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Erratum for ECMAScript, 5th Edition Specification (ECMA-262-5) 

(Last Updated July 19, 2010) 

 

Items with Technical Significance 
 

7.1 Unicode Format-Control Characters 

(Table 1) 

Code Unit Value Name Formal Name Usage 

\u200C Zero width non-joiner <ZWNJ> IdentifierPart 

\u200DC Zero width joiner <ZWJ> IdentifierPart 

\uFEFF Byte Order Mark <BOM> Whitespace 

 

 

10.2.1.1.3 SetMutableBinding (N,V,S) 

(Algorithm should only throw an exception when S is true) 

The concrete Environment Record method SetMutableBinding for declarative environment records 
attempts to change the bound value of the current binding of the identifier whose name is the value of the 
argument N to the value of argument V. A binding for N must already exist. If the binding is an immutable 
binding, a TypeError is always thrown if S is true. The S argument is ignored because strict mode does 

not change the meaning of setting bindings in declarative environment records. 

4. Else this must be an attempt to change the value of an immutable binding so if S is true throw a 

TypeError exception. 

 

 

10.2.1.2.2 CreateMutableBinding ( N, D ) 

(Incorrect algorithm parameter, property should be created with throw parameter true to deal with case 
where global object is not extensible) 

5. Call the [[DefineOwnProperty]] internal method of bindings, passing N, Property Descriptor 

{[[Value]]:undefined, [[Writable]]: true, [[Enumerable]]: true , [[Configurable]]: configValue}, and 

true false as arguments. 

 

10.5 Declaration Binding Instantiation 

(Step 5 of original algorithm handled redefining existing global function declarations in a manner that was 
incompatible with ES3 and which in some cases would unintentionally invoke accessor functions) 
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5. For each FunctionDeclaration f in code, in source text order do 

a. Let fn be the Identifier in FunctionDeclaration f. 

b. Let fo be the result of instantiating FunctionDeclaration f as described in Clause 13. 

c. Let funcAlreadyDeclared be the result of calling env’s HasBinding concrete method passing fn 

as the argument. 

d. If funcAlreadyDeclared is false, call env’s CreateMutableBinding concrete method passing fn 

and configurableBindings as the arguments. 

e. Else if env is the environment record component of the global environment then  

i. Let go be the global object. 

ii. Let existingProp be the resulting of calling the [[GetProperty]] internal method of go 

with argument fn. 

iii. If existingProp .[[Configurable]] is true, then 

1. Call the [[DefineOwnProperty]] internal method of go, passing fn, Property 

Descriptor {[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true , 

[[Configurable]]: configurableBindings }, and true as arguments. 

iv. Else if IsAccessorDescrptor(existingProp) or existingProp does not have attribute 

values {[[Writable]]: true, [[Enumerable]]: true}, then 

1. Throw a TypeError exception. 

f. Call env’s SetMutableBinding concrete method passing fn, fo, and strict as the arguments. 

 

12.6.4 The for-in Statement 

(Implementers have found the spec. to be unclear regarding whether shadowed inherited properties are 
included in an enumeration) 

The mechanics and order of enumerating the properties (step 6.a in the first algorithm, step 7.a in the 
second) is not specified. Properties of the object being enumerated may be deleted during enumeration. If 
a property that has not yet been visited during enumeration is deleted, then it will not be visited. If new 
properties are added to the object being enumerated during enumeration, the newly added properties are 
not guaranteed to be visited in the active enumeration. A property name must not be visited more than 
once in any enumeration. 

Enumerating the properties of an object includes enumerating properties of its prototype, and the 
prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is 
“shadowed” because some previous object in the prototype chain has a property with the same name. 
The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype 
object is shadowed by a previous object on the prototype chain.

 

15.2.3.7 Object.defineProperties ( O, Properties ) 

(confusing use of P in steps 5 and 6 of algorithm) 

5. For each element P of names in list order, 

a. Let descObj be the result of calling the [[Get]] internal method of props with P as the argument. 

b. Let desc be the result of calling ToPropertyDescriptor with descObj as the argument. 

c. Append the pair (a two element List) consisting of P and desc to the end of descriptors. 

6. For  each element pair from desc of descriptors in list order, 

a. Let P be the first element of pair. 

b. Let desc be the second element of pair. 

c.a. Call the [[DefineOwnProperty]] internal method of O with arguments P, desc, and true. 
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15.2.4.2 Object.prototype.toString ( ) 

(Original algorithm caused failure of widely used web frameworks.) 

1. If the this value is undefined, return "[object Undefined]". 

2. If the this value is null, return "[object Null]". 

13. Let O be the result of calling ToObject passing the this value as the argument. 

24. Let class be the value of the [[Class]] internal property of O. 

35. Return the String value that is the result of concatenating the three Strings "[object ", class, and 

"]". 

 

15.3.4.3 Function.prototype.apply (thisArg, argArray) 

(Original algorithm performs validation checks in steps 5 and 7 that are inconsistent with other generic 
array usages in the specification.) 

4. Let len be the result of calling the [[Get]] internal method of argArray with argument "length". 

5. If len is null or undefined, then throw a TypeError exception. 

5. Let n be ToUint32(len). 

7. If n is not equal to ToNumber(len), then throw a TypeError exception. 

6. Let argList  be an empty List. 

7. Let index be 0. 

8. Repeat while index < n 

a. Let indexName be ToString(index). 

b. Let nextArg be the result of calling the [[Get]] internal method of argArray with indexName as 

the argument. 

c. Append nextArg as the last element of argList. 

d. Set index to index + 1. 

9. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value and 

argList as the list of arguments. 

 

15.4.4.18 Array.prototype.forEach ( callbackfn [ , thisArg ] ) 

(Return value not specified in step 8) 

8. Return undefined. 

 

15.4.4.21 Array.prototype.reduce ( callbackfn [ , initialValue ] ) 

(Fourth paragraph) 

The range of elements processed by reduce is set before the first call to callbackfn. Elements that are 

appended to the array after the call to reduce begins will not be visited by callbackfn. If existing elements 

of the array are changed, their value as passed to callbackfn will be the value at the time reduce visits 

them; elements that are deleted after the call to reduce filter begins and before being visited are not 

visited. 
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15.4.4.22 Array.prototype.reduceRight ( callbackfn [ , initialValue ] ) 

(Fourth paragraph) 

The range of elements processed by reduceRight is set before the first call to callbackfn. Elements that 

are appended to the array after the call to reduceRight begins will not be visited by callbackfn. If 

existing elements of the array are changed by callbackfn, their value as passed to callbackfn will be the 

value at the time reduceRight visits them; elements that are deleted after the call to reduceRight 

filter begins and before being visited are not visited. 

(Algorithm step 9.c.ii) 

9. Repeat, while k ≥ 0 

a. Let Pk be ToString(k). 

b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument 

Pk. 

c. If kPresent is true, then 

i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk. 

ii. Let accumulator be the result of calling the [[Call]] internal method of callbackfn with 

null undefined as the this value and argument list containing accumulator, kValue, k, 

and O. 

d. Decrease k by 1. 

 

 

15.5.5.2 [[GetOwnProperty]] ( P ) 

(First paragraph, individual character properties should not have “array index” restrictions) 

String objects use a variation of the [[GetOwnProperty]] internal method used for other native ECMAScript 
objects (8.12.1). This special internal method is used to add access for specify the array index named 
properties corresponding to individual characters of String objects. 

(Algorithm corrections) 

3. If ToString(abs(ToInteger(P))) is not the same value as P an array index (15.4), return undefined. 

4. Let str be the String value of the [[PrimitiveValue]] internal property of S. 

5. Let index be ToUint32 ToInteger(P). 

 

 

15.9.1.15 Date Time String Format  

(Time only variations of this string format should not have been included.  Ranges were not specified for 
some fields) 

Where the fields are as follows: 

YYYY is the decimal digits of the year in the Gregorian calendar.  

-  “:” (hyphon hyphen) appears literally twice in the string. 

MM  is the month of the year from 01 (January) to 12 (December).  

DD  is the day of the month from 01 to 31. 
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T  “T” appears literally in the string, to indicate the beginning of the time element . 

HH  is the number of complete hours that have passed since midnight as two decimal digits 

from 00 to 24. 

:  “:” (colon) appears literally twice in the string. 

mm  is the number of complete minutes since the start of the hour as two decimal digits from 

00 to 59. 

ss  is the number of complete seconds since the start of the minute as two decimal digits 

from 00 to 59. 

.  “.” (dot) appears literally in the string. 

sss is the number of complete milliseconds since the start of the second as three decimal 

digits. 

Both the “.” and the milliseconds field may be omitted. 

Z is the time zone offset specified as “Z” (for UTC) or either “+” or “-” followed by a time 

expression hhHH:mm 

This format includes date-only forms: 

YYYY 

YYYY-MM 

YYYY-MM-DD 

It also includes “date-time” forms that consist of one of the above date-only forms immediately followed by 
one of the following time which It also includes time-only forms with an optional time zone offset 
appended:  

THH:mm 

THH:mm:ss 

THH:mm:ss.sss 

Also included are “date-times” which may be any combination of the above. 

All numbers must be base 10. If the MM or DD fields are absent “01” is used as the value. If the mm or ss 

fields are absent “00” is used as the value and the value of an absent sss file is “000”.  The value of an 

absent time zone offset is “Z”. 

 

15.11.1.1 Error (message)  

(Last paragraph, Algorithm incorrect when message is undefined) 

If the argument message is not undefined, the message own property of the newly constructed object is 

set to ToString(message). Otherwise, the message own property is set to the empty String. 

15.11.2.1 new Error (message)  

(Last paragraph, Algorithm incorrect when message is undefined) 

If the argument message is not undefined, the message own property of the newly constructed object is 

set to ToString(message). Otherwise, the message own property is set to the empty String. 
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15.11.4.4 Error.prototype.toString ( )  

(Algorithm incorrect when message is the empty string or undefined) 

6. If msg is undefined, then let R msg be msg the empty String; else let msg be ToString(msg).  

7. Else, let R be the result of concatenating name, ":", a single space character, and ToString(msg). 

8. Return R. 

7. If name and msg are both the empty String, return "Error". 

8. If name is the empty String, return msg. 

9. If msg is the empty String, return name. 

10. Return the result of concatenating name, ":", a single space character, and msg.  

 

 
 

15.11.7.4 new NativeError (message)  

(Last paragraph, Algorithm incorrect when message is undefined) 

If the argument message is not undefined, the message own property of the newly constructed object is 

set to ToString(message). Otherwise, the message own property is set to the empty String. 

 

A.1 Lexical Grammar 

(Insert between DecimalDigit and ExponentIndicator production) 

DecimalDigit :: one of  See 7.8.3 
0  1  2  3  4  5  6  7  8  9 

NonZeroDigit :: one of  See 7.8.3 
1  2  3  4  5  6  7  8  9 

ExponentPart ::  See 7.8.3 

ExponentIndicator SignedInteger 

ExponentIndicator :: one of  See 7.8.3 
e  E 

(incorrect right-hand-side) 

RegularExpressionBackslashSequence :: See 7.8.5 
\ RegularExpressionNonTerminator 

(missing right-hand-side term) 

Literal :: See 7.8 

NullLiteral 

BooleanLiteral 

NumericLiteral 

StringLiteral 

RegularExpressionLiteral 
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A.8.1 JSON Lexical Grammar 

(incorrect right-hand-side) 

JSONStringCharacter ::   See 15.12.1.1 

JSONSourceCharacter but not double-quote " or backslash \ or U+0000 thru U+001F 

\ JSONEscapeSequence 

 

ANNEX C 

(missing item, add as first bullet item) 

• The identifiers "implements", "interface", "let", "package", "private", 

"protected", "public", "static", and "yield" are classified as 

FutureReservedWord tokens within strict mode code. (7.6.12). 

 

(next to last  bullet item, confusing wording) 

• An implementation may not extend, beyond that defined in this specification, the 
associate special meanings within strict mode functions of to properties named caller 

or arguments of function instances. ECMAScript code may not create or modify 

properties with these names on function objects that correspond to strict mode functions 
(10.6, 13.2, 15.3.4.5.3). 
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Editorial Items with no Technical Significance 

 

6 Source Text 

(First paragraph) 

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, 
version 3.0 or later. The text is expected to have been normalised to Unicode Normalised Form C 
(canonical composition), as described in Unicode Technical Report #15. Conforming ECMAScript 
implementations are not required to perform any normalisation of text, or behave as though they were 
performing normalisation of text, themselves.  ECMAScript source text is assumed to be a sequence of 
16-bit code units for the purposes of this specification. Such a source text may include sequences of  16-
bit code units that are not valid UTF-16 character encodings. If an actual source text is encoded in a form 
other than 16-bit code units it must be processed as if it was first converted to UTF-16. 

 

7.6 Identifier Names and Identifiers 

(Missing :: in several grammar productions) 

UnicodeLetter :: 

any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter (Ll)”, “Titlecase 
letter (Lt)”, “Modifier letter (Lm)”, “Other letter (Lo)”, or “Letter number (Nl)”. 

UnicodeCombiningMark :: 

any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining spacing mark 
(Mc)” 

UnicodeDigit :: 

any character in the Unicode category “Decimal number (Nd)” 

UnicodeConnectorPunctuation :: 

any character in the Unicode category “Connector punctuation (Pc)” 

UnicodeEscapeSequence :: 

see 7.8.4. 

 

 

7.8.4 String Literals 

(Incorrect section reference) 

The definitions of the nonterminal HexDigit is given in 7.6 7.8.3. 
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7.9.1 Rules of Automatic Semicolon Insertion 

(Wrong font emphasis in ThrowStatement production) 

ThrowStatement : 
throw throw [no LineTerminator here] Expression ; 

(“A” should be “An” in last sentence) 

An Identifier in a break or continue statement should be on the same line as the break or continue token. 

 

9.8.1 ToString Applied to the Number Type 

(Incorrect font emphasis for variables in algorithm step 10) 

10. Return the String consisting of the most significant digit of the decimal representation of s, followed by 

a decimal point ‘.’, followed by the remaining k1 digits of the decimal representation of s, followed 

by the lowercase character ‘e’, followed by a plus sign ‘+’ or minus sign ‘’ according to whether n1 

is positive or negative, followed by the decimal representation of the integer abs(n1) (with no leading 

zeros). 

 

10.2.1.1.1 HasBinding (N) 

(Period missing at end of step 3) 

3. If it does not have such a binding, return false. 

 

10.5 Declaration Binding Instantiation 

(Period missing at end of step 6) 

6. Let argumentsAlreadyDeclared be the result of calling env’s HasBinding concrete method passing 

"arguments" as the argument. 

 

11.2.3 Function Calls 

(Incorrect font emphasis for variable in algorithm step 6.b.1) 

6. If Type(ref) is Reference, then 

a. If IsPropertyReference(ref) is true, then 

i. Let thisValue be GetBase(ref). 

b. Else, the base of ref is an Environment Record 

i. Let thisValue be the result of calling the ImplicitThisValue concrete method of 

GetBase(ref). 
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12.10 The with Statement 

(Period missing at end of step 4) 

4. Let newEnv be the result of calling NewObjectEnvironment passing obj and oldEnv as the arguments. 

 

12.11 The switch Statement 

(Incorrect font emphasis for grammar productions in second CaseBlock algorithm steps 3, 5.b.i, 9.b, and 
9.b.i) 

3. Let B be the list of CaseClause items in the second CaseClauses, in source text order. 

4. Let found be false. 

5. Repeat letting C be in order each CaseClause in A 

a. If found is false, then 

i. Let clauseSelector be the result of evaluating C. 

ii. If input is equal to clauseSelector as defined by the === operator, then set found to true. 

b. If found is true, then 

i. If C has a StatementList, then 

1. Evaluate C’s StatementList and let R be the result. 

2. If R.value is not empty, then let V = R.value. 

3. R is an abrupt completion, then return (R.type, V, R.target). 

 

9. Repeat (Note that if step 7.a.i has been performed this loop does not start at the beginning of B) 

a. Let C be the next CaseClause in B. If there is no such CaseClause, return (normal, V, empty). 

b. If C has a StatementList, then  

i. Evaluate C’s StatementList and let R be the result. 

ii. If R.value is not empty, then let V = R.value. 

iii. If R is an abrupt completion, then return (R.type, V, R.target). 

 

 

15.1.2.1 eval (x) 

(Incorrect font emphasis for variables in algorithm step 5) 

If radix is 16, the number may also optionally begin with the character pairs 0x or 0X.

 

15.1.2.2 parseInt (string, radix) 

(Missing “the” in last sentence of first paragraph) 

5. Exit the running execution context evalCtx, restoring the previous execution context.  

 

15.1.3 URI Handling Function Properties  

(unnecessary “the”) 
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A URI is composed of a sequence of components separated by component separators. The general form 
is: 

     Scheme : First / Second ; Third ? Fourth 

where the italicised names represent components and the “:”, “/”, “;” and “?” are reserved characters 

used as separators.  

 

15.2.2.1 new Object ([value]) 

(“Assert” misspelled in step 2) 

2. Assert: The argument value was not supplied or its type was Null or Undefined.  

 

(Period missing at end of step 7) 

7. Set the all the internal methods of obj as specified in 8.12. 

 

 

15.3.2.1 new Function (p1, p2, … , pn, body) 

(“th” should not be superscript in algorithm steps 5.d.i and 5.e) 

i. Let nextArg be the k’th argument. 

 

d. Let body be the k’th argument. 

 

 

15.4.4.9 Array.prototype.shift ( ) 

(Incorrect font emphasis for variables in algorithm step 7.e) 

e. Else, fromPresent is false 

 

15.4.4.22 Array.prototype.reduceRight ( callbackfn [ , initialValue ] ) 

(Incorrect font and emphasis for variables in second paragraph) 

callbackfn is called with four arguments: the previousValue (or value from the previous call to callbackfn), 
the currentValue (value of the current element), the currentIndex, and the object being traversed. The first 
time the function is called, the previousValue and currentValue can be one of two values. If an initialValue 

was provided in the call to reduceRight, then previousValue will be equal to initialValue and currentValue 

will be equal to the last value in the array. If no initialValue was provided, then previousValue will be equal 
to the last value in the array and currentValue will be equal to the second-to-last value. It is a TypeError if 

the array contains no elements and initialValue is not provided. 
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15.4.5.1 [[DefineOwnProperty]] ( P, Desc, Throw ) 

(Extra period at end of step 3.k) 

k. If succeeded is false, return false.. 

 

15.5.4.12   String.prototype.search (regexp) 

(Incorrect font emphasis for variables in algorithm step 5) 

5. Search the value string from its beginning for an occurrence of the regular expression pattern rx. Let 

result be a Number indicating the offset within string where the pattern matched, or –1 if there was no 

match. The lastIndex and global properties of regexp are ignored when performing the search. 

The lastIndex property of regexp is left unchanged. 

 

 

15.7.3 Properties of the Number Constructor 

(second paragraph, last word) 

Besides the internal properties and the length property (whose value is 1), the Number constructor has 

the following propertiesproperty: 

 

15.7.4.2 Number.prototype.toString ( [ radix ] ) 

(Incorrect font emphasis for exception name in second paragraph) 

If ToInteger(radix) is not an integer between 2 and 36 inclusive throw a RangeError exception. If 
ToInteger(radix) is an integer from 2 to 36, but not 10, the result is a String representation of this Number 

value using the specified radix. Letters a-z are used for digits with values 10 through 35. The precise 

algorithm is implementation-dependent if the radix is not 10, however the algorithm should be a 
generalization of that specified in 9.8.1. 

 

15.7.4.6 Number.prototype.toExponential (fractionDigits) 

(Misspelling, “decimal” in first sentence) 

Return a String containing this Number value represented in decimal exponential notation with one digit 
before the significand's decimal point and fractionDigits digits after the significand's decimal point. If 
fractionDigits is undefined, include as many significand digits as necessary to uniquely specify the 

Number (just like in ToString except that in this case the Number is always output in exponential 
notation). Specifically, perform the following steps: 
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15.8.2 Function Properties of the Math Object 

(First NOTE paragraph) 

NOTE The behaviour of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, and sqrt, and tan 

is not precisely specified here except to require specific results for certain argument values that represent boundary 
cases of interest. For other argument values, these functions are intended to compute approximations to the results 
of familiar mathematical functions, but some latitude is allowed in the choice of approximation algorithms. The 
general intent is that an implementer should be able to use the same mathematical library for ECMAScript on a given 

hardware platform that is available to C programmers on that platform. 

 

15.9.1.12 MakeDay (year, month, date) 

(Delete extra right parenthesis in  step 7 following “mn”) 

7. Find a value t such that YearFromTime(t) == ym and MonthFromTime(t) == mn) and DateFromTime(t) 

== 1; but if this is not possible (because some argument is out of range), return NaN. 

 

15.10.2.1 Notation 

(Incorrect font, emphasis, and capitalization in fifth bullet item of second list) 

• A Matcher procedure is an internal closure that takes two arguments -- a State and a 
Continuation -- and returns a MatchResult result. A Matcher attempts to match a middle 

subpattern (specified by the closure's already-bound arguments) of the pattern against the 
input String, starting at the intermediate state given by its State argument. The Continuation 

argument should be a closure that matches the rest of the pattern. After matching the 
subpattern of a pattern to obtain a new State, the Matcher then calls Continuation on that new 

State to test if the rest of the pattern can match as well. If it can, the mMatcher returns the State 
returned by Continuation; if not, the Matcher may try different choices at its choice points, 
repeatedly calling Continuation until it either succeeds or all possibilities have been 

exhausted. 

 

15.10.2.6 Assertion 

(Incorrect capitalization in step 3 of second algorithm) 

3. If mMultiline is false, return false. 

 

 

15.10.2.15 NonemptyClassRanges 

(Incorrect font and emphasis for grammar productions in second and third paragraph) 

The production NonemptyClassRanges :: ClassAtom NonemptyClassRangesNoDash evaluates as follows: 

The production NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges evaluates as follows: 
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15.10.6.2 RegExp.prototype.exec(string) 

(Extra period at end of step 4) 

4. Let lastIndex be the result of calling the [[Get]] internal method of R with argument "lastIndex".. 

 

(Wrong font for “null” in step 9.a.ii)  

9. Repeat, while matchSucceeded is false 

a. If i < 0 or i > length, then 

i. Call the [[Put]] internal method of R with arguments "lastIndex", 0, and true. 

ii. Return null. 

 

 

15.10.6.3 RegExp.prototype.test(string) 

(Section reference in first step of algorithm) 

1. Let match be the result of evaluating the RegExp.prototype.exec (15.10.6.23) algorithm upon 

this RegExp object using string as the argument. 

 

15.11.6.5 TypeError  

(Incorrect reference to 15.7.4.8) 

Indicates the actual type of an operand is different than the expected type. See 8.6.2, 8.7.2, 8.10.5, 
8.12.5, 8.12.7, 8.12.8, 8.12.9, 9.9, 9.10, 10.2.1, 10.2.1.1.3, 10.6, 11.2.2, 11.2.3, 11.4.1, 11.8.6, 11.8.7, 
11.3.1, 13.2, 13.2.3, 15, 15.2.3.2, 15.2.3.3, 15.2.3.4, 15.2.3.5, 15.2.3.6, 15.2.3.7, 15.2.3.8, 15.2.3.9, 
15.2.3.10, 15.2.3.11, 15.2.3.12, 15.2.3.13, 15.2.3.14, 15.2.4.3, 15.3.4.2, 15.3.4.3, 15.3.4.4, 15.3.4.5, 
15.3.4.5.2, 15.3.4.5.3, 15.3.5, 15.3.5.3, 15.3.5.4, 15.4.4.3, 15.4.4.11, 15.4.4.16, 15.4.4.17, 15.4.4.18, 
15.4.4.19, 15.4.4.20, 15.4.4.21, 15.4.4.22, 15.4.5.1, 15.5.4.2, 15.5.4.3, 15.6.4.2, 15.6.4.3, 15.7.4, 
15.7.4.2, 15.7.4.4, 15.7.4.8, 15.9.5, 15.9.5.44, 15.10.4.1, 15.10.6, 15.11.4.4 and 15.12.3. 

 

A.1 Lexical Grammar 

(Missing :: in several grammar productions) 

UnicodeLetter ::  See 7.6 

any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter 
(Ll)”, “Titlecase letter (Lt)”, “Modifier letter (Lm)”, “Other letter (Lo)”, or “Letter 
number (Nl)”. 

UnicodeCombiningMark ::  See 7.6 

any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining 
spacing mark (Mc)” 

UnicodeDigit ::  See 7.6 

any character in the Unicode category “Decimal number (Nd)” 
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UnicodeConnectorPunctuation ::  See 7.6 

any character in the Unicode category “Connector punctuation (Pc)” 

 

ANNEX D 

(extra period after “:” in items for clauses 13 and 14) 

13:. In Edition 3, the algorithm for the production FunctionExpression with an Identifier adds an object 

created 

14:. In Edition 3, the algorithm for the production SourceElements : SourceElements SourceElement did not 


