|Ecma/TC39/2010/018 |

Module proposals

Some aspects to consider

lhab Awad
Google

patrick
Text Box
Ecma/TC39/2010/018

The Web is big

You just won’t believe how vastly,
hugely, mind-bogglingly big it is. I
mean, you may think the cereal aisle at
Safeway has a lot of different choices,
but that’s just peanuts to the Web.

-- with apologies

Levels of generativity

To what extent is a module system generative ?

Or: To what extent can a client sense that two similar module
loading commands did or did not load exactly the same thing?

Similar — There are many ways to refer to code:
"http://foo.org/ver /utils.js for any ver > 3"
"http://mirrors.com/foo/utils-v3.9.js"

A notation

Just for expository purposes

loadit("foo") -- loads module code, does not run it, returns
reference

loadinstance("foo") -- loads module code, runs it and returns
iInstantiated objects

Gen level GO

Most generative
Module code never exposed as 1st class

Module state (instances) created afresh each time a module
loading command issued

loadinstance("foo") !== loadinstance("fo0")

Gen level G1

Module code exposed as first-class
Module state (including internal types) always generative
loadit("foo") === loadit("foo")

loadit("foo").make(3, 4) !==
loadit("foo").make(3, 4)

loadit("foo") only exposes standardized make interface; no
iInternal types or anything else is available prior to instantiation

Gen level G2

Module's programmer-defined internal types available
Instance data is generative
loadit("foo").X === loadit("foo").X

new loadit("foo").X(3, 4) instanceof
loadit("foo").X

new loadit("foo").X(3, 4) |==
new loadit("foo").X(3, 4)

Gen level G3

Module instances are singletons

loadinstance("tfoo") === loadinstance("foo")

The danger ...

The greater the "gen level" ;) the more ways there are for the
programmer to sense -- and depend upon -- whether we've
given them the "same” stuff ...

... and therefore the greater the programmers' dependency on
the algorithm we use to locate modules and decide whether to
go get a new copy of something or whether the one we already
have will do.

(Recall: the Web is big.)

Modules starting with Java

Imagine that we start with Java and build a good module
system

e \What would we change in Java”?
e How would we build our system?

Global mutable namespace

This is Public Enemy #1 for Java
Otherwise stated:

1. Classes self-declare their names; but
2. Clients of the classes cannot remap the names

package org.util; class Foo {}
— org.util.Foo "used up" for [non reflective] Java

— Lots of otherwise avoidable machinery in OSGi

Fixing the problem

Candidate solution before going any further:

1. External name locates class [file]; and

2. Importing binds external name to an identifier
import "http://foo.org/Util.class" as UtilA;

import "util" as UtilB;
import "bar" as Bar;

Semantics of names

Request to some systems for retrieval of class stuff ...
... that's where the Bigness comes in.

Question: To what extent should we rely on the way these
systems work?

Some definitions

Class/Module: Synonyms in our example

Strategy: How to find a class on the (B/G) Web (URIs,
checksums, signatures, ...)

Short name: A string like "foo" or "org.util.Bar" that can appear
In an import

Catalog: A mapping from short names to strategies

Bundle: Archived sources for classes + a catalog

Static state (singletons)

Traditional Java has static (ambiently shared) state ...
Mutable: arbitrary "application” shared state
Immutable: types, enum value

(This means Java is G3.)

It is crucially important whether two pieces of an application get
the same static state

Hypothetical bundles

root
S el http://x.comffoo.zip!A.class
http:/iy.com/bar.zip!B.class
hitp://x.com/foo.zip

[AT %— http:/iy.comNUtils.zip!FrBuf.class?least_ver=3.2

hitp:/ly.com/bar.zip
[BEES %— http://mirror.orgly.com/yUtils-3.9.4 zip!FrBuf.class

Class FrBuf contains mutable shared state
(e.g., shared frame buffer)

ldea 1: Separate instances

/A - FrBuf
N B - FrBuf

But: The programmers expected FrBuf to contain
iImportant shared state.

Why should packaging of source control the instance
graph in this way?

ldea 2: Same instance

/\
\/

But: a minor change to the strategies in the bundle of A
could suddenly cause us to revert to separate
Instances. Surprising.

FrBuf

Important shared information should not be subject to
such fragility.

ldea 3: Same instance via remap

Now the bundle of R remaps the strategies of the
bundles of A and B to always match.

/\
\/

Now the bundle of R is strongly dependent on the
bundles of A and B; the author of R must always track
Its dependencies and do remapping work.

FrBuf

Conclusion

The Web is big.

Reduce the "stickiness" of dependencies (your G level).

