied successfully to a host object is implementation-dependent.

15.4.4.16 Array.prototype.every (callbackfn [, thisArg])

callbackfnshould be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. every calls callbackfnonce for each element present in the array, in ascending
order, until it finds one where callbackfnreturns false. If such an element is found, every immediately returns
false. Otherwise, if callbackfnreturned true for all elements, every will return true. callbackfnis called only for
elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfnis called with three arguments: the value of the element, the index of the element, and the object
being traversed.

every does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

132 © Ecma International 2009

secma

The range of elements processed by every is set before the first call to callbackfn Elements which are
appended to the array after the call to every begins will not be visited by callbackfn If existing elements of the
array are changed, their value as passed to callbackfnwill be the value at the time every visits them;
elements that are deleted after the call to every begins and before being visited are not visited. every acts
like the "for all" quantifier in mathematics. In particular, for an empty array, it returns true.

When the every method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing thies value as the argument.
Let lenValue be the result of calling the [[Get]] internal method@fivith the argumentlength”
Letlenbe ToUint32(enValug.
If IsCallablegallbackfn is false, throw aTypeError exception.
If thisArgwas supplied, leT bethisArg; else letT be undefined.
Letk be 0.
Repeat, whil&k < len
a. LetPkbe ToStringk).
b. LetkPresenthe the result of calling the [[HasProperty]] internal metho®afith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method@fvith argumentPk.
ii. Let testResulbe the result of calling the [[Call]] internal method a#llbackfnwith T as the
this value and argument list containiklalue k, andO.
iii. If ToBooleanfestResult)s false, returnfalse.
d. Increasek by 1.
8. Returntrue.

NoakhwbnE

Thelengt h property of theevery method isl.

NOTE The every function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the every function can be applied
successfully to a host object is implementation-dependent.

15.4.4.17 Array.prototype.some (callbackfn [, thisArg])

callbackfnshould be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. some calls callbackfnonce for each element present in the array, in ascending
order, until it finds one where callbackfnreturns true. If such an element is found, some immediately returns
true. Otherwise, some returns false. callbackfnis called only for elements of the array which actually exist; it is
not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfnis called with three arguments: the value of the element, the index of the element, and the object
being traversed.

some does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

The range of elements processed by some is set before the first call to callbackfn Elements that are appended
to the array after the call to some begins will not be visited by callbackfn If existing elements of the array are
changed, their value as passed to callbackfnwill be the value at the time that some visits them; elements that
are deleted after the call to some begins and before being visited are not visited. some acts like the "exists"
quantifier in mathematics. In particular, for an empty array, it returns false.

When the some method is called with one or two arguments, the following steps are taken:
1. LetO be the result of calling ToObject passing this value as the argument.

2. LetlenValue be the result of calling the [[Get]] internal methodfvith the argumentlength”
3. Letlenbe ToUint32[enValug.

© Ecma International 2009 133

secma

If IsCallablegallbackfr) is false, throw aTypeError exception.
If thisArgwas supplied, leT bethisArg; else letT be undefined.
Letk be O.
Repeat, whil&k < len
a. LetPkbe ToStringk).
b. LetkPresentbe the result of calling the [[HasProperty]] internal metho®afith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method®@fvith argumentPk.
ii. Let testResulbe the result of calling the [[Ca]l]nternal method otallbackfnwith T as the
this value and argument list containityalue k, andO.
iii. If ToBooleanfestResult)s true, returntrue.
d. Increasek by 1.
8. Returnfalse.

Nooa

Thelength property of thesome method isl.

NOTE The some function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the some function can be applied successfully
to a host object is implementation-dependent.

15.4.4.18 Array.prototype.forEach (callbackfn [, thisArg])

callbackfnshould be a function that accepts three arguments. forEach calls callbackfnonce for each element
present in the array, in ascending order. callbackfnis called only for elements of the array which actually exist;
it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfnis called with three arguments: the value of the element, the index of the element, and the object
being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

The range of elements processed by forEach is set before the first call to callbackfn Elements which are
appended to the array after the call to forEach begins will not be visited by callbackfn If existing elements of
the array are changed, their value as passed to callback will be the value at the time forEach visits them;
elements that are deleted after the call to forEach begins and before being visited are not visited.

When the forEach method is called with one or two arguments, the following steps are taken:

Let O bethe result of calling ToObject passing ttiés value as the argument.
LetlenValue be the result of calling the [[Get]] internal method@fvith the argumentlength”
Letlenbe ToUint32[enValug.
If IsCallablegallbackfn) is false, throw aTypeError exception.
If thisArgwas supplied, leT bethisArg, else letT be undefined.
Letk be O.
Repeat, whil&k < len
a. LetPkbe ToStringk).
b. LetkPresentbe the result of calling the [[HasProperty]] internal metho®afith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method®@fvith argumentPk.
il Call the [[Call]] internal method ofallbackfnwith T as thethis value and argument list
containingkValue k, andO.
d. Increase& by 1.
8. Return.

NoakrwNE

Thelength propertyof theforEach method isl.

134 © Ecma International 2009

secma

NOTE The forEach function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the forEach function can be
applied successfully to a host object is implementation-dependent.

15.4.4.19 Array.prototype.map (callbackfn [, thisArg])

callbackfnshould be a function that accepts three arguments. map calls callbackfnonce for each element in the
array, in ascending order, and constructs a new Array from the results. callbackfnis called only for elements of
the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfnis called with three arguments: the value of the element, the index of the element, and the object
being traversed.

map does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

The range of elements processed by map is set before the first call to callbackfn Elements which are
appended to the array after the call to map begins will not be visited by callbackfn If existing elements of the
array are changed, their value as passed to callbackfnwill be the value at the time map visits them; elements
that are deleted after the call to map begins and before being visited are not visited.

When the map method is called with one or two arguments, the following steps are taken:

1. LetO be the result of calling ToObject passing thes value as the argument.
2. LetlenValue be the result of calling the [[Get]] internal method@fvith the argumentlength”
3. Letlenbe ToUnt32(enValug.
4. |If IsCallablegallbackfn is false, throw aTypeError exception.
5. If thisArgwas supplied, leT bethisArg; else letT be undefined.
6. Let Abe a new array created as if by the expressmm Array(len) whereArray is the standard buit
in constructor with that name ardnis the value ofen.
7. LetkbeO.
8. Repeat, whilk < len
a. LetPkbe ToStringk).
b. LetkPresente the result of calling the [[HasProperty]] internal metho®ofith argumentPk.
c. If kPresents true, then
i Let kValuebe the reslt of calling the [[Get]] internal method & with argumentPk.
ii. Let mappedValude the result of calling the [[Call]] internal methodazllbackfnwith T as
thethis value and argument list containikyalue k, andO.
iii. Call the [[DefineOwnProperty]] intmal method ofA with argumentsk, Property
Descriptor {[[Value]]: mappedValug[[Writable]]: true, [[Enumerable]]itrue,
[[Configurable]]: true}, andfalse.
d. Increasek by 1.
9. ReturnA.

Thelength property of themap method isl.

NOTE The map function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method. Whether the map function can be applied successfully to
a host object is implementation-dependent.

15.4.4.20 Array.prototype.filter (callbackfn [, thisArg])

callbackfnshould be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. filter calls callbackfnonce for each element in the array, in ascending order,
and constructs a new array of all the values for which callbackfnreturns true. callbackfnis called only for
elements of the array which actually exist; it is not called for missing elements of the array.

© Ecma International 2009 135

secma

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfnis called with three arguments: the value of the element, the index of the element, and the object
being traversed.

filter does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

The range of elements processed by filter is set before the first call to callbackfn Elements which are
appended to the array after the call to filter begins will not be visited by callbackfn If existing elements of
the array are changed their value as passed to callbackfnwill be the value at the time filter visits them;
elements that are deleted after the call to filter begins and before being visited are not visited.

When the filter method is called with one or two arguments, the following steps are taken:

1. LetO be the result of calling ToObject passing this value as the argument.
2. LetlenValue be the result of calling the [[&]] internal method 0O with the argumentlength”
3. Letlenbe ToUint32[enValug.
4. |If IsCallablegallbackfn is false, throw aTypeError exception.
5. If thisArgwas supplied, leT bethisArg; else letT be undefined.
6. LetAbe anew array created as if the expressiomew Array() whereArray is the standard buin
constructor with that name.

7. LetkbeO.
8. LettobeO.
9. Repeat, whil&k < len

a. LetPkbe ToStringk).

b. LetkPresente the result of calling the [[HasProperty]] internal metho®afith argumentPk.

c. If kPresenis true, then

i Let kValuebe the result of calling the [[Get]] internal method®@fvith argumentPk.
il Let selectedbe the result of calling the [[Call]] internal methoda#llbackfnwith T as the
this value and argument list containitkalue, k, andO.
iii. If ToBooleangelectedl is true, then
1. Call the [[DefineOwnProperty]] internal method Afwith arguments ToStringdg),
Property Descriptor {[[Value]lkValue [[Writable]]: true, [[Enumerable]]:true,
[[Configurable]]: true}, andfalse.
2. Increagtoby 1.

d. Increase& by 1.

10. ReturnA.

Thelength property of théfilter method isl.

NOTE The filter function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the filter function can be applied
successfully to a host object is implementation-dependent.

15.4.4.21 Array.prototype.reduce (callbackfn [, initialValue])

callbackfnshould be a function that takes four arguments. reduce calls the callback, as a function, once for
each element present in the array, in ascending order.

callbackfnis called with four arguments: the previousValue (or value from the previous call to callbackfr), the
currentValue (value of the current element), the currentindex, and the object being traversed. The first time
that callback is called, the previousValue and currentValue can be one of two values. If an initialValue was
provided in the call to reduce , then previousValue will be equal to initialValue and currentValue will be equal
to the first value in the array. If no initialValue was provided, then previousValue will be equal to the first value
in the array and currentValue will be equal to the second. It is a TypeError if the array contains no elements
and initialValue is not provided.

136 © Ecma International 2009

secma

reduce does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

The range of elements processed by reduce is set before the first call to callbackfn Elements that are
appended to the array after the call to reduce begins will not be visited by callbackfn If existing elements of
the array are changed, their value as passed to callbackfnwill be the value at the time reduce visits them;
elements that are deleted after the call to filter begins and before being visited are not visited.

When the reduce method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing thes value as the argument.
LetlenValwe be the result of calling the [[Get]] internal method@fvith the argumentlength”
Letlenbe ToUint32(enValue).
If IsCallablegallbackfn is false, throw aTypeError exception.
If len is 0 andnitialValue is not present, throw @ypeError excepton.
Letk be O.
If initialValue is present, then
a. Setaccumulatorto initialValue.
Else,initialValue is not present
a. LetkPresentefalse
b. Repeat, whilekPresents falseand k < len
i Let Pkbe ToStringk).
ii. Let kPresentbe the result of calling the [[H&soperty]] internal method d with argument
Pk.
iii. If kPresents true, then
1. Letaccumulatorbe the result of calling the [[Get]] internal method@fvith
argumentPk.
iv. Increasek by 1.
c. If kPresents false, throw aTypeError exception.
9. Repeat, whil&k < len
a. LetPkbe ToStringk).
b. LetkPresente the result of calling the [[HasProperty]] internal metho®afith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method@fvith argumentPk.
ii. Let accumulatorbe the result of calling the [[Call]] internal method o&llbackfnwith
undefined as thethis value and argument list containimgcumulator kValug k, andO.
d. Increase by 1.
10. Returnaccumulator

NoobhwbdpE

©

Thelength property of theeduce method isl.

NOTE The reduce function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the reduce function can be applied
successfully to a host object is implementation-dependent.

15.4.4.22 Array.prototype.reduceRight (callbackfn [, initialValue])

callbackfnshould be a function that takes four arguments. reduceRight calls the callback, as a function,
once for each element present in the array, in descending order.

callbackfnis called with four arguments: the previousValue (or value from the previous call to callbackfr), the
currentValue (value of the current element), the currentindex, and the object being traversed. The first time
the function is called, the previousValue and currentValue can be one of two values. If an initialValue was
provided in the call to reduceRight , then previousValue will be equal to initialValue and currentValue will be
equal to the last value in the array. If no initialValue was provided, then previousValue will be equal to the last
value in the array and currentValue will be equal to the second-to-last value. It is a TypeError if the array
contains no elements and initialValue is not provided.

reduceRight does not directly mutate the object on which it is called but the object may be mutated by the
calls to callbackfn

© Ecma International 2009 137

secma

The range of elements processed by reduceRight is set before the first call to callbackfn Elements that are
appended to the array after the call to reduceRight begins will not be visited by callbackfn If existing
elements of the array are changed by callbackfn their value as passed to callbackfnwill be the value at the
time reduceRight visits them; elements that are deleted after the call to filter begins and before being
visited are not visited.

When the reduceRight method is called with one or two arguments, the following steps are taken:

1. LetO be the result of calling ToObject passing this value as the argument.
2. LetlenValue be the result of calling the [[&]] internal method 0O with the argumentlength”
3. Letlenbe ToUint32lenValue).
4. |If IsCallablegallbackfn is false, throw aTypeError exception.
5. If len is 0 andnitialValue is not present, throw &ypeError exception.
6. Letkbelen-1.
7. If initialValueis present, then
a. Setaccumulatorto initialValue.
8. Else,initialValue is not present

a. LetkPresentefalse.
b. Repeat, whilekPresents falseand kO 0
i Let Pkbe ToStringk).
il Let kPresentbe the result of calling the [[HasProperty]] internal metho®afith argument
Pk.
iii. If kPresents true, then
1. Letaccumulatorbe the result of calling the [[Get]] internal method@fvith
argumentPk.
iv. Decreas& by 1.
c. If kPresents false, throw aTypeError exception.
9. Repeat, whilkO 0
a. LetPkbe ToStringk).
b. LetkPresetbe the result of calling the [[HasProperty]] internal metho®afith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method®@fvith argumentPk.
il Let accumulatorbe the result of calling the [[Call]] bernal method o€allbackfnwith null
as thethis value and argument list containimgcumulator kValug k, andO.
d. Decreas& by 1.
10. Returnaccumulator

Thelength property of theeduceRight method isl.

NOTE The reduceRight function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the reduceRight function can be
applied successfully to a host object is implementation-dependent.

15.4.5 Properties of Array Instances

Array instances inherit properties from the Array prototype object and their [[Class]] internal property value is
"Array ". Array instances also have the following properties.

15.45.1 [[DefineOwnProperty]] (P, Desc, Throw)

Array objects use a variation of the [[DefineOwnProperty]] internal method used for other native ECMAScript
objects (8.12.9).

Assume A is an Array object, Descis a Property Descriptor, and Throwis a Boolean flag.

I'n the foll owi ng Regetttg oma af ilsnowis ttud, thenttheow eiyp@Error exception, otherwise
returnfalsed

138 © Ecma International 2009

eCina

When the [[DefineOwnProperty]] internal method of A is called with property P, Property Descriptor Desc and
Boolean flag Throw the following steps are taken:

1. LetoldLenDesde the result of calling the [[GetOwnProperty]] internal method\ passing’ length " as
the argument. The result will never bedefined or an accessor descriptor because Array objects are
created with a length data property that cannot be delet reconfigured.

2. LetoldLenbeoldLenDesd[Value]].

3. If Pis"length ", then

a. If the [[Value]] field of Descis absentthen
i Returnthe result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on
passing'length ", Desg andThrowasarguments.

Let newLenDesbe a copy oDesc

Let newLenbe ToUint32Desc[[Value]]).

If newLenis not equal to ToNumbeesc[[Value]]), throw aRangeError exception.

SetnewLenDesg[Value] tonewlLen

If newLenColdLen then

i Returnthe result of callig the default [[DefineOwnProperty]] internal method (8.12.9)%0n
passing'length ", newLenDescandThrowas arguments.
g. Reject ifoldLenDesd[Writable]] is false.
h. If newLenDes¢[Writable]] is absent or has the valtreie, let newWritable betrue.
i. Else,
i. Need to defer setting the [[Writable]] attributefedsein case any elements cannot be
deleted.
ii. Let newWritable befalse.
iii. SetnewLenDesg[Writable] to true.
j- Letsucceededbethe result of calling the default [[DefineOwnProperty]] internal method (8.1@n9)
A passing'length ", newLenDescandThrowas arguments.
k. If succeededs false, returnfalse..
I. While newLen< oldLenrepeat,
i. SetoldLento oldLeni 1.
ii. Let camotDelete be the result of calling the [[Delete]] internal methodAgbassing
ToStringldLen) andfalse as arguments.
iii. If camotDeleteis true, then
1. SetnewLenDesg[Value]tooldLen+1
2. If newWritableis false, setnewLenDesg[Writablg] to false.
3. Call the default [[DefineOwnProperty]] internal method (8.12.9)Aopassing
"length ", newLenDescard falseas arguments.
4. Reject.
m. If newWritableis false, then
i Call the default [[DefineOwnProperty]] internal method (8.12.9)Agpassing' length ",
Property Descriptdf[Writable]]: false}, andfalseas argumentsThis call will always
returntrue.
n. Returntrue.
4. ElseifPis an array index (15.4), then
a. Letindexbe ToUint32p).
b. Reject ifindexOoldLenandoldLenDesd[Writable]] is false.
c. Letsucceededbe the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on
A passingP, Desg andfalse as arguments.
d. Reject ifsucceededk false.
e. If indexOoldLen
i SetoldLenDesd[Value]] to index+ 1.
ii. Call the default [[DefineOwnProperty]] internal method (8.12.9)Agpassing' length ",
oldLenDescandfalseas arguments. This call will always returnue.
f. Returntrue.

5. Return the result of calling the default [[DefineOwnPropdrtgternal method (8.12.9) oA passingP,

Desg andThrowas arguments.

~omaoo0oT

© Ecma International 2009 139

secma

15.4.5.2 length

The length property of this Array object is a data property whose value is always numerically greater than
the name of every deletable property whose name is an array index.

The length property initially has the attributes { [[Writable]]: true, [[Enumerable]]false [[Configurable]]:false}.

NOTE Attempting to set the length property of an Array object to a value that is numerically less than or equal to the
largest numeric property name of an existing array indexed non-deletable property of the array will result in the length
being set to a numeric value that is one greater than that largest numeric property name. See 15.4.5.1.

15.5 String Objects

15.5.1 The String Constructor Called as a Function

When String is called as a function rather than as a constructor, it performs a type conversion.

15.5.1.1 String ([value])

Returns a String value (not a String object) computed by ToString{alue. If valueis not supplied, the empty
String ™ is returned.

15.5.2 The String Constructor

When String is called as part of a new expression, it is a constructor: it initialises the newly created object.

15.5.2.1 new String ([value])

The [[Prototype]] internal property of the newly constructed object is set to the standard built-in String
prototype object that is the initial value of String.prototype (15.5.3.1).

The [[Class]]internal property of the newly constructed object is set to "String"
The [[Extensible]]internal property of the newly constructed object is set to true.

The [[PrimitiveValue]] internal property of the newly constructed object is set to ToString{/alue), or to the empty
String if valueis not supplied.

15.5.3 Properties of the String Constructor

The value of the [[Prototype]] internal property of the String constructor is the standard built-in Function
prototype object (15.3.4).

Besides the internal properties and the length property (whose value is 1), the String constructor has the
following properties:

15.5.3.1 String.prototype

The initial value of String.prototype is the standard built-in String prototype object (15.5.4).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.5.3.2 String.fromCharCode ([charO[,charl[,é 1)1]

Returns a String value containing as many characters as the number of arguments. Each argument specifies
one character of the resulting String, with the first argument specifying the first character, and so on, from left

140 © Ecma International 2009

secma

to right. An argument is converted to a character by applying the operation ToUint16 (9.7) and regarding the
resulting 16-bit integer as the code unit value of a character. If no arguments are supplied, the result is the
empty String.

The length property of the fromCharCode function is 1.

15.5.4 Properties of the String Prototype Object
The String prototype object is itself a String object (its [[Class]] is "String") whose value is an empty String.

The value of the [[Prototype]] internal property of the String prototype object is the standard built-in Object
prototype object (15.2.4).

15.5.4.1 String.prototype.constructor

The initial value of String.prototype.constructor is the built-in String constructor.

15.5.4.2 String.prototype.toString ()

Returns this String value. (Note that, for a String object, the toString method happens to return the same
thing as the valueOf method.)

The toString function is not generic; it throws a TypeError exception if its this value is not a String or a
String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.3 String.prototype.valueOf ()
Returns this String value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a String or String
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.4 String.prototype.charAt (pos)

Returns a String containing the character at position posin the String resulting from converting this object to a
String. If there is no character at that position, the result is the empty String. The result is a String value, not a
String object.

If posis a value of Number type that is an integer, then the result of x.charAt(po9 is equal to the result of
x.substring(pos postl) .

When the charAt method is called with one argument pos the following steps are taken:

Call CheckObjectCoercible passing ttiés value as its argument.

Let Sbe the result of calling ToString, giving it thieis value as its argument.

Let positionbe Tolnegeros).

Let sizebe the number of characters$n

If position< 0 orpositionOsizg return the emptBtring.

Return aString of length 1, containing one character fr@&nnamely the character at positiposition where
the first (leftmost) character iis considered to be at position 0, the next one at position 1, and so on.

oakrwNE

NOTE The charAt function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

© Ecma International 2009 141

secma

15.5.4.5 String.prototype.charCodeAt (pos)

Returns a Number (a nonnegative integer less than 2% representing the code unit value of the character at
position pos in the String resulting from converting this object to a String. If there is no character at that
position, the result is NaN.

When the charCodeAt method is called with one argument pos the following steps are taken:

1. Call CheckObjectCoercible passing tthés value as its argument.

2. LetSbe the result of calling ToString, giving it thkis value as its argument.

3. Letpositionbe Tolntegenfos.

4. Letsizebe thenumber of characters i&

5. If position< 0 orpositionOsize returnNaN.

6. Return a value of Number type, whose value is the code unit value of the character at positiomin the
String S, where the first (leftmost) character $is considered to be at position 0, the next one at position 1,
and so on.

NOTE The charCodeAt function is intentionally generic; it does not require that its this value be a String object.

Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.6 String.prototype.concat ([stringl [, string2[,é¢] 1 1)

When the concat method is called with zero or more arguments stringl, string2, etc., it returns a String
consisting of the characters of this object (converted to a String) followed by the characters of each of stringl,
string2, etc. (where each argument is converted to a String). The result is a String value, not a String object.
The following steps are taken:

Call CheckObjectCoercible passing tties value as its argument.
Let Sbe the result of calling ToString, giving it thieis value as itargument.
Let argsbe an internal list that is a copy of the argument list passed to this function.
Let RbeS.
Repeat, whileargsis not empty
a. Remove the first element froargsand letnextbe the value of that element.
b. LetRbe theStringvalue consishg of the characters in the previous valueRdbllowed by the
characters of ToStringéex).
6. ReturnR.

okronRE

The length property of the concat method is 1.

NOTE The concat function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.7 String.prototype.indexOf (searchString, position)

If searchStringappears as a substring of the result of converting this object to a String, at one or more positions
that are greater than or equal to position then the index of the smallest such position is returned; otherwise, -
1 is returned. If positionis undefined, 0 is assumed, so as to search all of the String.

The indexOf method takes two arguments, searctStringand position and performs the following steps:

Call CheckObjectCoercible passing tthés value as its argument.

Let Sbe the result of calling ToString, giving it thieis value as its argument.

Let searchStibe ToStringgearchString.

Let posbe Tolntegerposition). (If positionis undefined, this step produces the valOg.
Letlenbe the number of characters

Let start be min(maxpos 0), len).

Let searchLerbe the number of characterssearchStr

NogokrwNE

142 © Ecma International 2009

secma

8. Return the smallest possible intedgenat smaller tharstart such thak+ searchLeris not greater thalen,
and for all nonnegative integejsess tharsearchLenthe character at positidaj of Sis the same as the
character at positiopof searchStJ; but if there is no such integ&r then return the value 1.

The length property of the indexOf method is 1.

NOTE The indexOf function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.8 String.prototype.lastindexOf (searchString, position)

If searchStringappears as a substring of the result of converting this object to a String at one or more positions
that are smaller than or equal to position then the index of the greatest such position is returned; otherwise, -
1 is returned. If positionis undefined, the length of the String value is assumed, so as to search all of the
String.

The lastindexOf method takes two arguments, searchStringand position and performs the following steps:

Call CheckObjectCoercible passing tthes value as its argument.

Let Sbe the result of calling ToString, giving it thieis value as its argument.

Let searchStrbe ToStringéearchString.

Let numPosbe ToNumbenfosition). (If positionis undefined, this step produces the valdaN).

If numPoss NaN, let posbe+a; otherwise, leposbe TolntegenfumPo$.

Letlenbe the number of characters$n

Let start min(maxgos 0), len).

Let searchLerbe the number of characterssaarchStr

Return tle largest possible nonnegative inte§erot larger tharstart such thak+ searchLens not greater
thanlen, and for all nonnegative integersess tharsearchLenthe character at positidej of Sis the same
as the character at positipof searchQt; but if there is no such integ&y then return the valuel.

CeNoOO~WNE

The length property of the lastindexOf ~ method is 1.

NOTE The lastindexOf function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.9 String.prototype.localeCompare (that)

When the localeCompare method is called with one argument that, it returns a Number other than NaN that
represents the result of a locale-sensitive String comparison of the this value (converted to a String) with that
(converted to a String). The two Strings are Sand That The two Strings are compared in an implementation-
defined fashion. The result is intended to order String values in the sort order specified by the system default
locale, and will be negative, zero, or positive, depending on whether S comes before Thatin the sort order, the
Strings are equal, or Scomes after Thatin the sort order, respectively.

Before perform the comparisons the following steps are performed to prepare the Strings:

1. Call CheckObjectCoercible passing tthés value as its argument.
2. LetSbe the result of calling ToString, giving it thkis value as its argument.
3. Let Thatbe ToStringthat).

The localeCompare method, if considered as a function of two arguments this and that, is a consistent
comparison function (as defined in 15.4.4.11) on the set of all Strings. Furthermore, localeCompare returns
0 or i 0 when comparing two Strings that are considered canonically equivalent by the Unicode standard.

The actual return values are implementation-defined to permit implementers to encode additional information

in the value, but the function is required to define a total ordering on all Strings and to return 0 when
comparing Strings that are considered canonically equivalent by the Unicode standard.

© Ecma International 2009 143

secma

If no language-sensitive comparison at all is available from the host environment, this function may perform a
bitwise comparison.

NOTE 1 The localeCompare method itself is not directly suitable as an argument to Array.prototype.sort
because the latter requires a function of two arguments.

NOTE 2 This function is intended to rely on whatever language-sensitive comparison functionality is available to the
ECMAScript environment from the h o s t environment, and to compare accor
current locale. It is strongly recommended that this function treat Strings that are canonically equivalent according to the
Unicode standard as identical (in other words, compare the Strings as if they had both been converted to Normalised
Form C or D first). It is also recommended that this function not honour Unicode compatibility equivalences or
decompositions.

NOTE 3 The second parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

NOTE 4 The localeCompare function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.10 String.prototype.match (regexp)
When the match method is called with argument regexp the following steps are taken:

1. Call CheckObjectCoercible passing ttigs value & its argument.

2. LetSbe the result of calling ToString, giving it thkis value as its argument.

3. If Type(regexp is Object and the value of the [[Class]] internal propertyegfexpis "RegExp" , then letrx

beregexp

4. Else, letrx be a new RegExp objecteated as if by the expressinaw RegExp(regexp whereRegEXxp

is the standard buiin constructor with that name.

Let global be the result of calling the [[Get]] internal methodrefwith argument'global”

Let execbe the standard buiih functionRegExp.prototype.exec (see 15.10.6.2)

7. |If globalis nottrue, then
a. Return the result of calling the [[Call]] internal methodeofecwith rx as thethis value and

argument list containin.

8. Else,globalis true
a. Call the [[Put]] internal method af with arguments'lastindex" and 0.
b. Let Abe a new array created as if by the expressimm Array() whereArray is the standard

built-in constructor with that name.

Let previousLastindeke O.

Letn be 0.

Let lastMatchbetrue.

Repeat, whildastMatchis true

i Letresultbe the result of calling the [[Call]] internal method edfecwith rx as thethis
value and argument list containi&y
ii. If resultis null, then setastMatchto false.
iii. Else,resultis notnull

1. Letthisindex be the result of calling the [[Get]] inteal method ofx with
argument'lastindex”

2. If thisIndex= previousLastindexhen

a Call the [[Put]] internal method af with argumentslastindex” and
thisindex-1.
b SetpreviousLastindexo thisindex-1.

3. Else, sepreviousLastindexo thisindex

4. LetmatchSt be the result of calling the [[Get]] internal methodrefult with
argument'0” .

5. Call the [[DefineOwnProperty]] internal method Afwith arguments ToStringy,
the Property Descriptor {[[Value]matchStr [[Writable]]: true, [[Enumerable]]:
true, [[configurable]]: true}, and false.

6. Incrementn.

oo

~® oo

144 © Ecma International 2009

ding

t

0]

