
harmony:block_scoped_bindings [ES Wiki]

[[harmony:
block_scoped_bindings]]

ES
Wiki

Trace: »
const_functions »

inherited_explicit_soft_fields » classes_as_sugar » egal » block_scoped_bindings

-Table of Contents

�❍ Common Syntax

�❍ Common Semantics

■ 12.1-delta Block

■ 10.2.1-delta Environment Record

■ Table 17-delta -- Abstract

Methods of Environment Records

■ Table 18 becomes unnecessary

■ 10.2.1.1.2 (Declarative)

CreateMutableBinding(N,D)

■ 10.2.1.1.3 (Declarative)

SetMutableBinding(N,V,S)

■ 10.2.1.1.7 (Declarative)

CreateImmutableBinding(N)

■ 10.2.1.1.8 (Declarative)

InitializeBinding(N,V)

■ 10.2.1.2.2 (Object)

CreateMutableBinding(N,D)

■ 10.2.1.2.3 (Object)

SetMutableBinding(N,V,S)

■ 10.2.1.2.4 (Object)

GetBindingValue(N,S)

■ 10.2.1.2.5 (Object) DeleteBinding

(N)

■ New 10.2.1.2.7 (Object)

CreateImmutableBinding(N)

■ New 10.2.1.2.8 (Object)

InitializeBinding(N,V)

■ 10.5-delta Declaration Binding

Instantiation

The new blocked scoped binding are let, const, and block functions.

Common Syntax

let, const, and block functions declarations should all be allowed
in a Program, a FunctionBody, or a Block. However, none
should be considered statements by themselves, and so cannot
appear in unprotected statement context. For example:

 if (b) var x = 9; // legal
 if (b) let x = 9; // illegal -- must be
rejected
 if (b) { let x = 9; } // legal

To accommodate this, we adjust the following productions from
the ES5 grammar:

 Block:
 { StatementList? }
 SourceElement:
 Statement
 FunctionDeclaration

to instead be

 Block:
 { SourceElements? }
 SourceElement:
 Statement
 Declaration
 Declaration:
 LetDeclaration
 ConstDeclaration
 FunctionDeclaration

Note that a VariableStatement remains a kind of statement, and so can appear in unprotected
statement context, as in our first if example above. Since the scope of a VariableStatement is hoisted
into the containing Program or FunctionBody, the appearance of a VariableStatement in statement
context does not cause confusion about its semantics.

Confusingly, what the ES5 grammar refers to as a VariableDeclaration is neither a statement nor a

file:///C|/Users/Patrick/Documents/5.htm (1 of 7) [14.09.2010 16:53:04]

http://wiki.ecmascript.org/doku.php?id=harmony:block_scoped_bindings&do=backlink
http://wiki.ecmascript.org/doku.php?id=harmony:block_scoped_bindings&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:const_functions
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_sugar
http://wiki.ecmascript.org/doku.php?id=strawman:egal
http://wiki.ecmascript.org/doku.php?id=harmony:block_scoped_bindings
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=harmony:let
http://wiki.ecmascript.org/doku.php?id=harmony:const
http://wiki.ecmascript.org/doku.php?id=harmony:block_functions
http://wiki.ecmascript.org/doku.php?id=harmony:let
http://wiki.ecmascript.org/doku.php?id=harmony:const
http://wiki.ecmascript.org/doku.php?id=harmony:block_functions

harmony:block_scoped_bindings [ES Wiki]

declaration, but rather the name-initializer bindings that occur to the right of the var keyword. The grammar
should use VariableDeclarator or something better to distinguish this non-terminal from
FunctionDeclaration, etc.

Common Semantics

ES5/strict and ES-Harmony are lexically scoped. However, because ES5/strict does not allow a
Declaration in a Block, it need only create an Environment Record on each entry to a Program,
Function, or catch-clause. (Full ES5 also creates an Environment Record on each entry to a with-statement,
but that need not concern us here.) For ES-Harmony, we need to create a Declarative Environment Record on
each entry to a Block as well. The new semantics of block entry resembles the ES5 semantics for catch-
clause entry (12.14).

12.1-delta Block

1.

Let oldEnv be the running execution context’s LexicalEnvironment.

2.

Let blockEnv be the result of calling NewDeclarativeEnvironmentRecord passing oldEnv as the

argument.

3.

Set the running execution context’s LexicalEnvironment to blockEnv.

4.

Perform Declaration Binding Instantiation using the block code as described by our modified 10.5

below.

5.

Let B be the result of evaluating SourceElements_opt.

6.

Set the running execution context’s LexicalEnvironment to oldEnv.

7.

Return B

NOTE: No matter how control leaves the Block the LexicalEnvironment is always restored to its former
state.

10.2.1-delta Environment Record

Since ConstDeclarations may appear at in global code, we need to promote
CreateImmutableBinding(N) and InitializeImmutableBinding(N,V) to the internal
supertype, Environment Record, and provide an implementation of these methods for Object Environment
Records as well. Since let, like const, has a temporal dead zone, we need the same separation
between creating a binding vs. initializing for mutable bindings that we have for immutable bindings.

file:///C|/Users/Patrick/Documents/5.htm (2 of 7) [14.09.2010 16:53:04]

harmony:block_scoped_bindings [ES Wiki]

●

We redefine the meaning of CreateMutableBinding(N,D) to create an uninitialized mutable

binding.

●

We generalize the InitializeImmutableBinding(N,V) method to simply

InitializeBinding(N,V).

●

Within SetMutableBinding(N,V,S) we assert that the mutable binding must already have been

initialized.

●

We refactor all existing callers of CreateMutableBinding to ensure that the binding is initialized

before it can be observed; to maintain compatibility.

●

We change Object Environment Record so that uninitialized bindings are in scope without touching the

bindings object, and only become backed by the bindings object upon initialization.

Table 17-delta -- Abstract Methods of Environment Records

●

CreateMutableBinding(N,D): Create a new but uninitialized mutable binding ...

●

InitializeBinding(N,V): Initialize the value of an already existing but uninitialized

binding ...

●

SetMutableBinding(N,V,S): Set the value of an already initialized binding ...

Table 18 becomes unnecessary

10.2.1.1.2 (Declarative) CreateMutableBinding(N,D)

The concrete Environment Record method CreateMutableBinding for declarative environment records
creates a new uninitialized mutable binding for the name N. ...

3. Create an uninitialized mutable binding in envRec for N.

10.2.1.1.3 (Declarative) SetMutableBinding(N,V,S)

... If the binding is an immutable binding and S is true, then a TypeError is thrown. ...

4. Else this must be an attempt to change the value of an immutable binding, so if S is true, throw a
TypeError exception.

file:///C|/Users/Patrick/Documents/5.htm (3 of 7) [14.09.2010 16:53:04]

harmony:block_scoped_bindings [ES Wiki]

10.2.1.1.7 (Declarative) CreateImmutableBinding(N)

The concrete Environment Record method CreateImmutableBinding for declarative environment
records creates a new uninitialized immutable binding for the name N. A binding must not already
exist in this environment record for N.

10.2.1.1.8 (Declarative) InitializeBinding(N,V)

... An uninitialized binding for N must already exist. ...

2. Assert: envRec must have an uninitialized binding for N.

...

4. Record that the binding for N in envRec has been initialized.

10.2.1.2.2 (Object) CreateMutableBinding(N,D)

The concrete Environment Record method CreateMutableBinding for object environment records
creates a new uninitialized mutable binding for the name N. If Boolean argument D is provided and has
the value true the new binding is marked as being subject to configuration.

1.

Let envRec be the object environment record for which the method was invoked.

2.

Assert: envRec does not already have a binding for N.

3.

Create an uninitialized mutable binding in envRec for N.

4.

Record that the newly created binding is to be writable.

5.

If D is true record that the newly created binding is to be configurable; else non-configurable.

10.2.1.2.3 (Object) SetMutableBinding(N,V,S)

Between 1 and 2. If envRec has an uninitialized binding for N and S is true, throw a ReferenceError
exception.

10.2.1.2.4 (Object) GetBindingValue(N,S)

Between 1 and 2. If envRec has an uninitialized binding for N and S is true, throw a ReferenceError
exception.

10.2.1.2.5 (Object) DeleteBinding(N)

Between 1 and 2. If envRec has an uninitialized binding for N and S is true, throw a ReferenceError
exception.

New 10.2.1.2.7 (Object) CreateImmutableBinding(N)

file:///C|/Users/Patrick/Documents/5.htm (4 of 7) [14.09.2010 16:53:04]

harmony:block_scoped_bindings [ES Wiki]

The concrete Environment Record method CreateImmutableBinding for object environment records
creates a new uninitialized immutable binding for the name N.

1.

Let envRec be the object environment record for which the method was invoked.

2.

Assert: envRec does not already have a binding for N.

3.

Create an uninitialized immutable binding in envRec for N.

4.

Record that the newly created binding is to be non-writable and non-configurable.

New 10.2.1.2.8 (Object) InitializeBinding(N,V)

The concrete Environment Record method InitializeBinding for object environment records creates in
an environment record’s associated binding object a property whose name is N and initializes it to V. A
property named N must not already exist in the binding object. On success, it drops its own separate
record that N is uninitialized.

1.

Let envRec be the object environment record for which the method was invoked.

2.

Assert: envRec currently records N as uninitialized.

3.

Let bindings be the binding object for envRec.

4.

Assert: The result of calling the [[HasProperty]] internal method of bindings, passing N as the

property name, is false.

5.

Call the [[DefineOwnProperty]] internal method of bindings, passing

�❍

N,

�❍

Property Descriptor { [[Value]]: V, [[Writable]]: the recorded writability of N, [[Enumerable]]:

true, [[Configurable]]: the recorded configurability of N },

�❍

and true

as arguments.

file:///C|/Users/Patrick/Documents/5.htm (5 of 7) [14.09.2010 16:53:04]

harmony:block_scoped_bindings [ES Wiki]

Open question: Parity error applies to the last true argument above. If we adopt my proposed #2,
then it should instead be S.

More questions:

●

The global object may have arbitrary properties, so how can step 4 above assert that

[[HasProperty]] returns false?

●

How do let not in a block statement and var interact in global code? Are both allowed to declare

the same name? If so, does the let binding shadow the var one?

●

How do let not in a block statement and var interact in function code? Currently (ES5 and

older), var a; in function f(a) {...} restates the argument binding.

We should forbid let and var binding the same name in the same scope. Sorry if I missed that in
this strawman.

— Brendan Eich 2010/06/09 14:54

We should also forbid var-declarations that have already been “shadowed” by let-declarations, such
as:

var x = "outer";
function f() {
 {
 let x = "inner";
 {
 // after hoisting, the initializer mutates the let-binding!
 var x = "sneaky"; // this should be illegal
 }
 print(x); // prints sneaky!
 }
 return x; // prints undefined!
}

This might be implied by Brendan’s last statement, but I’m just clarifying that it’s more than just
forbidding let x; var x;.

— Dave Herman 2010/08/20 16:33

10.5-delta Declaration Binding Instantiation

After step 1. Let lexEnv be the environment record component of the running execution context’s
LexicalEnvironment.

file:///C|/Users/Patrick/Documents/5.htm (6 of 7) [14.09.2010 16:53:04]

https://mail.mozilla.org/pipermail/es5-discuss/2010-June/003559.html
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
mailto:%26%23x64%3B%26%23x68%3B%26%23x65%3B%26%23x72%3B%26%23x6d%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x63%3B%26%23x63%3B%26%23x73%3B%26%23x2e%3B%26%23x6e%3B%26%23x65%3B%26%23x75%3B%26%23x2e%3B%26%23x65%3B%26%23x64%3B%26%23x75%3B

harmony:block_scoped_bindings [ES Wiki]

Step 5-delta. Change all uses of env to lexEnv. Generalize this to apply to each Declaration in code,
rather than just each FunctionDeclaration. Rephrase to avoid Declarations in nested blocks and
catch-clauses. Refactor so that the particulars for each kind of Declaration are defined by that
Declaration.

Step 8-delta. Rephrase to make clear that this step is skipped on entry to blocks and catch-clauses, and
that the enumeration of VariableDeclarations in the remaining cases must traverse into nested
blocks and catch-clauses.

harmony/block_scoped_bindings.txt · Last modified: 2010/08/20 16:52 by dherman

file:///C|/Users/Patrick/Documents/5.htm (7 of 7) [14.09.2010 16:53:04]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

	Local Disk
	harmony:block_scoped_bindings [ES Wiki]

	LOLABPOGEOIADLFOLNHCGDHCFCLBABJB:
	form1:
	x:
	f1: edit
	f2:
	f3: harmony:block_scoped_bindings

	f4:

	form2:
	x:
	f1: revisions
	f2: harmony:block_scoped_bindings

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: harmony:block_scoped_bindings

	f4:

	form6:
	x:
	f1: revisions
	f2: harmony:block_scoped_bindings

	f3:

	form7:
	x:
	f1: login
	f2: harmony:block_scoped_bindings

	f3:

	form8:
	x:
	f1: index
	f2: harmony:block_scoped_bindings

	f3:

	form9:
	f1:

