
Module proposals

Some aspects to consider

Ihab Awad
Google

patrick
Text Box
Ecma/TC39/2010/018

The Web is big

You just won’t believe how vastly,
hugely, mind-bogglingly big it is. I
mean, you may think the cereal aisle at
Safeway has a lot of different choices,
but that’s just peanuts to the Web.

-- with apologies

Levels of generativity

To what extent is a module system generative ?

Or: To what extent can a client sense that two similar module
loading commands did or did not load exactly the same thing?

Similar → There are many ways to refer to code:
 "http://foo.org/ver /utils.js for any ver ≥ 3"
 "http://mirrors.com/foo/utils-v3.9.js"

A notation

Just for expository purposes

loadit("foo") -- loads module code, does not run it, returns
reference

loadinstance("foo") -- loads module code, runs it and returns
instantiated objects

Gen level G0

Most generative

Module code never exposed as 1st class

Module state (instances) created afresh each time a module
loading command issued

loadinstance("foo") !== loadinstance("foo")

Gen level G1

Module code exposed as first-class

Module state (including internal types) always generative

loadit("foo") === loadit("foo")

loadit("foo").make(3, 4) !==
 loadit("foo").make(3, 4)

loadit("foo") only exposes standardized make interface; no
internal types or anything else is available prior to instantiation

Gen level G2

Module's programmer-defined internal types available

Instance data is generative

loadit("foo").X === loadit("foo").X

new loadit("foo").X(3, 4) instanceof
 loadit("foo").X

new loadit("foo").X(3, 4) !==
 new loadit("foo").X(3, 4)

Gen level G3

Module instances are singletons

loadinstance("foo") === loadinstance("foo")

The danger ...

The greater the "gen level" :) the more ways there are for the
programmer to sense -- and depend upon -- whether we've
given them the "same" stuff ...

... and therefore the greater the programmers' dependency on
the algorithm we use to locate modules and decide whether to
go get a new copy of something or whether the one we already
have will do.

(Recall: the Web is big.)

Modules starting with Java

Imagine that we start with Java and build a good module
system

What would we change in Java?
How would we build our system?

Global mutable namespace

This is Public Enemy #1 for Java

Otherwise stated:

1. Classes self-declare their names; but
2. Clients of the classes cannot remap the names

 package org.util; class Foo {}

→ org.util.Foo "used up" for [non reflective] Java

→ Lots of otherwise avoidable machinery in OSGi

Fixing the problem

Candidate solution before going any further:

1. External name locates class [file]; and
2. Importing binds external name to an identifier

// Direct URI reference
import "http://foo.org/Util.class" as UtilA;
// Some sort of "catalog" entry
import "util" as UtilB;
import "bar" as Bar;

Semantics of names

Request to some systems for retrieval of class stuff ...

 ... that's where the Bigness comes in.

Question: To what extent should we rely on the way these
systems work?

Some definitions

Class/Module: Synonyms in our example

Strategy: How to find a class on the (BIG) Web (URIs,
checksums, signatures, ...)

Short name: A string like "foo" or "org.util.Bar" that can appear
in an import

Catalog: A mapping from short names to strategies

Bundle: Archived sources for classes + a catalog

Static state (singletons)

Traditional Java has static (ambiently shared) state ...

Mutable: arbitrary "application" shared state

Immutable: types, enum value

(This means Java is G3.)

It is crucially important whether two pieces of an application get
the same static state

Hypothetical bundles

Class FrBuf contains mutable shared state
(e.g., shared frame buffer)

Idea 1: Separate instances

But: The programmers expected FrBuf to contain
important shared state.

Why should packaging of source control the instance
graph in this way?

Idea 2: Same instance

But: a minor change to the strategies in the bundle of A
could suddenly cause us to revert to separate
instances. Surprising.

Important shared information should not be subject to
such fragility.

Idea 3: Same instance via remap

Now the bundle of R is strongly dependent on the
bundles of A and B; the author of R must always track
its dependencies and do remapping work.

Now the bundle of R remaps the strategies of the
bundles of A and B to always match.

Conclusion

The Web is big.

Reduce the "stickiness" of dependencies (your G level).

