
strawman:classes_with_trait_composition [ES Wiki]

[[strawman:
classes_with_trait_composition]]

ES
Wiki

Trace: » strawman »
completion_reform »

proxy_drop_receiver » proxy_defaulthandler » classes_with_trait_composition

-Table of Contents

● Classes with Trait Composition

�❍ Class Declarations and Expressions

■ Class Adjectives

�❍ Class and Constructor Elements

�❍ Member Declarations and Definitions

�❍ Inheritance

�❍ One Way to do Encapsulation

● Open Issues

● See

Classes with Trait Composition
This is a major revision of the earlier classes and traits strawman in order to reconcile
object_initialiser_extensions, especially obj_initialiser_class_abstraction and
instance_variables. A prototype implementation of an earlier version of this reconciled
strawman is described at Traceur Classes and Traits.

The strawman as presented on this page no longer supports general trait composition,
abstract classes, required members, or multiple inheritance, as we felt that was
premature to propose at the May 2011 meeting, and therefore premature to propose for
inclusion in the EcmaScript to follow ES5. Instead, we have extracted those elements
into trait_composition_for_classes, whose existence demonstrates that the single
inheritance shown here does straightforwardly generalize to support these extensions.

Class Declarations and Expressions

We extend the Declaration production from block scoped bindings to accept a ClassDeclaration. We extend MemberExpression
to accept a ClassExpression.

 Declaration :
 LetDeclaration
 ConstDeclaration
 FunctionDeclaration
 ClassDeclaration
 ClassDeclaration : // by analogy to FunctionDeclaration
 ClassAdjective* class Identifier Proto? { ClassBody }
 ExpressionStatement :
 [lookahead not-in { "{", "function", "class", ...ClassAdjective }] Expression ";"
 MemberExpression : ... // "..." means members defined elsewhere
 ClassExpression
 ClassExpression : // by analogy to FunctionExpression
 ClassAdjective* class Identifier? Proto? { ClassBody }
 ClassAdjective :
 const
 ClassBody : // by analogy to FunctionBody
 ClassElement*

A ClassDeclaration or ClassExpression defines a constructor function to represent that class. From here on, we refer to such a
constructor function as a class.

Like a FunctionDeclaration, a ClassDeclaration brings the class name into scope at the beginning of the immediately
containing Block-like unit (Block, FunctionBody, Program, ModuleBody, ClassBody, ConstructorBody, ...), and binds this
variable on entry to that Block-like unit. This supports mutual recursion among FunctionDeclarations and ClassDeclarations.
Like a FunctionExpression, a ClassExpression defines an anonymous class if the identifier is omitted, or, if present, binds the
class name only in the scope seen by the class being defined. Just as we may refer to FunctionDeclaration and
FunctionExpression together as a function definition, we refer to ClassDeclaration and ClassExpression together as a class
definition.

A class is a description of instances. A class may serve as a factory for directly making the instances it describes, and it may
contribute such descriptions to be inherited by other descriptions of other classes. If the optional Proto is absent, then this
constructor function’s “prototype” property is a fresh object inheriting directly from Object.prototype. Otherwise, it
is initialized according to the Inheritance section below.

file:///F|/Common/EXCHANGE/Patrick/doku.php1.htm (1 of 6) [18.05.2011 16:44:57]

http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:strawman
http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=harmony:proxy_defaulthandler
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition&rev=1299750065
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_class_abstraction
http://wiki.ecmascript.org/doku.php?id=strawman:instance_variables
http://code.google.com/p/traceur-compiler/wiki/LanguageFeatures#Classes
http://wiki.ecmascript.org/doku.php?id=strawman:trait_composition_for_classes
http://wiki.ecmascript.org/doku.php?id=harmony:block_scoped_bindings
Patrick
Text Box
Ecma/TC39/2011/026

strawman:classes_with_trait_composition [ES Wiki]

Class Adjectives

The ClassAdjectives, when present, clarify the role a given class is intended to serve. The const adjective indicates that
this class should provide high integrity. Const classes are frozen and they bring their class name into scope as a const
variable, i.e., a non-assignable variable. For a const class C, C.prototype is also frozen. The instances of a const class
are sealed by default.

Class and Constructor Elements

 ClassElement :
 PublicPrototypePropertyDefinition
 PublicClassPropertyDefinition
 Constructor // at most one
 Constructor :
 constructor (FormalParameterList?) { ConstructorBody }
 ConstructorBody : // by analogy to FunctionBody
 ConstructorElement*
 ConstructorElement : // by analogy to SourceElement
 Statement
 Declaration

On entry to a Block-like unit (Block, FunctionBody, Program, ...), the variables declared by all immediately contained
FunctionDeclarations and ClassDeclarations are first bound to their respective functions and classes, and then all ClassBodies
are executed in textual order. The body of a class defines and initializes class-wide properties once per evaluation of a class
definition – properties both on the class itself and on the value of its “prototype” property. These initializations happen in
textual order.

A ClassBody also declares the members it contributes to the layout of its instances – both the instance’s public properties and
(see below) its class-private instance variables. And a ClassBody contains at most one Constructor, whose body is the code to
run to help initialize instances of this class – both the local members and the constructor chaining to the contributing
superclass. This constructor code is also the behavior of the class’ internal [[Call]] and [[Construct]] methods.

The body of a Constructor consists of ConstructorElements. These are like the interleaved Declarations and Statements that
appear in blocks elsewhere in the language, but with the following differences:

●

We have yet to decide what the semantics are of a ReturnStatement within a ConstructorBody.

●

ProtoChaining (defined below) may occur anywhere directly within a ConstructorBody, i.e., excluding nested function or

class definitions.

Member Declarations and Definitions

 PublicPrototypePropertyDefinition :
 ExportableDefinition
 PublicClassPropertyDefinition :
 static ExportableDefinition

 ExportableDefinition :
 Declaration
 Identifier = Expression ; // provided data
 Identifier (FormalParameterList?) { FunctionBody } // provided method
 get Identifier () { FuntionBody } // data provided as accessor
 set Identifier (FormalParameter) { FunctionBody }
 MemberAdjective ExportableDefinition

file:///F|/Common/EXCHANGE/Patrick/doku.php1.htm (2 of 6) [18.05.2011 16:44:57]

http://wiki.ecmascript.org/doku.php?id=harmony:const

strawman:classes_with_trait_composition [ES Wiki]

 MemberAdjective :
 // attribute control
 IdentifierList :
 Identifier
 IdentifierList , Identifier

By default, data members define enumerable properties while method members define non-enumerable properties. Members
of non-const classes default to writable and configurable. MemberAdjectives, if present, override the default attributes of the
property being defined.

Inheritance

 Proto :
 extends MemberExpression
 prototype MemberExpression

 CallExpression : ...
 ProtoChaining
 ProtoChaining :
 super Arguments;

 MemberExpression : ... // "..." means members defined elsewhere
 super . IdentifierName

When inheriting with extends, the MemberExpression is expected to evaluate to a function with a “prototype” property.
We call that function the superclass. The value of this class’ “prototype” property inherits from the value of the
superclass’ “prototype” property. When inheriting with prototype, the value of MemberExpression is used directly as
the object for this class’ “prototype” to inherit from.

ProtoChaining may only appear in classes inheriting using extends. It may appear anywhere within a constructor body
excluding nested functions and classes, enabling the superclass to contribute its part towards initialization of this instance.
The ProtoChaining expression “super(x, y);” calls the superclass’ [[Call]] method with thisArg bound to this constructor’s
this and the arguments x and y. In other words, “super(x, y);” acts like “Superclass.call(this, x, y);“, as
if using the original binding of Function.prototype.call.

This semantics of constructor chaining precludes defining classes that inherit from various distinguished built-in constructors,
such as Date, Array, RegExp, Function, Error, etc, whose [[Construct]] ignores the normal object passed in as the this-
binding and instead creates a fresh specialized object. Similar problems occur for DOM constructors such as HTMLElement.
This strawman can be extended to handle such cases, but probably at the cost of making classes something more than
syntactic sugar for functions. We leave that to other strawmen to explore.

Within the class C, the expression “super.foo” evaluates to a Reference with base this and referenced name “foo”, but
whose [[GetValue]] will look up C.prototype.[[Prototype]].foo. Operationally, this means only that super.foo
(x, y) acts like C.prototype.[[Prototype]].foo.call(this, x, y), as if using the original binding of
Function.prototype.call. The super.foo expression may not be used as a LeftHandSideExpression.

One Way to do Encapsulation

A requirement of the classes proposal is that there be some way to express encapsulated per-object state that meets the
following requirements:

●

Notational convenience and naturalness for declaring and accessing private instance state from within methods of the

class.

●

Strong encapsulation able to support defensiveness and security.

file:///F|/Common/EXCHANGE/Patrick/doku.php1.htm (3 of 6) [18.05.2011 16:44:57]

strawman:classes_with_trait_composition [ES Wiki]

●

Hiding implementation detail for normal software engineering encapsulation concerns.

●

Expected efficient implementation, where the per-instance state is allocated with the instance as part of one allocation,

and with no undue burden on the garbage collector.

●

Ability to have private mutable state on publicly frozen objects.

The following is an extension of the above classes proposal that directly provides such encapsulation. Alternatively, if
something like private_names or unique_string_values gets accepted, such that a pattern composing private names with
classes satisfies the above requirements, then there is no need for the following extension to the classes proposal itself.

This encapsulation proposal involves declaring the class-private instance variables within the ClassBody but initializing them
in the ConstructorBody. Although not a requirement, stylistically, once we introduce the notation needed to state the private
members of the instances declaratively, it seems right to reuse it to state the public properties of the instances declaratively.
Such declarations are the natural place to put the doc-comments that js-doc-like tools should be expected to recognize. We
are not proposing any built-in consistency check between these declarations and the initialization in the constructor, but
linters or other static analysis tools may well perform such checks. If guards are added to JavaScript, then these declarative
lists are also the right place to use guards to constrain the possible values of the members.

 ClassElement : ...
 PublicInstancePropertyDeclaration
 PrivateInstanceVariableDeclaration
 PublicInstancePropertyDeclaration :
 public ForwardDeclaration
 PrivateInstanceVariableDeclaration :
 private ForwardDeclaration

 ForwardDeclaration : ...
 IdentifierList ; // data members
 Identifier (FormalParameterList?) ; // method member
 MemberAdjective ForwardDeclaration

 // can appear in any Expression context within a class definition
 CallExpression : ... // "..." means members defined elsewhere
 private (AssignmentExpression)

The “private (AssignmentExpression)” expression can appear anywhere within a class where an expression can
appear. The closest enclosing class is the containing class. This expression evaluates the AssignmentExpression. If it
evaluates to an instance of the containing class, including an instance of a class that inherits from the containing class, then
the expression evaluates to a record of all the class-private instance variables associated with this instance by the containing
class. Otherwise, the expression evaluates to undefined.

Alternatively, adopting the syntactic conventions of instance_variables, a less verbose syntax for private variable access
might be:

 MemberExpression : ...
 MemberExpression @ Identifier
 UnaryExpression : ...
 @ Identifier

where “expr@foo” means what “private(expr).foo” would have meant, and “@foo” means “this@foo” which
means what “private(this).foo” would have meant.

file:///F|/Common/EXCHANGE/Patrick/doku.php1.htm (4 of 6) [18.05.2011 16:44:57]

http://wiki.ecmascript.org/doku.php?id=strawman:private_names
http://wiki.ecmascript.org/doku.php?id=strawman:unique_string_values
http://wiki.ecmascript.org/doku.php?id=strawman:guards
http://wiki.ecmascript.org/doku.php?id=strawman:instance_variables

strawman:classes_with_trait_composition [ES Wiki]

Open Issues

●

this is pronoun mystery-meat. At the front of a ClassElement it does not obviously connote “public per-instance state”. Also

it will be repeated a lot.

�❍

What about per-instance properties that have no good initial value other than the one passed into the constructor?

�❍

How does this interact with the constructor writing to the same properties?

�❍

Suggest a braced form for per-instance state, if it’s really necessary to declare: public { ... }, private

{ ... }.

�❍

Alternative: C++ constructor-head syntax.

●

new is misnamed as it preempts a method named “new” (legal since ES5) declared using the same

PublicPrototypePropertyDefinition syntax.

�❍

Meanwhile, constructor is missing as a prototype property so it must be assigned the value of the new member by

magic, to conform to ES1-5.

�❍

“Explicit is Better Than Implicit” favors naming C.prototype.constructor in class C {...} with exactly one

PublicPrototypePropertyDefinition whose name is constructor, not new.

�❍

So, why not name the constructor constructor instead of new?

�❍

If too long, use a non-IdentifierName sigil or punctuator (or not, but don’t preempt new).

●

Whether extends means prototypal delegation or traits composition depends on the dynamic type of the MemberExpression

to its right. Trouble with a capital T.

�❍

We should question the union-of-two-specs super-spec assembly that seems to be happening here.

●

Some higher-level thoughts.

— Brendan Eich 2011/05/16 04:52

See

file:///F|/Common/EXCHANGE/Patrick/doku.php1.htm (5 of 6) [18.05.2011 16:44:57]

https://mail.mozilla.org/pipermail/es-discuss/2011-May/014221.html
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B

strawman:classes_with_trait_composition [ES Wiki]

object_initialiser_extensions, especially obj_initialiser_class_abstraction and instance_variables

Traceur Classes and Traits

Encapsulation and Inheritance in Object-Oriented Programming Languages – classic 1986 paper by Alan Snyder

classes as sugar

Classes as Sugar thread which starts with pointers to earlier threads.

classes as inheritance sugar (not yet ready)

trait_composition_for_classes

strawman/classes_with_trait_composition.txt · Last modified: 2011/05/18 02:08 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php1.htm (6 of 6) [18.05.2011 16:44:57]

http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_class_abstraction
http://wiki.ecmascript.org/doku.php?id=strawman:instance_variables
http://code.google.com/p/traceur-compiler/wiki/LanguageFeatures#Classes
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.1949
http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_sugar
https://mail.mozilla.org/pipermail/es-discuss/2009-March/009115.html
http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_inheritance_sugar
http://wiki.ecmascript.org/doku.php?id=strawman:trait_composition_for_classes
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:traits_semantics [ES Wiki]

[[strawman:
traits_semantics]]

ES
Wiki

Trace: » completion_reform »
proxy_drop_receiver » proxy_defaulthandler

» classes_with_trait_composition » traits_semantics

-Table of Contents

�❍ Trait Semantics

■ TraitLiteral

■ TCompose

■ TOverride

■ TResolve

■ TCreate

Trait Semantics

This page describes the semantics of trait composition for the syntax for efficient traits
strawman.

A trait is a “property descriptor map”, represented as a set of properties. Only a property
descriptor map object’s own properties are treated as members of this set. The prototype of
the property descriptor map is ignored. Properties are represented as name:pd tuples
where name is the property name (a string) and pd is a property descriptor object (this corresponds to the
“Property Identifier” type in ES-262 5th ed, section 8.10). Property descriptors are either plain ES5 data or accessor
property descriptors, or one of the following traits-specific property descriptors: a “required” property (identifying
an “abstract” property that should be present in the final trait), a “conflicting” property (identifying a name conflict
during composition) or a “method” property, which identifies a data property whose function value should be treated as
a “method” (with bound-this semantics).

PDMap ::= { PropertyIdentifier* }
PropertyIdentifier ::= String:PropDesc
PropDesc ::= { value: v, writable: b }
 | { get: fg, set: fs }
 | { required: true }
 | { conflict: true }
 | { value: f, writable: false, method: true }

The functions below are specified using a Haskell-like syntax. Property descriptor maps are represented using the
syntax { n1:p1, ..., nk:pk }. These property descriptor maps are treated as sets, so the ordering of the
properties n1:p1 up to nk:pk is irrelevant. Property descriptors on this page are assumed to have default
attributes enumerable:true and configurable:true.

Metasyntactic variables used: v for any value, b for booleans, f for functions, fg for getter functions, fs for setter
functions, n for property names, p for property descriptors, pdm for property descriptor maps.

TraitLiteral

The function TraitLiteral describes how a TraitPartList consisting of a series of property declarations is
converted into a property descriptor map.

TraitLiteral :: TraitPartList -> PDMap
TraitLiteral [] = {}
TraitLiteral (part:parts) =
 add_prop (TraitLiteral parts) (to_property part)

to_property :: TraitPart -> PropertyIdentifier
to_property 'n : expr' = n:{ value: expr, writable: true }
to_property 'get n() { body }' = n:{ get: const() { body }, set: undefined }
to_property 'set n(arg) { body }' = n:{ get: undefined, set: const(arg) { body } }
to_property 'method n(args) { body }' = n:{ value: const(args) { body }, writable:
false, method: true }
to_property 'require n' = n:{ required: true }

Notes:

●

file:///F|/Common/EXCHANGE/Patrick/doku.php2.htm (1 of 4) [18.05.2011 16:45:33]

http://wiki.ecmascript.org/doku.php?id=strawman:traits_semantics&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:traits_semantics&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=harmony:proxy_defaulthandler
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
http://wiki.ecmascript.org/doku.php?id=strawman:traits_semantics
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=strawman:syntax_for_efficient_traits

strawman:traits_semantics [ES Wiki]

we implicitly assume that all created property descriptors have additional attributes { enumerable: true,

configurable: true }.

●

See below for the definition of add_prop.

TCompose

TCompose takes an arbitrary number of property descriptor maps and returns a property descriptor map that combines
all own properties of its arguments. Name clashes lead to the generation of special conflict properties in the
resulting trait. TCompose is commutative: its result is independent of the ordering of its arguments.

TCompose :: [PDMap] -> PDMap
TCompose [] = {}
TCompose (pdm:pdms) =
 compose_pdmap pdm (TCompose pdms)

compose_pdmap :: PDMap -> PDMap -> PDMap
compose_pdmap pdm { } = pdm
compose_pdmap pdm { n1:p1, … , nk:pk } =
 compose_pdmap (add_prop pdm n1:p1) { n2:p2, …, nk:pk }

add_prop :: PDMap -> PropertyIdentifier -> PDMap
add_prop { n1:p1, …, nk:pk } ni:pi =
 { n1:p1, …, nk:pk, ni:pi } if not member ni { n1, …, nk }
add_prop { n1:p1, … , n:pi1, … nk:pk } n:pi2 =
 { n1:p1, …, n:(compose_pd pi1 pi2), … , nk:pk }

compose_pd :: PropDesc -> PropDesc -> PropDesc
compose_pd { value: v1, writable: bw1, method: b1 } { value: v2, writable bw2, method:
b2 } =
 { value: v1, writable: bw1, method: b1 } if (identical v1 v2) and bw1 === bw2 and b1
=== b2
compose_pd { value: v1, writable: bw1, method: b1 } { value: v2, writable bw2, method:
b2 } =
 { conflict: true } if not (identical v1 v2) or bw1 !== bw2 or b1 !== b2
compose_pd { get: fg1, set: fs1 } { get: fg2, set: fs2 } = { get: fg1, set: fs1 } if
(identical fg1 fg2) and (identical fs1 fs2)
compose_pd { get: fg1, set: fs1 } { get: fg2, set: fs2 } = { conflict: true } if not
(identical fg1 fg2) or not (identical fs1 fs2)
compose_pd { get: fg, set: undefined } { get: undefined, set: fs } = { get: fg, set: fs }
compose_pd { get: undefined, set: fs } { get: fg, set: undefined } = { get: fg, set: fs }
compose_pd { value: v, writable: bw, method: b } { get: fg, set: fs } = { conflict:
true }
compose_pd { get: fg, set: fs } { value: v, writable: bw, method: b } = { conflict:
true }
compose_pd { required: true } p = p
compose_pd p { required: true } = p
compose_pd { conflict: true } p = { conflict: true }
compose_pd p { conflict: true } = { conflict: true }

Notes:

●

{ value: v, writable: b, method: false } is considered equivalent to the plain data property descriptor

{ value: v, writable: b }.

●

We implicitly assume that the enumerable and configurable attributes of the above property descriptors are equal.

file:///F|/Common/EXCHANGE/Patrick/doku.php2.htm (2 of 4) [18.05.2011 16:45:33]

strawman:traits_semantics [ES Wiki]

This is the case for property descriptors created using TraitLiteral. If these attributes are not equal for a pair of

property descriptors, they are treated as non-equal and would generate { conflict: true } if composed.

●

identical(a,b) has the semantics of egal.

TOverride

TOverride takes an arbitrary number of property descriptor maps and combines them into a single property
descriptor map. It automatically resolves name clashes by having the left-hand trait’s property value take precedence
over the right-hand trait’s property value. Hence, TOverride is not commutative: the ordering of arguments is
significant and precedence is from left to right.

TOverride :: [PDMap] -> PDMap
TOverride [] = {}
TOverride (pdm:pdms) =
 override_pdmap pdm (TOverride pdms)

override_pdmap :: PDMap -> PDMap -> PDMap
override_pdmap pdm {} = pdm
override_pdmap pdm { n1:p1, … , nk:pk } =
 override_pdmap (override_prop pdm n1:p1) { n2:p2, …, nk:pk }

override_prop :: PDMap -> PropertyIdentifier -> PDMap
override_prop { n1:p1, …, nk:pk } ni:pi = { n1:p1, …, nk:pk, ni:pi } if not member ni
{ n1, …, nk }
override_prop { n1:p1, … , n:pi1, … nk:pk } n:pi2 = { n1:p1, …, n:pi1, … , nk:pk }

TResolve

TResolve renames and excludes property names of a single argument property descriptor map.

Let Renames be a map from String to String and Exclusions be a set of Strings:

Renames ::= [String -> String]
Exclusions ::= [String]

TResolve :: Renames -> Exclusions -> PDMap -> PDMap
TResolve r e pdm =
 rename r (exclude e pdm)

exclude :: Exclusions -> PDMap -> PDMap
exclude e {} = {}
exclude e { n1:p1, …, nk:pk } =
 add_prop (exclude e { n2:p2, …, nk:pk }) n1:{ required: true } if member n1 e
exclude e { n1:p1, … , nk:pk } =
 add_prop (exclude e { n2:p2, …, nk:pk }) n1:p1 if not member n1 e

rename :: Renames -> PDMap -> PDMap
rename map {} = {}
rename map { n1:p1, …, nk:pk } =
 add_prop (rename map { n2:p2, …, nk:pk }) m:p1 if member (n1 -> m) map
rename map { n1:p1, …, nk:pk } =
 add_prop (rename map { n2:p2, …, nk:pk }) n1:p1 if not member (n1 -> m) map

TCreate

TCreate takes a prototype object and a property descriptor map and returns an “instance” of the property descriptor

file:///F|/Common/EXCHANGE/Patrick/doku.php2.htm (3 of 4) [18.05.2011 16:45:33]

http://wiki.ecmascript.org/doku.php?id=harmony:egal

strawman:traits_semantics [ES Wiki]

map. TCreate validates the property descriptor map to see if it contains unsatisfied required arguments and
unresolved conflict properties. If so, it fails. TCreate also binds and freezes all properties marked as methods.

TCreate :: Object -> PDMap -> Object
TCreate proto pdm =
 do {
 -- pardon the awkward mixture of Haskell and Javascript syntax
 obj <- Object.create(proto);
 Object.defineProperties(obj, validate obj pdm);
 return Object.freeze(obj);
 }

validate :: Object -> PDMap -> PDMap
validate obj {} = {}
validate obj { n1:p1, …, nk:pk } =
 add_prop (validate obj { n2:p2, …, nk:pk }) n1:(validate_prop obj n1:p1)

validate_prop :: Object -> PropertyIdentifier -> PropDesc
validate_prop self n:{ value: v, writable: b, method: false } = { value: v, writable: b }
validate_prop self n:{ value: v, writable: b, method: true } = { value: freezeAndBind(v,
self), writable: b }
validate_prop self n:{ get: fg, set: fs } = { get: freezeAndBind(fg,self), set:
freezeAndBind(fs,self) }
validate_prop self n:{ required: true } = <error: required property: n> if not (n in
self)
validate_prop self n:{ required: true } = {} if (n in self)
validate_prop self n:{ conflict: true } = <error: conficting property: n>

freezeAndBind :: Function -> Object -> Function
freezeAndBind fun obj =
 Object.freeze(Function.prototype.bind.call(fun, obj))

strawman/traits_semantics.txt · Last modified: 2010/12/05 04:44 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php2.htm (4 of 4) [18.05.2011 16:45:33]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:inherited_explicit_soft_fields [ES Wiki]

[[strawman:
inherited_explicit_soft_fields]]

ES
Wiki

Trace: »
proxy_drop_receiver

» proxy_defaulthandler » classes_with_trait_composition » traits_semantics » inherited_explicit_soft_fields

-Table of Contents

● Explicit Inherited Soft Fields

�❍ A transposed representation

�❍ Should we tolerate primitive keys?

�❍ Can we subsume Private Names?

● See

Explicit Inherited Soft Fields
The following derived abstraction combines the explicitness of explicit soft
own fields with the visibility across inheritance chains of inherited soft fields.
Below is an executable specification as a wrapper around weak maps. This
strawman page suggests standardizing this derived abstraction because a
primitive implementation is likely to be more efficient that the code below.

As with our previous “EphemeronTable“, the name “SoftField” is only a placeholder until someone suggests
an acceptable name.

 const SoftField() {
 const weakMap = WeakMap();
 const mascot = {}; // fresh and encapsulated, thus differs from any possible
provided value.
 return Object.freeze({
 get: const(base) {
 while (base !== null) {
 const result = weakMap.get(base);
 if (result !== undefined) {
 return result === mascot ? undefined : result;
 }
 base = Object.getPrototypeOf(base);
 }
 return undefined;
 },
 set: const(key, val) {
 weakMap.set(key, val === undefined ? mascot : val);
 },
 has: const(key) {
 return weakMap.get(key) !== undefined;
 },
 delete: const(key) {
 weakMap.set(key, undefined);
 }
 });
 }

A transposed representation

The following is an alternative explanation that implements the same semantics but more closely reflects
expected implementation. This is no longer quite an executable specification in that it builds on a new internal
property, here spelled SoftFields___. The safety of the following spec depends on the SoftFields___
property not being used by any other spec beyond the following.

file:///F|/Common/EXCHANGE/Patrick/doku.php3.htm (1 of 4) [18.05.2011 16:45:27]

http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=harmony:proxy_defaulthandler
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
http://wiki.ecmascript.org/doku.php?id=strawman:traits_semantics
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps#explicit_soft_own_fields
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps#explicit_soft_own_fields
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps#inherited_soft_fields
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps

strawman:inherited_explicit_soft_fields [ES Wiki]

 const init___(obj) {
 if (obj !== Object(obj)) { throw new TypeError(...) }
 if (!obj.SoftFields___) {
 obj.SoftFields___ = WeakMap();
 }
 }

 const SoftField() {
 const mascot = {};
 const get(base) {
 init___(base)
 while (base !== null) {
 const result = base.SoftFields___.get(get);
 if (result !== undefined) {
 return result === mascot ? undefined : result;
 }
 base = Object.getPrototypeOf(base);
 }
 return undefined;
 }
 return Object.freeze({
 get: get,
 set: const(key, val) {
 init___(key);
 key.SoftFields___.set(get, val === undefined ? mascot : val);
 },
 has: const(key) {
 init___(key);
 return key.SoftFields___.get(get) !== undefined;
 },
 delete: const(key) {
 init___(key)
 key.SoftFields___.set(get, undefined);
 }
 });
 }

The overall logic is very similar, except that the underlying weak maps are now stored on the SoftField’s key
objects, while each SoftField itself only holds on to the fixed state of the key used to look up values in those weak
maps. Even though the above algorithm still manually encodes walking the prototype chain, because this walk is
now consulting a map stored within each object, two transparent performance benefits may follow:

●

The optimizations already in place for normal property lookup may be more readily adapted to soft field

lookup.

●

The conventional portion of a GC algorithm that does not take account of weak maps will nevertheless collect

that soft state that is only reachable from non-reachable objects, even in the presence of cycles between that

soft state and those objects. For soft fields, the weak map portion of a GC algorithm is only needed to collect

file:///F|/Common/EXCHANGE/Patrick/doku.php3.htm (2 of 4) [18.05.2011 16:45:27]

strawman:inherited_explicit_soft_fields [ES Wiki]

those soft fields that can no longer be “named” but are still present on objects that are reachable.

This representation parallels the implementation techniques and resulting performance benefits expected for
private names but without the semantic problems (leaking via proxy traps and inability to associate soft state
with frozen objects).

Regarding the GC point, when soft fields are used in patterns such as class-private instance variables, a soft field
adds soft state to a set of objects, each of whom also points at that soft field itself. In that case, the soft field has
a lifetime at least as long as any of the objects it indexes. Thus, the conventional portion of GC algorithms is
adequate to pick up all the resulting collectable soft state.

Should we tolerate primitive keys?

Since soft fields – unlike weak maps – look up the key’s inheritance chain until it find a match, it makes sense to
allow primitive data types (numbers, strings, and booleans, but still not null or undefined) to serve as keys. When
used as a key, the operations above would first convert it to an object using the internal [[ToObject]] function.
(Unlike Object, [[ToObject]] on a null or undefined throws a TypeError.) For strings, numbers, and booleans,
this results in a fresh wrapper, which therefore has no soft own state. Lookup would therefore always proceed to
the respective prototypes, so that, e.g., a primitive string would seem to inherit soft state from String.
prototype, much as it currently seems to inherit properties from String.prototype.

Can we subsume Private Names?

Two use cases shown at private names that simple soft fields cannot provide are a certain form of polymorphism
between names and strings, and so-called “weak encapsulation“. (MarkM here suspends value judgements about
whether we should seek to support so-called “weak encapsulation”, and addresses here only how to do so, were
we to agree on its desirability.) If value proxies are accepted for Harmony, then Soft fields can grow to support
both these use cases without further expansion of kernel semantics, by defining a soft field as equivalent to a
value proxy that overloads [], to whit:

 const softFieldOpHandler = Object.freeze({
 // overload larg[proxy]
 rgeti: const(larg) { return this.get(larg); },
 // overload larg[proxy] = val;
 rseti: const(larg, val) { this.set(larg, val); }
 });
 // Move the SoftField code into softFieldProto
 const softFieldProto = Object.freeze({
 get: ..., //as above, but with "this.weakMap" instead of "weakMap"
 set: ..., //as above
 has: ..., //as above
 delete: ... //as above
 });
 const softFieldValueType = Proxy.createValueType(
 softFieldOpHandler, softFieldProto,
 "string", // bad idea, but suspending judgement
 { weakMap: object });
 const SoftFieldValue() {
 return Proxy.createValue(softFieldValueType, new WeakMap());
 }
 const softFieldValue = SoftFieldValue();

(Detail: The above code doesn’t quite work as is, because there’s no where safe to put the mascot. By delegating

file:///F|/Common/EXCHANGE/Patrick/doku.php3.htm (3 of 4) [18.05.2011 16:45:27]

http://wiki.ecmascript.org/doku.php?id=strawman:private_names
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition#adding_class-private_instance_variables
http://wiki.ecmascript.org/doku.php?id=strawman:private_names
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#accessing_private_names_as_values
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#accessing_private_names_as_values
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#private_name_properties_support_only_weak_encapsulation
http://wiki.ecmascript.org/doku.php?id=strawman:value_proxies

strawman:inherited_explicit_soft_fields [ES Wiki]

to an encapsulated explicit soft own fields instead of a WeakMap, we can encapsulate the mascot in this extra
layer. This is a detail because it effects only the apparent cost of this executable specification, not the actual cost
of an implementation.)

A “weakly encapsulating” soft field, or wesf, can then be coded as:

 // Move the SoftField code into softFieldProto
 const wesfProto = Object.freeze({
 toString: const() { return improbableName; },
 get: const(key) { return key[improbableName] },
 set: const(key, val) { key[improbableName] = val; },
 has: const(key) { return improbableName in key; },
 delete: const(key) { return delete key[improbableName]; }
 });
 const wesfValueType = Proxy.createValueType(
 softFieldOpHandler, wesfProto,
 "string", // bad idea, but suspending judgement
 { improbableName: string });
 const WesfValue(opt_name) {
 const name = String(opt_name) || Math.random() + '___';
 return Proxy.createValue(wesfValueType, name);
 }
 const wesfValue = WesfValue();

Then polymorphic code such as

 function foo(n) {
 return base[n];
 }

can be called with a softFieldValue, a wesfValue, or a string, where each provides the degree of encapsulation
and collision avoidance it claims. This supports the ability to modularly refactor code between encapsulating,
“weakly” encapsulating, and obviously non-encapsulating fields.

See
The thread beginning at WeakMap API questions?

Older GC discussion now obsolete but still potentially interesting.

strawman/inherited_explicit_soft_fields.txt · Last modified: 2011/03/03 20:25 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php3.htm (4 of 4) [18.05.2011 16:45:27]

http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps#explicit_soft_own_fields
https://mail.mozilla.org/pipermail/es-discuss/2010-August/011654.html
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields&rev=1290377489#a_less_aggressive_gc_contract
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:names_vs_soft_fields [ES Wiki]

[[strawman:
names_vs_soft_fields]]

ES
Wiki

Trace: » proxy_defaulthandler »
classes_with_trait_composition

» traits_semantics » inherited_explicit_soft_fields » names_vs_soft_fields

-Table of Contents

● Overview

● The private declaration

● Using Private Identifiers

● Private Identifiers in Object Literals

● Private Declaration Scoping

● Private Declarations Expand to Unique

Hidden Variable Names

● Accessing Private Identifiers as Soft

Field Values

● Conflict-Free Object Extension Using

Soft Fields

■ Crucial difference

● Enumeration and Reflection

● Soft Fields Support Encapsulation

● Interactions with other Harmony

Proposals

■ Enhanced Object Literals

■ Proxies

■ Modules

● References

Overview
To better understand the differences between soft fields and private names, this
page goes through all the examples from the latter (as of this writing) and explores
how they’d look as translated to use soft fields instead. This translation does not
imply endorsement of all elements of the names proposal as translated to soft fields,
such as the proposed syntactic extensions. However, these translations do establish
that these syntactic choices are orthogonal to the semantic controversy and so can
be argued about separately.

Identifiers ending with triple underbar below signify unique identifiers generated by
expansion that are known not to conflict with any identifiers that appear elsewhere.

The private declaration
Adapted from the private declaration

private secret; //create a new soft field that is bound
to the private identifier ''secret''.
private _x,_y; //create two soft fields bound to two
private identifiers
... foo.secret ...
foo.secret = val;
const obj = {secret: val, ...};
#.secret

expands to

const secret___ = SoftField();
const _x___ = SoftField(), _y___ = SoftField();
... secret___.get(foo) ...
secret___.set(foo, val);
const obj = {...}; secret___.set(obj, val);
secret___

Using Private Identifiers
Adapted from using private identifiers

function makeObj() {
 private secret;
 var obj = {};
 obj.secret = 42; //obj has a soft field
 print(obj.secret);//42 -- accesses the soft field's value
 print(obj["secret"]); //undefined -- a soft field is not a property

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (1 of 11) [18.05.2011 16:45:40]

http://wiki.ecmascript.org/doku.php?id=strawman:names_vs_soft_fields&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:names_vs_soft_fields&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=harmony:proxy_defaulthandler
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
http://wiki.ecmascript.org/doku.php?id=strawman:traits_semantics
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:names_vs_soft_fields
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:private_names
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#the_private_declaration
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#using_private_identifiers

strawman:names_vs_soft_fields [ES Wiki]

 return obj;
}
var obj=makeObj();
print(obj["secret"]); //undefined -- a soft field is still not a property
print(obj.secret); //undefined -- this statement is not in the scope of the private
declaration so the
 //string value "secret" is used to look up the property. It is
not a soft field.

This technique can be used to define “instance-private” properties:

function Thing() {
 private key; // each invocation will use a new soft field
 this.key = "instance private value";
 this.hasKey = function(x) {
 return x.key === this.key; //x.key should be undefined if x!==this
 };
 this.getThingKey = function(x) {
 return x.key;
 };
}

Instance-private instance state is better done by lexical capture

function Thing() {
 const key = "instance private value";
 this.hasKey = function(x) {
 return x === this;
 };
 this.getThingKey = function(x) {
 if (x === this) { return key; }
 };
}

Either technique produces the same external effect:

var thing1 = new Thing;
var thing2 = new Thing;

print("key" in thing1); // false
print(thing2.key); //undefined
print(thing1.hasKey(thing1)); // true
print(thing1.hasKey(thing2)); // false

By changing the scope of the private declaration a similar technique can be used to define “class-private” properties:

private key; //the a soft field shared by all instances of Thing.
function Thing() {
 this.key = "class private value";
 this.hasKey = function(x) {
 return x.key === this.key;

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (2 of 11) [18.05.2011 16:45:40]

strawman:names_vs_soft_fields [ES Wiki]

 };
 this.getThingKey = function(x) {
 return x.key;
 };
}

var thing1 = new Thing;
var thing2 = new Thing;

print("key" in thing1); // false
print(thing1.hasKey(thing1)); // true
print(thing1.hasKey(thing2)); // true

Private Identifiers in Object Literals
Adapted from private identifiers in object literals

function makeObj() {
 private secret;
 var obj = {secret: 42};
 print(obj.secret);//42 -- access the soft field's value
 print(obj["secret"]); //undefined -- a soft field is not a property
 return obj;
}

function Thing() {
 private key;
 return {
 key : "instance private value",
 hasKey : function(x) {
 return x.key === this.key; //x.key should be undefined if x!==this
 },
 getThingKey : function(x) {
 return x.key;
 }
 };
}

or, preserving the same external behavior:

function Thing() {
 const key = "instance private value";
 return {
 hasKey : function(x) {
 return x === this;
 },
 getThingKey : function(x) {
 if (x === this) { return key; }
 }
 };
}

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (3 of 11) [18.05.2011 16:45:40]

http://wiki.ecmascript.org/doku.php?id=strawman:private_names#private_identifiers_in_object_literals

strawman:names_vs_soft_fields [ES Wiki]

private key;
function Thing() {
 return {
 key : "class private value",
 hasKey : function(x) {
 return x.key === this.key; //x.key should be undefined if x!==this
 },
 getThingKey : function(x) {
 return x.key;
 }
 };
}

Private Declaration Scoping
Adapted from private declaration scoping

function outer(obj) {
 private name;
 function inner(obj) {
 private name;
 obj.name = "inner name";
 print(obj.name); //"inner name" because outer name declaration is shadowed
 }
 obj.name = "outer name";
 inner(obj)
 print(obj.name); //"outer name"
}
var obj = {};
obj.name = "public name";
outer(obj);
print(obj.name); //"public name"

After executing the above code, the object that was created will have one property and two associated soft fields:

Property or Fields Value

“name” “public name”

private nameouter “outer name”

private nameinner “inner name”

Private Declarations Expand to Unique Hidden Variable Names
Adapted from private declarations exist in a parallel environment

Consider the following very common idiom used in a constructor declaration:

function Point(x,y) {
 this.x = x;
 this.y = y;
 //... methods that use x and y properties
}
var pt = new Point(1,2);

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (4 of 11) [18.05.2011 16:45:40]

http://wiki.ecmascript.org/doku.php?id=strawman:private_names#private_declaration_scoping
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#private_declarations_exist_in_a_parallel_environment

strawman:names_vs_soft_fields [ES Wiki]

function Point(x,y) {
 private x, y;
 this.x = x;
 this.y = y;
 //... methods that use private x and y properties
}
var pt = new Point(1,2);

function Point(x,y) {
 const x___ = SoftField(), y___ = SoftField();
 x___.set(this, x);
 y___.set(this, y);
 //... methods that use private x and y properties
}
var pt = new Point(1,2);

Accessing Private Identifiers as Soft Field Values
Adapted from accessing private names as values

The private declaration normally both creates a new soft field and introduces a identifier binding that can be used only in
“property name” syntactic contexts to access the new soft field by the lexically bound identifier.

However, in some circumstances it is necessary to access the actual soft field as an expression value, not as an apparent
property name on the right of . or the left of : in an object initialiser. This requires a special form than can be used in an
expression to access the soft field binding of a private identifier. The syntactic form is #. IdentifierName. This may be used
as a PrimaryExpression and yields the soft field of the IdentifierName. This may be either a soft field or a string value,
depending upon whether the expression is within the scope of a private declaration for that IdentifierName;

function addPrivateProperty(obj, init) {
 private pname; //create a new soft field
 obj.pname = init; //set this soft field
 return #.pname; //return the soft field
}

function addPrivateProperty(obj, init) {
 const pname___ = SoftField();
 pname___.set(obj, init);
 return pname___;
}

var myObj = {};
var answerKey = addPrivateProperty(myObj, 42);
print(answerKey.get(myObj)); // AFAICT, this is the *only* claimed advantage of Names
over SoftFields.
//myObj can now be made globally available but answerKey can be selectively passed to
privileged code

Note that simply assigning a soft field to a variable does not make that variable a private identifier. For example, in the above

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (5 of 11) [18.05.2011 16:45:40]

http://wiki.ecmascript.org/doku.php?id=strawman:private_names#accessing_private_names_as_values

strawman:names_vs_soft_fields [ES Wiki]

example, the print statement could not validly be replaced with:

print(myObj.answerKey);

This would produce “undefined” because it would access the non-existent property whose string valued property name
would be “answerKey”. Only identifiers that have been explicitly declared using private are private identifiers.

“can we subsume private names” explains how soft fields as value proxies could support a property-like usage of [], so this
code could indeed be written as

print(myObj[answerKey]);

If #. is not within the scope of a private declaration for its IdentifierName then the value produced is the string value of
the IdentifierName.

As an expressive convenience, private declarations can be used to associate a private identifier with an already existing
soft field. This is done by using a private declaration of the form:

private Identifier = Initialiser ;

The Names proposal asks: “If Initialiser does not evaluate to a soft field, a TypeError exception is thrown. (for uniformity,
should string values be allowed? In that case, local private name bindings could be string valued.)”

If the answer is true, the one supposed advantage of Names over soft fields goes away. Our contentious bit of code becomes:

private ak = answerKey; // soft field or string
print(obj.ak); // works either way

private name1; //value is a new soft field
private name2 = #.name1 //name2 can be used to access the same soft field as name1

Other possible syntactic forms for converting a private identifier to an expression value include:

private IdentifierName

(private IdentifierName)

.IdentifierName

`IdentifierName

#`IdentifierName

#’IdentifierName

Conflict-Free Object Extension Using Soft Fields
Adapted from conflict-free object extension using private names

function installCloneLibrary() {
 private clone; // the soft field for clone methods

 // Install clone methods in key built-in prototypes:
 Object.prototype.clone = function () { ... };
 Array.prototype.clone = function () {

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (6 of 11) [18.05.2011 16:45:40]

http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields#can_we_subsume_private_names
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#conflict-free_object_extension_using_private_names

strawman:names_vs_soft_fields [ES Wiki]

 ...
 target[i] = this[i].clone(); // recur on clone method
 ...
 }
 String.prototype.clone = function () {...}
 ...
 return #.clone
}

// Example usage of CloneLibrary:
private clone = installCloneLibrary();
installAnotherLibrary();
var twin = [{a:0}, {b:1}].clone();

Similarities: The above client of the CloneLibrary will work even if the other library also defines a method named clone
on Object.prototype. The second library would not have visibility of the soft field used for clone so it would either use
a string property name or a different soft field for the method. In either case there would be no conflict with the method
defined by CloneLibrary.

Crucial difference

For defensive programming, best practice in many environments will be to freeze the primordials early, as the dual of
the existing best practice that one should not mutate the primordials. Evaluating the dynamic behaviour of Python
applications (See also http://gnuu.org/2010/12/13/too-lazy-to-type/) provides evidence that this will be compatible
with much existing content. We should expect these best practices to grow during the time when people feel they can
target ES5 but not yet ES6.

Consider if Object.prototype or Array.prototype were already frozen, as they should be, before the code above
executes. Using soft fields, this extension works. Using private names, it is rejected. Allen argues at Private names use
cases that

 Allow third-party property extensions to built-in
 objects or third-party frameworks that are guaranteed
 to not have naming conflicts with unrelated extensions
 to the same objects.

is the more important use case. Soft fields provide for this use case. Private names do not.

Who knows whether frozen primordials will catch on? Many JS hackers are vehemently opposed. PrototypeJS still
extends built-in prototypes and its maintainers say that won’t change. Allen clearly was talking about extending non-
frozen shared objects in his “Private names use cases” message – he did not assume what you assume here. We need
to agree on our assumptions before putting forth conclusions that we hope will be shared. I don’t think everyone
shares the belief that “We should expect these best practices to grow during [any foreseeable future].”

— Brendan Eich 2010/12/22 01:37

Are we still confusing “any” and “all”? The original quote claims only that these best practices will grow in some
environments. Regarding your “any foreseeable future”, this future is already long past. Google JavaScript Style
Guide: Modifying prototypes of builtin objects has long stated:

 Modifying prototypes of builtin objects
 [Recommendation:] No
 Modifying builtins like Object.prototype and Array.prototype
 are strictly forbidden. Modifying other builtins like
 Function.prototype is less dangerous but still leads to hard
 to debug issues in production and should be avoided.

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (7 of 11) [18.05.2011 16:45:40]

http://crpit.com/confpapers/CRPITV91Holkner.pdf
http://crpit.com/confpapers/CRPITV91Holkner.pdf
http://gnuu.org/2010/12/13/too-lazy-to-type/
https://mail.mozilla.org/pipermail/es-discuss/2010-December/012330.html
https://mail.mozilla.org/pipermail/es-discuss/2010-December/012330.html
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml?showone=Modifying_prototypes_of_builtin_objects#Modifying_prototypes_of_builtin_objects
http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml?showone=Modifying_prototypes_of_builtin_objects#Modifying_prototypes_of_builtin_objects

strawman:names_vs_soft_fields [ES Wiki]

I’m sure other such quotes about JavaScript best practice can be found.

Also, of course, The last initialization step of initSES is to freeze the primordials of its frame. Only code that does not
mutate their primordials will be directly compatible with SES without resort to sandboxing.

Mark, the original quote from you is visible above, and it asserts “many”, not “any”. That is a bold claim. Not only
Prototype, but SproutCore and Moo (and probably others), extend standard objects. SproutCore adds a w method to
String.prototype, along with many other methods inspired by Ruby.

It’s nice that Google has recommendations, which it can indeed enforce as mandates on employees, but the Web at
large is under no such authority. The Web is the relevant context for quantifying “many”, not some number of secure
subset languages used in far smaller domains. On the Web, it’s hard to rule out maintainers and reusers mixing your
code with SproutCore, e.g.

SES is a different language from Harmony, not standardized by Harmony in full. Goal 5 at harmony is about
supporting SES, not subsuming it.

I believe we should avoid trying to run social experiments, building up pedagogical regimes, or making predictions
about the future, anywhere in the text of future ECMA-262 editions.

— Brendan Eich 2011/01/12 02:12

Enumeration and Reflection
enumeration and reflection

Even though soft fields are typically implemented as state within the object they extends, because soft fields are semantically
not properties of the object but are rather side tables, they do not show up in reflective operations performed on the object
itself.

For example:

private b;
var obj = {};
obj.a = 1;
obj.b = 2;
obj.c = 3;

var names = [];
for (var p in obj) names.push(obj[p]);
print(names.toString()); // "1,3" -- soft field "b" was not enumerated

Soft fields created using object literals also not part of the object itself. So obj could have been created to produce the same
result by saying:

private b;
var obj = {
 a: 1,
 b: 2,
 c: 3
}

Beyond the syntactic expansions explained above, no other change to the definition of object literals is needed.

Creating a soft field that is enumerable makes no sense. Reflective operations that take property names as arguments, such
as Object.defineProperty below, if given a non-string argument including a soft field, would coerce it to string and (uselessly)
use that as a property name.

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (8 of 11) [18.05.2011 16:45:40]

http://code.google.com/p/es-lab/source/browse/trunk/src/ses/initSES.js
http://wiki.ecmascript.org/doku.php?id=harmony:harmony
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#enumeration_and_reflection

strawman:names_vs_soft_fields [ES Wiki]

private b;
var obj = {};
obj.a = 1;
obj.b = 2;
Object.defineProperty(obj, #.b, {enumerable: true});
obj.c = 3;

var names = [];
for (var p in obj) names.push(obj[p]);
print(names.toString()); // "1,2,3" -- property "[object Object]" is now enumerated

Object.prototype.hasOwnProperty (ES5 15.2.4.5), Object.prototype.propertyIsEnumerable (ES5
15.2.4.7) and the in operator (ES5 11.8.7) do not see soft fields, again, because they are not part of the object.

The JSON.stringify algorithm (ES5 15.12.3) needs no change in order to ignore soft fields, since again they are not part
of the object.

All the Object reflection functions defined in ES5 section 15.2.3 remain unchanged, since they need not be aware of soft
fields.

An important use case for reflection using soft fields is algorithms that need to perform meta-level processing of all properties
of any object. For example, a “universal” object copy function might be coded as:

function copyObject(obj) {
 // This doesn't deal with other special [[Class]] objects:
 var copy = Object.isArray(obj) ? [] : Object.create(Object.getPrototypeOf(obj));
 var props = Object.getOwnPropertyNames(obj);
 var pname;
 for (var i = 0; i < props.length; i++) {
 pname = props[i];
 Object.defineProperty(copy, pname, Object.getOwnPropertyDescriptor(obj,pname));
 }
 return obj;
}

This function will duplicate all properties but not any soft fields, preserving encapsulation, since neither the definer nor the
caller of copyObject knows these soft fields. Of course, a more complex copyObject function could be defined that would also
copy and re-index those soft fields it was told of.

Soft Fields Support Encapsulation
Adapted from private name properties support only weak encapsulation

No qualifiers needed.

Should so-called “weak encapsulation” actually be desired, “can we subsume private names” explains how to provide weakly
encapsulating soft fields (or “wesf”) polymorphically with soft fields.

Interactions with other Harmony Proposals

Enhanced Object Literals

Adapted from enhanced object literals

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (9 of 11) [18.05.2011 16:45:40]

http://wiki.ecmascript.org/doku.php?id=strawman:private_names#private_name_properties_support_only_weak_encapsulation
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields#can_we_subsume_private_names
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#enhanced_object_literals

strawman:names_vs_soft_fields [ES Wiki]

private might be supported as either a property modifier keyword that makes the property name a soft field whose
private identifier is scoped to the object literal:

var obj={
 private _x: 0;
 get x() {return this._x},
 set x(val) {this._x=val}
}

This might simplify the declarative creation of objects with instance private soft fields. However, there are internal
scoping and hoisting issues that would need to be considered and resolved.

Another alternative is to use meta property syntax to declare object literal local soft field declarations:

var obj={
 <prototype: myProto; private _x>
 _x: 0;
 get x() {return this._x},
 set x(val) {this._x=val}
}

While the above proposals are perfectly consistent with soft fields, again, for instance-private instance state, using
lexical capture seems strictly superior:

let x = 0;
var obj={
 get x() {return x},
 set x(val) {x=val}
}

Proxies

Adapted from proxies

None of the uses of string valued property names in proxy handlers would need to be extended to accept/produce soft
fields in addition to string values.

As covered above, ECMAScript reflection capabilities provides no means to break the encapsulation of an object’s soft
fields.

Modules

Adapted from modules

It is reasonable to expect that modules will want to define and export soft fields. For example, a module might want to
add methods to a built-in prototype object using soft fields and then make those soft fields available to other modules.
Within the present definition of the simple module system that might be done as follows:

<script type="harmony">
module ExtendedObject {
 import Builtins.Object; // however access to Object is obtained.
 private clone; // the soft field for clone methods
 export const clone = #.clone; // export a constant with the soft field;

 Object.prototype.clone = function () { ... };

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (10 of 11) [18.05.2011 16:45:40]

http://wiki.ecmascript.org/doku.php?id=strawman:private_names#proxies
http://wiki.ecmascript.org/doku.php?id=strawman:private_names#modules

strawman:names_vs_soft_fields [ES Wiki]

}
</script>

A consumer of this module might look like:

<script type="harmony">
import ExtendedObject.clone;
private clone = clone;
var anotherObj = someObj.clone();
</script>

The above formulation would work without any additional extensions to the simple module proposal. However, it would
be even more convenient if the module system was extended to understand private declarations. In that case this
example might be written as:

<script type="harmony">
module ExtendedObject {
 import Builtins.Object; // however access to Object is obtained.
 export private clone; // export soft field for clone methods

 Object.prototype.clone = function () { ... };
}
</script>

<script type="harmony">
import private ExtendedObject.clone;
var anotherObj = someObj.clone();
</script>

I don’t get the point about “dynamic access to the exported property name environment of first-class module
instances”, so at this time I offer no comparison of this last example.

References
Adapted from references

Any unforgeable reference to a tamper-proof encapsulated object is analogous to a capability in object-capability languages.
In this degenerate sense, both Names and Soft Fields are also so analogous. I see no further way in which Names are
analogous. In addition, Soft Fields encourage encapsulation friendly patterns, whereas Names encourage unsafe (or “weakly
encapsulated”) patterns.

strawman/names_vs_soft_fields.txt · Last modified: 2011/03/03 20:37 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php4.htm (11 of 11) [18.05.2011 16:45:40]

http://wiki.ecmascript.org/doku.php?id=strawman:private_names#references
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:quasis [ES Wiki]

[[strawman:
quasis]]

ES
Wiki

Trace: » classes_with_trait_composition »
traits_semantics » inherited_explicit_soft_fields

» names_vs_soft_fields » quasis

-Table of Contents

● EcmaScript Quasi-Literal Strawman

�❍ Motivation

�❍ Overview

■ Syntax

■ Semantics

�❍ Use Cases

■ Secure Content Generation

■ Text L10N

■ Message Extraction

■ Message Meta-data

■ Substitution Meta-data

■ Message replacement and

substitution re-ordering

■ Specifying a locale

■ Security

■ Query Languages

■ Message Sends

■ Flexible Literal Syntax

■ Raw Strings

■ Decomposition Patterns

■ Logging

�❍ Syntax (normative)

■ Literal Portion Syntax

■ QuasiLiteral ::

■ LiteralPortion ::

■ LiteralCharacter ::

■ QuasiLiteralTail ::

■ Substitution ::

■ Literal Portion Array

■ QuasiTag

■ QuasiTag ::

■ QT

■ Default Quasi Tag

■ Substitution Body Syntax

■ SubstitutionBody ::

■ SubstitutionModifier ::

■ SVE

�❍ Semantics (normative)

■ Desugaring

�❍ Security Considerations

■ Defensive Code

■ Offensive Code

■ Possible Problems

�❍ Reasons and Open Issues

■ Quoting Character

■ Nesting

■ Substitutions

■ Raw Escapes in Literal Sections

■ Line Continuation

�❍ References

■ Quasis in E

■ Secure String Interp

■ PHP String Vars

■ PLT Scheme Scribble

■ SML of New Jersey

EcmaScript Quasi-Literal Strawman

Motivation

EcmaScript is frequently used as a glue language for dealing with content specified in other
languages : HTML, CSS, JSON, XML, etc. Libraries have implemented query languages and
content generation schemes for most of these : CSS selectors, XPath, various templating
schemes. These tend to suffer from interpretation overhead, or from injection
vulnerabilities, or both.

This scheme extends EcmaScript syntax with syntactic sugar to allow libraries to provide
DSLs that easily produce, query, and manipulate content from other languages that are
immune or resistant to injection attacks such as XSS, SQL Injection, etc.

This scheme aims to preserve ES5 strict mode’s static analyazbility while allowing details of
the DSL implementation to be dynamic.

Overview

Syntax

x`foo${bar}baz`

Syntactically, a quasi-literal is a function name (x) followed by zero or more characters
enclosed in back quotes. The contents of the back quotes are grouped into literal
sections (foo and baz) and substitutions (bar).

A substitution is an unescaped substitution start character ($) followed by either a valid
Identifier or a curly bracket block. E.g., $foo or ${foo + bar}.

The literal sections are the runs of characters not contained in substitutions. They may
be blank so the number of literal sections is always one greater than the number of
substitutions.

Semantics

The semantics of quasi-literals are specified in terms of a desugaring which has the
property that the free variables of the desugaring are the same as the union of the free
variables of the substitutions and the function name.

Use Cases

This syntactic sugar will let library developers experiment with a wide range of language
features.

Quasi-literals desugar a back quoted string to a function call that operates on the literal
portions. That handler can return a function (possibly from a cache) that receives thunks of
the substituted expressions.

E.g. quasiHandlerName`quasiLiteralPart1 ${quasiSubstitution}
quasiLiteralPart2` desugars to

quasiHandlerName(
 ['quasiLiteralPart1 ', ' quasiLiteralPart2'])(

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (1 of 15) [18.05.2011 16:45:06]

http://wiki.ecmascript.org/doku.php?id=strawman:quasis&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:quasis&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
http://wiki.ecmascript.org/doku.php?id=strawman:traits_semantics
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:names_vs_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:quasis
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

strawman:quasis [ES Wiki]

■ Secure Code Generation

■ Scheme Hygienic Macros

■ Paradigm Regained

■ Safe Templates

 [function () { return quasiSubstitution; }])

See the demo REPL for some runnable examples. Especially the drop-down at the top-right.

Secure Content Generation

safehtml`<a href="${url}?q=${query}" onclick=alert(${message}) style="color:
${color}">${message}`

uses contextual auto-escaping to figure out that url and color should be filtered, query should be percent-encoded,
and message HTML entity encoded to prevent XSS.

The syntax provides a clear distinction between trusted content such as <a href=” and substituted values that might
be controlled by an attacker such as url. This prevents the problem that arise in other languages when format strings can
be controlled by an attacker. Although EcmaScript’s memory abstractions are not vulnerable, it is very vulnerable to
quoting confusion attacks and developers have trouble distinguishing content from an untrusted format string from
that produced from a trusted one.

E.g.

url = "http://example.com/",
message = query = "Hello & Goodbye",
color = "red",
safehtml`<a href="${url}?q=${query}" onclick=alert(${message}) style="color:
${color}">${message}`

produces

<a href="http://example.com/?q=Hello%20%26%20Goodbye"
 onclick=alert('Hello \x26 Goodbye') style="color: red">Hello
& Goodbye

but value filtering can be done so that if instead

url = "javascript:alert(1337)"
color = "expression(alert(1337))"

then the output is filled with innocuous values instead to produce:

<a href="#innocuous?q=Hello%20%26%20Goodbye"
 onclick=alert('Hello \x26 Goodbye') style="color:
innocuous">Hello & Goodbye

Similar schemes can work for securely composing URLs, JSON and XML data bundles, and for allowing composable
SQL prepared statements.

Text L10N

msg`Welcome to ${siteName}, you are visitor number ${visitorNumber}!`

where visitorNumber should be formated using locale-specific conventions, e.g. “1,000,000” in some parts of the
world, and “1.000.000” in some others.

Message Extraction

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (2 of 15) [18.05.2011 16:45:06]

http://js-quasis-libraries-and-repl.googlecode.com/svn/trunk/index.html
http://en.wikipedia.org/wiki/Uncontrolled_format_string

strawman:quasis [ES Wiki]

Since there is a convenient simple format for human-readable messages, a static analyzer can easily find them (to
substitute locale-specific versions) than if messages were simply the first argument to a function call.

For example, a static analyzer could find uses of msg`...` in source files to produce a message bundle like

<messagebundle>
 <message id="...">Welcome to {0}, you are visitor number {1}!</message>
</messagebundle>

Translators can then produce a message bundle with the translations.

Message Meta-data

Translators often need some context to help them translate human readable message strings.

Meta-data can be attached to comments the way other systems put type declarations and structured documentation
in comments.

/**
 * @description Label text for a button that opens a window.
 */
myButton.innerText = msg`Open`;

but if the English word “Open” is used in two different forms (adjectival vs imperative), it may need to have two
translations, so some L10N approaches would benefit from having disambiguation meta-data available at runtime.

There are two common ways of disambiguating:

1.

Associating the message with an identifier which is used as a message ID : #MSG_OPEN_BUTTON_TEXT

{ msg`Open` }

2.

Adding “meaning” meta-data to the message. myButton.innerText = msg`Open ; meaning=”Button

text”`;

The latter convention makes the meta-data available not just to static analyzers, but also at runtime.

Substitution Meta-data

Meta-data can also be associated with substitutions in the same way.

/**
 * @param siteName The name of the site. @example foo.ru
 * @param visitorNumber an integer. @example 1000000
 */
var message = msg`Welcome to ${siteName}, you are visitor number ${visitorNumber}:d!`;

The description of siteName and the @example meta-data can extracted along with the message and made available
to translators but is not needed at runtime.

The :d meta-data is available at runtime to specify that the number should be presented as an integer. Never in
scientific notation no matter how many billions of visitors foo.com receives.

Message replacement and substitution re-ordering

Once translators have delivered their translations, there are a number of ways to incorporate those.

If the locale is known statically, then msg`...` elements can be fully rewritten

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (3 of 15) [18.05.2011 16:45:06]

http://code.google.com/closure/compiler/docs/js-for-compiler.html#tags

strawman:quasis [ES Wiki]

// Before
alert(msg`Hello, ${world}!`);

// After
alert(msg`Bonjour ${world}!`);

If the locale is not known statically, then a source code rewriter can partially rewrite the message to a lookup into a
side-table by message id.

// Before
alert(msg`Hello, ${world}!`);

// After
var messageBundle_fr = {
 MSG_1234: ['Bonjour ', 0 /* An index into substitutions */, '!']
};

alert(getMessage('MSG_1234', [world]));

The most natural order in which elements of a thought are expressed may differ between languages. msg`Welcome to
${siteName}, you are visitor number ${visitorNumber}:d!` might be translated into pig-latin as msg`Oo-
yay are-yay isitor-vay umber-nay ${visitorNumber}. Elcome-way oo-tay ${siteName}!`.

The index in the mesage bundle side-table above serve to identify the index of the substitution that fills that hole. For the
pig-latin message above, the side-table would look like

var messageBundle_piglatin = {
 MSG_5678: ['Oo-yay are-yay isitor-vay umber-nay ', 1, '. Elcome-way oo-tay ', 0, '!']
};

Small projects that are not willing to introduce a source-code rewriting step just to get translation can do purely
dynamic message replacement.

// Before
alert(msg`Hello, ${world}!`);

// After
var messageBundle_fr = { // Maps message text and disambiguation meta-data to
replacement.
 'Hello, {0}!': 'Bonjour {0}!'
};

alert(msg`Hello, ${world}!`);

where msg checks the side-table:

function msg(parts) {
 var key = ...; // 'Hello, {0}!' given ['Hello, ', world, '!']

 var translation = myMessageBundle[key];

 return (translation || key).replace(/\{(\d+)\}/g, function (_, index) {
 // not shown: proper formatting of substitutions
 return parts[(index << 1) | 1];
 });
}

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (4 of 15) [18.05.2011 16:45:06]

strawman:quasis [ES Wiki]

Specifying a locale

EcmaScript applications running in the browser typically deal with only one user, hence operate in only one locale.
But EcmaScript on the server does not, and there are exceptions in browser-based EcmaScript apps.

It is possible to specify a locale for a scope so that a particular message bundle is used for message replacement, and so
that locale is used for formatting numbers and dates.

let lmsg = msg.withLocale(messageRecipientLocale);
sendRecommendation(msg`Your friend ${friendName} thinks you would like to read
"${articleTitle}".`);

Security

Generating human readable strings often requires combining data from other users to produce human readable strings
of HTML. As such, it is a prime vector for XSS attacks.

It is possible to compose the L10N use case described in this with the secure content generation scheme so there is no
need to choose between localizability and security.

function msg(parts) {
 var metaData = extractMetaDataFromLiteralParts(parts);
 replaceLiteralPartsWithLocaleSpecificLiteralParts(parts, metaData);
 reorderAndFormatSubstitutions(parts, metaData);
 return parts.join('');
}

function safehtml(parts) {
 var sanitizers = chooseEscapingFunctionsBasedOnLiteralParts(parts);
 applySanitizersToSubstitutions(sanitizers, parts);
 return parts.join('');
}

// The composition
function safehtml_msg(parts) {
 var metaData = extractMetaDataFromLiteralParts(parts);
 replaceLiteralPartsWithLocaleSpecificLiteralParts(parts, metaData);
 reorderAndFormatSubstitutions(parts, metaData);
 var sanitizers = chooseEscapingFunctionsBasedOnLiteralParts(parts);
 applySanitizersToSubstitutions(sanitizers, parts);
 return parts.join('');
}

Query Languages

$`a.${className}[href=~'//${domain}/']`

might specify a DOM query for all <a> elements with the given class name and that link to URLs with the given domain.

The className and domain do not need to be encoded then decoded by a query-engine so mis-encodings can
be eliminated as a class of bugs and source of inefficiency.

Message Sends

Message sends can be specified using a syntax that looks like an HTTP request.

GET`http://example.org/service?a=${a}&b=${b}
 Content-Type: application/json
 X-Credentials: ${credentials}

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (5 of 15) [18.05.2011 16:45:06]

strawman:quasis [ES Wiki]

 { "foo": ${foo}, "bar": ${bar} }`(myOnReadyStateChangeHandler);

might configure an

XMLHttpRequest

object to the specified (securely composed) URL with the given (securely composed) headers, and after the end of
the headers could switch to context-sensitive composition based on the content-type header : JSON in this case, or an
XML message in another case.

Flexible Literal Syntax

Often, developers use the new RegExp(...) constructor because they want a tiny part of their regular expression to
be dynamic, and fail to properly escape character classes such as “\s”.

A quasi syntax for regular expression construction

re`\d+(${localeSpecificDecimalPoint}\d+)?`

gets the benefit of the literal syntax with dynamism where needed.

Raw Strings

Python raw strings are trivial:

raw`In JavaScript '\n' is a line-feed.`

Decomposition Patterns

A pattern decomposition handler re_match invoked thus

if (re_match`foo (${=x}\d+) bar`(myString)) {
 ...
}

could use assignable substitutions to achieve the same effect as

{
 let match = myString.match(/foo (\d+) bar/);
 if (match) {
 x = match[1];
 ...
 }
}

Logging

warn`Bad result $result from $source`

can provide console.log(”o=%s”, o) style logging of structured data without the need for positional parameters.

Syntax (normative)

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (6 of 15) [18.05.2011 16:45:06]

strawman:quasis [ES Wiki]

Literal Portion Syntax

This defines the top quasi literal production and explains how the boundaries between literal portions and substitutions
are determined.

QuasiLiteral ::

●

QuasiTag [no LineTerminator here] ` LiteralPortion QuasiLiteralTail

LiteralPortion ::

●

LiteralCharacter LiteralPortion

●

ε

LiteralCharacter ::

●

SourceCharacter but not back quote ` or LineTerminator or dollar $

●

LineTerminatorSequence

●

$ \ EscapeSequence

QuasiLiteralTail ::

●

`

●

Substitution LiteralPortion QuasiLiteralTail

Substitution ::

●

${ SubstitutionModifier SubstitutionBody }

●

$ Identifier

Literal Portion Array

The LPA operator defines an array of strings derived from the raw text of the literal portions of the quasi.

E.g. the LPA for the quasi q`foo${bar}baz` is [’foo’, ‘baz’].

Production Result

QuasiLiteral :: QuasiTag`LiteralPortion QuasiLiteralTail array-concat(LPA(LiteralPortion), LPA(QuasiLiteralTail))

QuasiLiteralTail :: Substitution LiteralPortion QuasiLiteralTail
array-concat(single-element-array(LPA(LiteralPortion)), LPA
(QuasiLiteralTail))

QuasiLiteralTail :: ` an empty array

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (7 of 15) [18.05.2011 16:45:06]

strawman:quasis [ES Wiki]

LiteralPortion :: LiteralCharacter LiteralPortion string-concat(LPA(LiteralCharacter), LPA(LiteralPortion))

LiteralPortion :: ε the empty string

LiteralCharacter :: SourceCharacter single character string containing that character.

LiteralCharacter :: LineTerminatorSequence the single character string containing a LF (“\n”)

LiteralCharacter :: $\EscapeSequence CV(EscapeSequence)

QuasiTag

Before the open backquote (`) there is a, possibly optional, tag that specifies a function that receives the literal portions
and substitutions.

quasis-quasitag-memberexpr is another way to define the QuasiTag production that allows for arbitrary member
expressions. If worthwhile, it should be adopted instead of this section.

QuasiTag ::

●

Identifier

●

ε

QT

Production Result

QuasiTag :: Identifier an expression of the form PrimaryExpression : Identifier with the given Identifier

QuasiTag :: ε the Default Quasi Tag function below

Default Quasi Tag

The default quasi tag is a frozen function defined as

 // mixedLiteralPortionsAndSubstitutions :
 // An odd-length array where even elements (0-indexed) are
 function (mixedLiteralPortionsAndSubstitutions) {
 // As per the original Array.prototype.join.
 return mixedLiteralPortionsAndSubstitutions.join('');
 }

If using a currying or thunking version of the desugarring, then this needs to be adapted to interleave and/or apply
the substitutions.

Substitution Body Syntax

Between literal portions there are substitutions of the form ${...} or $ident. The substitution body specifies
an expression, e.g. the substitution bodies in quasitag`literal0 ${1 + 1} literal1 $bar literal2` are
(1 + 1), and (bar).

This defines the substitution body of a quasi using the PrimaryExpression syntactic production. Determining where
a substitution ends requires, in the general case, the ability to parse an EcmaScript expression.

E.g. the SVE of quasitag`literalPortion0 $x literalPortion1 ${y + z} literalPortion2` is [x,
(y + z)].

Below are other ways of defining the SubstitutionBody production and the SVE spec function. If preferred, they should
be used instead of this section.

●

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (8 of 15) [18.05.2011 16:45:06]

http://wiki.ecmascript.org/doku.php?id=strawman:quasis-quasitag-memberexpr
http://wiki.ecmascript.org/doku.php?id=strawman:quasis-desugaring-curried
http://wiki.ecmascript.org/doku.php?id=strawman:quasis-substitutions-thunk

strawman:quasis [ES Wiki]

quasis-substitutions-identonly - only identifiers are allowed, e.g. x.

●

quasis-substitutions-simple-members - more complex expressions, but easily lexically boundable. e.g. x.y[z] but does

not allow nested quasis.

●

quasis-substitutions-thunk - arbitrary expressions are allowed, and the expressions are thunkified so that a quasi

handler (QT) may evaluate them zero or multiple time to support branching or looping.

●

quasis-substitutions-slot - arbitrary expressions are allowed, and expressions that are preceded by the modifier = may

be used as left hand sides, assigned to by the quasi handler. This enables use cases like the destructuring regular

expression match.

SubstitutionBody ::

●

PrimaryExpression

SubstitutionModifier ::

●

ε

SVE

Production Result

QuasiLiteral :: QuasiTag`LiteralPortion QuasiLiteralTail SVE(QuasiLiteralTail)

QuasiLiteralTail :: Substitution LiteralPortion QuasiLiteralTail
array-concat(single-element-array(SVE(Substitution)), SVE
(QuasiLiteralTail))

QuasiLiteralTail :: ` an empty array

Substitution :: $Identifier PrimaryExpression : Identifier

Substitution :: ${SubstitutionModifier SubstitutionBody} SVE(SubstitutionBody)

SubstitutionBody :: PrimaryExpression PrimaryExpression

The SVE is an expression that evaluates the specified expression in the scope in which the quasi appears. The SVE of
the quasi literal is the array of the SVE for each substitution body.

Semantics (normative)

Given the QT, LPA, and SVE defined above, this specifies the desugaring of the QuasiLiteral production.

This version passes all the parts to the function specified by the quasi tag in one argument list instead of passing the
literal portions first.

It may be easier for optimizing rewriters to optimize some quasis if the desugaring passes literal portions separately
from substitutions. See quasis-desugaring-curried for an alernate desugaring that can be used instead of this section.

Desugaring

A QuasiLiteral in an EcmaScript parse tree is replaced with (CallExpression, (QT, (ParameterList, (interleave(LPA,
SVE))) where interleave is defined as an ArrayExpression as defined below.

function interleave(lpa, sve) {

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (9 of 15) [18.05.2011 16:45:06]

http://wiki.ecmascript.org/doku.php?id=strawman:quasis-substitutions-identonly
http://wiki.ecmascript.org/doku.php?id=strawman:quasis-substitutions-simple-members
http://wiki.ecmascript.org/doku.php?id=strawman:quasis-substitutions-thunk
http://wiki.ecmascript.org/doku.php?id=strawman:quasis-substitutions-slot
http://wiki.ecmascript.org/doku.php?id=strawman:quasis-desugaring-curried

strawman:quasis [ES Wiki]

 var interleaved = [lpa[0]];
 for (var i = 0, k = 0, n = sve.length;) {
 interleaved[k++] = sve[i];
 interleaved[k++] = sve[++i];
 }
 return interleaved;
}

So if for quasiTag`literalPortion0 $x literalPortion1` the QT is quasiTag, LPA is
[’literalPortion0 ‘, ' literalPortion1’] and SVE is [x], then the desugaring is

quasiTag(['literalPortion0 ', x, ' literalPortion1'])

Security Considerations

This strawman should also fall in the language subset defined by SES (Secure EcmaScript). As such, neither its presence
in the language nor its use in a program should make it substantially more difficult to reason about the security properties
of that program.

Developers expect that object only escape a scope by being explicitly passed or assigned. This strawman needs to
preserve both the scope invariants of EcmaScript 5 functions and catch blocks, and those introduced by the modules and
let proposals.

The below discusses the interaction between a quasi function defined in one scope/module and the code it produces to
be executed in another scope/module. The actors include

●

library author – the author of the module / scope in which the quasi function is defined

●

quasi author – the author of the quasi-literal and any symbols defined in the module / scope containing it.

Defensive Code

A module needs to be able to defend its invariants against bugs or deliberate malice by another module. SES does
not attempt to guarantee availability since trivial programs can loop infinitely, but a module must be able to guarantee that
its invariants hold when control leaves it.

This proposal does not complicate defensive code reasoning because:

●

only symbols mentioned in a substitution are observable by the library author

●

only symbols marked as writable can be written by the library author

The quasi author has to be aware that the order of evaluation is unclear. For quasis to specify new control
constructs, substitutions need to be evaluable out of order, repeatedly, or not at all.

By writing a substitution, the quasi author is conveying the authority to evaluate an expression in the quasi scope any
number of times from that point on. (Assuming the quasi module has the authority to cause delayed evaluation as
by setTimeout). A substitution conveys the same authority as a zero argument or function.

Offensive Code

The library author’s quasi function may be used by multiple mutually suspicious or intentionally isolated modules. It
can ensure that bugs or malice in one module do not affect its ability to serve another module by freezing the symbols
it exports and by coding defensively.

This proposal does not complicate its ability to do that, since it imposes no mutable data requirements on quasi functions.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (10 of 15) [18.05.2011 16:45:06]

strawman:quasis [ES Wiki]

Possible Problems

This syntax is, by design, similar to that of string interpolation in other languages. Users may assume the result of the
quasi-literal is a string as occurs in languages like Perl and PHP (3), and that subsequent mutations to values substituted
in do not affect the result of the interpolation. It is the responsibility of QT implementers to match these expectations or
to educate users. Specifically, developer surprise might result from the below if q kept a reference to the mutable fib
array which is modified by subsequent iterations of the loop.

var quasis = [];
var fib = [1, 1]; // State shared across loop bodies
for (var i = 1; i < 10; ++i) {
 fib[1] += fib[0];
 fib[0] = fib[1] - fib[0];
 quasis.push(q`Fib${i-1} and fib${i} are $fib`);
}

String interpolation in other languages is often a vector for quoting confusion attacks : XSL, SQL Injection, Script
Injection, etc.. It is the responsibility of QT implementers to properly escape substituted values, and a lazy escaping
scheme (2) can provide an intelligent default. It is a goal of the proposed scheme to reduce the overall vulnerability
of EcmaScript applications to quoting confusion by making it easy for developers to generate properly escaped strings in
other languages.

Quasi-literals contain embedded expressions, but the set of lexical bindings accessible to the quasi handler is restricted to
the union of the below so they do not complicate static analysis

1.

the set of identifiers mentioned by the author in the lexical environment in which the quasi-literal appears,

2.

the lexical environment of the QT in the environment in which it is defined,

3.

for QTs defined in non-strict mode, the global object as bound to this.

Reasons and Open Issues

Quoting Character

The meaning of existing programs should not change, so this proposal must extend the grammar without
introducing ambiguity. It is meant to enable secure string interpolation and DSLs, so using a syntax reminiscent of
strings seems reasonable, and many widely used languages have string interpolation schemes which will reduce the
learning curve associated with the proposed feature.

Backquote (`) was chosen as the quoting character for string interpolations because it is unused outside strings
and comments; and is obviously a quoting character.

It is already used in other languages that many EcmaScript authors use – perl, PHP, and ruby where it allows
interpolation though with a more specific meaning than macro expansion. It is used as a macro construct in Scheme where
it is called a “quasiquote.” In Python 2.x and earlier, it is a shorthand for the repr function, so contained an expression
and applied a specific transformation to it.

As such, many syntax highlighters deal with it reasonably well, and programmers are used to seeing it as a quote
character instead of as a grave accent.

Alternatives include:

●

q"""Interpolate $this!"""

which could conflict with long strings.

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (11 of 15) [18.05.2011 16:45:06]

strawman:quasis [ES Wiki]

●

q"Interpolate $this!"

which simply uses an existing quoting character.

●

q{{"Interpolate $this!"}}

which simplifies nesting.

●

q(:"Interpolate $this!":)

which is friendly even if not user friendly.

Nesting

There are a number of advantages to allowing quasis to nest. Substitutions are easy to understand if they are
just expressions, and quasis are just another kind of expression.

There are concrete use cases as well. We could integrate control flow into the safehtml quasi handler available at the
REPL, but substitutions with nested quasis can serve just as well.

rows = [['Unicorns', 'Sunbeams', 'Puppies'], ['<3', '<3', '<3']],
safehtml`<table>${
 rows.map(function(row) {
 return safehtml`<tr>${
 row.map(function(cell) {
 return safehtml`<td>${cell}</td>`
 })
 }</tr>`
 })
}</table>`

produces something like

<table>
 <tr><td>Unicorns</td><td>Sunbeams</td><td>Puppies</td></tr>
 <tr><td><3</td><td><3</td><td><3</td></tr>
</table>

Substitutions

Since we’re choosing syntax to reduce the learning curve, we chose ${...} since it is used to allow arbitrary
embedded expressions in PHP and JQuery templates. We also include the abbreviated form ($ident) to be compatible
with Bash, Perl, PHP, Ruby, etc.

We decided against sprintf style formatting, since, although widely understood, it does not allow many DSL

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (12 of 15) [18.05.2011 16:45:06]

http://js-quasis-libraries-and-repl.googlecode.com/svn/trunk/index.html

strawman:quasis [ES Wiki]

applications, and imposes an O(n) cognitive load (2).

Alternatives include:

●

Bash: $(...)

●

Ruby: #{...}

●

PHP: ${...}

Raw Escapes in Literal Sections

A backslash (\) in a quasi-literal could be interpreted immediately as an EscapeSequence or passed as a raw value to
the quasi function. A quasi function can always be wrapped to decode escapes:

function quasiFunctionWithJsDecodedLiteralPortions(quasiFunctionWithRawLiteralPortions) {
 "use strict";
 var DECODE = { n: '\n', r: '\r', v: '\x0b', f: '\f', t: '\t', b: '\b' };
 function decode(s) {
 return s.replace(
 /\\(?:([rnftvb])|(\r\n?|[\n\u2028\u2029])|(x[0-9A-Fa-f]{2}|u[0-9A-Fa-f]{4})|
([0-3][0-7]{0,2}|[4-7][0-7]?)|(.))/g,
 function (_, e, lt, hex, oct, lit) {
 return e ? DECODE[e]
 : lt ? '\n'
 : hex ? parseInt(hex.substring(1), 16)
 : oct ? parseInt(oct, 8)
 : lit;
 });
 }
 return function (literalPortions) {
 return quasiFunctionWithRawLiteralPortions(
 map(decode, literalPortions));
 };
}

The Substitution :: $ \ EscapeSequence production allows for an arbitrary JS escape, so any representable string literal
is representable as a LiteralPortion in a quasi-literal.

We lose no generality by treating escapes as raw, and there are use cases where raw escapes are useful, as in a
regular expression composing scheme

var my regexp = re`(?i:\w+$foo\w+)`;

function re(literalPortions) {
 for (var i = arguments.length; --i >= 0;) {
 literalPortions[i * 2] = arguments[i];
 }
 return function (substitutions) {
 var regexBody = literalPortions.slice(0);
 for (var i = 0, n = substitutions.length; i < n; ++i) {
 var sub = substitutions[i]
 regexBody[i * 2 + 1] = sub().replace(
 /[\\(){}\[\]^$.+*?|\-]/g, '\\$&');
 }
 return new RegExp(regexBody.join(''));
 };

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (13 of 15) [18.05.2011 16:45:06]

strawman:quasis [ES Wiki]

}

Line Continuation

Both strings and regular expressions in EcmaScript 5 allow LineContinuations, escaped line breaks that are treated as
lexially insignificant.

It would be convenient for some DSL use cases to allow LineTerminators inside code, but it is unclear how this will
interact with revision control systems that rewrite newlines on checkout.

Allowing embedded line terminators and line continuations interacts badly with the way that LiteralPortions' contents
are escaped. Consider the following code where ¶ indicates where a newline occurs:`foo\¶bar` vs `foo
\ ¶bar`. The former is equivalent to `foobar` while the latter is equivalent to `foo\ bar` though the
difference is not visible. Existing string productions do not suffer this problem because a line terminator cannot appear
inside a string unescaped.

Options include

●

Allow newlines inside quasi literals and treat LineContinuations as normal content, consistent with the way escapes

are treated as raw inside LiteralPortions.

●

Interpret LineContinuations as an empty sequence of characters and allow disallow LineTerminators otherwise.

●

Disallow LineTerminators in quasi literals.

References

Quasis in E

Quasiliterals in E

Secure String Interp

Secure String Interpolation

PHP String Vars

PHP String variable parsing

PLT Scheme Scribble

PLT Scheme Scribble Syntax

SML of New Jersey

SML/NJ has a similar Quote/Antiquote feature (whose documentation, ironically enough, has an HTML bug in a quoted
code snippet, resulting in the bottom third or so of the page being in monospaced font).

Secure Code Generation

"Secure Code Generation for Web Applications" by Martin Johns.

Scheme Hygienic Macros

Scheme Macros FAQ

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (14 of 15) [18.05.2011 16:45:06]

http://www.erights.org/elang/grammar/quasi-overview.html
http://google-caja.googlecode.com/svn/changes/mikesamuel/string-interpolation-29-Jan-2008/trunk/src/js/com/google/caja/interp/index.html
http://www.php.net/manual/en/language.types.string.php#languages.types.string.parsing
http://docs.plt-scheme.org/scribble/reader.html
http://smlnj.org/
http://smlnj.org/doc/quote.html
http://web.sec.uni-passau.de/members/martin/talks/081215_MSR.pdf
http://community.schemewiki.org/?scheme-faq-macros

strawman:quasis [ES Wiki]

Paradigm Regained

Paradigm Regained : Abstraction Mechanisms for Access Control

Safe Templates

Using Type Qualifiers to Make Web Templates Robust Against XSS

strawman/quasis.txt · Last modified: 2011/04/06 15:52 by mikesamuel

file:///F|/Common/EXCHANGE/Patrick/doku.php5.htm (15 of 15) [18.05.2011 16:45:06]

http://www.erights.org/talks/asian03/
http://js-quasis-libraries-and-repl.googlecode.com/svn/trunk/safetemplate.html
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:concurrency [ES Wiki]

[[strawman:
concurrency]]

ES
Wiki

Trace: » traits_semantics »
inherited_explicit_soft_fields »

names_vs_soft_fields » quasis » concurrency

-Table of Contents

● Communicating Event-Loop

Concurrency and Distribution

�❍ Vats

�❍ Promises and Promise States

�❍ Eventual Operations

�❍ static Q methods

�❍ Syntactic Sugar

● Examples

�❍ Spawn

�❍ Infinite Queue

�❍ race

�❍ Timeouts

�❍ allFulfilled

�❍ Eventual Equality

● See

Communicating Event-Loop Concurrency and
Distribution
Aggregate objects into process-like units called vats. Objects in one vat can only send
asynchronous messages to objects in other vats. Promises represent such references
to potentially remote objects. Eventual message sends queue pending deliveries in
the work queue of the vat hosting the target object. A vat’s thread processes each
pending delivery to completion before proceeding to the next. Each such processing
step is a turn. A when expression registers a callback to happen in a separate turn
once a promise is resolved, providing the callback with the promise’s resolution. The
eventual send and when expressions immediately return a promise for the eventual
outcome of the operation they register.

This model is free of conventional race condition or deadlock bugs. While a turn is in
progress, it has mutually exclusive access to all state to which it has synchronous
access, i.e., all state within its vat, avoiding conventional race condition bugs without
any explicit locking. The model presented here provides no locks or blocking
constructs of any kind, although it does not forbid a host environment from providing
blocking constructs (like alert). Without blocking, conventional deadlock is
impossible. Of course, less conventional forms of race condition and deadlock bugs remain.

Vats

Partition the JavaScript reference graph into separate units, corresponding to prior concepts variously called vats, workers,
processes, tanks, or grains. We adopt the “vat” terminology here for expository purposes. Vats are only asynchronously
coupled to each other, and represent the minimal possible unit of concurrency, transparent distribution, orthogonal
persistence, migration, partial failure, resource control, preemptive termination/deallocation, and defense from denial of
service. Each vat consists of

●

a single sequential thread of control,

●

a single call-return stack,

●

a single fifo queue holding pending deliveries,

●

an internal object heap,

●

and incoming and outgoing remote references.

A vat’s thread of control dequeues the next pending delivery from the queue and processes it to completion before
proceeding to the next. When the queue is empty, the vat is idle.

 const vat = Vat(); //makes a new vat, as an object local to the creating vat.
 // A Vat has an ''evalP'' method that evaluates a Program in a turn of that vat.
 // The ''evalP'' method returns a promise for the evaluation's completion value.

file:///F|/Common/EXCHANGE/Patrick/doku.php6.htm (1 of 8) [18.05.2011 16:45:16]

http://wiki.ecmascript.org/doku.php?id=strawman:concurrency&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:traits_semantics
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:names_vs_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:quasis
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html

strawman:concurrency [ES Wiki]

 const funP = vat.evalP('' + function fun(x, y) { return x + y; }); // see below
 const sumP = funP ! (3, 5); // sumP will eventually resolve to 8, unless...
 const doneP = vat.terminateP(new Error('die')); // that vat is terminated before
''sumP'' is resolved.
 // If the vat is terminated first, then ''sumP'' resolves to a broken problem, with
 // (Error: die) as its alleged reason for breakage.
 // Once the vat is terminated, ''doneP'' will eventually resolve to ''true''.

The vat object that represents a new vat is local to the creating vat, so that a vat may be terminated without waiting for
that vat’s pending delivery queue to drain.

The vat abstraction differs from the WebWorker abstraction, even though both are based on communicating event loops,
since inter-vat messages are always directed at objects within a vat, not a vat as a whole. We intend that WebWorkers can
be implemented in terms of vats and vice versa. However, when vats are built on WebWorkers, in the absence of some
kind of weak reference and gc notification mechanism, it is probably impossible to arrange for the collection of distributed
garbage. Even with them, much more is needed to enable collection of distributed cyclic garbage. On the other hand, when
vats are provided more primitively, multiple vats within an address space can be jointly within the purview of a single
concurrent garbage collector, enabling full gc among these co-resident vats. However, truly distributed vats would still be
faced with these same distributed garbage collection worries.

The “ '' + function... ” trick above depends on function_to_string to actually pass a string which is the program
source for the function, while nevertheless having the function itself appear in the spawning program as code rather than
as a literal string. This helps IDEs, refactoring tools, etc. A vat’s evalP method evaluates that string as a program in a
safe scope – a scope containing only the standard global variables such as Object, Array, etc. Except for these, the
source passed in should be closed – should not contain free references to any other variables. If the function is closed but
for these standard globals, and these standard globals are not shadowed or replaced in the spawning context, then an
IDE’s scope analysis of the code remains accurate.

Promises and Promise States

We introduce a new opaque type of object, the Promise to represent potentially remote references. A normal JavaScript
direct reference may only designate an object within the same vat. Only promises may designate objects in other vats. A
promise may be in one of several states:

●

unresolved – when it is not yet determined what object the promise designates,

�❍

unresolved local – when the right to determine what the promise designates resides in the same vat,

�❍

file:///F|/Common/EXCHANGE/Patrick/doku.php6.htm (2 of 8) [18.05.2011 16:45:16]

http://erights.org/history/original-e/dgc/index.html
http://wiki.ecmascript.org/doku.php?id=strawman:function_to_string
http://wiki.ecmascript.org/lib/exe/detail.php?id=strawman%3Aconcurrency&cache=cache&media=strawman:refstates3.png

strawman:concurrency [ES Wiki]

unresolved remote – when that right is either in flight between vats or resides in a remote vat,

●

near – resolved to a direct reference to a local object,

●

far – resolved to designate a remote object,

●

broken – will never designate an object, for an alleged reason represented by an associated error.

A promise may transition from unresolved to any state. Additionally a promise can transition from far to broken. A
resolved promise can designate any non-promise value including primitives, null, and undefined. Primitives, null,
undefined, and some objects are pass-by-copy. All other objects are pass-by-reference. A promise resolved to
designate a pass-by-copy value is always near, i.e., it always designates a local copy of the value.

Eventual Operations

The existing JavaScript infix . (dot or now) operator enables synchronous interaction with the local object designated by a
direct reference. We introduce a corresponding infix ! (bang or eventually) operator for corresponding asynchronous
interaction with objects eventually designated by either direct references or promises.

Abstract Syntax:

 Expression : ...
 Expression ! [Expression] Arguments // eventual send
 Expression ! Arguments // eventual call
 Expression ! [Expression] // eventual get
 Expression ! [Expression] = Expression // eventual put
 delete Expression ! [Expression] // eventual delete

The ... means “and all the normal right hand sides of this production. By “abstract” here I mean the distinction that must
be preserved by parsing, i.e., in an ast, but without explaining the precedence and associativity which explains how this is
unambiguously parsed. In all cases, the eventual form of an expression queues a pending delivery recording the need to
perform the corresponding immediate form in the vat hosting the (eventually) designated object. The eventual form
immediately evaluates to a promise for the result of eventually performing this pending delivery.

 function add(x, y) { return x + y; }
 const sumP = add ! (3, 5); //sumP resolves in a later turn to 8.

Attempted Concrete Syntax:

 MemberExpression : ...
 MemberExpression [nlth] ! [Expression]
 MemberExpression [nlth] ! IdentifierName
 CallExpression : ...
 CallExpression [nlth] ! [Expression] Arguments
 CallExpression [nlth] ! IdentifierName Arguments
 MemberExpression [nlth] ! Arguments
 CallExpression [nlth] ! Arguments
 CallExpression [nlth] ! [Expression]
 CallExpression [nlth] ! IdentifierName
 UnaryExpression : ...
 delete CallExpression [nlth] ! [Expression]

file:///F|/Common/EXCHANGE/Patrick/doku.php6.htm (3 of 8) [18.05.2011 16:45:16]

http://wiki.ecmascript.org/doku.php?id=strawman:ast

strawman:concurrency [ES Wiki]

 delete CallExpression [nlth] ! IdentifierName
 LeftHandSideExpression :
 Identifier
 CallExpression [Expression]
 CallExpression . IdentifierName
 CallExpression [nlth] ! [Expression]
 CallExpression [nlth] ! IdentifierName

“[nlth]” above is short for “[No LineTerminator here]“, in order to unambiguously distinguish infix from prefix
bang in the face of automatic semicolon insertion.

static Q methods

get(target, name) -> valueP Returns a promise for the result of eventually
getting the value of the name property of target.

post(target, opt_name, args) -> resultP Eventually invoke the named method of target with
these args. Returns a promise for what the result
will be.

put(target, name, value) -> voidP Eventually set the value of the name property of
target to value. Return a promise-for-undefined,
used for indicating completion.

delete(target, name) -> trueP Eventually delete the name property of target.
Returns a promise for the boolean result.

isPromise(target) -> boolean
Is target a promise? If not, then using target
as a target in the various promise operations is
equivalent to using Q.ref(target), i.e., the
promise operations will automatically lift all values
to promises.

makePromise(promiseHandler) -> promise
By analogy to Proxy.create making and
returning a fresh proxy given a proxy handler. It
would be good to make these handlers more
similar, but that would require proxies to distinguish
between simple gets vs method calls.

ref(target) -> targetP

Lifts the target argument into a promise
designating the same object. If target is already
a promise, then that promise is returned. (A
promise for promise for T simplifies into a promise
for T. Category theorists will be more pleased than
Type theorists ;).)

reject(reason) -> brokenP
Makes and returns a fresh broken promise recording
(a sanitized form of) reason as the alleged reason
for breakage. reason should generally be an
immutable pass-by-copy Error object.

defer() -> {promise, resolve}
Makes a fresh promise,resolve record, where the
promise is initially unresolved-local, and the resolve
method provides the rights to resolve that promise
once.

near(target1) -> target2
Returns the currently most resolved form of
target1. If target1 is a fulfilled promise, return its
resolution. If target1 is an unresolved or broken
promise, or a non-promise, then return target1.

file:///F|/Common/EXCHANGE/Patrick/doku.php6.htm (4 of 8) [18.05.2011 16:45:16]

strawman:concurrency [ES Wiki]

when(target, success, opt_failure) -> resultP

Registers functions success and opt_failure
to be called back in a later turn once target is
resolved. If fulfilled, call success
(resolution). Else if broken, call
opt_failure(reason). Return promise for
callback result.

Syntactic Sugar

Abstract Syntax Expansion Simple Case Expansion JSON/RESTful equiv

x ! [i](y, z) Q.post(x, i, [y, z]) x ! p(y, z) Q.post(x, ‘p’, [y, z]) POST https://...q=p {...}

x ! (y, z) Q.post(x, undefined, [y, z]) - - POST https://... {...}

x ! [i] Q.get(x, i) x ! p Q.get(x, ‘p’) GET https://...q=p

x ! [i] = v Q.put(x, i, v) x ! p = v Q.put(x, ‘p’, v) PUT https://...q=p {...}

delete x ! [i] Q.delete(x, i) delete x ! p Q.delete(x, ‘p’) DELETE https://...q=p

Examples

Spawn

The following spawn function is a simple abstraction built on Vat and when that captures a simple common case:

 const spawn(src) {
 const vat = Vat();
 const resultP = vat.evalP(src);
 Q.when(resultP,
 const(_) { vat.terminateP(new Error('done')); });
 return resultP;
 }

 const sumP = spawn('3+5'}); // sumP eventually resolves to 8.

The argument string to spawn is evaluated in a new Vat spawned for that purpose. Spawn returns a promise for what that
string will evaluate to. Once that promise resolves, the spawned vat is shut down.

Infinite Queue

 const makeQueue() {
 let {promise: front, resolve: rear} = Q.defer();
 return Object.freeze({
 enqueue: const(elem) {
 const next = Q.defer();
 rear({head: elem, tail: next.promise});
 rear = next.resolve;
 },
 dequeue: const() {
 const result = front ! head;
 front = front ! tail;
 return result;
 }
 });
 }

file:///F|/Common/EXCHANGE/Patrick/doku.php6.htm (5 of 8) [18.05.2011 16:45:16]

strawman:concurrency [ES Wiki]

Or similarly, using classes_with_trait_composition:

 class Queue() {
 let {promise: front, resolve: rear} = Q.defer();
 public enqueue(elem) {
 const next = Q.defer();
 rear({head: elem, tail: next.promise});
 rear = next.resolve;
 }
 public dequeue() {
 const result = front ! head;
 front = front ! tail;
 return result;
 }
 }

In both cases, queue.dequeue() will return a promise for the next element that has or will be enqueued.

race

Given a list of promises, returns a promise for the resolution of whichever promise we notice has completed first.

 const race(answerPs) {
 const deferredResult = Q.defer();
 answerPs.forEach(const(asnwerP) {
 Q.when(answerP, const(answer) {
 deferredResult.resolve(answer);
 }, const(err) {
 deferredResult.resolve(Q.reject(err));
 });
 });
 return deferredResult.promise;
 }

Timeouts

 const delay(millis, answer = undefined) {
 const deferredResult = Q.defer();
 setTimeout(const() { deferredResult.resolve(answer); }, millis);
 return deferredResult.promise;
 }

 // timeout an eventual request
 var answer = race(bob ! foo(carol),
 delay(5000, Q.reject(new Error("timeout"))));

allFulfilled

Often it’s useful to collect several promised answers, in order react either when all the answers are ready or when any of
the promises becomes broken.

file:///F|/Common/EXCHANGE/Patrick/doku.php6.htm (6 of 8) [18.05.2011 16:45:16]

http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition

strawman:concurrency [ES Wiki]

 const allFulfilled(answerPs) {
 let countDown = answerPs.length;
 const answers = [];
 if (countDown === 0) { return answers; }
 const deferredResult = Q.defer();
 answerPs.forEach(const(answerP, index) {
 Q.when(answerP, const(answer) {
 answers[index] = answer;
 if (--countDown === 0) { deferredResult.resolve(answers); }
 }, const(err) {
 deferredResult.resolve(Q.reject(err));
 });
 });
 return deferredResult.promise;
 }

Eventual Equality

 const join(xP, yP) {
 return Q.when(allFulfilled([xP, yP]), const([x, y]) {
 if (Object.identical(x, y) {
 return x;
 } else {
 throw new Error("not the same");
 }
 });
 }

See
threads suck

Concurrency Among Strangers and Part III of Robust Composition

Ambient References: Object Designation in Mobile Ad hoc Networks

NodeJS

ref_send and web_send

CommonJS Promises/B with implementation as node npm package.

Similar to ref_send, but connection-oriented and symmetric

CapTP and caja-captp

Causeway, a message oriented distributed debugger

JCoBox (has a formal semantics of a similar model)

Towards Fearless Distributed Computing

Orleans: A Framework for Cloud Computing with video. Starts with the same general model – async messages returning
promises, vats (called grains) processing the reception of such messages in sequential turns that run to completion, pipelined
polymorphism between promises and far references. Adds scalability by on-demand grain replication and optimistic
reconciliation.

file:///F|/Common/EXCHANGE/Patrick/doku.php6.htm (7 of 8) [18.05.2011 16:45:16]

http://weblogs.mozillazine.org/roadmap/archives/2007/02/threads_suck.html
http://erights.org/talks/promises/paper/tgc05.pdf
http://erights.org/talks/thesis/
http://soft.vub.ac.be/%7Etvcutsem/publications/phd_tom_van_cutsem.pdf
http://nodejs.org/
http://waterken.sourceforge.net/web_send/
http://wiki.commonjs.org/wiki/Promises/B
https://github.com/kriskowal/q
https://github.com/kriskowal/q-comm/
http://erights.org/elib/distrib/captp/
http://code.google.com/p/caja-captp/
http://wiki.erights.org/wiki/Causeway
http://softech.informatik.uni-kl.de/twiki/pub/Homepage/Publikationen/SchaeferPoetzschHeffter10jcobox.pdf
http://www.hpl.hp.com/techreports/2009/HPL-2009-258.html
http://research.microsoft.com/apps/pubs/?id=141999
http://channel9.msdn.com/Shows/Going+Deep/Project-Orleans-A-Cloud-Computing-Framework

strawman:concurrency [ES Wiki]

strawman/concurrency.txt · Last modified: 2011/05/15 16:06 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php6.htm (8 of 8) [18.05.2011 16:45:16]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:simple_module_functions [ES Wiki]

[[strawman:
simple_module_functions]]

ES
Wiki

Trace: »
inherited_explicit_soft_fields »

names_vs_soft_fields » quasis » concurrency » simple_module_functions

-Table of Contents

● Simple Module Functions

�❍ The problem

�❍ The proposal

�❍ Module parameters

● See

�❍ Reasons to avoid mutable static

state

Simple Module Functions

The problem

Here we propose an enhancement to simple modules to cope with the problems
created by its combination of mutable static state and the second-classness of its
modules. To understand the problem, consider its example of shared state:

module Counter {
 var counter = 0;
 export function increment() { return counter++ }
 export function current() { return counter }
}

This could be imported by

 import Counter.{increment,current};

or loaded by

 module Counter = /*MRL or Counter.js*/;

(Note that the simple modules strawman may change the concrete syntactic details shown above, but this does not affect
the points made here.)

This is similar to the following pre-module code, intended to be “imported” by evaling it and using its completion value as
the module instance:

// Counter.js
(function(){
 var counter = 0;
 return Object.freeze({
 increment: function() { return counter++ },
 current: function() { return counter }
 });
})();

Say this text has already been fetched by XHR and stored in the variable CounterSrc. The corresponding load operation
would then be

 var Counter = eval(CounterSrc);

In almost all ways, the new module-based way of doing this is better than the old eval-based way. (Both are better than
present practice of linkage via global variables.) However, the new module-based way does have one comparative problem.

file:///F|/Common/EXCHANGE/Patrick/doku.php7.htm (1 of 4) [18.05.2011 16:45:12]

http://wiki.ecmascript.org/doku.php?id=strawman:simple_module_functions&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:simple_module_functions&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:names_vs_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:quasis
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency
http://wiki.ecmascript.org/doku.php?id=strawman:simple_module_functions
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules
http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules_examples#shared_state

strawman:simple_module_functions [ES Wiki]

In both cases, the original Counter module has made a choice that many consider bad practice: the use of top level static
mutable state. The customer of the Counter module may wish to avoid this choice in the system into which they import the
Counter module, by nesting the load within a multiply instantiable context, such as a function body:

 function Something() {
 //...
 module Counter = /*MRL or Counter.js*/;
 //...
 }

or

 function Something() {
 //...
 var Counter = eval(CounterSrc);
 //...
 }

However, the first module-based nested load is illegal, in order to preserve the second-class nature of modules and be able
to report early errors, as explained in the modules strawman.

The design of simple modules makes it possible to multiply instantiate a module by using dynamic evaluation:

 function Something() {
 CurrentModuleLoader.evalSrc(
 "//..." +
 "module Counter = /*MRL or Counter.js*/;" +
 "//...");
 }

The normal early errors here are postponed until the evalSrc happens. The problem is that the above synchronous evalSrc
is not actually possible (without further mechanism) under the normal event-loop concurrency constraints, because the
module can no longer static tell that the importing “Something” module synchronously depends on the contents of /*MRL or
Counter.js*/, and therefore cannot know that it needs to prefetch it before execution begins.

The proposal

We enhance the grammar at syntax with the following additional productions. In all cases, “...” means the present right
hand side of an existing production.

 ModuleDeclaration ::= ... | 'module' ModuleFunctionDefinition

 ModuleFunctionDefinition ::= Identifier '(' (ModuleParameter (',' ModuleParameter)
)? ')' '{' ModuleElement '}'

 ModuleParameter ::= FormalParameter | 'module' FormalParameter

 QualifiedPath ::= ... | ModuleFunctionCall

 ModuleFunctionCall ::= QualifiedPath Arguments

A module function is a parameterized module definition. A module function call to a module function results in a module
instance. By analogy with parameterized types, we can see that this need not violate the second class nature of modules.
Regarding the time of error reporting, the body of a module function is still like the previous evalSrc call – a “static”
module error within the module function body is thrown on entry to the module function.

file:///F|/Common/EXCHANGE/Patrick/doku.php7.htm (2 of 4) [18.05.2011 16:45:12]

http://wiki.ecmascript.org/doku.php?id=strawman:simple_module_functions#reasons_to_avoid_mutable_static_state
http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules
http://wiki.ecmascript.org/doku.php?id=strawman:module_loaders#dynamic_evaluation
http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules#syntax

strawman:simple_module_functions [ES Wiki]

We can now express our previous example as

 module Something() {
 //...
 module Counter = /*MRL or Counter.js*/;
 //...
 }

Using an explicit abstraction form is notationally more pleasant that combining an eval form and an inline literal string. We
also see a more fundamental advantage: It is now statically apparent that the importing “Something” module synchronously
depends on /*MRL or Counter.js*/, and so the module system can know to fetch the code for the latter before starting
execution of the former.

Note that the fundamental advantage above may well get fixed by simple modules by other means, in which case simple
module functions provides only notational advantages over the evalSrc pattern.

Module parameters

(Rough – to be rewritten) Module loaders also explains module registration, how to dynamically demote a first class value to
a second class module instance, by use of attachModule. In our grammar above, a module parameter annotated with
module serves the same purpose. To a module function’s caller, this is just a normal parameter, for which the caller should
provide a first class frozen object as argument. The module function does the equivalent of attachModule of these
arguments around the equivalent of evalSrcing the module function body. This has the effect of binding the parameter
name as a module name to this object as module instance.

See
simple modules

simple modules examples

module loaders

Reasons to avoid mutable static state

Singletons Considered Harmful by Kenton Varda.

Cutting Out Static by Gilad Bracha. Discussion on Lambda the Ultimate.

Paradigm Regained: Abstraction Mechanisms for Access Control by Mark Miller.

Joe-E: A Security-Oriented Subset of Java by Adrian Mettler, David Wagner, and Tyler Close.

Root Cause of Singletons by Miško Hevery.

Why Singletons Are Controversial at the Google Singleton Detector project.

Global Variables Are Bad and Singletons Are Evil on the c2 wiki.

Why Singletons are Evil perhaps by Scott Densmore.

Re-engineering global variables in Ada by Sward and Chamillard.

Static is Evil in ColdFusion.

strawman/simple_module_functions.txt · Last modified: 2011/01/24 04:12 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php7.htm (3 of 4) [18.05.2011 16:45:12]

http://wiki.ecmascript.org/doku.php?id=strawman:module_loaders#module_registration
http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules
http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules_examples
http://wiki.ecmascript.org/doku.php?id=strawman:module_loaders
http://www.object-oriented-security.org/lets-argue/singletons
http://gbracha.blogspot.com/2008/02/cutting-out-static.html
http://lambda-the-ultimate.org/node/2678
http://www.erights.org/talks/asian03/paradigm-revised.pdf
http://www.cs.berkeley.edu/%7Edaw/papers/joe-e-ndss10.pdf
http://googletesting.blogspot.com/2008/08/root-cause-of-singletons.html
http://code.google.com/p/google-singleton-detector/wiki/WhySingletonsAreControversial
http://code.google.com/p/google-singleton-detector/
http://c2.com/cgi/wiki?GlobalVariablesAreBad
http://c2.com/cgi/wiki?SingletonsAreEvil
http://blogs.msdn.com/b/scottdensmore/archive/2004/05/25/140827.aspx
http://portal.acm.org/citation.cfm?doid=1032297.1032303
http://corfield.org/entry/Static_is_Evil

strawman:simple_module_functions [ES Wiki]

file:///F|/Common/EXCHANGE/Patrick/doku.php7.htm (4 of 4) [18.05.2011 16:45:12]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:random-er [ES Wiki]

[[strawman:random-
er]]

ES
Wiki

Trace: » names_vs_soft_fields » quasis » concurrency »
simple_module_functions » random-er

Upgrade the specification of Math.random() to require a cryptographically strong random
number generator. If that doesn’t take, at least decouple the random generators per global context
(e.g., per browser frame), so the numbers emitted within one context provide no information about
random state in a different context.

References
Mozilla bug 322529

David Wagner's links on randomness

Wikipedia’s Cryptographically secure pseudorandom number generator

strawman/random-er.txt · Last modified: 2010/06/05 07:02 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php8.htm [18.05.2011 16:45:26]

http://wiki.ecmascript.org/doku.php?id=strawman:random-er&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:random-er&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:names_vs_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:quasis
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency
http://wiki.ecmascript.org/doku.php?id=strawman:simple_module_functions
http://wiki.ecmascript.org/doku.php?id=strawman:random-er
https://bugzilla.mozilla.org/show_bug.cgi?id=322529
http://www.eecs.berkeley.edu/%7Edaw/rnd/index.html
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:function_to_string [ES Wiki]

[[strawman:
function_to_string]]

ES
Wiki

Trace: » quasis » concurrency »
simple_module_functions » random-er » function_to_string

-Table of Contents

● Function to String conversion

�❍ Problematic cases:

■ Built-in functions

■ Callable non functions, including

callable host objects

■ Bound functions

■ Function proxies

● Discussion

● Acks

Function to String conversion
Function.prototype.toString.call(fn) must
return source code for a FunctionDeclaration or
FunctionExpression that, if eval()uated in an equivalent-
enough lexical environment, would result in a function with
the same [[Call]] behavior as the present one. Note that
the new function would have a fresh identity and none of
the original’s properties, not even .prototype. (The
properties could of course be transferred by other means
but the identity will remain distinct.)

This returned source code must not mention freely any variables that were not mentioned freely by
the original function’s source code, even if these “extra” names were originally in scope. With this
restriction, an equivalent-enough lexical environment need only provide bindings for names used
freely in the original source code. For purposes of this scope analysis, a use of the direct eval
operator is statically considered a free usage of all variables in scope at that point.

Allowing FunctionExpression in the spec above acknowledges reality. All major JS engines will
convert an anonymous function to an anonymous FunctionExpression, even though the ES3 and
ES5 specs disallow it. This behavior is useful, so we should make it official.

Problematic cases:

Built-in functions

As of this writing, most JS engines convert these to, for example, “function join()
{ [native code] }“. As a widespread convention this will be hard to displace.
However, it is unpleasant on several grounds:

●

It does not parse as a FunctionDeclaration (violating the de-jure spec) nor as a

FunctionExpression (violating the rest of the de-facto spec).

●

It does not parse as any valid JavaScript production, making it useless as input to eval

().

file:///F|/Common/EXCHANGE/Patrick/doku.php9.htm (1 of 3) [18.05.2011 16:45:02]

http://wiki.ecmascript.org/doku.php?id=strawman:function_to_string&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:function_to_string&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:quasis
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency
http://wiki.ecmascript.org/doku.php?id=strawman:simple_module_functions
http://wiki.ecmascript.org/doku.php?id=strawman:random-er
http://wiki.ecmascript.org/doku.php?id=strawman:function_to_string
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

strawman:function_to_string [ES Wiki]

●

It conflicts with the spec’s use of the term “native”, which includes all function written in

JavaScript. Rather, it is probably derived from the Java meaning of “native” which ES5

and ES3 call “built ins”. (Another way to resolve this conflict is to change our

terminology to conform to the rest of the world’s meaning of “native”.)

If this behavior could be displaced, for primordial built ins, an alternative with some virtues
is to have it print as a FunctionExpression that calls whatever is at the conventional location
at which this built-in is normally found. For example: “function(...args) { return
Array.prototype.join.apply(this, args); }“.

For the non-primordial built ins, or perhaps for all built ins, we could convert them to a
FunctionExpression that uses freely a conventional name that represents the “actual” built-
in function, so that eval()ing the FunctionExpression in an environment in which
original was bound to that built in would preserve call behavior. For example:
“function(...args) { return original.apply(this, args); }”

Callable non functions, including callable host objects

Solutions for built ins should apply to these as well, since all we’re trying to preserve is
[[Call]] behavior.

Bound functions

Applying the same trick, “f.bind(self, a, b)” might print as “function(...
args) { return original.call(p1, p2, ...args); }“. The eval()uates to
a function with the same [[Call]] behavior if evaluated in an environment in which
original is bound to the original function and pN is bound to each of the arguments
originally provided to that call to bind().

Function proxies

If fp is a function proxy with ct as its call trap, then Function.prototype.
toString.call(fp) is already specified to return whatever Function.prototype.
toString.call(ct) would return. Since function proxies have precisely the [[Call]]
behavior of their call trap, both before and after fixing, this works.

Discussion
The goal assumed here – that eval()uating the string in an equivalent enough environment
would preserve [[Call]] behavior – to be useful, we would need to be able to construct an
equivalent enough environment. For many reasons, this seems impossible in the general case, so it
is questionable whether it’s worth much trouble to provide this feature. Alternatively, we could
make current reality official and mandate that built ins must convert to a string that does not parse

file:///F|/Common/EXCHANGE/Patrick/doku.php9.htm (2 of 3) [18.05.2011 16:45:02]

http://wiki.ecmascript.org/doku.php?id=harmony:proxies#api

strawman:function_to_string [ES Wiki]

as any valid JavaScript production. The current de-facto behavior already satisfies that spec.

Going in the other direction, various useful recognition tricks need a stronger spec. Preserving
equivalence under eval() doesn’t help these. Preserving exactly the original source code, or
preserving ASTs, or some abstraction over equivalent ASTs such as alpha renaming of non-free
variables, would all enable these recognition tricks. Are we willing to go that far?

Acks
Someone, please edit this to credit whoever originally made this suggestion on the es-discuss list.

strawman/function_to_string.txt · Last modified: 2010/09/19 19:40 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php9.htm (3 of 3) [18.05.2011 16:45:02]

https://mail.mozilla.org/pipermail/es-discuss/2010-September/011858.html
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:simple_maps_and_sets [ES Wiki]

[[strawman:
simple_maps_and_sets]]

ES
Wiki

Trace: » concurrency » simple_module_functions »
random-er » function_to_string » simple_maps_and_sets

Simple Maps and Sets
Similar in style to weak maps but without the funny garbage collection semantics or non-
enumerability. Depends on the iterators and egal proposals. Depends on the
classes_with_trait_composition only for expository purposes.

Map

Given

 /** A non-stupid alternative to Array.prototype.indexOf */
 function indexOfIdentical(keys, key) {
 for (var i = 0; i < keys.length; i++) {
 if (Object.is(keys[i], key)) { return i; }
 }
 return -1;
 }

Executable spec

 class Map {
 private keys, vals;
 constructor() {
 private(this).keys = [];
 private(this).vals = [];
 }
 get(key) {
 const keys = private(this).keys;
 const i = indexOfIdentical(keys, key);
 return i < 0 ? undefined : private(this).values[i];
 }
 has(key) {
 const keys = private(this).keys;
 return indexOfIdentical(keys, key) >= 0;
 }

file:///F|/Common/EXCHANGE/Patrick/doku.php10.htm (1 of 2) [18.05.2011 16:45:07]

http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency
http://wiki.ecmascript.org/doku.php?id=strawman:simple_module_functions
http://wiki.ecmascript.org/doku.php?id=strawman:random-er
http://wiki.ecmascript.org/doku.php?id=strawman:function_to_string
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps
http://wiki.ecmascript.org/doku.php?id=strawman:iterators
http://wiki.ecmascript.org/doku.php?id=harmony:egal
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition

strawman:simple_maps_and_sets [ES Wiki]

 set(key, val) {
 const keys = private(this).keys;
 const vals = private(this).vals;
 let i = indexOfIdentical(keys, key);
 if (i < 0) { i = keys.length; }
 keys[i] = key;
 vals[i] = val;
 }
 delete(key) {
 const keys = private(this).keys;
 const vals = private(this).vals;
 const i = indexOfIdentical(keys, key);
 if (i < 0) { return false; }
 keys.splice(i, 1);
 vals.splice(i, 1);
 return true;
 }
 // todo: iteration
 }

Set

Executable Spec

 class Set {
 private map;
 constructor() {
 private(this).map = Map();
 }
 has(key) { return private(this).map.has(key); }
 add(key) { private(this).map.set(key, true); }
 delete(key) { return private(this).delete(key); }
 // todo: iteration
 }

strawman/simple_maps_and_sets.txt · Last modified: 2011/05/17 06:57 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php10.htm (2 of 2) [18.05.2011 16:45:07]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:scoped_object_extensions [ES Wiki]

[[strawman:
scoped_object_extensions]]

ES
Wiki

Trace: »
simple_module_functions

» random-er » function_to_string » simple_maps_and_sets » scoped_object_extensions

-Table of Contents

● Scoped Object Extensions

�❍ Goals

�❍ Examples

�❍ Related Work

�❍ Syntax

�❍ Extension Definition

�❍ Exporting Extensions

�❍ Importing Extensions

�❍ Multiple Extensions

�❍ Lexical Scope

�❍ Property Lookup

�❍ Property Lookup Spec Changes

�❍ Property Iteration

�❍ Reflective API for Extensions

�❍ Implementation Notes

Scoped Object Extensions
Scoped object extensions allows different libraries to define and reuse monkey
patches without conflicting with each other.

Goals

●

Allow property extensions to any object

●

Extensions are only available in lexical scopes where they have been

explicitly defined or imported

●

When in scope property extensions are indistinguishable from normal properties

●

Extensions may be used to extend objects to support interfaces that non-extended objects support. Extensions

can be used to support duck-type polymorphism between extended and non-extended objects.

Examples

Extensions add properties to an object. Extensions are specified declaratively as part of a module declaration. The
properties added via an extension are only visible within the module within which the extension is declared.

module {
 extension Array.prototype {
 where: Array.prototype.filter,
 select: Array.prototype.map
 }

 // extensions are in scope in their defining module
 var evens = [1, 2, 3, 4].where(function (value) { return {value %2) == 0; });
 alert(typeof([].where)); // function
 alert(typeof(Array.prototype.select)); // function
}
// extensions are not in scope outside the lexical scope of the module
alert(typeof([].where)); // undefined
alert(typeof(Array.prototype.select)); // undefined

Extensions can be exported and imported across modules:

file:///F|/Common/EXCHANGE/Patrick/doku.php11.htm (1 of 7) [18.05.2011 16:45:18]

http://wiki.ecmascript.org/doku.php?id=strawman:scoped_object_extensions&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:scoped_object_extensions&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:simple_module_functions
http://wiki.ecmascript.org/doku.php?id=strawman:random-er
http://wiki.ecmascript.org/doku.php?id=strawman:function_to_string
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:scoped_object_extensions
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

strawman:scoped_object_extensions [ES Wiki]

module Collections {
 export extension Extensions = Array.protoype {
 where: function(condition) { ... }
 select: function(transformer) { ... }
 }
}

module LolCatzDotCom {
 // imports Array.prototype extensions where and select into this module
 import Collections.Extensions;

 var allCatz = someArrayValue;
 // Array extensions are in scope
 var cuteCatz = allCatz.where(function(cat) { return cat.isCute; });

 alert(typeof([].where)); // function
}

Extension properties appear to the programmer the same as any regular property defined on an object. In the
above example, allCatz might be an array, or it might be any other object which contains a suitable ‘where’
property. Extensions may be used in this way to introduce duck type polymorphism.

Any object may be extended:

module DOMExtensions {
 extension window {
 width: function () { return this.innerWidth; }
 }

 alert(window.width());
}

Related Work

Very similar to Ruby refinements which are based on ClassBlocks. Open Classes from MultiJava. C# extension
methods.

Syntax

Scoped object extension syntax builds on the syntax from the modules proposal.

ExtensionDeclaration ::= "extension" [Identifier "="] Expression ObjectLiteral

ExportDeclaration ::= ...
 | export ExtensionDeclaration

ModuleElement ::= ...
 | ExtensionDeclaration

Extension Definition

file:///F|/Common/EXCHANGE/Patrick/doku.php11.htm (2 of 7) [18.05.2011 16:45:18]

strawman:scoped_object_extensions [ES Wiki]

Object extensions are defined by ExtensionDeclarations:

ExtensionDeclaration ::= "extension" [Identifier "="] Expression ObjectLiteral

The Expression identifies the object being extended. The Expression is evaluated once at module startup
(TODO: compile-time, link-time, run-time). The ObjectLiteral specifies the extension object containing the
extension properties for the extended object. Extension objects are frozen and are prototype-less.

If the Identifier is present in an ExtensionDeclaration then the extension is a named extension. The
Identifier is bound to a const variable whose value is the extension object. TODO: Naming extensions is
needed for importing/exporting them. Should the Identifier be in scope outside of import declarations? If not, is
there a better syntax for naming extensions?

As a matter of style, it is recommended that extension names be “Extensions” where possible, or end on
“Extensions”. This will increase clarity when importing extensions.

Exporting Extensions

Object extensions may be exported from a module:

ExportDeclaration ::= ...
 | export ExtensionDeclaration

An object extension declared in an ExportDeclaration is exported from the containing module. An exported object
extension which is named adds the named extension identifier to the set of identifiers exported by the module.
Exported ExtensionDeclarations may be named or unnamed.

Importing Extensions

Extensions may be imported from another module.

ImportPath(load) ::= ModuleExpression(load) "." ImportSpecifierSet
ImportSpecifierSet ::= "*"
 | IdentifierName
 | "{" (ImportSpecifier ("," ImportSpecifier)*)? ","? "}"
ImportSpecifier ::= IdentifierName (":" Identifier)?

An import specifier of * imports all exported object extensions from the identified module - both named and
unnamed extensions. If an import specifier of IdentifierName identifies an exported named extension then that
extension is imported.

TODO: Individual extension properties may also be imported by name. Need to wrangle the syntax...

Multiple Extensions

A module may contain multiple extension definitions for the same object. When multiple extension definitions exist
for the same object, the individual extension objects are removed from the extended object and a new extension
object is created. The new extension object is created by adding all the extension properties from the defining
extensions in the lexical order the extensions are defined in. The new extension object is frozen and has no
prototype. In the case of conflicting extension definitions to the same object with the same property name, the last
definition wins. TODO: could make this an error.

A module may both import and locally define extensions for the same object. In the more general case, the
conflicting extensions are removed and a new extension is added. The new extension is created by first adding all

file:///F|/Common/EXCHANGE/Patrick/doku.php11.htm (3 of 7) [18.05.2011 16:45:18]

strawman:scoped_object_extensions [ES Wiki]

imported extensions in lexical order of importing, then local extension definitions are added. The new extension
object is frozen and has no prototype. Conflicts between imported extensions and conflicts between imported
extensions and locally defined extensions are not an error. Locally defined extensions always win over imported
extensions, regardless of lexical order of import and definition. TODO: Is this the right rule?

TODO: nested modules have extensions from outer modules in scope.

Inside a given lexical scope an object will have at most one extension object. Extension objects are frozen and have
no prototype. The complete set of extension properties in a lexical scope can be determined statically.

TODO: This should be reworked in terms of property descriptors.

Lexical Scope

Each module declaration has a unique lexical scope. The lexical scope of an expression is the lexical scope of the
immediately containing module. The notion of lexical scope propagates similarly to ‘strict mode’. Calls to eval
inherit the lexical scope of their immediate caller.

Property Lookup

Property lookup on an object proceeds by first doing a lookup on the extension object if one is in scope. If the
object does not have an extension object, or the extension object does not have a matching named property, then
lookup proceeds normally on the object. When an object extension is in scope, the extension properties win. Note
that all objects may be extended.

Given:

var P = {};
var O = Object.create(P);

The expression O.M searches for a property M in the following order:

1.

extension object for O

2.

O

3.

extension object for P

4.

P

5.

extension object for Object.prototype

6.

Object.prototype

Property Lookup Spec Changes

Section 8.12.1 [[GetOwnProperty]](P) is modified as follows:

When the [[GetOwnProperty]] internal method of O is called with property name P and lexical scope L, the following

file:///F|/Common/EXCHANGE/Patrick/doku.php11.htm (4 of 7) [18.05.2011 16:45:18]

strawman:scoped_object_extensions [ES Wiki]

steps are taken:

1.

Let D be the result of calling [[GetExtensionProperty]] on object O with property name P and lexical scope L.

2.

If D is not undefined, return D.

3.

Else return [[GetUnextendedOwnProperty]] on object O with property name P.

When the [[GetExtensionProperty]] internal method of O is called with property name P and lexical scope L, the
following steps are taken:

1.

If O doesn’t have an object extension in lexical scope L return undefined.

2.

Else let E be the object extension for O in lexical scope L.

3.

Return [[GetUnextendedOwnProperty]] with object E and property name P.

When the [[GetUnextendedOwnProperty]] internal method of O is called with property name P, the following steps
are taken: NOTE: this is just the old version of [[GetOwnProperty]]

1.

If O doesn’t have an own property with name P, return undefined.

2.

Let D be a newly created Property Descriptor with no fields.

3.

Let X be O’s own property named P.

4.

If X is a data property, then

1.

Set D.[[Value]] to the value of X’s [[Value]] attribute.

2.

Set D.[[Writable]] to the value of X’s [[Writable]] attribute

5.

Else X is an accessor property, so

1.

Set D.[[Get]] to the value of X’s [[Get]] attribute.

2.

Set D.[[Set]] to the value of X’s [[Set]] attribute.

file:///F|/Common/EXCHANGE/Patrick/doku.php11.htm (5 of 7) [18.05.2011 16:45:18]

strawman:scoped_object_extensions [ES Wiki]

6.

Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attribute.

7.

Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.

8.

Return D.

A consequence of the changes to [[GetOwnPropertyDescriptor]] is that extensions apply to MemberExpressions
(both ‘.’ and ‘[’ operators), internal methods from 8.12 (Get, CanPut, Put, HasProperty, ...), as well as Object.
getOwnPropertyDescriptor. The lexical scope will need to be propagated from all reflection APIs(Get, CanPut, Put,
HasProperty, ...) down to [[GetOwnPropertyDescriptor]].

Extension properties are non-configurable so assignment and Object.defineProperty will not allow modification of
extension properties.

Alternative:

An alternative design is to only apply extension lookup to the ‘.’ and ‘[’ operators.

Property Iteration

Extension properties participate in object property iteration.

In sections:

●

12.6.4 The for-in Statement

●

15.2.3.4 Object.getOwnPropertyNames

●

15.2.3.14 Object.keys

Extension properties are included in property iterations and shadow non-extension properties of the same name.
When iterating over the properties of an object, if an object has both an extension property and a regular(non-
extension) property then the iteration will proceed as if the non-extension property is not present on the object.

TODO: formalize this section.

Reflective API for Extensions

TODO: Need API on Object to access [[GetUnextendedOwnProperty]] and [[GetExtensionProperty]] directly.

Implementation Notes

●

An existing compiling implementation will not need to change its code gen for legacy code because it can

determine statically that no object extensions are in scope.

●

file:///F|/Common/EXCHANGE/Patrick/doku.php11.htm (6 of 7) [18.05.2011 16:45:18]

strawman:scoped_object_extensions [ES Wiki]

The set of extension objects in scope is a compile time constant. Extensions objects are frozen and the set of

extensions is specified declaratively. Taking advantage of this fact should allow implementations to minimize the

performance impact.

strawman/scoped_object_extensions.txt · Last modified: 2011/04/29 05:32 by peterhal

file:///F|/Common/EXCHANGE/Patrick/doku.php11.htm (7 of 7) [18.05.2011 16:45:18]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:deferred_functions [ES Wiki]

[[strawman:
deferred_functions]]

ES
Wiki

Trace: » random-er » function_to_string
» simple_maps_and_sets »

scoped_object_extensions » deferred_functions

-Table of Contents

● Deferred Functions

�❍ Asynchronous Programming

�❍ Deferred Functions

�❍ Returning Values From Deferred

Functions

�❍ Throwing From Deferred Functions

�❍ Deferred Pattern

�❍ Syntax

�❍ 13.2 Creating Deferred Function

Objects

�❍ 13.2.1 Deferred Function [[Call]]

�❍ Deferred Object [[Continue]]

�❍ Await Expressions

�❍ Deferred Object [[Then]]

�❍ Deferred Object [[Cancel]]

�❍ Deferred Object [[Callback]]

�❍ Deferred Object [[Errback]]

�❍ Deferred Object [[CreateCallback]]

�❍ Deferred Object [[CreateErrback]]

Deferred Functions
Deferred functions ease the burden of asynchronous programming.

Asynchronous Programming

Ecmascript programming environments typically are single threaded and pausing
execution for long periods is undesirable. ES host environments use callbacks for
operations which may take a long time like network IO or system timers.

For Example:

function animate(element, callback) {
 var i = -1;
 function continue() {
 i++;
 if (i < 100) {
 element.style.left = i;
 window.setTimeout(continue, 20);
 } else {
 callback();
 }
 }
 continue();
};
animate(document.getElementById('box'), function() { alert('Done!'); });

Calling functions which have callback arguments does not compose easily. Many libraries include a Deferred
constructor function to address this issue.

function deferredTimeout(delay) {
 var deferred = new Deferred();
 window.setTimeout(function() {
 deferred.callback({});
 },
 delay);
 return deferred;
}

function deferredAnimate(element) {
 var i = -1;
 var deferred = new Deferred();
 function continue() {
 i++;
 if (i < 100) {
 element.style.left = i;
 deferredTimeout(20).then(continue);
 } else {
 deferred.callback();
 }
 }

file:///F|/Common/EXCHANGE/Patrick/doku.php12.htm (1 of 7) [18.05.2011 16:45:37]

http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:random-er
http://wiki.ecmascript.org/doku.php?id=strawman:function_to_string
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:scoped_object_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

strawman:deferred_functions [ES Wiki]

 continue();
 return deferred;
};
deferredAnimate(document.getElementById('box')).then(function () { alert('Done!'); });

The Deferred API pattern improves composability of callback patterns but there are still drawbacks in programming in
this style. The completion of the computation must be enclosed in a callback function passed to the ‘then’ function.

Authoring the callback function has proved difficult for ES programmers. Control flow constructs (if, while, for, try) do
not compose across function boundaries. The programmer must manually twist the control flow into continuation
passing style. The callback function does not by default have the same ‘this’ binding as the enclosing function which is
a frequent source of programmer error.

Deferred Functions

Deferred functions allow asynchronous code to be written using existing control flow constructs.

function deferredTimeout(delay) {
 var deferred = new Deferred();
 window.setTimeout(function() {
 deferred.callback({
 called: true
 })
 },
 delay);
 return deferred;
}

function deferredAnimate(element) {
 for (var i = 0; i < 100; ++i) {
 element.style.left = i;
 await deferredTimeout(20);
 }
};
deferredAnimate(document.getElementById('box')).then(function () { alert('Done!'); });

This proposal adds ‘await expression’ syntax, a new kind of expression. A function containing an ‘await expression’ is
a deferred function.

The ‘await expression’ evaluates the expression. The result of evaluating the expression in an ‘await expression’ is
the ‘awaited object’. The expectation is that the ‘awaited object’ supports the ‘Deferred pattern’ common to many ES
libraries. After computing the ‘awaited object’ the ‘await expression’ suspends execution of the current function, attaches
the continuation of the current function to the ‘awaited object’ by calling its then function, and then returns.

The return value of a ‘deferred function’ is itself a ‘deferred object’. Deferred objects support the ‘deferred pattern’.
Deferred objects have a then function which allows registration of callbacks. When the deferred object completes
its computation all callbacks registered to the then function are invoked.

Returning Values From Deferred Functions

Deferred functions may return a value. When a deferred function completes by returning a value, the returned value is
passed as the argument when invoking callbacks registered to the deferred object’s then function. The value of an
await expression is the value of the argument passed to the callback registered on the awaited object’s then function.

function deferredXHR(url) {
 var deferred = new Deferred();
 var request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.send(null);
 request.onreadystatechange = function() {

file:///F|/Common/EXCHANGE/Patrick/doku.php12.htm (2 of 7) [18.05.2011 16:45:37]

strawman:deferred_functions [ES Wiki]

 if (request.readyState == 4) {
 // call all callback's registered by deferred.then with 'request' as argument
 deferred.callback(request);
 }
 };
 return request;
}

function deferredLoadRedirectUrl(redirectUrl) {
 // redirectUrl contains another url
 var urlXHR = await deferredXHR(redirectUrl);
 var url = urlXHR.responseText;

 var valueXHR = await deferredXHR(url);
 // call all callback's registered by return value's 'then' with 'valueXHR.
responseText' as argument
 return valueXHR.responseText;
}

// alert the value of the redirected url
deferredLoadRedirectUrl('http://lolcatz.com/redirect').then(function (value) { alert
(value); });

Throwing From Deferred Functions

The then function on a deferred object takes two arguments. The first is the callback to be invoked if the deferred
object completes normally. The second is the callback to be invoked if the deferred object completes erroneously. When
a deferred function completes by throwing an exception the registered error callbacks are invoked with the thrown
exception as the argument.

// alert the value of the redirected url
deferredLoadRedirectUrl('http://lolcatz.com/redirect').then(
 function (value) { alert('Success: ' + value); },
 function (err) { alert('Failure: ' + err); });

Similarly, when an awaited on object completes with an error - ie. its error callback is invoked - the result of the
await expression is to throw the error value.

TODO: cancelling a deferred function.

Open Issue: chaining the return value of callbacks/errbacks.

Deferred Pattern

An object implementing the deferred pattern represents a computation which will complete at a later time. For example,
the completion of an XHR. The deferred pattern contains two methods ‘then’ and ‘cancel’:

then: function(callback, errback)

The ‘then’ function adds a listener to the completion of the deferred object’s computation. When the deferred
object completes its computation it will notify all registered listeners. If the completed computation succeeds, then
the ‘callback’ entry of each listener will be invoked with the result of the completed computation as its argument. If
the completed computation fails (throws an exception), then the ‘errback’ entry of each listener will be invoked with the
error of the completed computation as its argument. If the deferred object’s computation has already completed then
the ‘then’ function will immediately call the ‘callback’ or ‘errback’ with the result of the computation.

cancel: function()

The ‘cancel’ function attempts to cancel the computation in progress. If the computation has not completed, then all
listeners will be notified as if the computation completed with a ‘CancelledError’. If the computation has already
completed, then the ‘cancel’ method throws an ‘AlreadyCompletedError’.

file:///F|/Common/EXCHANGE/Patrick/doku.php12.htm (3 of 7) [18.05.2011 16:45:37]

strawman:deferred_functions [ES Wiki]

TODO: Error names.

TODO: Alternative Pattern: addCallback, addErrback and addCallbacks in lieu if then.

Syntax

Deferred functions adds ‘await expression’ a new primary expression:

TODO:

Need to work the syntax. ‘await’ as a keyword will likely not fly. An alternative is to add a modifier on the deferred
function and make ‘await’ a contextual keyword only within deferred functions.

var f = function () { await(1); } // regular function. 'await' is an identifier.
var df = deferred function () { await(1); } // deferred function. 'await is a keyword.

/TODO

PrimaryExpression ::= ...
 AwaitExpression

AwaitExpression ::= "await" Expression

It is an error for an AwaitExpression to occur in the finally block of a try statement. It as an error for a function to
be both a deferred function and a generator function.

13.2 Creating Deferred Function Objects

A function containing an AwaitExpression is a deferred function. When creating a function object for a
‘deferred function’ via 13.2, bullet 6 is replaced by the below.

13.2.1 Deferred Function [[Call]]

When the [[Call]] internal method for a Deferred Function object F is called with a this value and a list of arguments,
the following steps are taken:

1.

Let funcCtx be the result of establishing a new execution context for function code using the value of F’s

[[FormalParameters]] internal property, the passed arguments List args, and the this value as described in 10.4.3.

2.

Create a new object and let D be that object. Call D a ‘Deferred Object’.

1.

Set the internal methods of D as described in 8.12.

2.

Set the [[Class]] internal property of D to “Object”

3.

Set the [[Prototype]] internal property of D to Object.prototype.

4.

Set the [[ExecutionContext]] of D to funcCtx. TODO: This includes variable environment. Does it also include, the

function code and current IP? I’m assuming yes, otherwise those need to be included in the state of a Deferred Object.

file:///F|/Common/EXCHANGE/Patrick/doku.php12.htm (4 of 7) [18.05.2011 16:45:37]

http://wiki.ecmascript.org/doku.php?id=strawman:generators

strawman:deferred_functions [ES Wiki]

Set the [[State]] internal property of D to “newborn”.

6.

Set the [[Listeners]] internal property of D to a new empty array.

7.

Set the [[Then]] internal property of D to as specified below.

8.

Set the [[Cancel]] internal property of D to as specified below.

9.

Set the [[Continue]] internal property of D to as specified below.

10.

Set the [[Callback]] internal property of D to as specified below.

11.

Set the [[Errback]] internal property of D to as specified below.

12.

Set the [[CreateCallback]] internal property of D to as specified below.

13.

Set the [[CreateErrback]] internal property of D to as specified below.

14.

Set D.then to the [[Then]] internal property of D.

15.

Set D.cancel to the [[Cancel]] internal property of D.

3.

Evaluate the [[Continue]] property of D.

4.

Return D. D is an object which satisfies the Deferred Pattern.

Deferred Object [[Continue]]

When the [[Continue]] internal method of deferred object D is called, the following steps are taken:

1.

If the [[State]] property of D is “running”, or “finished” then throw.

2.

Set the [[State]] internal property of D to “running”.

3.

Set the current execution context to the [[Execution Context]] internal property of D.

4.

If the [[State]] property is “newborn”, then begin executing at the start of the Deferred Function.

5.

Otherwise the [[State]] property is “suspended”, continue execution after the point of suspension.

file:///F|/Common/EXCHANGE/Patrick/doku.php12.htm (5 of 7) [18.05.2011 16:45:37]

strawman:deferred_functions [ES Wiki]

6.

Execution will continue until an await expression is encountered or the function terminates.

7.

If an await expression is encountered, evaluate the expression as below.

8.

Otherwise, if the function terminates with a (return, value, empty), then invoke the [[Callback]] internal method of D.

9.

Otherwise, the function terminates with a (throw, value, empty). Invoke the [[Errback]] internal method of D.

10.

Return (return, undefined, empty).

Await Expressions

Await expressions may only appear in deferred functions, and can only be evaluated during the execution of a
deferred object’s [[Continue]] internal method.

The production AwaitExpression: await Expression is evaluated as follows:

1.

Let the deferred object of the [[Continue]] method be D.

2.

Let e be the result of evaluating Expression.

3.

Set the [[ExecutionContext]] internal property of D to the current execution context.

4.

Set the [[State]] internal property of D to “suspended”.

5.

Let callback be the result of invoking the [[CreateCallback]] internal method of D.

6.

Let errback be the result of invoking the [[CreateErrback]] internal method of D.

7.

Call the then method on e with arguments (callback, errback).

8.

Return (return, undefined, empty) from the currently executing [[Continue]] method.

Deferred Object [[Then]]

Deferred Object [[Cancel]]

Deferred Object [[Callback]]

Deferred Object [[Errback]]

file:///F|/Common/EXCHANGE/Patrick/doku.php12.htm (6 of 7) [18.05.2011 16:45:37]

strawman:deferred_functions [ES Wiki]

Deferred Object [[CreateCallback]]

Deferred Object [[CreateErrback]]

strawman/deferred_functions.txt · Last modified: 2011/04/27 22:07 by peterhal

file:///F|/Common/EXCHANGE/Patrick/doku.php12.htm (7 of 7) [18.05.2011 16:45:37]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:guards [ES Wiki]

[[strawman:
guards]]

ES
Wiki

Trace: » function_to_string » simple_maps_and_sets »
scoped_object_extensions » deferred_functions » guards

-Table of Contents

● Guards

�❍ Guarding Variables

�❍ Guarding Parameters and Results

�❍ Guarding Properties

● Open Issues

● See

Guards
For checking purposes, guards are used as the runtime
analog of types. Use guards to annotate variable and
parameter declarations, function return results, and
property definitions. Each guard is asked to approve an
incoming value, the specimen, to determine whether to let
it pass or reject it. Examples of uses of guards include:

 let x :: Number = 37;
 function f(p :: String, q :: MyType) :: Boolean { ... }
 let o = {a :: Number : 42, b: "b"};

Guards do not do any coercion. It is the intent that removing guards will not turn a correct
program into an incorrect program. There are ways to write programs that violate this guideline by
either catching type error exceptions or writing GuardExpressions that produce visible side effects,
but both are considered poor style.

 Guard :
 :: GuardExpression
 GuardExpression :
 ConditionalExpression

A Guard annotation evaluates its GuardExpression to a value in that scope in the usual manner.
(See clarifications below for which scope that is, and when the evaluation occurs.) The
GuardExpression should evaluate to an object with a [[Brand]] internal property which is then
consulted to determine whether to pass the specimen or not. In detail:

1.

Let t be the result of evaluating GuardExpression.

2.

If t is not an object or doesn’t have a [[Brand]] internal property, throw a TypeError. The

[[Brand]] lookup is done on t only; it does not follow t‘s prototype chain.

3.

file:///F|/Common/EXCHANGE/Patrick/doku.php13.htm (1 of 4) [18.05.2011 16:45:31]

http://wiki.ecmascript.org/doku.php?id=strawman:guards&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:guards&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:function_to_string
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:scoped_object_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions
http://wiki.ecmascript.org/doku.php?id=strawman:guards
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

strawman:guards [ES Wiki]

Let brand = t.[[Brand]] and save it for the guard check.

Later, when checking a specimen s:

1.

Call brand.validate(s). This will either let s pass, in which case it has no side effects, or

throw a TypeError.

See the trademarks proposal for the means of creating objects with a [[Brand]] property and its
semantics.

Guarding Variables

Here, we define the ConstDeclaration and LetDeclaration from block_scoped_bindings to
generalize the defining position from an Identifier to a Pattern. This is a somewhat different
factoring than the Pattern at destructuring, but the “...” below should include all the Pattern
productions there.

We do it this way, rather than extend the ES5 VariableDeclaration, since we are not trying to
enhance the deprecated VariableStatement.

 ConstDeclaration :
 const Pattern = AssignmentExpression
 LetDeclaration :
 let Pattern = AssignmentExpression
 Pattern : ... //
 Identifier Guard?

The guard expression, if present, is evaluated in left to right order, and therefore before the
AssignmentExpression initializer.

A guarded const variable simply inserts an initialize-time check — the value of the brand
guard is used immediately to check the initializer.

A guarded let variable inserts the corresponding check on initialization and on all assignments
to the variable. Therefore, reading the variable, which is not translated, can only either

●

throw a ReferenceError if read before initialization, or

●

yield a value which the guard considers acceptable.

There intentionally is no way to guard var variables. Doing that would be problematic because

file:///F|/Common/EXCHANGE/Patrick/doku.php13.htm (2 of 4) [18.05.2011 16:45:31]

http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
http://wiki.ecmascript.org/doku.php?id=harmony:block_scoped_bindings
http://wiki.ecmascript.org/doku.php?id=harmony:destructuring

strawman:guards [ES Wiki]

var variables can be written before their definitions are evaluated and there can be multiple
definitions for the same var variable.

Guarding Parameters and Results

 FunctionDeclaration :
 function Identifier FunctionHead { FunctionBody }
 const Identifier FunctionHead { FunctionBody }
 FunctionExpression :
 function Identifier? FunctionHead { FunctionBody }
 const Identifier? FunctionHead { FunctionBody }
 FunctionHead :
 (FormalParameterList?) Guard?

 FormalParameterList :
 FormalParameter
 FormalParameterList , FormalParameter
 // extend for optional and rest parameters
 FormalParameter :
 const? Pattern
 Pattern : ...
 Identifier Guard?

When a FormalParameter variable is annotated with a Guard, the corresponding argument
value is first checked via the guard before binding to the parameter. When a Guard appears
after the close paren of a FunctionHead, then whatever value would be returned is checked via
the guard before being returned.

Guard expressions on function parameters and results are not evaluated when the function is
called, but rather when the function definition is evaluated. Thus, they are not evaluated in the
scope defined by this function, but rather in the scope in which this function definition itself is
evaluated. The resulting guard values are therefore captured by the created function.

Guarding Properties

The reason our guard syntax uses “::” rather than the “:” of ES4 is so that we can annotate
property definitions in object literals.

 PropertyAssignment : ...
 PropertyName Guard? : AssignmentExpression

As with function parameter and result guards, literal property guards are evaluated in the scope
in which the object literal appears, and are evaluated prior to evaluating the object literal.

Here we have a choice of either making the guard an attribute of the annotated property or

file:///F|/Common/EXCHANGE/Patrick/doku.php13.htm (3 of 4) [18.05.2011 16:45:31]

strawman:guards [ES Wiki]

turning the annotated property into an accessor property whose setter enforces the guard.

Open Issues

●

What, if any, syntax do we want to integrate guards with classes? A lot depends on the choice

of class proposal.

●

Should guarded properties be enforced by attributes or be turned into accessors?

See
trademarks

classes with trait composition

email thread

strawman/guards.txt · Last modified: 2011/05/11 22:16 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php13.htm (4 of 4) [18.05.2011 16:45:31]

http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
https://mail.mozilla.org/pipermail/es-discuss/2010-November/012191.html
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:trademarks [ES Wiki]

[[strawman:
trademarks]]

ES
Wiki

Trace: » simple_maps_and_sets » scoped_object_extensions
» deferred_functions » guards » trademarks

-Table of Contents

● Trademarks

�❍ Brander

�❍ Guard

�❍ Type

�❍ Built-In Trademarks

● Alternatives and Open Issues

● Bibliography

Trademarks
A trademark represents a generative nominal type. A
trademark has two facets:

●

A trademark’s brander allows one to brand objects or sets

of objects with that trademark. Objects can be branded by

a trademark when they’re created or at any later time, but a brand is irrevocable: Once an object is

branded by a trademark tm, it is forever branded by trademark tm.

●

A trademark’s guard allows one to test a specimen object to see if it is branded by that trademark.

The companion guards proposal provides convenient syntax for doing such tests.

To make brands unforgeable, the two facets of a trademark are represented by different ECMAScript
objects, linked to each other under the scenes. Given the brander one can readily create a guard. On
the other hand, one cannot obtain the brander given just the guard of a trademark. Thus the brander
of a trademark is a capability.

Some of the API relating to trademarks also consists of static global methods. These are gathered into
a Type object, which is a collection of static methods analogous to Math or JSON. Type is imported
into scope using the module mechanism.

Brander

The branding facet of a trademark is an object with the following frozen methods. Here specimen is
an arbitrary ECMAScript value and guard is a guard.

●

test(specimen)

�❍

Returns either true or false indicating whether specimen has been branded with this

trademark.

file:///F|/Common/EXCHANGE/Patrick/doku.php14.htm (1 of 6) [18.05.2011 16:45:14]

http://wiki.ecmascript.org/doku.php?id=strawman:trademarks&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:trademarks&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:scoped_object_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions
http://wiki.ecmascript.org/doku.php?id=strawman:guards
http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=strawman:guards

strawman:trademarks [ES Wiki]

●

validate(specimen)

�❍

If test(specimen) returns true, return specimen. Otherwise throw a TypeError.

●

brand(specimen)

�❍

Brand specimen with this trademark. Once branded, specimen is branded forever. Branding

the same specimen again has no effect.

●

brandPrototype(specimen)

�❍

Brand specimen and all, current or future, objects with specimen on their prototype chain

with this trademark. Once branded, specimen is prototype-branded forever. Branding the

same specimen again has no effect.

●

append(guard)

�❍

Derive this trademark from guard‘s trademark. Every object branded by guard, either now

or in the future, automatically acquires this trademark’s brand as well.

●

isGuard(guard)

�❍

If guard is a guard whose [[Brand]] internal property is this brander, return true.

Otherwise return false.

●

setGuard(guard) (optional, not needed if the facilities for specifying that an object is a guard

at creation time are sufficient)

�❍

file:///F|/Common/EXCHANGE/Patrick/doku.php14.htm (2 of 6) [18.05.2011 16:45:14]

strawman:trademarks [ES Wiki]

If guard is not an extensible object or is already a guard (i.e. has a [[Brand]] internal

property), throw an error. Otherwise create a [[Brand]] internal property on guard and set it

to this brander.

Branders are created by Type.make below.

Guard

The guarding facet of a trademark is an object with a [[Brand]] internal property. There are two
ways to set this property to a brander b on a guard g:

●

Set g‘s [[Brand]] internal property to b at the time g is created using whatever syntax or API is

approved for setting metaproperties during object creation.

●

Call b.makeGuard(g) (not needed if the above mechanism is adequate)

Once g‘s [[Brand]] is set, it cannot be deleted or changed. Furthermore, user code cannot directly
read the [[Brand]] internal property.

Guards are typically used for constraining the values of variables, fields, or parameters as part of
guards:

 let x :: guard = value;
 function f(a :: guard1, b :: guard2, c) :: resultGuard {...}

One can also invoke a guard manually using Type methods. These methods are on Type instead of
directly on the guard to make it easy to make any object into an guard without polluting its
property name space. In particular, Object, Number, String, etc. can serve as built-in guards.

The ~ and | operators have special behavior when their operands are guards. When given guards
as both operands, the | operator invokes Type.union on the operands. When given a guard as
the operand, the ~ operator invokes Type.union on the guard with Null and Void. These let
one conveniently make guard annotations such as:

 let x :: Number | Boolean = value; // Either a Number of a Boolean
 let y :: ~Number = value; // Either a Number or null or undefined

Type

The Type global object is a collection of static methods for working with branders and guards. It
provides the following methods:

file:///F|/Common/EXCHANGE/Patrick/doku.php14.htm (3 of 6) [18.05.2011 16:45:14]

http://wiki.ecmascript.org/doku.php?id=strawman:guards

strawman:trademarks [ES Wiki]

●

make()

�❍

Create and return a new brander, initially with no branded specimens.

●

make(guard1, guard2, ...)

�❍

Same as make to create a new brander b followed by a series of b.append calls to append

all of the given guards to b. This will make the new brander the union of the guards’ types.

●

union(guard1, guard2, ...)

�❍

Same as make above, but returns the guard, not the brander. Other than containing the

[[Brand]] internal property, the returned guard object is like an object created by {}. There

is no way to access the brander.

�❍

Open issues: Should the returned object be frozen? If so, can calling this multiple times

return the same object?

●

test(guard, specimen)

�❍

Return either true or false indicating whether specimen has been branded with guard‘s

trademark. Throw an error if guard is not a guard. test invokes guard.[[Brand]].test

(specimen).

●

validate(guard, specimen)

�❍

If test(guard, specimen) returns true, return specimen. Otherwise throw a TypeError.

validate invokes guard.[[Brand]].validate(specimen).

file:///F|/Common/EXCHANGE/Patrick/doku.php14.htm (4 of 6) [18.05.2011 16:45:14]

strawman:trademarks [ES Wiki]

There intentionally is no way to make complement or difference types because doing so would
violate monotonicity: if specimen s is in t1 but not t2, then s will be in t1 - t2. However, it will
disappear from t1 - t2 if someone later brands s with t2.

Built-In Trademarks

We seed the trademark graph by providing guards for built-in types:

●

Null accepts null

●

Void accepts undefined

●

Number accepts all primitive numbers, including infinities and NaN

●

Integer accepts all primitive numbers whose values are finite integers, regardless of

magnitude. Integer includes both +0 and -0.

●

Boolean accepts the primitives true and false

●

String accepts all primitive strings

●

Type accepts all guards (i.e. objects directly containing a [[Brand]] internal property)

●

Object accepts all non-primitive objects. Note that null and undefined are not objects.

●

Any accepts everything

Because guards introduce no extra methods, these uses do not conflict with these objects’ other
APIs.

Alternatives and Open Issues

●

Coordinate syntax of creating a guard and/or a brander with the private, class, and object initializer

proposals.

file:///F|/Common/EXCHANGE/Patrick/doku.php14.htm (5 of 6) [18.05.2011 16:45:14]

strawman:trademarks [ES Wiki]

●

Can we take out setGuard?

●

Do we want an appendBrander method on a brander that takes a brander instead of a guard

argument?

●

Do we want a way to freeze branders to prevent future calls to brand, brandPrototype, or

append? If so, do it by piggybacking on Object.freeze (i.e. brand, brandPrototype, and

append would throw an error if the brander is frozen) or by introducing a freeze method on the

brander? In either case, knowing that a brander is frozen might make some code patterns easier to

understand and analyze. Note that, just like for all other objects, freezing is shallow, so even a

frozen brander can acquire new branded instances by having earlier appending a different brander

or by deriving from a prototype-branded prototype.

●

Currently test and validate will never run user code. This guarantees monotonicity — there is

no way to revoke a brand. Is this desirable, or do we want to relax this restriction and add a way to

write potentially problematic user-specified guards?

Bibliography
Efficient Type Inclusion Tests

Protection in Programming Languages

A Security Kernel Based on the Lambda-Calculus

Auditors: An Extensible, Dynamic Code Verification Mechanism

Guard-based Auditing

Virtual Values for Language Extension

strawman/trademarks.txt · Last modified: 2011/05/06 20:37 by waldemar

file:///F|/Common/EXCHANGE/Patrick/doku.php14.htm (6 of 6) [18.05.2011 16:45:14]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.6213&rep=rep1&type=pdf
http://portal.acm.org/citation.cfm?id=361937
http://mumble.net/%7Ejar/pubs/secureos/
http://erights.org/elang/kernel/auditors/
http://wiki.erights.org/wiki/Guard-based_auditing
http://www.soe.ucsc.edu/research/report?ID=1588
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:modulo_operator [ES Wiki]

[[strawman:
modulo_operator]]

ES
Wiki

Trace: » scoped_object_extensions »
deferred_functions » guards » trademarks » modulo_operator

Modulo Operator
ECMAScript does not currently have a modulo operator. Instead, it has a remainder operator %.
The result of remainder takes the sign of the dividend, not the divisor, so it does not have the nice
limit-and-force-to-the-positive characteristics of modulo. Programs that use remainder in place of
modulo are probably in error.

So it proposed that a modulo operator mod be added. The result of modulo takes the sign of the
divisor, not the dividend.

The mod keyword is contextual, and backward-compatible only if productions in which it occurs
have [no LineTerminator here] immediately to the left of mod.

— Douglas Crockford 2011/02/13 00:51 — Brendan Eich 2011/03/23 20:12

We may want div too, for integer division. We could even consider divmod, returning a tuple:

alert(12 divmod 5) // #[2, 2]

— Brendan Eich 2011/02/16 05:15

I like that a lot. Assuming the grammar works out, I think it wins. There are other infix operators
that could be added on a similar basis, like min and max.

— Douglas Crockford 2011/02/16 23:44

I will write this up later today. The min and max cases seem better done via the existing and
variadic Math.min and Math.max functions than infix operators (e.g., Math.min(1,2,3,0)
returns 0), but we can hash that out elsewhere.

— Brendan Eich 2011/02/28 21:29

strawman/modulo_operator.txt · Last modified: 2011/03/23 20:16 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php15.htm (1 of 2) [18.05.2011 16:45:48]

http://wiki.ecmascript.org/doku.php?id=strawman:modulo_operator&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:modulo_operator&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:scoped_object_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions
http://wiki.ecmascript.org/doku.php?id=strawman:guards
http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
http://wiki.ecmascript.org/doku.php?id=strawman:modulo_operator
http://en.wikipedia.org/wiki/Modulo_operation
mailto:%26%23x63%3B%26%23x72%3B%26%23x6f%3B%26%23x63%3B%26%23x6b%3B%26%23x40%3B%26%23x79%3B%26%23x61%3B%26%23x68%3B%26%23x6f%3B%26%23x6f%3B%26%23x2d%3B%26%23x69%3B%26%23x6e%3B%26%23x63%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
mailto:%26%23x63%3B%26%23x72%3B%26%23x6f%3B%26%23x63%3B%26%23x6b%3B%26%23x40%3B%26%23x79%3B%26%23x61%3B%26%23x68%3B%26%23x6f%3B%26%23x6f%3B%26%23x2d%3B%26%23x69%3B%26%23x6e%3B%26%23x63%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/feed.php

strawman:modulo_operator [ES Wiki]

file:///F|/Common/EXCHANGE/Patrick/doku.php15.htm (2 of 2) [18.05.2011 16:45:48]

http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:match_web_reality [ES Wiki]

[[strawman:
match_web_reality]]

ES
Wiki

Trace: » deferred_functions » guards » trademarks »
modulo_operator » match_web_reality

Make the RegExp Specification Match What Browsers
Actually Implement
The regular expressions that web browsers interoperability implement is not what is defined in the
current ES5 specification. For Harmony, the spec. should be updated to match reality.

Lasse Reichstein posted ti esdiscuss the following summary of how browser reality differs the the
current spec:

On Wed, 08 Dec 2010 21:43:06 +0100, Gavin Barraclough <barraclough at apple.com> wrote:

According to the ES5 spec a regular expression such as /[\w-_]/ should generate a syntax
error. Unfortunately there appears to be a significant quantity of existing code that will
break if this behavior is implemented (I have been experimenting with bringing WebKit’s
RegExp implementation into closer conformance to the spec), and looking at other
implementations it appears common for this error to be ignored.

It’s far from the only extension to RegExp syntax that is common to most implementations. In fact,
the extensions are both extensive and consistent across browsers. A quick check through the
possible syntax errors show the following:

Invalid ControlEscape/IdentityEscape character treated as literal. /\z/; Invalid escape, same as /z/
Incomplete/Invalid ControlEscape treated as either “\\c” or “c” /\c/; same as /c/ or /\\c/

 /\c2/; // same as /c2/ or /\\c2/

Incomplete HexEscapeSequence escape treated as either “\\x” or “x”. /\x/; incomplete x-escape

 /\x1/; // incomplete x-escape
 /\x1z/; // incomplete x-escape

Incomplete UnicodeEscapeSequence escape treated as either “\\u” or “u”. /\u/; incomplete u-
escape

 /\uz/; // incomplete u-escape
 /\u1/; // incomplete u-escape

file:///F|/Common/EXCHANGE/Patrick/doku.php16.htm (1 of 3) [18.05.2011 16:45:42]

http://wiki.ecmascript.org/doku.php?id=strawman:match_web_reality&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:match_web_reality&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions
http://wiki.ecmascript.org/doku.php?id=strawman:guards
http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
http://wiki.ecmascript.org/doku.php?id=strawman:modulo_operator
http://wiki.ecmascript.org/doku.php?id=strawman:match_web_reality
https://mail.mozilla.org/pipermail/es-discuss/2010-December/012289.html

strawman:match_web_reality [ES Wiki]

 /\u1z/; // incomplete u-escape
 /\u12/; // incomplete u-escape
 /\u12z/; // incomplete u-escape
 /\u123/; // incomplete u-escape
 /\u123z/; // incomplete u-escape

Bad quantifier range: /x{z/; same as /x\{z/

 /x{1z/; // same as /x\{1z/
 /x{1,z/; // same as /x\{1,z/
 /x{1,2z/; // same as /x\{1,2z/
 /x{10000,20000z/; // same as /x\{10000,20000z/

Notice: It needs arbitrary lookahead to determine the invalidity, except Mozilla that limits the
numbers.

Zero-initialized Octal escapes. /\012/; same as /\x0a/

Nonexisting back-references treated as octal escapes: /\5/; same as /\x05/

Invalid PatternCharacter accepted unescaped /]/; /{/; /}/; Bad escapes also inside CharacterClass.

 /[\z]/;
 /[\c]/;
 /[\c2]/;
 /[\x]/;
 /[\x1]/;
 /[\x1z]/;
 /[\u]/;
 /[\uz]/;
 /[\u1]/;
 /[\u1z]/;
 /[\u12]/;
 /[\u12z]/;
 /[\u123]/;
 /[\u123z]/;
 /[\012]/;
 /[\5]/;

And in addition: /[\B]/; /()()[\2]/; Valid backreference should be invalid.

None of these RegExps cause a syntax error in any of the current “top-5” browsers, even though
they are (AFAICS) invalid syntax.

Most of the RegExps treat a malformed (start of a multi-character) escape sequence as a simple
identity escape or octal escape, and extends identity escapes to all characters that doesn’t already

file:///F|/Common/EXCHANGE/Patrick/doku.php16.htm (2 of 3) [18.05.2011 16:45:42]

strawman:match_web_reality [ES Wiki]

have another meaning (ControlEscape, CharacterClassEscape or one of c, x, u, or b, and B outside
a CharacterClass).

To match the current behavior, IdentityEscape shouldn’t exclude all of IdentifierPart, but only the
characters that already mean something else.

Allowing /\c2/ to match “c2”, but requiring /\CB/ to match “\x02” seems like it would be better
explained in prose than in the BNF.

...

I’d like to propose a minimal change to hopefully allow implementations to come into line
with the spec, without breaking the web. I’d suggest changing the first step of
CharacterRange to instead read: 1. If A does not contain exactly one character or B does
not contain exactly one character then create a CharSet AB containing the union of the
CharSets A and B, and return the union of CharSet AB and the CharSet containing the one
character -.

I think this matches the current actual behavior of all the browsers, and is short and
understandable.

/Lasse R.H. Nielsen

Also note that RegExp.prototype.compile is implemented by web browsers and is probably
essential for browser interoperability. For this reason, it probably should be added to the spec.

— Allen Wirfs-Brock 2011/02/01 19:54

strawman/match_web_reality.txt · Last modified: 2011/03/04 18:03 by allen

file:///F|/Common/EXCHANGE/Patrick/doku.php16.htm (3 of 3) [18.05.2011 16:45:42]

mailto:%26%23x41%3B%26%23x6c%3B%26%23x6c%3B%26%23x65%3B%26%23x6e%3B%26%23x40%3B%26%23x57%3B%26%23x69%3B%26%23x72%3B%26%23x66%3B%26%23x73%3B%26%23x2d%3B%26%23x42%3B%26%23x72%3B%26%23x6f%3B%26%23x63%3B%26%23x6b%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:array_create [ES Wiki]

[[strawman:
array_create]]

ES
Wiki

Trace: » guards » trademarks »
modulo_operator »

match_web_reality » array_create

Array.create
It is proposed that a create property be added to the Array constructor, being a function that is similar to Object.
create, creating a new array that inherits from the first argument (which will usually be an object. If there is an
optional second argument (which will usually be an array or array-like object) then copy the elements numbered between
0 and length - 1 to the new array. The result is seen as an array by Array.isArray, and the result has a magic
length property, but it does not necessarily inherit from Array.prototype.

 myArray = Array.create(augmented_array_prototype, ['a', 'b', 'c']);

Array.create is simpler, more elemental, and shares more continuity with ES5 than array_subtypes.

— Douglas Crockford 2011/01/03 17:48

The problem with the above solution is that it does not allow for inclusion of the properties descriptor argument that is
the second argument of Object.create. For consistency I would like to see all constructor.create functions accept such
an argument. As an alternative I played around with a flexible Array.create signature:

 Array.create(proto) //creates a zero length array object with [[Prototype]] set
to proto
 Array.create(proto, obj-not-array) //like Object.create
 Array.create(proto, number [, properties]) //sets initial length to number +
defines own properties from property descriptor
 Array.create(proto, array [, properties]) //Doug's proposal + optional properties
descriptor

However, note that this still requires at least one extra array creation for the new Array(0,1,2,3,4) use case.

Having looked at these, I think that the best alternative is to keep it simple as:

 Array.create(proto [, properties]) //like Object.create

If somebody wants to support other use cases it would be easy enough for them to do things like:

 Array.with = function(proto, args /*any number of additional args*/) {
 var arr = Array.create(proto);
 arr.push([].slice.call(arguments,1));
 return arr;
 }

But obj initialiser meta is a better solution for this use case:

 {<proto: myProto>, 1,2,3,4,5,6}

file:///F|/Common/EXCHANGE/Patrick/doku.php17.htm (1 of 2) [18.05.2011 16:45:35]

http://wiki.ecmascript.org/doku.php?id=strawman:array_create&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:array_create&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:guards
http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
http://wiki.ecmascript.org/doku.php?id=strawman:modulo_operator
http://wiki.ecmascript.org/doku.php?id=strawman:match_web_reality
http://wiki.ecmascript.org/doku.php?id=strawman:array_create
http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes
mailto:%26%23x63%3B%26%23x72%3B%26%23x6f%3B%26%23x63%3B%26%23x6b%3B%26%23x40%3B%26%23x79%3B%26%23x61%3B%26%23x68%3B%26%23x6f%3B%26%23x6f%3B%26%23x2d%3B%26%23x69%3B%26%23x6e%3B%26%23x63%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_meta

strawman:array_create [ES Wiki]

— Allen Wirfs-Brock 2011/03/18 18:01

strawman/array_create.txt · Last modified: 2011/03/18 18:05 by allen

file:///F|/Common/EXCHANGE/Patrick/doku.php17.htm (2 of 2) [18.05.2011 16:45:35]

mailto:%26%23x41%3B%26%23x6c%3B%26%23x6c%3B%26%23x65%3B%26%23x6e%3B%26%23x40%3B%26%23x57%3B%26%23x69%3B%26%23x72%3B%26%23x66%3B%26%23x73%3B%26%23x2d%3B%26%23x42%3B%26%23x72%3B%26%23x6f%3B%26%23x63%3B%26%23x6b%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:array_subtypes [ES Wiki]

[[strawman:
array_subtypes]]

ES
Wiki

Trace: » trademarks »
modulo_operator »

match_web_reality » array_create » array_subtypes

Array Subtypes

Motivation

A common request from developers is for a mechanism that allows the creation of a “Array subtype”. An Array
subtype is in essence an Array instance with a custom prototype chain.

Proposal

We propose the addition of a ‘createConstructor’ function to the Array constructor object that returns a new function
object with the same call semantics as the built in Array constructor, but returning an array instance with a custom
prototype.

A pseudo implementation of this function would be:

Array.createConstructor = function() {
 var constructor = function() {
 var result = <<Initial Array Constructor>>.apply(null, arguments);
 result.__proto__ = constructor.prototype; // recognising that this isn't
actually possible in raw ES
 return result;
 }
 constructor.prototype.constructor = constructor;
 return constructor;
}

Discussion

Beware the case where arguments.length == 1 && arguments[0] is a valid length value. Or did you
intend to preserve that wart in Array? I hope not! — Brendan Eich 2010/11/17 22:14

I was preserving existing behaviour as it would allow code to use the Array constructor or the subtype
interchangeably, but I could go either way without any real problem — Oliver Hunt 2010/12/15 21:08

The result.constructor property is instance-invariant and should be on constructor.prototype, as with
all the built-in and user-defined constructor functions.

— Brendan Eich 2011/01/14 01:40

I believe I have now fixed the example code — Oliver Hunt 2011/01/20 01:09

strawman/array_subtypes.txt · Last modified: 2011/01/20 01:09 by olliej

file:///F|/Common/EXCHANGE/Patrick/doku.php18.htm (1 of 2) [18.05.2011 16:45:52]

http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
http://wiki.ecmascript.org/doku.php?id=strawman:modulo_operator
http://wiki.ecmascript.org/doku.php?id=strawman:match_web_reality
http://wiki.ecmascript.org/doku.php?id=strawman:array_create
http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
mailto:%26%23x6f%3B%26%23x6c%3B%26%23x69%3B%26%23x76%3B%26%23x65%3B%26%23x72%3B%26%23x40%3B%26%23x61%3B%26%23x70%3B%26%23x70%3B%26%23x6c%3B%26%23x65%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
mailto:%26%23x6f%3B%26%23x6c%3B%26%23x69%3B%26%23x76%3B%26%23x65%3B%26%23x72%3B%26%23x40%3B%26%23x61%3B%26%23x70%3B%26%23x70%3B%26%23x6c%3B%26%23x65%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US

strawman:array_subtypes [ES Wiki]

file:///F|/Common/EXCHANGE/Patrick/doku.php18.htm (2 of 2) [18.05.2011 16:45:52]

http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:proto_operator [ES Wiki]

[[strawman:
proto_operator]]

ES
Wiki

Trace: » modulo_operator »
match_web_reality »

array_create » array_subtypes » proto_operator

-Table of Contents

● Set Literal [[Prototype]] operator

�❍ Overview

�❍ Usage Examples

�❍ ES5 Compatability

�❍ Relationship to Other Proposals

�❍ Commentary and rationales

Set Literal [[Prototype]] operator
The <| operator (pronounced “prototype for”) is used in conjunction with a literal
to create a new object whose [[Prototype]] is set to an explicitly specified value. It
can be used to address several distinct use cases for which separate solutions have
been proposed. Use cases include:

●

Specifying an explicit [[Prototype]] for object literals

●

Specifying an explicit [[Prototype]] for array literals

●

“Subclassing” arrays

●

Setting the prototype of a function to something other than Function.prototype

●

Setting the prototype of RegExp and other built-in objects.

●

Replace the most common uses of the mutable __proto__ extension

Overview

The <| operator may appears within a MemberExpression. Its basic syntax is:

MemberExpression : ...
MemberExpression <| ProtoLiteral

ProtoLiteral :
LiteralObject
LiteralValue

LiteralObject :
RegularExpressionLiteral
ArrayLiteral
ObjectLiteral
FunctionExpression

LiteralValue :
NumberLiteral
StringLiteral
BooleanLiteral

This basic semantics is to create a new object exactly as would normally be created by the ProtoLiteral except for the
value of the object’s [[Prototype]] internal property. If the ProtoLiteral is a LiteralValue the new Object is created as if
by ToObject except for the value of for the value of the object’s [[Prototype]] internal property.

file:///F|/Common/EXCHANGE/Patrick/doku.php19.htm (1 of 4) [18.05.2011 16:45:32]

http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:modulo_operator
http://wiki.ecmascript.org/doku.php?id=strawman:match_web_reality
http://wiki.ecmascript.org/doku.php?id=strawman:array_create
http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

strawman:proto_operator [ES Wiki]

The [[Prototype]] internal property of the new object is set to the value of the MemberExpression. The value of the
MemberExpression must be typeof “object”. The value may be null. A TypeError exception is thrown if typeof
the MemberExpression is not “object”.

Usage Examples

●

Specifying an explicit [[Prototype]] for object literals

 MyObject.prototype <| {a:1,b:2}

●

Specifying an explicit [[Prototype]] for array literals

 appBehavior <| [0,1,2,3,4,5]

●

“Subclassing” arrays

 Array.create=function(proto,props) {return Object.defineProperties(proto <| [],
props)};

●

Setting the prototype of a function to something other than Function.prototype

 let f = EnhancedFunctionPrototype <| function () {}

●

Setting the prototype of RegExp and other built-in objects.

 var p = newRegExpMethods <| /[a-m][3-7]/

●

Replace the most common uses of the mutable __proto__ extension

Replace:

 var o = {
 __proto__ : myProto,
 a:0,
 b: function () {}
 }

file:///F|/Common/EXCHANGE/Patrick/doku.php19.htm (2 of 4) [18.05.2011 16:45:32]

strawman:proto_operator [ES Wiki]

With:

 var o = myProto <| {
 a:0,
 b: function () {}
 }

ES5 Compatability

We may still want to define Array.create, RegExp.create, and Function.create so they can be used in non-Harmony
implementations and contexts. In that case they should be defined in terms of the semantics of the <| operator.

Relationship to Other Proposals

This proposal is an alternative to the array_subtypes and array_create proposals.

It is also an alternative to the [[Prototye]] functionality of the Object Initialiser Meta Properties proposal.

Commentary and rationales

●

The right hand side could potentially be extended to be any object value if we were define a generalized object

clone operator. In that case, we would be setting the [[Prototype]] on a clone of the RHS. This would maintain the

immutability of [[Prototype]].

●

The contextual keyword proto was originally proposed as this operator symbol. Experimentation suggested that a

keyword operator was harder to read and might commonly result in awkward code phrasing such as:

function (proto) {
 return proto proto {a:1, b:2}
}

●

The prototype value is placed on the left of the operator because object literals, array literals, and function

expressions often span multiple source lines. Placing the prototype value to the right operator would mean that it

would occur at the end of such multi-line sequences where it is likely to go unnoticed. The explicitly setting the

prototype of a literal object is significant enough that it should be expressed in a manner that is likely to be noticed

by code readers. Compare:

var obj = someProto <| {
 prop1: expr,
 get prop2 () {
 return computeSomeValue();

file:///F|/Common/EXCHANGE/Patrick/doku.php19.htm (3 of 4) [18.05.2011 16:45:32]

http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes
http://wiki.ecmascript.org/doku.php?id=strawman:array_create
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_meta

strawman:proto_operator [ES Wiki]

 },
 method: function (a,b,c) {
 return this.prop2+a+b+c;
 }
};

and

var obj = {
 prop1: expr,
 get prop2 () {
 return computeSomeValue();
 },
 method: function (a,b,c) {
 return this.prop2+a+b+c;
 }
} |> someProto;

●

There are many other possible special character alternates to <|. For example, |>, ^^, *>, &>, ^|, <|-, etc. It

isn’t clear that any of these is more meaningful or mnemonic than <|.

●

The <| symbol is somewhat suggestive of the UML Generalization arrow which is the way inheritance is represented

in UML class diagrams.

●

BooleanLiterals are included for completeness. Specifying the prototype of a Boolean wrapper object is unlikely to

be of little practical value.

●

Earlier proposals proposed used Object Initialiser Meta Properties within object and array literals to specify a

[[Prototype]] value. That approach did not extend to other literal forms such as FunctionExpressions and

RegularExpressionLiterals.

strawman/proto_operator.txt · Last modified: 2011/05/18 01:37 by allen

file:///F|/Common/EXCHANGE/Patrick/doku.php19.htm (4 of 4) [18.05.2011 16:45:32]

http://edn.embarcadero.com/article/31863#classdiagrams
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_meta
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:object_initialiser_shorthand [ES Wiki]

[[strawman:
object_initialiser_shorthand]]

ES
Wiki

Trace: » match_web_reality » array_create »
array_subtypes » proto_operator » object_initialiser_shorthand

-Table of Contents

�❍ Goals

�❍ Precedent

�❍ Proposal

�❍ Relation to other extensions

�❍ Discussion

Goals

●

Provide a shorthand for object initialisers whose

property keys are initialized by variables of the

same name.

�❍

Example longhand: function f(x, y) { return {x: x, y: y}; }

�❍

Example shorthand: function f(x, y) { return {x, y}; }

●

Reversibility or symmetry with the destructuring shorthand object patterns.

Precedent

●

JS1.8.1+ (SpiderMonkey and Rhino) support {x, y} in an expression context as

shorthand for {x: x, y: y}.

Proposal

●

Extend the PropertyAssignment production in ES5 as follows (the first right-hand side is

new):

PropertyAssignment:
 Identifier

file:///F|/Common/EXCHANGE/Patrick/doku.php20.htm (1 of 3) [18.05.2011 16:44:58]

http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:match_web_reality
http://wiki.ecmascript.org/doku.php?id=strawman:array_create
http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=harmony:destructuring

strawman:object_initialiser_shorthand [ES Wiki]

 PropertyName : AssignmentExpression
 get PropertyName () { FunctionBody }
 set PropertyName (PropertySetParameterList) { FunctionBody }

The production PropertyAssignment : Identifier is evaluated as follows:

1.

Let propName be the String value containing the same sequence of characters as the

Identifier.

2.

Let exprValue be the result of evaluating Identifier as a PrimaryExpression (per 10.3.1,

Identifier Resolution).

3.

Let propValue be GetValue(exprValue).

4.

Let desc be the Property Descriptor {[[Value]]: propValue, [[Writable]]: true,

[[Enumerable]]: true, [[Configurable]]: true}.

5.

Return Property Identifier (propName, desc).

Relation to other extensions

The Identifier form of PropertyAssignment could be integrated with other object literal
extensions including var, const, method and private. However, it isn’t obvious that the use
cases for this form significantly overlap with the use cases for the other extensions. It may be
better to simply keep the form specified here as is without the complexity of integrating it with
the other extensions. — Allen Wirfs-Brock 2010/09/08 05:26

Discussion

How about allowing IdentifierName (”.” IdentifierName)* as a shorthand just like C# allows:

var object = {b.c.d};

as a shorthand for:

var object = {d: b.c.d};

file:///F|/Common/EXCHANGE/Patrick/doku.php20.htm (2 of 3) [18.05.2011 16:44:58]

mailto:%26%23x41%3B%26%23x6c%3B%26%23x6c%3B%26%23x65%3B%26%23x6e%3B%26%23x2e%3B%26%23x57%3B%26%23x69%3B%26%23x72%3B%26%23x66%3B%26%23x73%3B%26%23x2d%3B%26%23x42%3B%26%23x72%3B%26%23x6f%3B%26%23x63%3B%26%23x6b%3B%26%23x40%3B%26%23x6d%3B%26%23x69%3B%26%23x63%3B%26%23x72%3B%26%23x6f%3B%26%23x73%3B%26%23x6f%3B%26%23x66%3B%26%23x74%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B

strawman:object_initialiser_shorthand [ES Wiki]

— Erik Arvidsson 2011/04/28 17:42

First I’ve heard of this RFE. It’s unambiguous but I wonder how much it is worth its (small but
non-trivial) weight. If you are creating a near-clone of another object (b.c in the example),
then some kind of functional record update might pay off better. A way of saying b.c with
{e: 42} and possibly without {a}.

— Brendan Eich 2011/05/01 21:25

I think we need to change from IdentifierName to Identifier since even though we could allow
keywords here it makes little sense. What would the following do?

var object = {var}

Also, would it be worth allowing strings and numbers?

var x = 42
var object = {0, 'a', x}

as shorthand for

var x = 42
var object = {0: 0, 'a': 'a', x: x}

I can see strings being useful in code that uses objects as enums but it is mostly for symmetry.

— Erik Arvidsson 2011/05/06 02:53

Good point about IdentifierName – I changed to Identifier. SpiderMonkey (and probably Rhino,
I haven’t tested) will need fixing.

I do not understand how string and number property names would work. Even in global code,
var does not bind properties in Harmony (no global object as scope). I say: YAGNI and too
complicated, when in doubt leave it out.

— Brendan Eich 2011/05/11 21:22

strawman/object_initialiser_shorthand.txt · Last modified: 2011/05/11 21:27 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php20.htm (3 of 3) [18.05.2011 16:44:58]

mailto:%26%23x61%3B%26%23x72%3B%26%23x76%3B%26%23x40%3B%26%23x67%3B%26%23x6f%3B%26%23x6f%3B%26%23x67%3B%26%23x6c%3B%26%23x65%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
mailto:%26%23x61%3B%26%23x72%3B%26%23x76%3B%26%23x40%3B%26%23x67%3B%26%23x6f%3B%26%23x6f%3B%26%23x67%3B%26%23x6c%3B%26%23x65%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:concise_object_literal_extensions [ES Wiki]

[[strawman:
concise_object_literal_extensions]]

ES
Wiki

Trace: » array_create » array_subtypes »
proto_operator »

object_initialiser_shorthand » concise_object_literal_extensions

-Table of Contents

● Concise Object Literal Extensions

�❍ Motivation

�❍ Summary

�❍ Non-Enumerable and Non-

Configurable Properties

■ Examples

�❍ Non-Writable Data Properties

■ Examples

�❍ methods

■ Examples

Concise Object Literal Extensions
This is a set of syntactically concise extensions that cover the most common object property
creation use cases that are not covered by the current ObjectLiteral syntax:

Motivation

All properties of objects created using object literal syntax currently have the attributes
enumerable: true, configurable: true, writable: true. This limits the utility of object literals
as ECMAScript’s primary declarative form of object creation. It is particularly problematic in
the case of method properties as it is seldom desirable for such properties to be
enumerable.

ES5 permits constructions of objects with arbitrary property attribute setting using the Object.create function.
However, this form is much more verbose and its usage is complicated by the fact that the default attribute values
are different than what is used for object literals. This can be see as follow:

var obj = {a:x, k:0.5, m: function(z) {return z+this.a+this.k}};

If the programmer desires for the property k to be non-writable, non-configurable, and non-enumberable and for the
method property m to be non-writable and non-enumerable, they would express like this using Object.create:

var obj = Object.create(Object.prototype,{
 a: {value: x, writable: true, enumerable: true, configurable: true},
 k: {value: 0.5}, //use default false values for all attributes
 m: {value: function(z) {return z+this.a+this.k}, writable: false, enumerable:
false, configurable: true}
};

or perhaps in a slightly less verbose (but arguably more obscure) form using Object.defineProperties:

var obj = Object.defineProperties(
 {a:x, k:0.5, m: function(z) {return z+this.a+this.k}},
 {k: {writable: false, enumerable: false, configurable: false},
 m: writable: false, enumerable: false}
 }
};

Using the extensions in this proposal the above could be directly expressed using an object literal as:

var obj = {a:x, ~!k=0.5, m(z) {return z+this.a+this.k}};

Summary

This proposal extnds object literals in these four ways:

1.

If a property definition (a PropertyAssignment in the ES grammar) is prefixed with ~ the property is non-enumerable

file:///F|/Common/EXCHANGE/Patrick/doku.php21.htm (1 of 3) [18.05.2011 16:44:55]

http://wiki.ecmascript.org/doku.php?id=strawman:concise_object_literal_extensions&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:concise_object_literal_extensions&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:array_create
http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand
http://wiki.ecmascript.org/doku.php?id=strawman:concise_object_literal_extensions
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()

strawman:concise_object_literal_extensions [ES Wiki]

2.

If a property definition is prefixed with ! the property is non-configurable

3.

If a data property definition uses = in place of : the property is non-writable

4.

If a property definition has the form of a FunctionDeclaration without the keyword function it is a non-enumerable,

non-writable data property definition whose name is the function name

Non-Enumerable and Non-Configurable Properties

Define a property to be non-enumerable or non-configurable:

PropertyNameAndValueList :
PrefixedPropertyAssignment
PropertyNameAndValueList , PrefixedPropertyAssignment

PrefixedPropertyAssignment:
PropertyPrefixopt PropertyAssignment

PropertyPrefix :
!
~
~!
!~

Prefixing a property with ! makes it non-configurable. Prefixing a property with ~ makes it non-enumerable. Prefixing
a property with either ~! or !~ makes it both non-configurable and non-enumerable.

Examples

var = {
 //non-configurable properties
 !x : 1,
 !"non identifier name" : 2,
 !get 3() {return 3},
 !set 3(v) {}, //both get and set must have the same confiburablility
 //non-enumerable properties
 ~y: 2,
 ~0: 0,
 ~get "a b"() {return 3},
 ~set "a b"(v) {}, //both get and set must have the same enumerability
 //non-configurable, non-enumerable properties
 !~z : 3,
 ~!a: 4,
 ~!get c() {return 4}
}

Non-Writable Data Properties

Define a property to be non-writable:

ProperyAssignment :
PropertyName = AssignmentStatement

Examples

file:///F|/Common/EXCHANGE/Patrick/doku.php21.htm (2 of 3) [18.05.2011 16:44:55]

strawman:concise_object_literal_extensions [ES Wiki]

var obj = {
 //constant properties
 a = 1,
 "non identifier name" = 2,
 3 = 3,
 //constant non-enumerable property
 ~b = 4
 };

//or more compactly:
var obj={a=1,"non identifier name"=2,3=3,~b=4};

methods

As a convenience for the most common use case, the most concise forms of methods definitions define a non
enumerable, non-writable property:

ProperyAssignment :
PropertyName (FormalParameterListopt) { FunctionBody }
namedHashFunction pending specification

Examples

var = {
 toString () {return "literal"},//enumerable: false, writable: false configurable: true
 !"non identifier name" () {}, /enumerable: false, writable: false configurable:
false
 ~length () {return 0}, // ~ doesn't change enumerability for methods
 #valueOf{0}, //enumerable: false, writable: false configurable: true

 // the following are just regular data property definitions using the ~ and =
extensions defined above
 f: function() {}, //enumerable: true, writable: true configurable: true
 ~g: function() {}, //enumerable: false, writable: true configurable: true
 h = function() {} //enumerable: true, writable: false configurable: true
}

strawman/concise_object_literal_extensions.txt · Last modified: 2011/04/28 16:54 by allen

file:///F|/Common/EXCHANGE/Patrick/doku.php21.htm (3 of 3) [18.05.2011 16:44:55]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:support_full_unicode_in_strings [ES Wiki]

[[strawman:
support_full_unicode_in_strings]]

ES
Wiki

Trace: » array_subtypes » proto_operator »
object_initialiser_shorthand » concise_object_literal_extensions » support_full_unicode_in_strings

-Table of Contents

● Support Full Unicode

�❍ Support Full Unicode in ECMAScript

Source Code

■ Input Encoding

■ Unicode Escape Sequences

■ Likely Implementation Impacts

�❍ Support Full Unicode in the

ECMAScript Runtime Strings

■ The String Type

■ String Operators and Functions

■ 15.5.3.2 String.

fromCharCode

■ 15.5.4.5 String.prototype.

charCodeAt

■ 15.1.3 URI Handling

Function Properties

■ Comparability Impacts

■ Possible Implementation Impacts

�❍ Discussion

Support Full Unicode
Allen Wirfs-Brock

ECMAScript currently only directly supports the 16-bit basic
multilingual plane (BMP) subset of Unicode which is all that
existed when ECMAScript was first designed. Since then
Unicode has been extended to require up to 21-bits per
code. As currently defined, characters in this expanded
character set cannot be used in the source code of
ECMAScript programs and cannot be directly included in
runtime ECMAScript string values.

There are very few places where the ECMAScript
specification has actual dependencies upon the size of
individual characters so the compatibility impact of
supporting full Unicode is quite small. There is a larger
impact on actual implementations but even there the impact
is probably smaller than someone might initially expect.

See JavaScript Internationalization for the W3C
Internationalization WG’s take on some issues regarding
Unicode support in ECMAScript.

Support Full Unicode in ECMAScript Source Code

Input Encoding

Clause 6 of the ECMAScript 5.1 specification states “ECMAScript source text is presented as a
sequence of characters in the Unicode character encoding” and it goes on to say that the text
“is expected to have been normalised to Unicode Normalization Form C”. However, it also
states that “source text is assumed to be a sequence of 16-bit code units for the purpose of
this specification”.

As part of this proposal, the statement about assuming 16-bit code units will be deleted. In
addition throughout the specification all occurrence of “code unit” implying 16-bit characters
will be replaced with “code point” which means the canonical encoding of any possible
Unicode character. In particular, the definition of SourceCharacter is changed to:

SourceCharacter ::
any Unicode codepoint

file:///F|/Common/EXCHANGE/Patrick/doku.php22.htm (1 of 5) [18.05.2011 16:44:51]

http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand
http://wiki.ecmascript.org/doku.php?id=strawman:concise_object_literal_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://www.w3.org/International/wiki/JavaScriptInternationalization

strawman:support_full_unicode_in_strings [ES Wiki]

More generally, it is beyond the scope of a language specification to require any specific
external encoding of source programs of that language. Dealing with various possible
external encodings is more a matter for communication protocols, host platforms, and
language implementations. What is appropriate (and necessary) is for the language
specification to define a specific input alphabet for its lexical grammar. Clauses 6 and 7 will
be updated to clarify that the alphabet of the lexical grammar is full Unicode Normalization
Form C. Any implications concerning external source code encoding or implications that
implementations must use some specific internal encoding of source program text will be
removed.

Unicode Escape Sequences

ECMAScript 5.1 currently includes the lexical production UnicodeEscapeSequence defined as
follows:

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

This production is limited to only expressing 16-bit codepoint values. In order to fully support
Unicode it is necessary to have an escape sequence that can express 21-bit codepoint
values. This cannot be accomplished simply by allowing UnicodeEscapeSequence to be
extended by two optional additional HexDigits because ES5.1 has contexts where a
UnicodeEscapeSequence is allowed to immediately abut a HexDigit that is not part of the
UnicodeEscapeSequence. For example, the following is a valid three character identifier in
ES5.1: \u004101. This is actually equivalent to the identifier A01. to address this issue, a
new form of UnicodeEscapeSequence is added that is explicitly tagged as containing six hex
digits. The new definition is:

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit
u+ HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit

The 6 digit extended UnicodeEscapeSequence is a syntactic extension that is only recognized
after explicit versioning opt-in to the extended “Harmony” syntax.

In clause 7.8.4 an additional CV definition is provided for UnicodeEscapeSequence :: u+
HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit.

Likely Implementation Impacts

Whether or not requiring full Unicode Source code will have a significant impact upon existing
implementations is likely to be highly dependent upon the approach that an implementation
currently uses internally for representing source code. If an implementation currently uses an
UTF-8 or UTF-16 internal encoding then this change will likely have minimal implementation
impact as these encodings can already deal with the full Unicode character set. There is likely
to be a larger impact on implementations that currently use a direct 16-bit UCS-2 encoding
of source programs. However if the intent to switch to full Unicode of ECMAScript is
communicated in the near future there should be plenty of time of such implementations to
adapted prior to completion of the next edition of the ES standard.

Support Full Unicode in the ECMAScript Runtime Strings

file:///F|/Common/EXCHANGE/Patrick/doku.php22.htm (2 of 5) [18.05.2011 16:44:51]

strawman:support_full_unicode_in_strings [ES Wiki]

The String Type

The definition of the String Type in 8.4 will be modified as follows (new text is underlined):

The String type is the set of all finite ordered sequences of zero or more

16-bit 21-bit unsigned integer values (“elements”). The String type is generally used to
represent textual data in a running ECMAScript program, in which case each element in the
String is treated as a code unit codepoint value (see Clause 6). Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative
integers. The first element (if any) is at position 0, the next element (if any) at position 1,
and so on. The length of a String is the number of elements (i.e., 16-bit 21-bit values) within
it. The empty String has length zero and therefore contains no elements.

When a String contains actual textual data, each element is considered to be a single

UTF-16 Unicode code unit codepoint. Whether or not this is the actual storage format of a
String, the characters within a String are numbered by their initial code unit codepoint
element position as though they were represented using UTF-16 UTF-32. All operations on
Strings (except as otherwise stated) treat them as sequences of undifferentiated 16-bit 21-
bit unsigned integers; they do not ensure the resulting String is in normalised form, nor do
they ensure language-sensitive results.

Note that the current usage of UTF-16 in the above ES5.1 clause is an editorial error and
dates back to at least ES3. It probably was intended to mean the same as UCS-2. ES3-5.1
did not intend to imply that the ECMAScript strings perform any sort of automatic UTF-16
encoding or interpretation of codepoints that are outside of the BMP.

String Operators and Functions

String operators (concatenation and comparison) and methods associated with the String
object are generally specified as operating upon logical sequences of characters in a manner
that is independent of the the number of bits in the character encoding. Generally no
changes are needed to the specification of these operations and methods other than the
general replacement of the term “code unit” with “codepoint”. There are only a few places
where explicit changes have to be made to accommodate full Unicode characters.

15.5.3.2 String.fromCharCode

This function constructs a string value from a sequence of “character codes” that are
passed as arguments to the function. A ToUint16 conversion is applied to each argument
before constructing the string value.

To support full Unicode we need to support constructing such strings where some of the
character codes may have up to 21-bits. Changing String.fromCharCode to perform
a ToUint21 conversion instead of a ToUnit16 conversion could cause incompatibility with
existing code that is using strings to store 16-bit binary integer values. Such code could
be calling String.fromCharCode passing arbitrary numeric values with the
expectation that the values will be truncated to 16-bit.

Instead of changing the specification of String.fromCharCode, a new function is

file:///F|/Common/EXCHANGE/Patrick/doku.php22.htm (3 of 5) [18.05.2011 16:44:51]

strawman:support_full_unicode_in_strings [ES Wiki]

added. String.fromCodepoint will be specified identically to String.
fromCharCode with the exception that a ToUint21 conversion will be performed on
each argument value in place of ToUint16.

15.5.4.5 String.prototype.charCodeAt

This method is currently specified to return the “code unit” at a specific character
position. Currently, this is a UInt16 value. When “code unit” is pervasively replaced with
“codepoint” the returned result will be a UInt21 value. It is unclear whether this might
cause comparability issues as existing code is unlikely to encounter codepoint values
greater than 65535. However, the fact that a character is being access as an encoded
numeric value implies that some sort of numeric computation is likely to be performed of
the character code. Such computations might be sensitive to the magnitude of the valve.
For that reason it is proposed that charCodeAt will be respecified to explicitly return a
UInt16 value. In addition, a new method String.prototype.codepointAt will be
added. codepointAt will function identically to charCodeAt with the exception that
codepointAt returns a UInt21 result.

15.1.3 URI Handling Function Properties

The functions defined in this section are the only ECMAScript functions that explicit deal
with UTF-8 and UTF-16 encodings including UTF-16 surrogate pairs. For compatibility
reasons these functions should generally not be changed. The encode algorithm will
continue to recognize UTF-16 surrogate pairs and translate them to the corresponding
UTF-8 encoding. Similarly, the decode algorithm will translate UTF-8 encodings of large
codepoint values into UTF-16 surrogate pairs.

However, the encode algorithm does not currently deal with codepoint values greater
than 0xffff. The algorithm will be modified so that if such characters are encountered they
will be property translated into a UTF-8 encoding.

Alternative versions of decodeURI and decodeURIComponent will be provide that
translated UTF-8 encoded codepoints greater than 0xffff into single characters rather than
a surrogate pair. These alternative functions will be named decodeURI21 and
decodeURIComponent21.

Comparability Impacts

Other than for issues already discussed above concerning explicit manipulation of character
codes and UTF-8/UTF-16 these changes should have no impact upon existing code that does
string processing. Such code should simply continue to work, even when encountering
Unicode characters with codepoints greater than 0xffff. Programs that perform its own
internal UTF-16 or UTF-8 process should continue to operate without modification as all 16-
bit character code values continue to be allowable character values within the expanded
character size.

Possible Implementation Impacts

Supporting full Unicode characters does not necessarily require either the doubling of
character sizes or the use of algorithmically expensive encoding such as UTF-8 for all strings.

file:///F|/Common/EXCHANGE/Patrick/doku.php22.htm (4 of 5) [18.05.2011 16:44:51]

strawman:support_full_unicode_in_strings [ES Wiki]

It is important to consider that all JavaScript strings are immutable after their initial creation.
That means that the maximum character size is known at the time the string is created. Also,
consider that many ECMAScript implementation already use multiple internal representations
of strings for purposes such as concatenation optimization. Strings containing large
characters could simply be implemented as one or more additional alternative internal string
representation. As very few strings actually contain large character values their should be
minimal storage or computational overhead for typical programs.

There will, however, be implementation work required to ensure that all string functions
correctly deal with any string representations contain large characters.

Discussion

strawman/support_full_unicode_in_strings.txt · Last modified: 2011/05/17 20:34 by allen

file:///F|/Common/EXCHANGE/Patrick/doku.php22.htm (5 of 5) [18.05.2011 16:44:51]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:array_comprehensions [ES Wiki]

[[strawman:
array_comprehensions]]

ES
Wiki

Trace: » proto_operator »
object_initialiser_shorthand »

concise_object_literal_extensions » support_full_unicode_in_strings » array_comprehensions

Overview
Array comprehensions were introduced in JavaScript 1.7. Comprehensions are a well-understood and popular
language feature of list comprehensions, found in languages such as Python and Haskell, inspired by the
mathematical notation of set comprehensions.

Array comprehensions are a convenient, declarative form for creating computed arrays with a literal syntax that
reads naturally.

Examples
Filtering an array:

[x for (x in a) if (x.color === ‘blue’)]

Mapping an array:

[square(x) for (x in values([1,2,3,4,5]))]

Cartesian product:

[[i,j] for (i in values(rows)) for (j in values(columns))]

Syntax

ArrayLiteral ::= ...
 | "[" Expression ("for" "(" LHSExpression "in" Expression")")+ ("if" "("
Expression ")")? "]"

Translation
An array comprehension:

[Expression0 for (LHSExpression1 in Expression1) ... for (LHSExpressionn) if (Expression)opt]

can be defined by expansion to the expression:

let (result = []) {
    for (let LHSExpression1 in Expression1) {

        ...
        for (let LHSExpressionn in Expressionn) {

            if (Expression)opt

                ArrayPush(result, Expression0);

file:///F|/Common/EXCHANGE/Patrick/doku.php23.htm (1 of 2) [18.05.2011 16:44:59]

http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand
http://wiki.ecmascript.org/doku.php?id=strawman:concise_object_literal_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings
http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Working_with_Arrays#Array_comprehensions
http://docs.python.org/tutorial/datastructures.html#list-comprehensions
http://www.haskell.org/haskellwiki/List_comprehension
http://en.wikipedia.org/wiki/Set-builder_notation

strawman:array_comprehensions [ES Wiki]

            }
        }
    }
=> result
}

strawman/array_comprehensions.txt · Last modified: 2010/06/25 18:22 by dherman

file:///F|/Common/EXCHANGE/Patrick/doku.php23.htm (2 of 2) [18.05.2011 16:44:59]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:simple_maps_and_sets [ES Wiki]

[[strawman:
simple_maps_and_sets]]

ES
Wiki

Trace: » object_initialiser_shorthand »
concise_object_literal_extensions » support_full_unicode_in_strings » array_comprehensions » simple_maps_and_sets

Simple Maps and Sets
Similar in style to weak maps but without the funny garbage collection semantics or non-
enumerability. Depends on the iterators and egal proposals. Depends on the
classes_with_trait_composition only for expository purposes.

Map

Given

 /** A non-stupid alternative to Array.prototype.indexOf */
 function indexOfIdentical(keys, key) {
 for (var i = 0; i < keys.length; i++) {
 if (Object.is(keys[i], key)) { return i; }
 }
 return -1;
 }

Executable spec

 class Map {
 private keys, vals;
 constructor() {
 private(this).keys = [];
 private(this).vals = [];
 }
 get(key) {
 const keys = private(this).keys;
 const i = indexOfIdentical(keys, key);
 return i < 0 ? undefined : private(this).values[i];
 }
 has(key) {
 const keys = private(this).keys;
 return indexOfIdentical(keys, key) >= 0;
 }

file:///F|/Common/EXCHANGE/Patrick/doku.php24.htm (1 of 2) [18.05.2011 16:45:51]

http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand
http://wiki.ecmascript.org/doku.php?id=strawman:concise_object_literal_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings
http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps
http://wiki.ecmascript.org/doku.php?id=strawman:iterators
http://wiki.ecmascript.org/doku.php?id=harmony:egal
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition

strawman:simple_maps_and_sets [ES Wiki]

 set(key, val) {
 const keys = private(this).keys;
 const vals = private(this).vals;
 let i = indexOfIdentical(keys, key);
 if (i < 0) { i = keys.length; }
 keys[i] = key;
 vals[i] = val;
 }
 delete(key) {
 const keys = private(this).keys;
 const vals = private(this).vals;
 const i = indexOfIdentical(keys, key);
 if (i < 0) { return false; }
 keys.splice(i, 1);
 vals.splice(i, 1);
 return true;
 }
 // todo: iteration
 }

Set

Executable Spec

 class Set {
 private map;
 constructor() {
 private(this).map = Map();
 }
 has(key) { return private(this).map.has(key); }
 add(key) { private(this).map.set(key, true); }
 delete(key) { return private(this).delete(key); }
 // todo: iteration
 }

strawman/simple_maps_and_sets.txt · Last modified: 2011/05/17 06:57 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php24.htm (2 of 2) [18.05.2011 16:45:51]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:string_extras [ES Wiki]

[[strawman:
string_extras]]

ES
Wiki

Trace: » concise_object_literal_extensions »
support_full_unicode_in_strings » array_comprehensions » simple_maps_and_sets » string_extras

String extras

A few basic conveniences that many languages (e.g., Java, C#, Python, Ruby) have by default
are missing in the ECMAScript string library.

●

String.prototype.startsWith

Behaves the same as:

String.prototype.startsWith = function(s) {
 return this.indexOf(s) === 0;
};

●

String.prototype.endsWith

Behaves the same as:

String.prototype.endsWith = function(s) {
 var t = String(s);
 return this.lastIndexOf(t) === (this.length - t.length);
};

●

String.prototype.contains

Behaves the same as:

String.prototype.contains = function(s) {
 return this.indexOf(s) !== -1;
};

file:///F|/Common/EXCHANGE/Patrick/doku.php25.htm (1 of 2) [18.05.2011 16:45:11]

http://wiki.ecmascript.org/doku.php?id=strawman:string_extras&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:string_extras&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:concise_object_literal_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings
http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:string_extras

strawman:string_extras [ES Wiki]

●

String.prototype.toArray

Behaves the same as:

String.prototype.toArray = function() {
 return this.split('');
};

— Dave Herman 2011/03/13 18:54

strawman/string_extras.txt · Last modified: 2011/03/13 20:59 by arv

file:///F|/Common/EXCHANGE/Patrick/doku.php25.htm (2 of 2) [18.05.2011 16:45:11]

mailto:%26%23x64%3B%26%23x68%3B%26%23x65%3B%26%23x72%3B%26%23x6d%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x63%3B%26%23x63%3B%26%23x73%3B%26%23x2e%3B%26%23x6e%3B%26%23x65%3B%26%23x75%3B%26%23x2e%3B%26%23x65%3B%26%23x64%3B%26%23x75%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:pragmas [ES Wiki]

[[strawman:
pragmas]]

ES
Wiki

Trace: » support_full_unicode_in_strings »
array_comprehensions » simple_maps_and_sets » string_extras » pragmas

Pragmas
ECMAScript Edition 5 introduced a backwards-compatible syntax of the directive prologue with
string-literal-expression-statement directives for pragmas. With Harmony, we are allowing the
introduction of new syntax via versioning, so we should move towards a future-proof pragma
syntax.

Use
This spec proposes the introduction of a keyword use in place of the previous string-literal
directives. In Harmony, the string literal form would no longer be recognized as special.

A hypothetical example is the lexical scope pragma:

use lexical scope;

While this spec does not propose any specific pragmas, its primary purpose is to create a syntactic
space for future pragmas, i.e., for future-proofing.

Syntax
The syntax of pragmas is designed to be very permissive, so that implementations may introduce
custom pragmas.

UsePragma ::= "use" PragmaItem ("," PragmaItem)* ";"
PragmaItem ::= PragmaWord+
PragmaWord ::= Keyword | Identifier

TODO:

●

semicolon insertion issues (no newline between PragmaItem keywords?)

●

file:///F|/Common/EXCHANGE/Patrick/doku.php26.htm (1 of 2) [18.05.2011 16:44:54]

http://wiki.ecmascript.org/doku.php?id=strawman:pragmas&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:pragmas&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings
http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:string_extras
http://wiki.ecmascript.org/doku.php?id=strawman:pragmas
http://wiki.ecmascript.org/doku.php?id=strawman:versioning
http://wiki.ecmascript.org/doku.php?id=strawman:lexical_scope

strawman:pragmas [ES Wiki]

more future-proofing for PragmaWord? allow literals? probably don’t want to allow operators,

right?

●

best practices for non-standard prefixing? (e.g., “use moz widgets”)

Semantics

●

In Harmony, string literal statements are no longer recognized as prologue directives.

●

A pragma that is unrecognized must be ignored. This way implementations remain future-proof.

strawman/pragmas.txt · Last modified: 2010/09/21 21:57 by dherman

file:///F|/Common/EXCHANGE/Patrick/doku.php26.htm (2 of 2) [18.05.2011 16:44:54]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:multiple_globals [ES Wiki]

[[strawman:
multiple_globals]]

ES
Wiki

Trace: » array_comprehensions »
simple_maps_and_sets » string_extras » pragmas » multiple_globals

-Table of Contents

�❍ Multiple globals

�❍ Existence of multiple globals

�❍ Global objects and non-method calls

�❍ Global objects and eval

�❍ Global objects and navigation

�❍ Terminology question

Multiple globals

The ECMAScript spec has never said anything about the
presence of multiple global objects interacting with one
another, but this has long been the reality on the web.
Browsers have not always been interoperable in this
area, so it deserves standardization. Some amount of
backwards incompatibility may be acceptable, since
some of the cases may be fairly rare in practice.

Existence of multiple globals

Where historically the spec refers to “the global object,” this needs to be made more precise by
specifying which global object.

In past versions of the standard, every closure contains a scope chain that ends with the (a)
global object. In SpiderMonkey terminology, this is the closure’s “parent.” We will use the term
“global context.”

Since Harmony may not include the global object in the scope chain, this concept needs to be
generalized to encompass either the global object (for legacy mode) or the module loader
context associated with the scope chain.

Global objects and non-method calls

When a function is called as a non-method, the spec is unclear as to which global object ends
up bound to this. While ES5 strict passes undefined, legacy mode should still specify which
global object is bound to this.

Firefox created precedent for a reasonably consistent and legalistic interpretation of ES3. At top-
level, a non-method call ends up with the global object associated with the caller, because the
callee evaluates to an object reference with the call site’s global object as the base of the
reference. When nested within a function body, though, a non-method call ends up with the
global object associated with the callee, because the callee evaluates to an object reference
with an activation object as the base of the reference, which is then censored to null (ES3) or
undefined (ES5), and it’s in the callee’s body that this is replaced with the global object—so
SpiderMonkey interprets this as the callee’s global object.

This is all consistent with the way the language has been specified, but that doesn’t mean we
couldn’t change it. The fact that function calls behave differently depending on whether they
are at top-level or nested is extremely subtle.

file:///F|/Common/EXCHANGE/Patrick/doku.php27.htm (1 of 3) [18.05.2011 16:45:28]

http://wiki.ecmascript.org/doku.php?id=strawman:multiple_globals&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:multiple_globals&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:string_extras
http://wiki.ecmascript.org/doku.php?id=strawman:pragmas
http://wiki.ecmascript.org/doku.php?id=strawman:multiple_globals
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=strawman:module_loaders

strawman:multiple_globals [ES Wiki]

Global objects and eval

Jeff Walden raised this question about direct and indirect eval: what happens when one context
reassigns eval to the eval function of another context?

var indirect = otherGlobal.eval;
eval = indirect;
eval("this") // which global?
indirect("this") // which global?

Global objects and navigation

On the web, a global object maintains its object identity even following a programmatic
navigation to a new location. This swaps out the contents of the global object with a fresh state
(recently, Firefox has implemented this with the same part of the engine that implements
proxies), and navigating back can recover the previous contents of the global object. Closures
that are created on one page are hard-wired to the contents of that page’s global object
internals, even if navigation moves away from that page. And yet throughout this navigation,
that global object maintains one single object identity.

Most of this is web-specific detail that shouldn’t be specified in the language standard. But the
fact that closures are not actually looking up the contents of the live object, but rather an
internal frame that the object delegated to at one point, seems to violate the existing spec.

Update: This may actually be spec-compliant. A global object can implement whatever
behavior it wants for the internal methods; so in principle, it could always respond differently to
[[Get]] based on the source of the variable lookup. In the spec, there’s nothing that identifies
the source of the lookup, but that doesn’t mean a particular engine can’t make that information
available. This maybe seems a little fishy, but I’m happy if we can avoid specifying any of the
mechanics of navigation in Ecma-262.

— Dave Herman 2011/03/04 19:40

Terminology question

We need good terminology for this concept of “global context” in a way that doesn’t confuse
with “execution context” as it’s traditionally been used in the ECMAScript specs. Our
terminology needs to account for:

●

multiple global objects

●

multiple module loaders

file:///F|/Common/EXCHANGE/Patrick/doku.php27.htm (2 of 3) [18.05.2011 16:45:28]

https://mail.mozilla.org/pipermail/es-discuss/2011-March/012915.html
mailto:%26%23x64%3B%26%23x68%3B%26%23x65%3B%26%23x72%3B%26%23x6d%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x63%3B%26%23x63%3B%26%23x73%3B%26%23x2e%3B%26%23x6e%3B%26%23x65%3B%26%23x75%3B%26%23x2e%3B%26%23x65%3B%26%23x64%3B%26%23x75%3B
http://wiki.ecmascript.org/doku.php?id=strawman:module_loaders

strawman:multiple_globals [ES Wiki]

multiple modes (legacy, legacy strict, Harmony)

strawman/multiple_globals.txt · Last modified: 2011/03/04 19:43 by dherman

file:///F|/Common/EXCHANGE/Patrick/doku.php27.htm (3 of 3) [18.05.2011 16:45:28]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:enumeration [ES Wiki]

[[strawman:
enumeration]]

ES
Wiki

Trace: » simple_maps_and_sets » string_extras »
pragmas » multiple_globals » enumeration

Overview
The semantics of enumeration in existing editions of ECMA-262 is very loosely specified. This
strawman proposes more fully specifying the semantics of property enumeration.

Versioning

The semantics below is incompatible with existing web behavior, and would be enabled only
through opting into Harmony. For compatibility, code run in legacy JavaScript versions may
need to preserve the previous enumeration behavior.

For-in loops

The semantics of iteration uses the iterate proxy trap to drive iteration if it exists, but falls
back to using the enumeration behavior of this proposal.

Semantics
The following operation produces an eagerly-computed sequence of the own-properties of an
object.

Operation EnumerateProperties(obj)

Execution Error propagation

Let suppress = �∅

Let props = []

While (obj != empty)

    If IsTrappingProxy(obj)

        Let handler = obj.[[Handler]]

        Let enum = handler.[[Get]](”enumerate”) If IsError(enum) Return enum

        If !IsCallable(enum)

            Return (type=error, value=TypeError,
target=empty)

        Let rest = enum.value.[[Call]](handler, []) If IsError(rest) Return rest

        Return [props, ..., rest, ...]

file:///F|/Common/EXCHANGE/Patrick/doku.php28.htm (1 of 3) [18.05.2011 16:45:01]

http://wiki.ecmascript.org/doku.php?id=strawman:enumeration&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:enumeration&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:string_extras
http://wiki.ecmascript.org/doku.php?id=strawman:pragmas
http://wiki.ecmascript.org/doku.php?id=strawman:multiple_globals
http://wiki.ecmascript.org/doku.php?id=strawman:enumeration
http://wiki.ecmascript.org/doku.php?id=strawman:iterators

strawman:enumeration [ES Wiki]

    Let own = OwnProperties(obj)

    For each i in 0 ... own.length - 1

        Let P = own[i]

        If P.attributes.enumerable && P �∉ props && P �∉ suppress

            props := [props, ..., P.name]

        If !P.attributes.enumerable

            suppress := suppress �∪ { P }

    obj := obj.[[Prototype]]

Return props

Operation OwnProperties(obj)

We could specify this in a number of different ways. Conceptually, this operation should produce a
sequence of property descriptors, in the following order:

1.

index properties (see definition below) in ascending numeric order

2.

all other properties, in the order in which they were created

An index, as defined in 15.4, is a property name P such that ToString(ToUint32(P)) is equal to P
and ToUint32(P) is not equal to 2**32-1.

Several specification approaches:

●

all objects have two sequential property tables:

�❍

properties with uint32 names, kept in integer order

�❍

all other properties, kept in creation order

●

objects have one sequential property table, kept in creation order; OwnProperties then filters

out uint32 properties

●

properties in property tables include an internal creation-order attribute

file:///F|/Common/EXCHANGE/Patrick/doku.php28.htm (2 of 3) [18.05.2011 16:45:01]

strawman:enumeration [ES Wiki]

See the thread starting at this message from Charles Kendrick for criticisms (some aesthetic or
theoretical) and compatibility concerns (these look significant to me) about enumerating own
indexed properties first for non-Array objects.

— Brendan Eich 2011/03/13 20:04

strawman/enumeration.txt · Last modified: 2011/03/13 20:09 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php28.htm (3 of 3) [18.05.2011 16:45:01]

https://mail.mozilla.org/pipermail/es-discuss/2011-March/012965.html
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:arrow_function_syntax [ES Wiki]

[[strawman:
arrow_function_syntax]]

ES
Wiki

Trace: » string_extras » pragmas »
multiple_globals » enumeration »

arrow_function_syntax

Proposal

// Empty arrow function is minimal-length
let empty = ->;

// Expression bodies needs no parentheses or braces
let identity = (x) -> x;

// Fix: object initialiser need not be parenthesized, see Grammar Changes
let key_maker = (val) -> {key: val};

// Nullary arrow function starts with arrow (cannot begin statement)
let nullary = -> preamble + ': ' + body;

// No need for parens even for lower-precedence expression body
let square = (x) -> x * x;

// Statement body needs braces (completion return TODO)
let oddArray = [];
array.forEach((v, i) -> { if (i & 1) oddArray[i >>> 1] = v; });

// Use # to freeze and join to nearest relevant closure
function return_pure() {
 return #(a) -> a * a;
}

let p = return_pure(),
 q = return_pure();
assert(p === q);

function check_frozen(o) {
 try {
 o.x = "expando";
 assert(0 == "not reached");
 } catch (e) {
 // e is something like "TypeError: o is not extensible"
 assert(e.name == "TypeError");
 }
}

check_frozen(p);

function partial_mul(a) {
 return #(b) -> a * b;
}

let x = partial_mul(3),
 y = partial_mul(4),
 z = partial_mul(3);

assert(x !== y);

file:///F|/Common/EXCHANGE/Patrick/doku.php29.htm (1 of 6) [18.05.2011 16:45:09]

http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:string_extras
http://wiki.ecmascript.org/doku.php?id=strawman:pragmas
http://wiki.ecmascript.org/doku.php?id=strawman:multiple_globals
http://wiki.ecmascript.org/doku.php?id=strawman:enumeration
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax

strawman:arrow_function_syntax [ES Wiki]

assert(x !== z);
assert(y !== z);

check_frozen(x);
check_frozen(y);
check_frozen(z);

// Use ''=>'' (fat arrow) for lexical ''this'', as in CoffeeScript
// ("fat" is apt because this form costs more than ''->'')
const obj = {
 method: function () {
 return => this;
 }
};
assert(obj.method()() === obj);

// And *only* lexical ''this'' for => functions
let fake = {steal: obj.method()};
assert(fake.steal() === obj);

// But ''function'' still has dynamic ''this''
let real = {borrow: obj.method};
assert(real.borrow()() === real);

// Recap:
// use ''->'' instead of ''function'' for lighter syntax
// use ''=>'' instead of calling bind or writing a closure
const obj2 = {
 method: () -> (=> this)
};
assert(obj2.method()() === obj2);

let fake2 = {steal: obj2.method()};
assert(fake2.steal() === obj2);

let real2 = {borrow: obj2.method};
assert(real2.method()() === real2);

// An explicit ''this'' parameter can have an initializer
// Semantics are as in the "parameter default values" Harmony proposal
const self = {c: 0};
const self_bound = (this = self, a, b) -> {
 this.c = a * b;
};
self_bound(2, 3);
assert(self.c === 6);

const other = {c: "not set"};
self_bound.call(other, 4, 5);
assert(other.c === "not set");
assert(self.c === 20);

// A special form based on the default operator proposal
const self_default_bound = (this ??= self, a, b) -> {
 this.c = a * b;
}
self_default_bound(6, 7);
assert(self.c === 42);

self_default_bound.call(other, 8, 9);
assert(other.c === 72);

file:///F|/Common/EXCHANGE/Patrick/doku.php29.htm (2 of 6) [18.05.2011 16:45:09]

strawman:arrow_function_syntax [ES Wiki]

assert(self.c === 42);

// ''=>'' is short for ''->'' with an explicit ''this'' parameter
function outer() {
 const bound = () => this;
 const bound2 = (this = this) -> this; // initializer has outer ''this'' in scope
 const unbound = () -> this;
 const unbound2 = (this) -> this;

 return [bound, bound2, unbound, unbound2];
}

const t = {},
 u = {};

const v = outer.call(t);

assert(v[0]() === t);
assert(v[1]() === t);
assert(v[2]() === t);
assert(v[3]() === t);

assert(v[0].call(u) === t);
assert(v[1].call(u) === t);
assert(v[2].call(u) === u);
assert(v[3].call(u) === u);

// Object intialiser shorthand: "method" = function-valued property with dynamic ''this''
const obj = {
 method() -> {
 return => this;
 }
};

// Name binding forms hoist to body (var) or block (let, const) top
var warmer(a) -> {...};
let warm(b) -> {...};
const colder(c) -> {...};
const #coldest(d) -> {...};

Grammar Changes

Change all uses of AssignmentExpression outside of the Expression sub-grammar to InitialValue:

ElementList : // See 11.1.4
 Elisionopt InitialValue
 ElementList , Elisionopt InitialValue
 ...
PropertyAssignment : // See 11.1.5
 PropertyName : InitialValue
 ...
ArgumentList : // See 11.2
 InitialValue
 ArgumentList , InitialValue
 ...
Initialiser : // See 12.2
 = InitialValue

file:///F|/Common/EXCHANGE/Patrick/doku.php29.htm (3 of 6) [18.05.2011 16:45:09]

strawman:arrow_function_syntax [ES Wiki]

InitialiserNoIn : // See 12.2
 = InitialValueNoIn

Define InitialValue and ArrowFunctionExpression:

InitialValue :
 AssignmentExpression
 ArrowFunctionExpression

ArrowFunctionExpression :
 ArrowFormalParametersOpt Arrow InitialValue
 ArrowFormalParametersOpt Arrow BlockOpt

ArrowFormalParameters :
 (FormalParameterListOpt)
 (this InitialiserOpt)
 (this InitialiserOpt , FormalParameterList)

Arrow : one of -> or =>

To enable unparenthesized ObjectLiteral expressions as bodies of arrow functions, without ambiguity with Block
bodies, restrict LabelledStatement as follows:

LabelledStatement :
 Identifier : LabelledStatement
 Identifier : LabelUsingStatement

LabelUsingStatement :
 NonEmptyBlock
 IfStatement
 IterationStatement
 BreakStatement
 SwitchStatement
 TryStatement

NonEmptyBlock : // See 12.1
 { StatementList }

The resulting grammar should be unambiguously LR(1) (ignoring ASI), because { L: expr...} can parse only as
an ObjectLiteral, and { L: { if (cond)... } } or similar LabelUsingStatement variations can parse only as
a LabelledStatement.

The grammar is not LR(1) because of the conflict between ArrowFormalParameters and AssignmentExpression. Trying
to resolve this conflict is not easy and would produce much ugliness. — Waldemar Horwat 2011/05/18 00:35

TODO: evaluate top-down parsing difficulty

TODO: This conflicts with the object initialiser shorthand strawman.

To allow arrow functions to appear unparenthesized as the right-hand side of assignment statements, split assignment out
of ExpressionStatement into AssignmentStatement:

Statement :
 Block
 VariableStatement
 EmptyStatement
 AssignmentStatement

file:///F|/Common/EXCHANGE/Patrick/doku.php29.htm (4 of 6) [18.05.2011 16:45:09]

mailto:%26%23x77%3B%26%23x61%3B%26%23x6c%3B%26%23x64%3B%26%23x65%3B%26%23x6d%3B%26%23x61%3B%26%23x72%3B%26%23x40%3B%26%23x67%3B%26%23x6f%3B%26%23x6f%3B%26%23x67%3B%26%23x6c%3B%26%23x65%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand

strawman:arrow_function_syntax [ES Wiki]

 ExpressionStatement
 ...

AssignmentStatement :

 [lookahead �∉ {{, function}] AssignmentList ;

AssignmentList :
 Assignment
 AssignmentList , Assignment

Assignment :
 LeftHandSideExpression = InitialValue
 LeftHandSideExpression AssignmentOperator InitialValue

ExpressionStatement :

 [lookahead �∉ {{, function}] ConditionalExpression ;

Finally, PrimaryExpression produces a parenthesized ArrowFunctionExpression:

PrimaryExpression :
 ...
 (ArrowFunctionExpression)

These changes are intended to be backward-compatible: existing JS parses as before, with the same semantics. New opt-
in Harmony JS may use arrow functions where allowed.

Rationale

TODO

Notes

●

Hard to beat C# and CoffeeScript here (but no unparenthesized single-parameter form as in C#)

�❍

TC39 should embrace, clean-up, and extend rather than re-invent or compete with de-facto and nearby de-jure standards

�❍

It’s hard to say what is a precedent, but CoffeeScript is “just syntax”, no elaborate compilation – JS runtime semantics

●

Main worry about -> was top-down parsing burden but olliej and I agree it’s tolerable (comparable to destructuring and top-

down LeftHandExpression parsing)

●

-> cannot start an ExpressionStatement in the grammar

�❍

Analogous to function being excluded along with { in the lookahead set (see ES5.1 12.4)

�❍

-> parses as if it were a low-precedence operator joining a restricted comma expression (implicitly quoted) to a body

●

() for nullary case is optional, to reduce boilerplate punctuation, after CoffeeScript and similar to shorter function syntax

file:///F|/Common/EXCHANGE/Patrick/doku.php29.htm (5 of 6) [18.05.2011 16:45:09]

http://wiki.ecmascript.org/doku.php?id=strawman:shorter_function_syntax

strawman:arrow_function_syntax [ES Wiki]

●

opt-in addresses Alex’s good point that mutability should not go out window along with verbosity of function

�❍

Hash still consistently implies frozen value-type-ness, as in records and tuples

●

Probably should allow (this ?? self) as a shorthand for (this ??= self)...

●

Dependencies (some are optional pieces)

�❍

parameter default values

�❍

completion_reform

�❍

const functions for the joining algorithm

�❍

default_operator

�❍

soft_bind – the (this ?? self) syntax addresses this case, IINM

— Brendan Eich 2011/05/02 23:49

strawman/arrow_function_syntax.txt · Last modified: 2011/05/18 00:38 by waldemar

file:///F|/Common/EXCHANGE/Patrick/doku.php29.htm (6 of 6) [18.05.2011 16:45:09]

http://wiki.ecmascript.org/doku.php?id=strawman:records
http://wiki.ecmascript.org/doku.php?id=strawman:tuples
http://wiki.ecmascript.org/doku.php?id=harmony:parameter_default_values
http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform
http://wiki.ecmascript.org/doku.php?id=strawman:const_functions
http://wiki.ecmascript.org/doku.php?id=strawman:default_operator
http://wiki.ecmascript.org/doku.php?id=strawman:soft_bind
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:multiline_regexps [ES Wiki]

[[strawman:
multiline_regexps]]

ES
Wiki

Trace: » string_extras » pragmas » multiple_globals »
enumeration » arrow_function_syntax

This topic does not exist yet
You’ve followed a link to a topic that doesn’t exist yet. You can create it by using the Create
this page button.

file:///F|/Common/EXCHANGE/Patrick/doku.php30.htm [18.05.2011 16:45:43]

http://wiki.ecmascript.org/doku.php?id=strawman:multiline_regexps&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:multiline_regexps&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:string_extras
http://wiki.ecmascript.org/doku.php?id=strawman:pragmas
http://wiki.ecmascript.org/doku.php?id=strawman:multiple_globals
http://wiki.ecmascript.org/doku.php?id=strawman:enumeration
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:name_property_of_functions [ES Wiki]

[[strawman:
name_property_of_functions]]

ES
Wiki

Trace: » pragmas »
multiple_globals »

enumeration » arrow_function_syntax » name_property_of_functions

Precedent

●

(new Function).name === “anonymous” wanted by the Web, according to this webkit bug

●

(function(){}).name === ““ may be wanted too, we suspect – we aren’t sure, though, so this behavior

of some browser-based implementations is not strong precedent

●

function f(){} assert(f.name === “f”) is implemented by several browsers, with name not

writable and not configurable

●

Most browsers that implement name for functions use it in the result of toString as the function identifier

(detailed results of testing by Allen)

●

toString according to ES3 is not well-defined for anonymous function expressions

●

Writable displayName property used for console logging in webkit

Goals

These conflict if achieved for all functions.

●

Support de facto standards per above precedent

●

Avoid adding unnecessary properties

●

Keep name and toString results consistent

●

Automatically derive names for synthesized functions such as get, set, and bind functions

�❍

e.g., for obj = {get prop() { return 42; }} extracting the getter for prop would recover a

file:///F|/Common/EXCHANGE/Patrick/doku.php31.htm (1 of 4) [18.05.2011 16:45:46]

http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:pragmas
http://wiki.ecmascript.org/doku.php?id=strawman:multiple_globals
http://wiki.ecmascript.org/doku.php?id=strawman:enumeration
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions
https://bugs.webkit.org/show_bug.cgi?id=7726
https://mail.mozilla.org/pipermail/es-discuss/2009-March/008916.html
http://trac.webkit.org/changeset/42478

strawman:name_property_of_functions [ES Wiki]

function g such that g.name === “get prop” in one proposal

●

Allow some functions to be given arbitrary names, e.g. by code generators (Objective-J)

Proposals

These are not mutually exclusive.

●

For function declarations and named function expressions, create a non-writable, non-configurable name

property whose value is the function’s identifier as a string

●

For anonymous function expressions, create no name property at all

●

Function.prototype would have no name property (in some implementations it is a function created as if

by evaluating an anonymous function expression taking no arguments and having an empty body)

●

Add Function.create(name, params..., body) per Maciej's suggestion

●

Rather than adding a WebKit-inspired displayName writable property, specify Function.displayName

(f) as follows:

�❍

If f.name exists, return f.name.

�❍

Else if f was invoked via an expression evaluated from a Reference whose propertyName was N, return N.

�❍

Else if f was assigned to a Reference whose propertyName was M, return M. There could be more than one

such M. Implementations should pick the most recently used name.

�❍

Else if f was the initial value in an object initializer or a property descriptor for a property named P, return

P.

�❍

Else returned undefined.

Discussion

I like the spirit of Maciej’s proposal, but I don’t like repeating the string-pasting, eval-like interface of the
Function constructor. Here’s a variation:

file:///F|/Common/EXCHANGE/Patrick/doku.php31.htm (2 of 4) [18.05.2011 16:45:46]

https://mail.mozilla.org/pipermail/es-discuss/2009-March/008954.html
http://www.alertdebugging.com/2009/04/29/building-a-better-javascript-profiler-with-webkit/

strawman:name_property_of_functions [ES Wiki]

Function.create(name, call[, construct[, proto]])

Creates a function with the given display name, call behavior, optional construct behavior (which defaults to the
usual call-with-fresh-object behavior), and optional prototype (which defaults to the original value of Function.
prototype).

Function.getDisplayNameOf(f)

Returns the display name of a function.

Some more detail:

●

Every function has an internal [[DisplayName]] property

●

The semantics automatically infers this property for function literals in at least the following contexts:

�❍

function declarations: the declared name is the inferred display name

�❍

named function expressions: the function name is the inferred display name

�❍

var/let/const declarations that assign function literals: the variable name is the inferred display name

�❍

object literals that assign function literals to property names: the property name is the inferred display name

Sample implementation:

(function() {
 var names = new WeakMap();

 Function.create = function(name, call, construct, fproto) {
 if (!fproto)
 fproto = Function.prototype;
 if (fproto !== Function.prototype && !(fproto instanceof Function))
 throw new TypeError("expected instance of Function, got " + fproto);
 var f;
 if (!construct) {
 construct = function() {
 var oproto = f.prototype;
 if (typeof oproto !== "object")
 oproto = Object.prototype;
 var newborn = Object.create(oproto, {});
 var result = Function.prototype.apply.call(call, arguments);
 return typeof result === "object" ? result : newborn;
 }
 }

file:///F|/Common/EXCHANGE/Patrick/doku.php31.htm (3 of 4) [18.05.2011 16:45:46]

strawman:name_property_of_functions [ES Wiki]

 var handler = Proxy.Handler(Object.create(fproto, {}));
 f = Proxy.createFunction(handler, call, construct, fproto);
 return f;
 };

 Function.getDisplayNameOf = function(f) {
 return names.get(f);
 };
})();

— Dave Herman 2011/02/24 06:00

The major objection to losing the “compile this string as the function body” Function design on which Maciej built
comes from the use-case: Objective J compilation and similar want to create a function per “method”, not two (one
returned by this variation and its call function). Maciej’s Function.create proposal was simply a Function
variant that allowed the intrinsic name to be specified. This variation is more like a proxy-maker.

A minor objection:

Function.prototype instanceof Function // => false

This means you cannot pass otherWindow.Function.prototype as the proto parameter.

— Brendan Eich 2011/02/28 21:34

Despite being one of the people responsible for displayName existing i kind of wish that it didn’t. I feel that a lot of
what it provides needn’t being exposed to content in general. In hindsight i feel the better solution would have
been to have the platform development tools provide APIs to associate names with some functions and so not have
it be part of ES core.

If we were wanting to standardise some kind of developer tools API (essentially the frequently reverse engineered
‘console’ APIs) I think displayName (or similar) would make sense there.

— Oliver Hunt 2011/05/01 23:33

strawman/name_property_of_functions.txt · Last modified: 2011/05/14 00:49 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php31.htm (4 of 4) [18.05.2011 16:45:46]

mailto:%26%23x64%3B%26%23x68%3B%26%23x65%3B%26%23x72%3B%26%23x6d%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x63%3B%26%23x63%3B%26%23x73%3B%26%23x2e%3B%26%23x6e%3B%26%23x65%3B%26%23x75%3B%26%23x2e%3B%26%23x65%3B%26%23x64%3B%26%23x75%3B
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
mailto:%26%23x6f%3B%26%23x6c%3B%26%23x69%3B%26%23x76%3B%26%23x65%3B%26%23x72%3B%26%23x40%3B%26%23x61%3B%26%23x70%3B%26%23x70%3B%26%23x6c%3B%26%23x65%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:paren_free [ES Wiki]

[[strawman:
paren_free]]

ES
Wiki

Trace: » multiple_globals » enumeration »
arrow_function_syntax » name_property_of_functions » paren_free

-Table of Contents

�❍ Motivation

�❍ History

�❍ Proposal

�❍ Compatibility

�❍ TODO

Motivation

Syntax matters, keystrokes count. Both readability and
writability can be impaired by too much punctuation
and unnecessary bracketing. Some languages even
prefer indentation-based block structure to bracing,
and their fans report read and write (including
keystroke and RSI avoidance) wins.

JS has a number of statement forms with mandatory parentheses around the head. Can we
relax syntax without introducing ambiguity or bad human read/write factors? This proposal
makes an attempt, first described here and prototyped in Narcissus via the –paren-free option.

A specific motivation for this proposal is the irredeemable for-in loop, whose semantics have
been underspecified forever, with ongoing divergence among implementations, and where
array comprehensions and generator expressions do not want parenthesized for-in heads,
yet where users do want better semantics for all for-in variants.

History

JS derives from Java from C++ from C (via early C and B), from BCPL. BCPL had paren-free
if, etc., heads disambiguated via do reserved words to separate an expression consequent,
avoiding ambiguity.

JS style guides often favor mandatory bracing of if consequents and other sub-statement
bodies, which also suffice to avoid ambiguity about where the condition or head expression
ends and the dependent sub-statement starts.

Proposal

Consider ES5 12.5, “The if Statement”, modified as follows:

IfStatement :
 if Expression SubStatement else SubStatement
 if Expression SubStatement

Where SubStatement is

file:///F|/Common/EXCHANGE/Patrick/doku.php32.htm (1 of 4) [18.05.2011 16:45:24]

http://wiki.ecmascript.org/doku.php?id=strawman:paren_free&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:multiple_globals
http://wiki.ecmascript.org/doku.php?id=strawman:enumeration
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://brendaneich.com/2010/11/paren-free/
https://github.com/mozilla/narcissus/
http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
http://wiki.ecmascript.org/doku.php?id=strawman:generator_expressions
http://plan9.bell-labs.com/who/dmr/chist.html
http://cm.bell-labs.com/cm/cs/who/dmr/bcpl.html

strawman:paren_free [ES Wiki]

SubStatement :
 Block
 KeywordStatement

and KeywordStatement is

KeywordStatement :
 VariableStatement
 IfStatement
 IterationStatement
 ContinueStatement
 BreakStatement
 ReturnStatement
 SwitchStatement
 ThrowStatement
 TryStatement
 DebuggerStatement

And so on for IterationStatement, SwitchStatement, and catch clauses in TryStatement –
except catch blocks must still be braced (as with try and finally since their introduction
in ES3).

We allow single sub-statements starting with unconditionally reserved keywords to be unbraced
after a paren-free head, since the keyword acts as BCPL’s do separator to disambiguate head
from body expression.

Notice how this relaxation from requiring braces around the body allows if-else-if chains
without a special case:

 if x < y {
 } else if x < z {
 } else if x < w {
 } else {
 }

instead of the perfidious rightward drift of:

 if x < y {
 } else {
 if x < z {
 } else {
 if x < w {
 } else {

file:///F|/Common/EXCHANGE/Patrick/doku.php32.htm (2 of 4) [18.05.2011 16:45:24]

strawman:paren_free [ES Wiki]

 }
 }
 }

This keyword-or-brace refinement also matches some popular style guides that recommend
braced bodies except where the body is a short keyword-prefixed statement starting with
break, continue, throw, or return.

Compatibility

Apart from for and catch heads, the relaxation proposed here that removes manadatory
parantheses still allows overparenthesization of the head Expression. For such non-for, non-
catch heads, the new syntax has no new semantics and old source parses the same (extra
parentheses do not alter the abstract syntax tree).

Thus we preserve backward compatibility of if, while, do-while, and switch statements,
where the head syntax is Expression. Old content migrates painlessly, and developers may
remove parentheses at their leisure, once pre-Harmony user agents dwindle to unsupportably
small hit rates on servers.

Parenthesizing a catch head would be an error. This proposal values consistency over
backward compatibility, so catch heads would have to lose their parentheses to migrate into
Harmony. This is a cost, but catch heads may change semantics in Harmony per
catch_guards. If semantics change, then the syntax change creates a migration early-error
“speed bump” – a benefit compared to allowing existing code to run with different results.

for loops change incompatibly in order to reform the syntax and semantics of for-in, which
is otherwise not compatibly reformable under parenthesized syntax. This is an intentional step
to clean the slate, avoid migration mistakes detectable only at runtime, and still preserve the
wanted for and in keywords in the obvious form. More on this below.

TODO

for and for-in paren-free (migration speed-bump for early error in order to reform for-in
semantics to be based on iterators).

Also, for-in on arrays iterates values not keys.

KeywordStatement : VariableStatement is dubious but plausible in ES1-5, but let and const
are not allowed as direct (unbraced) kids of if, etc. So VariableStatement must not produce
let or const declarations, only var declarations.

— Brendan Eich 2011/03/24 20:45

strawman/paren_free.txt · Last modified: 2011/03/28 08:09 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php32.htm (3 of 4) [18.05.2011 16:45:24]

http://wiki.ecmascript.org/doku.php?id=strawman:catch_guards
http://wiki.ecmascript.org/doku.php?id=strawman:iterators
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B

strawman:paren_free [ES Wiki]

file:///F|/Common/EXCHANGE/Patrick/doku.php32.htm (4 of 4) [18.05.2011 16:45:24]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:versioning [ES Wiki]

[[strawman:
versioning]]

ES
Wiki

Trace: » enumeration » arrow_function_syntax »
name_property_of_functions » paren_free » versioning

Prior Work

See versioning for the back-story.

Goal Thoughts

The goal is to allow new versions of ES with syntactic and non-syntactic extensions to
degrade gracefully in downrev browsers, while upgrading the user experience for uprev
browsers without taxing developers too much.

Audiences competing here include implementors, developers, and ultimately users who
benefit from progressive enhancement. On the Web, with Ajax apps, progressive
enhancement may mean the regressive experience is slighly less shiny (no CSS
transition), or perhaps a “Web 1.0” window-popup or form field instead of CSS popup or
editable text widget.

For JS hackers wanting to use new versions of ES, the problems consist of selecting and
detecting support for the new version and compensating with fallback for lack of new
features. For browser implementors, complexity and version combination explosion may
be overriding.

Issue Dump

This is a brain-dump or laundry-list. It might better be factored into audience-specific
use-cases from which we can derive requirements.

●

Object model extensions generally fly under “the default version” you get with

<script>...</script>.

�❍

Developers can object-detect in order to feature-detect, they do not need to use

<script> attributes or extra version=... parameters.

�❍

We should try to continue this to avoid explosive combination of feature-hiding

code in implementations.

file:///F|/Common/EXCHANGE/Patrick/doku.php33.htm (1 of 3) [18.05.2011 16:45:41]

http://wiki.ecmascript.org/doku.php?id=strawman:versioning&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:versioning&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:enumeration
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://wiki.ecmascript.org/doku.php?id=strawman:versioning
http://wiki.ecmascript.org/doku.php?id=proposals:versioning

strawman:versioning [ES Wiki]

�❍

But for new syntax, developers need to hide <script> content using that

syntax from downrev browsers.

●

Script tag version parameter values should be well-defined for ES standards.

●

Script tag version parameter values defined also for multi-vendor experimental

versions if it makes sense.

●

In-language version selection via a use version n; pragma. This wins for many

developers who are not good script-tag configurators.

●

Something like versioning‘s __MAX_ECMASCRIPT_VERSION__ property, for

runtime script version selection.

●

A different notion of “max”, for frame-wise restriction to a maximum version of the

language to preserve security proofs.

�❍

Crock points out this could be abused and tend to freeze progress.

●

A frame-wise version selection that sets the default for all script tags and event

handlers was specified in HTML4 but not implemented by all browsers.

�❍

We might want an HTML5 solution that is easier to express than an HTTP header

equated via a <meta> tag!

�❍

“Min” as well as “Max” version stipulation might be necessary for certain web

apps or pages.

�❍

file:///F|/Common/EXCHANGE/Patrick/doku.php33.htm (2 of 3) [18.05.2011 16:45:41]

http://www.rfc-editor.org/rfc/rfc4329.txt
http://wiki.ecmascript.org/doku.php?id=proposals:versioning
http://www.w3.org/TR/REC-html40/interact/scripts.html#default-script

strawman:versioning [ES Wiki]

Better syntax with alternative content than the old <script> tag, which has no

fallback markup within its container, might be appropriate.

— Brendan Eich 2009/09/23 22:52

strawman/versioning.txt · Last modified: 2009/09/23 23:23 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php33.htm (3 of 3) [18.05.2011 16:45:41]

mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

start [ES Wiki]

[[start]] ES
Wiki

Trace: » enumeration » arrow_function_syntax »
name_property_of_functions » paren_free » versioning

Recent Changes
The following pages were changed recently.

● 2011/05/18 06:32 harmony:binary_data_discussion lukeh

● 2011/05/18 05:58 strawman:typed_arrays lukeh

● 2011/05/18 02:08 strawman:classes_with_trait_composition markm

● 2011/05/18 01:49 strawman:private_names lukeh

● 2011/05/18 01:37 strawman:proto_operator allen

● 2011/05/18 01:07 conventions:avoid_strictness_contagion markm

● 2011/05/18 00:55 strawman:unique_string_values allen

● 2011/05/18 00:38 strawman:arrow_function_syntax waldemar

● 2011/05/17 20:34 strawman:support_full_unicode_in_strings added ref to W3C

requests document allen

● 2011/05/17 07:39 strawman:trait_composition_for_classes markm

● 2011/05/17 06:57 strawman:simple_maps_and_sets markm

● 2011/05/15 22:57 strawman:branding_classes markm

● 2011/05/15 22:03 harmony:weak_maps markm

● 2011/05/15 17:26 strawman:deferred_functions_draft markm

● 2011/05/15 16:06 strawman:concurrency markm

● 2011/05/15 07:12 strawman:strawman markm

● 2011/05/14 00:49 strawman:name_property_of_functions brendan

● 2011/05/11 22:16 strawman:guards typo fix brendan

● 2011/05/11 21:27 strawman:object_initialiser_shorthand brendan

● 2011/05/11 20:31 harmony:egal more concrete syntax and naming brendan

● 2011/05/06 22:48 strawman:i18n_api cira

file:///F|/Common/EXCHANGE/Patrick/doku.php34.htm (1 of 2) [18.05.2011 16:45:44]

http://wiki.ecmascript.org/doku.php?id=start&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:enumeration
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://wiki.ecmascript.org/doku.php?id=strawman:versioning
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_discussion&do=diff
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_discussion&do=revisions
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_discussion
http://wiki.ecmascript.org/doku.php?id=strawman:typed_arrays&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:typed_arrays&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:typed_arrays
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
http://wiki.ecmascript.org/doku.php?id=strawman:private_names&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:private_names&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:private_names
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator
http://wiki.ecmascript.org/doku.php?id=conventions:avoid_strictness_contagion&do=diff
http://wiki.ecmascript.org/doku.php?id=conventions:avoid_strictness_contagion&do=revisions
http://wiki.ecmascript.org/doku.php?id=conventions:avoid_strictness_contagion
http://wiki.ecmascript.org/doku.php?id=strawman:unique_string_values&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:unique_string_values&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:unique_string_values
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings
http://wiki.ecmascript.org/doku.php?id=strawman:trait_composition_for_classes&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:trait_composition_for_classes&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:trait_composition_for_classes
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:branding_classes&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:branding_classes&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:branding_classes
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps&do=diff
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps&do=revisions
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions_draft&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions_draft&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions_draft
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency
http://wiki.ecmascript.org/doku.php?id=strawman:strawman&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:strawman&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:strawman
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions
http://wiki.ecmascript.org/doku.php?id=strawman:guards&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:guards&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:guards
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand
http://wiki.ecmascript.org/doku.php?id=harmony:egal&do=diff
http://wiki.ecmascript.org/doku.php?id=harmony:egal&do=revisions
http://wiki.ecmascript.org/doku.php?id=harmony:egal
http://wiki.ecmascript.org/doku.php?id=strawman:i18n_api&do=diff
http://wiki.ecmascript.org/doku.php?id=strawman:i18n_api&do=revisions
http://wiki.ecmascript.org/doku.php?id=strawman:i18n_api

start [ES Wiki]

start.txt · Last modified: 2011/02/18 01:29 by allen

file:///F|/Common/EXCHANGE/Patrick/doku.php34.htm (2 of 2) [18.05.2011 16:45:44]

http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

harmony:proposals [ES Wiki]

[[harmony:
proposals]]

ES
Wiki

Trace: » arrow_function_syntax »
name_property_of_functions » paren_free » versioning » proposals

Harmony

See harmony for requirements, goals, and means informing and guiding the proposals under
development for ES-Harmony.

Lacking a formal language specification, the following list is not definitive, but it should reflect
consensus achieved so far in TC39. Anything can be revisited for a good reason, of course.

The following list will grow, but not without bound before the next ECMA-262 Edition is
constructed. Without prematurely triaging or using “ES6” (which might have to be used for a
short-term edition, worst-case), for now let’s focus on near-term proposals while keeping
important longer-term strawman proposals warm.

— Brendan Eich 2009/07/29 23:51

Proposals

●

Block scoped bindings (markm):

�❍

let, the new var but block-scoped and with better use-before-set semantics (dherman,

markm)

�❍

const, for constant let-like bindings (dherman,markm)

�❍

block functions, let-scoped functions declared directly in block statements (markm)

●

destructuring assignment and binding declaration forms, based on object and array

initialiser syntax (allen)

●

file:///F|/Common/EXCHANGE/Patrick/doku.php35.htm (1 of 4) [18.05.2011 16:45:08]

http://wiki.ecmascript.org/doku.php?id=harmony:proposals&do=backlink
http://wiki.ecmascript.org/doku.php?id=harmony:proposals&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://wiki.ecmascript.org/doku.php?id=strawman:versioning
http://wiki.ecmascript.org/doku.php?id=harmony:proposals
http://wiki.ecmascript.org/doku.php?id=harmony:harmony
http://wiki.ecmascript.org/doku.php?id=strawman:strawman
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/doku.php?id=harmony:block_scoped_bindings
http://wiki.ecmascript.org/doku.php?id=harmony:let
http://wiki.ecmascript.org/doku.php?id=harmony:const
http://wiki.ecmascript.org/doku.php?id=harmony:block_functions
http://wiki.ecmascript.org/doku.php?id=harmony:destructuring

harmony:proposals [ES Wiki]

parameter default values, supplying default arguments to trailing optional parameters

(allen)

●

rest parameters, for a trailing formal parameter capturing variable actual arguments as an

array (allen)

●

spread, the ... prefix operator for expanding an array actual parameter into its elements

(allen)

●

proxies, a “catchall” mechanism for intercepting property accesses generically (tomvc)

�❍

proxy defaultHandler, a default Proxy forwarding handler. (tomvc, markm)

�❍

proxies_semantics, explains the semantics in terms of the ES5 spec’s internal

operations (tomvc)

�❍

extended object api standardizing some “missing” ES5 methods on Object. (tomvc)

●

Collections

�❍

weak maps non-enumerable object-identity-based tables. Fixes a crucial memory leak in

conventional weak-key tables. (markm)

�❍

egal (markm) an identity-testing operator inspired by Henry Baker’s egal. (Not itself a

collection, but some collections will rely on it.)

●

proper tail calls (dherman)

●

modules and module loaders (dherman)

file:///F|/Common/EXCHANGE/Patrick/doku.php35.htm (2 of 4) [18.05.2011 16:45:08]

http://wiki.ecmascript.org/doku.php?id=harmony:parameter_default_values
http://wiki.ecmascript.org/doku.php?id=harmony:rest_parameters
http://wiki.ecmascript.org/doku.php?id=harmony:spread
http://wiki.ecmascript.org/doku.php?id=harmony:proxies
http://wiki.ecmascript.org/doku.php?id=harmony:proxy_defaulthandler
http://wiki.ecmascript.org/doku.php?id=harmony:proxies_semantics
http://wiki.ecmascript.org/doku.php?id=harmony:extended_object_api
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps
http://wiki.ecmascript.org/doku.php?id=harmony:egal
http://home.pipeline.com/%7Ehbaker1/ObjectIdentity.html
http://wiki.ecmascript.org/doku.php?id=harmony:proper_tail_calls
http://wiki.ecmascript.org/doku.php?id=harmony:modules
http://wiki.ecmascript.org/doku.php?id=harmony:module_loaders

harmony:proposals [ES Wiki]

●

iterators, for better collections, more usable for-in constructs, and proxy enumeration

that scales (brendan, dherman)

●

generators, Pythonic/Iconic generator functions that can yield multiple values while

suspending their activation in between yields

●

generator expressions, convenient, expressive syntax for creating lazily-computed

generators (brendan, dherman)

●

binary data, convenient, high-level, structured binary data (dherman)

�❍

binary data semantics

�❍

binary data discussion

●

Number improvements

�❍

Number.isFinite

�❍

Number.isNaN

�❍

Number.isInteger

�❍

Number.toInteger

●

Regular Expression improvements

�❍

file:///F|/Common/EXCHANGE/Patrick/doku.php35.htm (3 of 4) [18.05.2011 16:45:08]

http://wiki.ecmascript.org/doku.php?id=harmony:iterators
http://wiki.ecmascript.org/doku.php?id=harmony:generators
http://wiki.ecmascript.org/doku.php?id=harmony:generator_expressions
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_semantics
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_discussion
http://wiki.ecmascript.org/doku.php?id=harmony:number.isfinite
http://wiki.ecmascript.org/doku.php?id=harmony:number.isnan
http://wiki.ecmascript.org/doku.php?id=harmony:number.isinteger
http://wiki.ecmascript.org/doku.php?id=harmony:number.tointeger

harmony:proposals [ES Wiki]

regexp y flag, the “sticky” flag causing a regexp to anchor at lastIndex

●

String improvements

�❍

String.prototype.repeat

●

typeof null, a long-awaited bug fix to typeof (brendan crock)

harmony/proposals.txt · Last modified: 2011/04/28 00:46 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php35.htm (4 of 4) [18.05.2011 16:45:08]

http://wiki.ecmascript.org/doku.php?id=harmony:regexp_y_flag
http://wiki.ecmascript.org/doku.php?id=harmony:string.prototype.repeat
http://wiki.ecmascript.org/doku.php?id=harmony:typeof_null
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:strawman [ES Wiki]

[[strawman:
strawman]]

ES
Wiki

Trace: » name_property_of_functions » paren_free »
versioning » proposals » strawman

About this Directory
This ‘strawman’ namespace is intended to contain proposals for the “ES-Harmony” language that
are not yet approved harmony proposals, and to clearly separate them from the legacy ES4 pages.

Proposals

●

Concurrency, Asynchrony, and Distributed Programming

�❍

concurrency (markm)

�❍

deferred_functions allow writing asynchronous code in a linear style where you would

otherwise use callbacks and manual CPS (peterhal)

●

proto operator (allen)

●

Array

�❍

array create (crock)

■

also see proto operator

�❍

array subtypes, for allowing construction of array instances with prototype other than

Array.prototype (olliej)

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (1 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:strawman&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:strawman&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://wiki.ecmascript.org/doku.php?id=strawman:versioning
http://wiki.ecmascript.org/doku.php?id=harmony:proposals
http://wiki.ecmascript.org/doku.php?id=strawman:strawman
http://wiki.ecmascript.org/doku.php?id=harmony:proposals
http://wiki.ecmascript.org/doku.php?id=strawman:concurrency
http://wiki.ecmascript.org/doku.php?id=strawman:deferred_functions
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator
http://wiki.ecmascript.org/doku.php?id=strawman:array_create
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator
http://wiki.ecmascript.org/doku.php?id=strawman:array_subtypes

strawman:strawman [ES Wiki]

array statics (dherman)

●

Number and Math Enhancements

�❍

more Math fun, see Alistair Braidwood's message

�❍

Spreadsheet comparing ECMAScript Math functions to various C/C++ math libraries

�❍

number compare (crock)

�❍

number EPSILON (crock)

�❍

number MAX_INTEGER (crock)

�❍

random-er, or a better (cryptographically strong) random number generator (see

Mozilla bug 322529)

■

See also the crypto.getRandomValues spec from Adam Barth

●

String

�❍

string format (crock)

�❍

string format (shanjian)

�❍

string extras (dherman)

●

Functions

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (2 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:array_statics
http://wiki.ecmascript.org/doku.php?id=strawman:more_math_fun
https://mail.mozilla.org/pipermail/es-discuss/2009-March/009036.html
https://spreadsheets.google.com/ccc?key=0Ak51JfLL8QLYdDBVcFZaMXhlY2d2RnM0TDVxLWlua3c&hl=en
http://wiki.ecmascript.org/doku.php?id=strawman:number_compare
http://wiki.ecmascript.org/doku.php?id=strawman:number_epsilon
http://wiki.ecmascript.org/doku.php?id=strawman:number_max_integer
http://wiki.ecmascript.org/doku.php?id=strawman:random-er
https://bugzilla.mozilla.org/show_bug.cgi?id=322529
http://wiki.whatwg.org/wiki/Crypto
http://wiki.ecmascript.org/doku.php?id=strawman:string_format
http://wiki.ecmascript.org/doku.php?id=strawman:string_format_take_two
http://wiki.ecmascript.org/doku.php?id=strawman:string_extras

strawman:strawman [ES Wiki]

name property of functions (brendan)

�❍

parameters property of functions (crock)

�❍

function to string – greater specification for problematic Function.prototype.

toString (allen)

�❍

shorter function syntax, for defining and (or possibly only) expressing functions

concisely (arv)

�❍

const functions (markm) now with a joining optimization

�❍

arrow_function_syntax, a synthesis of the above two with “Harmony of My Dreams” and

CoffeeScript’s syntax (brendan)

�❍

fix function name binding (Allen) Make the binding of function names consistent

between FunctionExpressions and FunctionDeclarations

�❍

soft_bind (alex, arv, markm) A binding operator intermediate between JavaScript’s

current loose binding and the tight binding of Function.prototype.bind.

●

Regular Expressions

�❍

regexp x flag (crock)

�❍

multiline regexps (brendan, crock)

�❍

match web reality (allen)

�❍

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (3 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:name_property_of_functions
http://wiki.ecmascript.org/doku.php?id=strawman:parameters_property_of_functions
http://wiki.ecmascript.org/doku.php?id=strawman:function_to_string
https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002532.html
http://wiki.ecmascript.org/doku.php?id=strawman:shorter_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:const_functions
http://wiki.ecmascript.org/doku.php?id=strawman:arrow_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:fix_function_name_binding
http://wiki.ecmascript.org/doku.php?id=strawman:soft_bind
http://wiki.ecmascript.org/doku.php?id=strawman:regexp_x_flag
http://wiki.ecmascript.org/doku.php?id=strawman:multiline_regexps
http://wiki.ecmascript.org/doku.php?id=strawman:match_web_reality

strawman:strawman [ES Wiki]

Steve Levithan RegExp API improvements

�❍

regexp look-behind support

●

JSON

�❍

JSON path (crock)

●

lexical scope (dherman)

●

Modules

�❍

simple modules (with examples) and module_loaders (dave, samth)

�❍

simple module functions (markm)

�❍

(modules_harmonic, (ihab_awad) temporary placeholder)

�❍

modules_primordials

�❍

modules_emaker_style

■

system, a place to put powerful objects provided by the embedding without having

to introduce names into the global scope every time.

�❍

modules_packages

●

Operators

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (4 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:steve_levithan_regexp_api_improvements
http://wiki.ecmascript.org/doku.php?id=strawman:regexp_look-behind_support
http://wiki.ecmascript.org/doku.php?id=strawman:json_path
http://wiki.ecmascript.org/doku.php?id=strawman:lexical_scope
http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules
http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules_examples
http://wiki.ecmascript.org/doku.php?id=strawman:module_loaders
http://wiki.ecmascript.org/doku.php?id=strawman:simple_module_functions
http://wiki.ecmascript.org/doku.php?id=strawman:modules_harmonic
http://wiki.ecmascript.org/doku.php?id=strawman:modules_primordials
http://wiki.ecmascript.org/doku.php?id=strawman:modules_emaker_style
http://wiki.ecmascript.org/doku.php?id=strawman:system
http://wiki.ecmascript.org/doku.php?id=strawman:modules_packages

strawman:strawman [ES Wiki]

default operator (crock)

�❍

modulo operator (crock)

�❍

has operator (crock)

●

Value types

�❍

value types, requirements for first-class number-like objects with operators and (we

hope) literal syntax (brendan)

�❍

value proxies, extending proxies to implement value types (cormac)

●

Garbage collection

�❍

gc semantics Thoughts on specifying the semantics of garbage collection. (markm)

�❍

weak references and post-mortem finalization. (markm)

�❍

proper tail calls (markm)

�❍

inherited explicit soft fields (markm) – an encapsulation-respecting alternative to

private names above. See comparison at names vs soft fields.

●

Data structures

�❍

binary data, convenient, high-level, structured binary data (dherman)

■

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (5 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:default_operator
http://wiki.ecmascript.org/doku.php?id=strawman:modulo_operator
http://wiki.ecmascript.org/doku.php?id=strawman:has_operator
http://wiki.ecmascript.org/doku.php?id=strawman:value_types
http://wiki.ecmascript.org/doku.php?id=strawman:value_proxies
http://wiki.ecmascript.org/doku.php?id=harmony:proxies
http://wiki.ecmascript.org/doku.php?id=strawman:gc_semantics
http://wiki.ecmascript.org/doku.php?id=strawman:weak_references
http://wiki.ecmascript.org/doku.php?id=strawman:proper_tail_calls
http://wiki.ecmascript.org/doku.php?id=strawman:inherited_explicit_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:private_names
http://wiki.ecmascript.org/doku.php?id=strawman:names_vs_soft_fields
http://wiki.ecmascript.org/doku.php?id=strawman:binary_data

strawman:strawman [ES Wiki]

binary data semantics

■

binary data discussion

�❍

typed arrays, similar to the above byte arrays, as originally defined by webgl (arun)

�❍

encapsulated hashcodes (allen – see also weak maps)

�❍

simple maps and sets (markm)

�❍

records (brendan, dherman)

�❍

tuples (brendan, dherman)

�❍

dicts (dherman)

●

Loops, iteration, enumeration

�❍

iterator conveniences, an API for convenient construction of iterators (dherman)

�❍

enumeration, more fully-specified semantics for property enumeration in for-in loops

(brendan, dherman)

�❍

array comprehensions, convenient, expressive syntax for creating eagerly-computed

arrays (brendan, dherman)

●

Private Names prividing unique, unforgable property names(allen)

�❍

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (6 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:binary_data_semantics
http://wiki.ecmascript.org/doku.php?id=strawman:binary_data_discussion
http://wiki.ecmascript.org/doku.php?id=strawman:typed_arrays
http://wiki.ecmascript.org/doku.php?id=strawman:byte_arrays
http://www.webgl.org/
http://wiki.ecmascript.org/doku.php?id=strawman:encapsulated_hashcodes
http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps
http://wiki.ecmascript.org/doku.php?id=strawman:simple_maps_and_sets
http://wiki.ecmascript.org/doku.php?id=strawman:records
http://wiki.ecmascript.org/doku.php?id=strawman:tuples
http://wiki.ecmascript.org/doku.php?id=strawman:dicts
http://wiki.ecmascript.org/doku.php?id=strawman:iterator_conveniences
http://wiki.ecmascript.org/doku.php?id=strawman:enumeration
http://wiki.ecmascript.org/doku.php?id=strawman:array_comprehensions
http://wiki.ecmascript.org/doku.php?id=strawman:private_names

strawman:strawman [ES Wiki]

Instance Variables work in conjunction with Private Names to provide strong

encapsulation/information hiding.

�❍

Also see discussion links at end of Private Names page.

●

Declarative Abstractions Based on Object Literals (allen)

�❍

Declarative Object and Class Abstractions Based Upon Extended Object Initialisers

including:

■

Object Initialiser Meta Properties

■

Method Properties

■

Other Object Initialiser Property Attribute Modifiers

■

see proto operator and concise object literal extensions for an alternative to the

above 3 proposals

■

Object Initialiser Initialization Blocks

■

Implicit property initialization expressions (brendan)

■

Class Initialisers

■

super in Object Initialisers

�❍

The Private Names extension integrates with extended Object Initialisers:

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (7 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:instance_variables
http://wiki.ecmascript.org/doku.php?id=strawman:private_names
http://wiki.ecmascript.org/doku.php?id=strawman:private_names
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_meta
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_methods
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_const
http://wiki.ecmascript.org/doku.php?id=strawman:proto_operator
http://wiki.ecmascript.org/doku.php?id=strawman:concise_object_literal_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_initialization_blocks
http://wiki.ecmascript.org/doku.php?id=strawman:object_initialiser_shorthand
http://wiki.ecmascript.org/doku.php?id=strawman:obj_initialiser_class_abstraction
http://wiki.ecmascript.org/doku.php?id=strawman:super_in_object_initialisers
http://wiki.ecmascript.org/doku.php?id=strawman:private_names

strawman:strawman [ES Wiki]

Private Names in Object Initialisers

�❍

Also see destructuring for “record extension and row capture” via ... – this may need

its own proposal page

●

Similar declarative object extension mechanisms

�❍

scoped object extensions (peterhal)

●

High Integrity Factories

�❍

classes with trait composition (markm)

■

trait_composition_for_classes (markm, tom)

■

traits semantics (tom)

�❍

guards A syntax for dynamic type-like checks (markm, waldemar)

�❍

trademarks Simple semantics for dynamic type-like checks (markm, waldemar)

●

Versions and Configuration

�❍

versioning, the full versioning of script tag content and whole-frame/window object

model monty (brendan)

�❍

pragmas, a future-proof “use” directive for language modes and implementation options

(dherman)

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (8 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:private_names_in_object_initialisers
http://wiki.ecmascript.org/doku.php?id=harmony:destructuring
http://wiki.ecmascript.org/doku.php?id=strawman:scoped_object_extensions
http://wiki.ecmascript.org/doku.php?id=strawman:classes_with_trait_composition
http://wiki.ecmascript.org/doku.php?id=strawman:trait_composition_for_classes
http://wiki.ecmascript.org/doku.php?id=strawman:traits_semantics
http://wiki.ecmascript.org/doku.php?id=strawman:guards
http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
http://wiki.ecmascript.org/doku.php?id=strawman:versioning
http://wiki.ecmascript.org/doku.php?id=strawman:pragmas

strawman:strawman [ES Wiki]

●

quasis, quasi-literals provide DSL support for content generation and introspection

(mikesamuel)

●

ast, a parser built into conforming Harmony implementations which returns a standard

abstract syntax tree (dherman)

●

extended Object API, standardizing some “missing” ES5 methods on Object. (tomvc)

●

proxy extensions, not-yet-harmonized extensions to proxies. (tomvc)

�❍

Deferred: proxy instanceof, enabling proxies to trap instanceof directly. (tomvc,

markm)

�❍

function proxy prototype, enabling function proxies to specify a custom prototype object

(dherman)

�❍

proxy derived traps, derived getPropertyDescriptor and getPropertyNames

traps (tomvc)

�❍

handler access to proxy, giving Proxy handlers access to the intercepted proxy (tomvc)

�❍

proxy set trap, remove a discrepancy between the default set trap behavior of Proxies

vs regular ES5 objects (tomvc)

�❍

derived traps forwarding handler, semantics of the derived traps of the Proxy default

forwarding handler (tomvc)

�❍

proxy drop receiver, dropping the receiver parameter from get and set traps

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (9 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:quasis
http://wiki.ecmascript.org/doku.php?id=strawman:ast
http://wiki.ecmascript.org/doku.php?id=strawman:extended_object_api
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_extensions
http://wiki.ecmascript.org/doku.php?id=harmony:proxies
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_instanceof
http://wiki.ecmascript.org/doku.php?id=strawman:function_proxy_prototype
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_derived_traps
http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_set_trap
http://wiki.ecmascript.org/doku.php?id=strawman:derived_traps_forwarding_handler
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver

strawman:strawman [ES Wiki]

(tomvc)

●

paren free, relaxing the rules about mandatory parentheses (brendan, dherman)

●

completion reform, to make “completion position” a statically predictable attribute

(dherman)

●

completion let, a variation on let expressions that uses completions (dherman)

●

debugger expressions, to extend the syntax of debugger to be an expression (dherman)

●

multiple globals, bringing the spec in line with the reality of multiple global objects

(dherman)

●

Conditionals

�❍

catch guards, for conditionally catching exceptions (dherman)

�❍

pattern matching, a conditional form based on destructuring (dherman)

�❍

cond expressions, for concise linear nesting of conditional expressions (dherman)

●

Specification Techniques

�❍

specification language, using Harmony to describe Harmony.

�❍

Another alternative, translating the ES5 spec. into a JavaScript-based definitional

interpreter es5definterp.js.txt

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (10 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform
http://wiki.ecmascript.org/doku.php?id=strawman:completion_let
http://wiki.ecmascript.org/doku.php?id=strawman:debugger_expressions
http://wiki.ecmascript.org/doku.php?id=strawman:multiple_globals
http://wiki.ecmascript.org/doku.php?id=strawman:catch_guards
http://wiki.ecmascript.org/doku.php?id=strawman:pattern_matching
http://wiki.ecmascript.org/doku.php?id=strawman:cond_expressions
http://wiki.ecmascript.org/doku.php?id=strawman:specification_language
http://wiki.ecmascript.org/lib/exe/fetch.php?id=strawman%3Astrawman&cache=cache&media=strawman:es5definterp.js.txt

strawman:strawman [ES Wiki]

Internationalization support

�❍

Support full Unicode in strings: remove all 16-bit Unicode assumptions concerning

strings and source code

�❍

Unicode support, tools to aid in using Unicode.

�❍

i18n API, internationalization API (locales, sorting, formatting, parsing).

●

ECMASript object model and internal metaobject protocol (Allen)

�❍

ES5 internal methods and aligning them with Proxy handlers

�❍

ES5 internal nominal typing and generalizing usage of [[Class]]

Deferred proposals

See the deferred proposals page.

strawman/strawman.txt · Last modified: 2011/05/15 07:12 by markm

file:///F|/Common/EXCHANGE/Patrick/doku.php36.htm (11 of 11) [18.05.2011 16:45:03]

http://wiki.ecmascript.org/doku.php?id=strawman:support_full_unicode_in_strings
http://wiki.ecmascript.org/doku.php?id=strawman:unicode_support
http://wiki.ecmascript.org/doku.php?id=strawman:i18n_api
http://wiki.ecmascript.org/doku.php?id=strawman:es5_internal_methods
http://wiki.ecmascript.org/doku.php?id=strawman:es5_internal_nominal_typing
http://wiki.ecmascript.org/doku.php?id=strawman:deferred
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:completion_reform [ES Wiki]

[[strawman:
completion_reform]]

ES
Wiki

Trace: » paren_free » versioning » proposals » strawman
» completion_reform

Completion value

The existing specs describe a completion value that every statement can produce, but some
statements do not necessarily produce a completion value. This means that it’s not always
statically predictable which sub-statement of a compound statement will produce the completion.
For example:

{
 41; // completion is 41
 if (...) 42; // either no completion or 42
} // block's completion is either 41 or 42

{
 41; // completion is 41
 while (...) 42; // either no completion (if 0 iterations) or 42
} // block's completion is either 41 or 42

For proper tail calls, the completion position will be important for identifying tail position in
expression forms with statement bodies (e.g., shorter function syntax, pattern matching, switch
expressions, and completion let).

Completion for conditionally executed statements

This strawman proposes breaking compatibility of the definition of completion values, such that
completion position becomes statically predictable. The basic idea is that these conditional cases
would produce the undefined value as their completion, rather than no completion.

{
 41; // completion is 41
 if (...) 42; // either undefined or 42
} // block's completion is either undefined or 42

{

file:///F|/Common/EXCHANGE/Patrick/doku.php37.htm (1 of 2) [18.05.2011 16:45:15]

http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:paren_free
http://wiki.ecmascript.org/doku.php?id=strawman:versioning
http://wiki.ecmascript.org/doku.php?id=harmony:proposals
http://wiki.ecmascript.org/doku.php?id=strawman:strawman
http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform
http://wiki.ecmascript.org/doku.php?id=harmony:proper_tail_calls
http://wiki.ecmascript.org/doku.php?id=strawman:shorter_function_syntax
http://wiki.ecmascript.org/doku.php?id=strawman:pattern_matching
http://wiki.ecmascript.org/doku.php?id=strawman:switch_expressions
http://wiki.ecmascript.org/doku.php?id=strawman:switch_expressions
http://wiki.ecmascript.org/doku.php?id=strawman:completion_let

strawman:completion_reform [ES Wiki]

 41; // completion is 41
 while (...) 42; // either undefined (if 0 iterations) or 42
} // block's completion is either undefined or 42

Backwards compatibility

While this is backwards-incompatible, the completion value only showed up in ES5 and earlier as
the result of eval. The hope is that this is an obscure enough corner case of completion values,
that it wouldn’t be likely to break many programs.

I like it. The strange “nothing means previous statement’s completion value” semantics were a
just-so story from JS1.0 that we codified in ES1.

Can we get away with this kind of migration-tax (remember, only five fingers of fate to use up)?
We probably can IMHO, and anyway we should test and scan the web harder to check before
making a hard decision.

At the least, I’d rather we have this completion-value semantics for sharp-functions and other
new syntactic forms than the bad old completion semantics.

— Brendan Eich 2011/03/01 00:24

strawman/completion_reform.txt · Last modified: 2011/03/01 00:27 by brendan

file:///F|/Common/EXCHANGE/Patrick/doku.php37.htm (2 of 2) [18.05.2011 16:45:15]

mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

strawman:proxy_drop_receiver [ES Wiki]

[[strawman:
proxy_drop_receiver]]

ES
Wiki

Trace:
»

versioning » proposals » strawman » completion_reform »
proxy_drop_receiver

Dropping receiver from get and set traps

As noted by Sean Eagan on es-discuss, the receiver parameter to the get and set traps of Proxy
handlers is not strictly necessary.

The purpose of this parameter was to allow proxy handlers to refer to the original receiver of a
property access/assignment operation, in the case where the proxy acts as a prototype:

// according to the current Proxy spec:
var p = Proxy.create({
 get: function(receiver, name) { ... }
});
var o = Object.create(p);
o.foo; // triggers p's get trap with receiver === o and name === "foo"

However, according to the ES5 [[Get]] algorithm (section 8.12.3), this is not how inherited property
lookup will occur. The algorithm calls [[GetProperty]] (section 8.12.2), which in turn walks the
prototype chain to look up a property descriptor. This will trigger p‘s getPropertyDescriptor
trap, not its get trap:

// according to the current ES5 semantics:
var p = Proxy.create({
 getPropertyDescriptor: function(name) {
 ...
 }
});
var o = Object.create(p);
o.foo; // triggers p's getPropertyDescriptor trap with name === "foo"

Under this semantics, the get trap will only ever be invoked for direct invocations on p, in which
case receiver will always be equal to p. Pending the acceptance of the strawman that adds a
proxy argument to each trap, receiver becomes unnecessary.

Note: the same reasoning applies to the set trap: ES5 [[Put]] (section 8.12.5) also calls
[[GetProperty]] to find the appropriate property descriptor when it is not found on the receiver object
itself.

Note: it is still possible for a proxy handler to get hold of the receiver object when its proxy is used

file:///F|/Common/EXCHANGE/Patrick/doku.php38.htm (1 of 2) [18.05.2011 16:45:50]

http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:versioning
http://wiki.ecmascript.org/doku.php?id=harmony:proposals
http://wiki.ecmascript.org/doku.php?id=strawman:strawman
http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=strawman:handler_access_to_proxy

strawman:proxy_drop_receiver [ES Wiki]

as a prototype, via the this-binding of a function data property or getter/setter:

var p = Proxy.create({
 getPropertyDescriptor: function(name) {
 return { value: function() { /* this === receiver */ } };
 }
});
var o = Object.create(p);
o.foo(); // calls the above nested function with this === o

The above also works for accessor properties.

— Tom Van Cutsem 2011/05/04 11:55

Consequences

Dropping receiver as the first argument to get and set traps is not backwards-compatible with
the current API. Under this strawman, the first argument to get and set would be name (a string),
not receiver (an object/proxy).

References

●

discussion on es-discuss

Feedback

strawman/proxy_drop_receiver.txt · Last modified: 2011/05/04 07:01 by tomvc

file:///F|/Common/EXCHANGE/Patrick/doku.php38.htm (2 of 2) [18.05.2011 16:45:50]

mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
https://mail.mozilla.org/pipermail/es-discuss/2011-April/013916.html
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

harmony:proxy_defaulthandler [ES Wiki]

[[harmony:
proxy_defaulthandler]]

ES
Wiki

Trace: » proposals » strawman »
completion_reform »

proxy_drop_receiver » proxy_defaulthandler

-Table of Contents

● Default Proxy forwarding handler

■ Forwarding Handler constructor

�❍ Open Issues

■ Alternative names

■ Alternative implementation

for default set trap

■ Default implementation of fix

()

�❍ Feedback and History

Default Proxy forwarding handler
Goal: to standardize a default forwarding handler that delegates all meta-level
operations applied to a proxy to a given target object, as exemplified here.

Rationale: this is a common handler, required as a starting point by most abstractions
that wrap existing JS objects. The default forwarding handler is also required in the
double lifting pattern.

Advantages of standardizing a default forwarding handler:

●

Wrapper proxies don’t need to define this handler over and over again,

●

The code for the default handler doesn’t need to be downloaded over and over again,

●

The default handler evolves in sync with potential changes to the Proxy API,

●

A built-in implementation is likely to be faster than a no-op forwarding handler defined in JS itself

Forwarding Handler constructor

The following is a revised API based on the standard Javascript constructor pattern.

Proxy.Handler = function(target) {
 this.target = target;
};

Proxy.Handler.prototype = {

 // == fundamental traps ==

 // Object.getOwnPropertyDescriptor(proxy, name) -> pd | undefined
 getOwnPropertyDescriptor: function(name) {
 var desc = Object.getOwnPropertyDescriptor(this.target, name);
 if (desc !== undefined) { desc.configurable = true; }
 return desc;
 },

 // Object.getPropertyDescriptor(proxy, name) -> pd | undefined
 getPropertyDescriptor: function(name) {
 var desc = Object.getPropertyDescriptor(this.target, name);
 if (desc !== undefined) { desc.configurable = true; }
 return desc;
 },

file:///F|/Common/EXCHANGE/Patrick/doku.php39.htm (1 of 5) [18.05.2011 16:45:30]

http://wiki.ecmascript.org/doku.php?id=harmony:proxy_defaulthandler&do=backlink
http://wiki.ecmascript.org/doku.php?id=harmony:proxy_defaulthandler&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=harmony:proposals
http://wiki.ecmascript.org/doku.php?id=strawman:strawman
http://wiki.ecmascript.org/doku.php?id=strawman:completion_reform
http://wiki.ecmascript.org/doku.php?id=strawman:proxy_drop_receiver
http://wiki.ecmascript.org/doku.php?id=harmony:proxy_defaulthandler
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=harmony:proxies#examplea_no-op_forwarding_proxy
http://wiki.ecmascript.org/doku.php?id=harmony:proxies#transparent_chains_of_no-op_proxies

harmony:proxy_defaulthandler [ES Wiki]

 // Object.getOwnPropertyNames(proxy) -> [string]
 getOwnPropertyNames: function() {
 return Object.getOwnPropertyNames(this.target);
 },

 // Object.getPropertyNames(proxy) -> [string]
 getPropertyNames: function() {
 return Object.getPropertyNames(this.target);
 },

 // Object.defineProperty(proxy, name, pd) -> undefined
 defineProperty: function(name, desc) {
 return Object.defineProperty(this.target, name, desc);
 },

 // delete proxy[name] -> boolean
 delete: function(name) { return delete this.target[name]; },

 // Object.{freeze|seal|preventExtensions}(proxy) -> proxy
 fix: function() {
 // As long as target is not frozen, the proxy won't allow itself to be fixed
 if (!Object.isFrozen(this.target)) {
 return undefined;
 }
 var props = {};
 for (var name in this.target) {
 props[x] = Object.getOwnPropertyDescriptor(this.target, name);
 }
 return props;
 },

 // == derived traps ==

 // name in proxy -> boolean
 has: function(name) { return name in this.target; },

 // ({}).hasOwnProperty.call(proxy, name) -> boolean
 hasOwn: function(name) { return ({}).hasOwnProperty.call(this.target, name); },

 // proxy[name] -> any
 get: function(receiver, name) { return this.target[name]; },

 // proxy[name] = value
 set: function(receiver, name, value) {
 if (canPut(this.target, name)) { // canPut as defined in ES5 8.12.4 [[CanPut]]
 this.target[name] = value;
 return true;
 }
 return false; // causes proxy to throw in strict mode, ignore otherwise
 },

 // for (var name in proxy) { ... }
 enumerate: function() {
 var result = [];
 for (name in this.target) { result.push(name); };

file:///F|/Common/EXCHANGE/Patrick/doku.php39.htm (2 of 5) [18.05.2011 16:45:30]

harmony:proxy_defaulthandler [ES Wiki]

 return result;
 },

 /*
 // if iterators would be supported:
 // for (var name in proxy) { ... }
 iterate: function() {
 var props = this.enumerate();
 var i = 0;
 return {
 next: function() {
 if (i === props.length) throw StopIteration;
 return props[i++];
 }
 };
 },*/

 // Object.keys(proxy) -> [string]
 keys: function() { return Object.keys(this.target); }
};

To create a default forwarding proxy to an object obj, one would write:

var h = new Proxy.Handler(obj);
var p = Proxy.create(h);

To modify one of the default traps, one can either override traps on a default handler or use prototype inheritance. For
example:

// using assignment
var h = new Proxy.Handler(obj);
h.get = function(rcvr, name) { ... };
var p = Proxy.create(h);

// using inheritance
function MyHandler(target) {
 Proxy.Handler.call(this, target); // constructor chaining
}
MyHandler.prototype = Object.create(Proxy.Handler.prototype);
MyHandler.prototype.get = function(rcvr, name) { ... };

var h2 = new MyHandler(obj);
var p2 = Proxy.create(h2);

Pros of this API:

●

Familiarity to Javascript developers.

●

Handler inheritance is straightforward.

●

All default traps are shared among all default handler instances.

file:///F|/Common/EXCHANGE/Patrick/doku.php39.htm (3 of 5) [18.05.2011 16:45:30]

harmony:proxy_defaulthandler [ES Wiki]

Cons of this API:

●

The constructor pattern is subject to the bug of forgetting new, in which case Proxy.Handler(obj) will set a

target property on Proxy.

●

It’s awkward that handlers are created using constructor functions (requiring new) whereas proxies are created

using a factory method (not requiring new). This makes the API feel a little inconsistent.

— Tom Van Cutsem 2010/12/14 3:10

Open Issues

Alternative names

We can debate about alternative names for Handler and target.

If the Proxy API would be contained in a Harmony module, it may make sense to introduce Handler as an exported
variable, next to Proxy, instead of making it a property on Proxy.

It was noted that calling the default forwarding handler Handler is potentially confusing (not all handlers are
forwarding handlers). Possible alternative: Forwarder.

— Tom Van Cutsem 2011/05/04 12:15

Alternative implementation for default set trap

As currently defined, the default set trap’s behavior is counter-intuitive in the case of a “chain” of proxies (a proxy
forwarding to another proxy):

 set: function(receiver, name, value) {
 if (canPut(this.target, name)) { // canPut as defined in ES5 8.12.4 [[CanPut]]
 this.target[name] = value;
 return true;
 }
 return false; // causes proxy to throw in strict mode, ignore otherwise
 },

If this.target is a proxy, the canPut auxiliary function will trigger that proxy’s
getOwnPropertyDescriptor and getPropertyDescriptor traps to determine whether the property can
be set. Only then is the assignment performed on this.target and is that proxy’s set trap invoked.

Part of the awkwardness lies in the fact that the “inner” set returns its own boolean to indicate success, but that
boolean isn’t accessible to the “outer” set. Instead each proxy in the chain tests the boolean and either throws or
ignores it. MarkM suggests the following refactoring of the internal spec methods which would make this chaining of
set calls more intuitive:

Since the system itself will provide the default traps, the default set trap could call a new internal [[Set]](P,V)
method which returns a boolean, such that [[Put]] would be redefined as:

8.12.5 [[Put]](P,V,Throw)

 If the result of calling [[Set]](P,V) is true, return.

file:///F|/Common/EXCHANGE/Patrick/doku.php39.htm (4 of 5) [18.05.2011 16:45:30]

mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
https://mail.mozilla.org/pipermail/es-discuss/2011-April/013854.html
mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B

harmony:proxy_defaulthandler [ES Wiki]

 Else if Throw is true, throw a TypeError exception.
 else return.

The [[Set]] method on regular objects would be defined as is the current [[Put]] but returning a boolean rather than
conditionally throwing. The [[Set]] method on proxies would call the set trap. The default set trap would call
[[Set]] on this.target. So this default set trap is the primitive by which the ability to call [[Set]] is exposed.

The one problem with this plan is [[Set]] on an object that inherits from a proxy. This plan would still go through the
[[CanPut]] logic on the derived object which would still trigger the [[GetProperty]] and [[GetOwnProperty]] traps on
the proxy. So there’s not much difference in the inherited case. But the direct chaining case is more direct and
intuitive.

— Tom Van Cutsem 2011/01/12 3:10

Default implementation of fix()

The above implementation of fix() was written without giving much thought to the consequences. On second
thought, the above default implementation is potentially unsafe: if a proxy handler inherits from the default
forwarding handler, but does not override fix(), and it forwards to a frozen object, then freezing the proxy will fix
it by fully bypassing the handler. This would mean that any intercepting behavior (e.g. for access control,
logging, ...) that the handler specified would no longer be called, which can be surprising. A more conservative and
safer default implementation of the fix trap would just be to always return undefined. This implies that default
forwarding proxies can’t be fixed unless fix is explicitly overridden.

— Tom Van Cutsem 2011/05/04 12:20

Feedback and History

TC39 January 2011 meeting:

From Waldemar’s notes:

Proxy default handler: Some trivial bugs in the code: Calling getOwnPropertyDescriptor etc. with only one argument. desc in
“desc.configurable = true” can be undefined.

set/put/canPut problem discussion. Allen: Clean up the list of primitive methods and handlers. MarkM: All existing uses of
put can be written in terms of [[Set]]. Waldemar: Would want a more generic way of invoking [[Set]] rather than having to
instantiate a new default proxy. Brendan: Issue remains with prototype chain.

Agreed to move this to proposal stage, with some open issues.

— Tom Van Cutsem 2011/01/24 10:39

TC39 November 2010 meeting: agreement that a default forwarding handler should become part of the spec.

A first iteration of this API required handlers to be created using a factory method:

var handler = Proxy.handlerFor(target);

Drawback of this API: one cannot inherit from a shared handler prototype. Waldemar: why not define an API based on
prototypes and constructor functions? The revised API was formulated in response to this.

— Tom Van Cutsem 2010/12/15 2:53

harmony/proxy_defaulthandler.txt · Last modified: 2011/05/04 07:25 by tomvc

file:///F|/Common/EXCHANGE/Patrick/doku.php39.htm (5 of 5) [18.05.2011 16:45:30]

mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
mailto:%26%23x74%3B%26%23x6f%3B%26%23x6d%3B%26%23x76%3B%26%23x63%3B%26%23x2e%3B%26%23x62%3B%26%23x65%3B%26%23x40%3B%26%23x67%3B%26%23x6d%3B%26%23x61%3B%26%23x69%3B%26%23x6c%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

	Local Disk
	strawman:classes_with_trait_composition [ES Wiki]

	doku.php2.pdf
	Local Disk
	strawman:traits_semantics [ES Wiki]

	doku.php3.pdf
	Local Disk
	strawman:inherited_explicit_soft_fields [ES Wiki]

	doku.php4.pdf
	Local Disk
	strawman:names_vs_soft_fields [ES Wiki]

	doku.php5.pdf
	Local Disk
	strawman:quasis [ES Wiki]

	doku.php6.pdf
	Local Disk
	strawman:concurrency [ES Wiki]

	doku.php7.pdf
	Local Disk
	strawman:simple_module_functions [ES Wiki]

	doku.php8.pdf
	Local Disk
	strawman:random-er [ES Wiki]

	doku.php9.pdf
	Local Disk
	strawman:function_to_string [ES Wiki]

	doku.php10.pdf
	Local Disk
	strawman:simple_maps_and_sets [ES Wiki]

	doku.php11.pdf
	Local Disk
	strawman:scoped_object_extensions [ES Wiki]

	doku.php12.pdf
	Local Disk
	strawman:deferred_functions [ES Wiki]

	doku.php13.pdf
	Local Disk
	strawman:guards [ES Wiki]

	doku.php14.pdf
	Local Disk
	strawman:trademarks [ES Wiki]

	doku.php15.pdf
	Local Disk
	strawman:modulo_operator [ES Wiki]

	doku.php16.pdf
	Local Disk
	strawman:match_web_reality [ES Wiki]

	doku.php17.pdf
	Local Disk
	strawman:array_create [ES Wiki]

	doku.php18.pdf
	Local Disk
	strawman:array_subtypes [ES Wiki]

	doku.php19.pdf
	Local Disk
	strawman:proto_operator [ES Wiki]

	doku.php20.pdf
	Local Disk
	strawman:object_initialiser_shorthand [ES Wiki]

	doku.php21.pdf
	Local Disk
	strawman:concise_object_literal_extensions [ES Wiki]

	doku.php22.pdf
	Local Disk
	strawman:support_full_unicode_in_strings [ES Wiki]

	doku.php23.pdf
	Local Disk
	strawman:array_comprehensions [ES Wiki]

	doku.php24.pdf
	Local Disk
	strawman:simple_maps_and_sets [ES Wiki]

	doku.php25.pdf
	Local Disk
	strawman:string_extras [ES Wiki]

	doku.php26.pdf
	Local Disk
	strawman:pragmas [ES Wiki]

	doku.php27.pdf
	Local Disk
	strawman:multiple_globals [ES Wiki]

	doku.php28.pdf
	Local Disk
	strawman:enumeration [ES Wiki]

	doku.php29.pdf
	Local Disk
	strawman:arrow_function_syntax [ES Wiki]

	doku.php30.pdf
	Local Disk
	strawman:multiline_regexps [ES Wiki]

	doku.php31.pdf
	Local Disk
	strawman:name_property_of_functions [ES Wiki]

	doku.php32.pdf
	Local Disk
	strawman:paren_free [ES Wiki]

	doku.php33.pdf
	Local Disk
	strawman:versioning [ES Wiki]

	doku.php34.pdf
	Local Disk
	start [ES Wiki]

	doku.php35.pdf
	Local Disk
	harmony:proposals [ES Wiki]

	doku.php36.pdf
	Local Disk
	strawman:strawman [ES Wiki]

	doku.php37.pdf
	Local Disk
	strawman:completion_reform [ES Wiki]

	doku.php38.pdf
	Local Disk
	strawman:proxy_drop_receiver [ES Wiki]

	doku.php39.pdf
	Local Disk
	harmony:proxy_defaulthandler [ES Wiki]

	MBJAOINIFFLHDCAMPGLJEIJHHNCNFGLB:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:classes_with_trait_composition

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:classes_with_trait_composition

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:classes_with_trait_composition

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:classes_with_trait_composition

	f3:

	form7:
	x:
	f1: login
	f2: strawman:classes_with_trait_composition

	f3:

	form8:
	x:
	f1: index
	f2: strawman:classes_with_trait_composition

	f3:

	form9:
	f1:

	PGOIMOOOFDKJLJBIBBBODKGPCJNPPLAK:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:traits_semantics

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:traits_semantics

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:traits_semantics

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:traits_semantics

	f3:

	form7:
	x:
	f1: login
	f2: strawman:traits_semantics

	f3:

	form8:
	x:
	f1: index
	f2: strawman:traits_semantics

	f3:

	form9:
	f1:

	JEAPCEDOCFHBOIIIOEDCKPIEKEJHLGMM:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:inherited_explicit_soft_fields

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:inherited_explicit_soft_fields

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:inherited_explicit_soft_fields

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:inherited_explicit_soft_fields

	f3:

	form7:
	x:
	f1: login
	f2: strawman:inherited_explicit_soft_fields

	f3:

	form8:
	x:
	f1: index
	f2: strawman:inherited_explicit_soft_fields

	f3:

	form9:
	f1:

	IGLJIMFAPFICCBOHBAAKGNMADJOMEHHE:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:names_vs_soft_fields

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:names_vs_soft_fields

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:names_vs_soft_fields

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:names_vs_soft_fields

	f3:

	form7:
	x:
	f1: login
	f2: strawman:names_vs_soft_fields

	f3:

	form8:
	x:
	f1: index
	f2: strawman:names_vs_soft_fields

	f3:

	form9:
	f1:

	MNJHFDFGGGJEDLGEBIFGDILCPHDIGJLP:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:quasis

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:quasis

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:quasis

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:quasis

	f3:

	form7:
	x:
	f1: login
	f2: strawman:quasis

	f3:

	form8:
	x:
	f1: index
	f2: strawman:quasis

	f3:

	form9:
	f1:

	MAHIOJGKNHLEINNDHKABEIMGBFDCGPIO:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:concurrency

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:concurrency

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:concurrency

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:concurrency

	f3:

	form7:
	x:
	f1: login
	f2: strawman:concurrency

	f3:

	form8:
	x:
	f1: index
	f2: strawman:concurrency

	f3:

	form9:
	f1:

	OODFCAGLJCCJLDENCGBJDPFLBGOKNBLP:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:simple_module_functions

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:simple_module_functions

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:simple_module_functions

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:simple_module_functions

	f3:

	form7:
	x:
	f1: login
	f2: strawman:simple_module_functions

	f3:

	form8:
	x:
	f1: index
	f2: strawman:simple_module_functions

	f3:

	form9:
	f1:

	KKPNKOAIGMDGBCAHKMBLNOPOEOIJALNB:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:random-er

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:random-er

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:random-er

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:random-er

	f3:

	form7:
	x:
	f1: login
	f2: strawman:random-er

	f3:

	form8:
	x:
	f1: index
	f2: strawman:random-er

	f3:

	form9:
	f1:

	JNJEDFCNFMDAPHFMAHLANHFOIJBHBAKJENDI:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:function_to_string

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:function_to_string

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:function_to_string

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:function_to_string

	f3:

	form7:
	x:
	f1: login
	f2: strawman:function_to_string

	f3:

	form8:
	x:
	f1: index
	f2: strawman:function_to_string

	f3:

	form9:
	f1:

	AHCMFOLGHIDJJDHMNLMLKFLPOMNBPDDK:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:simple_maps_and_sets

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:simple_maps_and_sets

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:simple_maps_and_sets

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:simple_maps_and_sets

	f3:

	form7:
	x:
	f1: login
	f2: strawman:simple_maps_and_sets

	f3:

	form8:
	x:
	f1: index
	f2: strawman:simple_maps_and_sets

	f3:

	form9:
	f1:

	PNFDDHGEHPNLMOEHJKFBPGHDDGAOPCGL:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:scoped_object_extensions

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:scoped_object_extensions

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:scoped_object_extensions

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:scoped_object_extensions

	f3:

	form7:
	x:
	f1: login
	f2: strawman:scoped_object_extensions

	f3:

	form8:
	x:
	f1: index
	f2: strawman:scoped_object_extensions

	f3:

	form9:
	f1:

	GCEJEHLDFPMEEIJFKALFOJLPFBIBFLDN:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:deferred_functions

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:deferred_functions

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:deferred_functions

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:deferred_functions

	f3:

	form7:
	x:
	f1: login
	f2: strawman:deferred_functions

	f3:

	form8:
	x:
	f1: index
	f2: strawman:deferred_functions

	f3:

	form9:
	f1:

	JBFANBCPGFAHMPLMFOLKAPDLMIMAOGDG:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:guards

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:guards

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:guards

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:guards

	f3:

	form7:
	x:
	f1: login
	f2: strawman:guards

	f3:

	form8:
	x:
	f1: index
	f2: strawman:guards

	f3:

	form9:
	f1:

	EOIPEFEEOCDGBHOHIMPGOEBBKOECMLDH:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:trademarks

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:trademarks

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:trademarks

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:trademarks

	f3:

	form7:
	x:
	f1: login
	f2: strawman:trademarks

	f3:

	form8:
	x:
	f1: index
	f2: strawman:trademarks

	f3:

	form9:
	f1:

	HIDFJELANNKBDCKIKDCIMLJKJIONJBDE:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:modulo_operator

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:modulo_operator

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:modulo_operator

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:modulo_operator

	f3:

	form7:
	x:
	f1: login
	f2: strawman:modulo_operator

	f3:

	form8:
	x:
	f1: index
	f2: strawman:modulo_operator

	f3:

	form9:
	f1:

	FLADANKMAPGICFPAEFPFPEGFLDPNIGHK:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:match_web_reality

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:match_web_reality

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:match_web_reality

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:match_web_reality

	f3:

	form7:
	x:
	f1: login
	f2: strawman:match_web_reality

	f3:

	form8:
	x:
	f1: index
	f2: strawman:match_web_reality

	f3:

	form9:
	f1:

	JLGHGHGFHAEGOEPDLAIGHKIBEOAKGNKC:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:array_create

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:array_create

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:array_create

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:array_create

	f3:

	form7:
	x:
	f1: login
	f2: strawman:array_create

	f3:

	form8:
	x:
	f1: index
	f2: strawman:array_create

	f3:

	form9:
	f1:

	LPJEILPEBLAHJPBAIBHNBLCMGJGKJMCC:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:array_subtypes

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:array_subtypes

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:array_subtypes

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:array_subtypes

	f3:

	form7:
	x:
	f1: login
	f2: strawman:array_subtypes

	f3:

	form8:
	x:
	f1: index
	f2: strawman:array_subtypes

	f3:

	form9:
	f1:

	KGILFMFMEEJDKDGBLIOCMFJMMHPKIHNAPL:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:proto_operator

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:proto_operator

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:proto_operator

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:proto_operator

	f3:

	form7:
	x:
	f1: login
	f2: strawman:proto_operator

	f3:

	form8:
	x:
	f1: index
	f2: strawman:proto_operator

	f3:

	form9:
	f1:

	KMIHKENBMOLPKMFAIBKAIAGAAMILLBLD:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:object_initialiser_shorthand

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:object_initialiser_shorthand

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:object_initialiser_shorthand

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:object_initialiser_shorthand

	f3:

	form7:
	x:
	f1: login
	f2: strawman:object_initialiser_shorthand

	f3:

	form8:
	x:
	f1: index
	f2: strawman:object_initialiser_shorthand

	f3:

	form9:
	f1:

	HKPFBEMKDFEFJOIJAMBLHHOJMNNKDNIH:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:concise_object_literal_extensions

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:concise_object_literal_extensions

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:concise_object_literal_extensions

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:concise_object_literal_extensions

	f3:

	form7:
	x:
	f1: login
	f2: strawman:concise_object_literal_extensions

	f3:

	form8:
	x:
	f1: index
	f2: strawman:concise_object_literal_extensions

	f3:

	form9:
	f1:

	ILFGCCEMIENOILKKCGJPPKBDJGDKNLDO:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:support_full_unicode_in_strings

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:support_full_unicode_in_strings

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:support_full_unicode_in_strings

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:support_full_unicode_in_strings

	f3:

	form7:
	x:
	f1: login
	f2: strawman:support_full_unicode_in_strings

	f3:

	form8:
	x:
	f1: index
	f2: strawman:support_full_unicode_in_strings

	f3:

	form9:
	f1:

	IPJCBPIFOHFEGNNLDFFMAHLCBCJCBNBGJB:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:array_comprehensions

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:array_comprehensions

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:array_comprehensions

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:array_comprehensions

	f3:

	form7:
	x:
	f1: login
	f2: strawman:array_comprehensions

	f3:

	form8:
	x:
	f1: index
	f2: strawman:array_comprehensions

	f3:

	form9:
	f1:

	NGEHGFNDJLIDMAEEBHCBFPOGHMOLADBI:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:simple_maps_and_sets

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:simple_maps_and_sets

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:simple_maps_and_sets

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:simple_maps_and_sets

	f3:

	form7:
	x:
	f1: login
	f2: strawman:simple_maps_and_sets

	f3:

	form8:
	x:
	f1: index
	f2: strawman:simple_maps_and_sets

	f3:

	form9:
	f1:

	HIIJKFPMKPIEPFAJOAGMFBGLKEEKLIAO:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:string_extras

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:string_extras

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:string_extras

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:string_extras

	f3:

	form7:
	x:
	f1: login
	f2: strawman:string_extras

	f3:

	form8:
	x:
	f1: index
	f2: strawman:string_extras

	f3:

	form9:
	f1:

	MHGGILELKFKKIAKKIEMMNMALOALDHCDD:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:pragmas

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:pragmas

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:pragmas

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:pragmas

	f3:

	form7:
	x:
	f1: login
	f2: strawman:pragmas

	f3:

	form8:
	x:
	f1: index
	f2: strawman:pragmas

	f3:

	form9:
	f1:

	MGJOMOCIMNGGNDHEIJHHHOGINDCPBCOI:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:multiple_globals

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:multiple_globals

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:multiple_globals

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:multiple_globals

	f3:

	form7:
	x:
	f1: login
	f2: strawman:multiple_globals

	f3:

	form8:
	x:
	f1: index
	f2: strawman:multiple_globals

	f3:

	form9:
	f1:

	KDICACDILCMFLJOAMKJCCMCJLIIPILNC:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:enumeration

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:enumeration

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:enumeration

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:enumeration

	f3:

	form7:
	x:
	f1: login
	f2: strawman:enumeration

	f3:

	form8:
	x:
	f1: index
	f2: strawman:enumeration

	f3:

	form9:
	f1:

	NAHCCDJBAJJLCFAOINDENKDOOCJMKMOD:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:arrow_function_syntax

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:arrow_function_syntax

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:arrow_function_syntax

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:arrow_function_syntax

	f3:

	form7:
	x:
	f1: login
	f2: strawman:arrow_function_syntax

	f3:

	form8:
	x:
	f1: index
	f2: strawman:arrow_function_syntax

	f3:

	form9:
	f1:

	BONANHCEOPEBDJCGFNPKBCPPDHENLOAI:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:multiline_regexps

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:multiline_regexps

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:multiline_regexps

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:multiline_regexps

	f3:

	form7:
	x:
	f1: login
	f2: strawman:multiline_regexps

	f3:

	form8:
	x:
	f1: index
	f2: strawman:multiline_regexps

	f3:

	form9:
	f1:

	IHJNJCCKDJDEDJIMPPDOAFKEOIFIAGNP:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:name_property_of_functions

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:name_property_of_functions

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:name_property_of_functions

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:name_property_of_functions

	f3:

	form7:
	x:
	f1: login
	f2: strawman:name_property_of_functions

	f3:

	form8:
	x:
	f1: index
	f2: strawman:name_property_of_functions

	f3:

	form9:
	f1:

	OCADODNGDABCEPCPJIINODGBMGMLAHDP:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:paren_free

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:paren_free

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:paren_free

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:paren_free

	f3:

	form7:
	x:
	f1: login
	f2: strawman:paren_free

	f3:

	form8:
	x:
	f1: index
	f2: strawman:paren_free

	f3:

	form9:
	f1:

	BNBAAFEJNOHOGDHLOLENKCOEBLIAEIIC:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:versioning

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:versioning

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:versioning

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:versioning

	f3:

	form7:
	x:
	f1: login
	f2: strawman:versioning

	f3:

	form8:
	x:
	f1: index
	f2: strawman:versioning

	f3:

	form9:
	f1:

	GMNGMIGBMHDHAFNGMBAHBKCDOEMOMCDA:
	form1:
	x:
	f1: show
	f2: start

	f3:

	form2:
	x:
	f1: revisions
	f2: start

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: recent
	f2: 20
	f3:

	f4:

	form6:
	x:
	f1: show
	f2: start

	f3:

	form7:
	x:
	f1: revisions
	f2: start

	f3:

	form8:
	x:
	f1: login
	f2: start

	f3:

	form9:
	x:
	f1: index
	f2: start

	f3:

	form10:
	f1:

	LACLLHGAAEPJOCEKJKPCELCMMLJKDBJG:
	form1:
	x:
	f1: edit
	f2:
	f3: harmony:proposals

	f4:

	form2:
	x:
	f1: revisions
	f2: harmony:proposals

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: harmony:proposals

	f4:

	form6:
	x:
	f1: revisions
	f2: harmony:proposals

	f3:

	form7:
	x:
	f1: login
	f2: harmony:proposals

	f3:

	form8:
	x:
	f1: index
	f2: harmony:proposals

	f3:

	form9:
	f1:

	MCDGFJODGGGFDFIOJOEPOAACLBGOBNLE:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:strawman

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:strawman

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:strawman

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:strawman

	f3:

	form7:
	x:
	f1: login
	f2: strawman:strawman

	f3:

	form8:
	x:
	f1: index
	f2: strawman:strawman

	f3:

	form9:
	f1:

	EHAGFOKCCIDFKPDKAEIMDPHFLDHAHKJB:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:completion_reform

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:completion_reform

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:completion_reform

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:completion_reform

	f3:

	form7:
	x:
	f1: login
	f2: strawman:completion_reform

	f3:

	form8:
	x:
	f1: index
	f2: strawman:completion_reform

	f3:

	form9:
	f1:

	FMAHLCBMNDGDBKFBFIBCKIIILIHDHOJBPB:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:proxy_drop_receiver

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:proxy_drop_receiver

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:proxy_drop_receiver

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:proxy_drop_receiver

	f3:

	form7:
	x:
	f1: login
	f2: strawman:proxy_drop_receiver

	f3:

	form8:
	x:
	f1: index
	f2: strawman:proxy_drop_receiver

	f3:

	form9:
	f1:

	BAGFMBGFOBAIILOAJAGGPJMPCCOABCBC:
	form1:
	x:
	f1: edit
	f2:
	f3: harmony:proxy_defaulthandler

	f4:

	form2:
	x:
	f1: revisions
	f2: harmony:proxy_defaulthandler

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: harmony:proxy_defaulthandler

	f4:

	form6:
	x:
	f1: revisions
	f2: harmony:proxy_defaulthandler

	f3:

	form7:
	x:
	f1: login
	f2: harmony:proxy_defaulthandler

	f3:

	form8:
	x:
	f1: index
	f2: harmony:proxy_defaulthandler

	f3:

	form9:
	f1:

