cecma

Ecma/TC39/2011/040

aAnNGdlGl ECMA-262
_-- 6 Edition / Draft September 23,2011

2" Draft

MAScript Language
ecification

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2011

secmd

Contents Page
[N Ao Yo [UT] AT o] o FR PO Vii
Yot o] o1 TP PP PPPPUPPPPPP 1
A ©4o] 0 {01 ¢ 1 F-1 0 (o] = PP PPURRR 1
3 NOIMALIVE FEIEIEICES ovuiiii ettt ettt e e e e e e e e eeees b e sianaaar e et aa et eeeeeeees bbb s eeeeeeeeesrarannss 1
A OVEIVIBW uuiiiieeeeeeeeett et e e e e e e et e s e e eee et ee e tab s eeseaeeeessasaanaaseaesessssssannsdinansansssnnnnnstaeeesseesssssnnnaseessseressntnnaeneenss 1
o VA= o TS Tl 1 o) 1 T [SRR 2
4.2 LanNQUAGE OVEIVIEW ...uvviiiiieeiiiiiieiieeeisiiisieeeeeeesssinseeseessssssssessdeinesnasssseeesssssssesessanasathnnseeeeesssanssesseesssansnnns 2
o T O T o =3 £ RS 3
4.2.2 The Strict Variant Of ECMASCIIPEuuiiiieeiiiiiiiieee e s eiiiiter e e e s ssiieee e e e s s ssateaeeeaesssetanaeeaiessasnteeeaaeessnsnsnns 4
o T =T g ER= T Lo B0 L=y AT T Ao g = T TR 4
SR N\ (o) €= (Lo = LI @ 0] o 1V4=T 1 ¥ o Yo 1S S S 7
5.1 Syntactic and LeXiCal GramIMarsSocuiieiiiiieiiiies i aiseeieieee s sfhates s eteeessibeeeestbe e e s sibe e e s sbeeessnbbeeessbaeeeennne 7
70 I R oY 0] (=) g O o A=Y] = T] 0 = LT SRR 7
5.1.2 The Lexical and REGEXP GIaMIMEAIScoiuiiiiiiiieaiiiiee s ibieesaieeeeattee e aibeeesabreeesanbeeeeabseeeassbeeessnbeeeeannns 8
5.1.3 The NUMEIIC StriNG GramMmMar.... ... e eiieeeeaitieeeerieeiasasbhe e teeeessbeeesabneeesasbeeesabeeesaasreeesansneesannns 8
5.1.4 The SYNTACHIC GIaMIMAr......ocuueiiiiureesiatbe e sasseees i e e eteeeeaasteee s imeeeshn e e e s aateeeeansbeeesanbeeesabreeeaasbeeesanreeeeannns 8
5,15 The JSON GramMIMaAr...ccccociiiiiiiiiiiieeeeeetieeathennaeessaasesssstiinseseeeessssssssannnssineeessssssnsnnnieeesessssssnmannieeeeeseessrnnns 9
5.1.6 Grammar NOTALION ...tttk e e e e e e et eee s sabanae s e 2 oo ne e et baaa e aseeeeeesesbaasaseeeseeessbaatanneeeaesssesrnrannss 9
5.2 AlgOorithm CONVENTIONS ..otk afe e s st e s aas s s B e e e ettt et e e e e e s st e ae e e e e e e s abbbeeeeaeeeannnees 12
5.3 StatiC SEMANTIC RUIES ...uvet it iiine et ie e ee ettt e e th e sfe e e e e e e e et et e et e e et e e e st e ettt et et e e e e st s b ababasabasabbbbabebebeberesnsesrnnnes 13
LG TS 10 U1 o T = S R 13
A =Y ot I oY oLV Z=T 1 o]0 E= e ST SOOPPP 14
7.1 Unicode FOrmat-Control CharaCleIS............cooiiiiiiie et r b s e seseseeeeeeeees 14
72 VAV T (=TT 0T o - R 15
7.3 LINE TOIMINAL OIS 1utt utrestieecdiereeneeeeeeeeeeeeeresstaaaaaaaaataeeaaaesetasesesesasasaesesesasaaaaaassssssssssssssssssssssssssssssssssnsneesrnnens 15
B 0] 1 0 4 1= 0} P 16
8 T 01 =] £ 17
7.6 ldentifier NameS @nd JAENTITIEIScoooiiieiiee et e e e e e e e s e e e e e e e e sa b s e eeeeeeeeseans 17
T.6.1 RESEIVEA WOITS o oeitiitueiieiieis eetti et et e e ettt et e eeeeeeeee e s et aesaeeeeseesstaaa s aeeeeeseessssaanssaseseseesssstannaseeesserennts 19
O A =10 11 o AU F= (o] £ T SO PPUPP 20
A T 1 =T =1 ORI 20
= T T VLU | I =Y = 1 PSP PR SRPPPRPPRIN 20
A T = Yo Yo (== 1o N IR =] 0= | £ OSSP 20
A T T \\ U] g =T (o L (= =T USSP 21
AR S S 4 1 L (=T = PSS 23
7.8.5 Regular EXPreSSION LItEralScccccciuiiiiieiiiiiiiiii e ettt s sttt e e e s s e e e e e s s st ae e e e e e s s nnnnraeeeaeeeannneees 25
7.9 Automatic SEMICOION INSEITION c.ccoveiiiiiiieieeeeeeeeee bbb reaeseseaeereeees 26
7.9.1 Rules of Automatic SEMICOION INSEITION ...ccoiiiiiiiiii bbb eereeeeees 26
7.9.2 Examples of Automatic SEMICOION INSEItiONccoiciiiiiiie e e 27
. T I 0 1= 29
S R I o T O F Vo (= T =T o B I 1 PO OTPR TR 29
S N o T3 VU1 Y o T ST PP UU PP PUPPPPRPUPI 29
S B I o T=l = Yo To T 1=T= 1 I Y o L= P PO PO TP UU PP PUPPPOPUPRR 29
S N o TR (] Vo T Y o 1SS PUOU PP PUPPPTP 29
L I N oo AU L0 q] o1 =T g Y/ o1 T PO OT PO PU PP PPPPPPPRPPR 30
T I I e TSI @ oY =To3 A 1Y/ o = T RS URTPR 31
8.6.1 Property AIIDULES ..ottt e e e e e s bbb e e e e e e s bbb e e e e e e e e e nnnees 31
8.6.2 Object Internal Properties and Methods ... 32

© Ecma International 2011 |

»ecma

8.7 The Reference SPeCifiCaliON TY PO ... ittt e e e et e e e e e s e b e e e e e e e e e annnees 36
B.7. 1 GEVAIUE (V) citiiiiie ittt ettt ettt h ekt sh e o bt e bt b et e R et e aR e e e b e e e b e e e E e e e be e e nnneennreennre e 36
8.7.2 PULVAIUE (W, W) ettt et ekttt e et et e e ne e e aa e e s e aar e e e nte e e snneennneennre e 37
8.8 The LiSt SPECIHTICAION Ty PO uuuiiiiiiie ittt e e e s e e e e s s e e e e e e e s et e e e e e e e s anntetreeaeesaassstaneeeeesannnrens 38
8.9 The Completion SPECITICAION TYPE ..uuuiiiiie it e e e e e e e e e s e e e e e s s snnreeeeeeesannneees 38
8.10 The Property Descriptor and Property Identifier Specification TYPESccoovcvvvveveeviiiiiinee e 38
8.10.1 ISACCESSOIDESCIIPLON (DESC) ciiiuiiiiiiiiiie ittt ettt ettt ettt et e et b e e s bb e e e saba e e e snbbeeesnaneeas 39
8.10.2 ISDAtADESCIIPLON (DESC) .eiiiutiiieiiiiiee ittt ettt ettt ettt ettt ettt e sttt e e sab bt esabb e e e s bbbt e e sbbe e e e nanneas 39
8.10.3 ISGENEIICDESCIIPLON ([DESC) .eeiiiiutiiieiiiiie ittt ettt ettt ettt et e rabb et e sbb e e s anbe e e e abbe e e s nanneas 39
8.10.4 FromPropertyDeSCIIPIOr (DESC) ..uiiiiuieieiiiiiieitiie ettt ettt a e st e s e e e snbr e e e s nnnneas 39
8.10.5 TOPropertyDeSCriptor (OD]) ... ittt ife e s ettt 39
8.11 The Lexical Environment and Environment Record Specification TYPesccccccvvieieniieeennnnen. 40
8.12 Algorithms for Object Internal Methodsoooiiiiiiiiiii e 40
8.12.1 [[GEetOWNPIOPEITY]] (P) «ooieteeeieaeiiiieiiee ettt et e e e e et e fe e e e e s amb s s e b e e e e s ebbbe e e e e e e e annbeeeeeeeeeannnees 40
8.12.2 [[GEtPIOPEILY]] (P) -eeeeeeeeeeiiiiiiieaeeiiiiiieee e e ettt e e e e s sitbeeeee e s e e s afonneaae e et s ame e e e B ebebe et e e e e e sannbeeeeeeeeannnnees 41
S G T (1= | (2 T T ST RO OURPUPPTRRPR 41
8.12.4 [[CANPULI] (P).:reeireeiteeirie ittt e sieestee et snse e e an it e et e sen e s s e nma S et e e neneennneenanee s 41
8.12.5 [[PUL]] (P, V, TRFOW) oeieiiiiiieiiieiee e iiammt s et ae s Bb e e e e e nnne e 41
0 I G | 5 =] o o L= VA P S 42
o 2 | L= 1=t A= I] o L) T P SO 42
8.12.8 [[DefaultValue]] (NINL) ..ooueiiieee e Sttt e ettt et e et e e s e e s nneeas 42
8.12.9 [[DefineOwnProperty]] (P, DESC, TRIOW)coiiiiiiiiiii ittt 43
9 TypPe CoNVErSIiON AN TESTING cioiteiiiiiiiie ettt e e te s ab s et ettt e e e sabb e e e stbe e e e aabe e e e aabb e e e s annbeeesnbbeeeennnneas 44
1S T8 o 0 Y (Y SRR 44
1S IS o= 7o Yo ==V o SRR 44
1S TR T o 1N [0o T TP 45
9.3.1 ToNumber Applied t0 the StrHiNG TYPe i ittt ettt e e e e s e e e e e e e s nneees 45
L2 o [Y=o] O TP TP T PP PP PP PPPPPPPPPP 48
9.5 ToInt32: (SIgNed 32 Bit INTEGEI) ..oeeiiiiieiieeiie ettt e e aikk kbt e e e e e et bt e e e e e e s abb e e e e e e s s abnbeeeeaeeeennnnees 48
9.6 ToUint32: (UNSigNed 32BIt INTEGET)c.uueiiiiaieeiiniie ettt ettt et et e e s st e e sbbeeessnaeeeesnsreeesnnnneas 48
9.7 ToUintl6: (UNSIigNed 26 Bit INTEEL)ceeiiiiiiiieeee ettt e e e e st e e e e e e st e e e e e s e snn e e e e e e e e ennrees 49
LS RS T o 1] 1 o SRR 49
9.8.1 ToString Applied t0 the NUMDBEE TYPE ..ot e e e e e s e e e e e e e nnrees 49
1S RS o 1@] o] 1= o3 e SRR 50
1o I8 O @ 1= Tod 1@ o] =03 (O o 1= o 1 o] =S 50
LS 0 5 R 1T @ 1 | 1 o] = OSSR 51
9.12 The SameValue AlGOTTTRM c........coiiiiii ettt rbb e e b e e s sanneas 51
10 Executable Code and EXeCULION CONTEXESccciiiiiiiiiiiiiiiiiiiie ettt ettt et e e e snneee e 51
10.1 Types Of EXECULANIE COUE .. ittt e et e et e e e e abr e e e s atreee e 51
Ot R o o] 1Y o o L= @ Lo LT R ST 52
O A b =T o Lo 1= To [@ Yo [T TP 52
10.2 LeXICaAl ENVIFONMENTS it ittt ekt e et e e e s sb e e s sab e e e e s st re e e s anbeeeeanneee e 53
10.2.1 ENVIFONMENT RECOIUS ...ttt ettt ettt et e e sh s e e sbe e e sbb e e sabe e e abe e e sbneesnneesnneens 53
10.2.2 Lexical ENVIroNMent OPEIratiONSc.eeeiiiiieeiiiee ittt eesteeeesnitee e s stteeeestaeeesssbeeeestaeeesssseeessnbeeessnsneeeans 57
10.2.3 The Glob@al ENVIFONMENTc..oiiiiiiiiiieitie ettt sttt e st e sb s e e sse e e smn e e snre e sbeeessneesnneesnneens 58
10.3 EXECULION CONEEXEScuvieiiieiiiieiirie ittt et ettt e st e bt ek e e s s e e ss e e s te e e am s e e smn e e smn e e snre e e ne e e nnneennneennneens 58
10.3.1 1dentifier RESOIULIONiiiiiiiiie ettt rb et sin e s et e nbn e e nnneesnne e 59
10.4 Establishing an EXECULION CONTEXEiiiiiiiiiiiiiiic et ee et e s e e e e s e ar e e e e e e s nnnbe e e e e e e e ennnees 59
02 o R Yo 1 =TT T €1 o] o = L 0 Yo [PSSR 59
10.4.2 ENLEriNg EVAI COUB......uuiiiiiiiiie ettt ettt h bt e e sttt e e s st b e e e e sabeeeesabbeeessnbeeeeabneeeens 60
10.4.3 ENtering FUNCLION COOEuuiiiiiiiii ittt ettt st e e sbb e e st et e e sbbe e e e snbaeeessbbeeeeas 60
10.5 Declaration Binding INSTANTIALIONuuiiiiiiiii it st e s e e snreee e 60
10.5. XXX Block Declaration INStantiationooiiiiiiiiiiiiiee e e e e 62
O I Y o 10 4 1=) £ @ o] =T o SO PP P PUPPOPPP 62
B o =TT o 1 1= T UPRT 65
O R o] 4 = T o] =TT Lo BT 65
5 O R I o = 1 TSR (= VAT o T o PR UPPTT 65
11.1.2 1dentifier REFEIENCE .ottt e e e e ettt et e e e e s et e e e e e e e e e e anbnbeeeeaeeeanneees 65

Il © Ecma International 2011

secmd

11.1.3 Literal REFEIENCE ...cociiiii ittt et e bt e e st e e e bt e e s e e e s enneeeenees 65
O O R N NV [oV = 1 == RS 65
O T @][1 1 = =T SRR 68
I Y ST I o Lo] o 10T o 11 g Lo T @] o= = o] SRS 71
O I i o oY o B o [T T q o] =TT Lo o - EEU 71
0 R o 0] 1T 1V o o ==X S 72
N N g Lo 1= @ T o 1T = 1 (o] SO PTPPP PRIt 72
121.2.3 FUNCHON CAlIS ...ttt ettt r e se e s e s e e s n e enrn e e nn e e nnreennne e 73
N N o 1T 0 =T o S PP PPPPTPRT 73
11.2.5 FUNCLION EXPIrESSIONS ..ciiiiiiiieiittite ettt ettt ettt ettt e ekttt e e et e e e e aa b et e e e be e e e e b Re e oo asbe e e e ebbe e e e aabeeeeanbaeeeennee 74
11.3 POSHIX EXPIrESSIONS ..ottt ettt sttt e s e e st e shbb e e et e e et e e st e e s enbae e e eneee 75
11.3.1 POStfiX INCremMeENnt OPEIAONocuveiiiiiiee ettt e e e e sk e e et e e et e e e e sab e e e sbne e e eneee 75
11.3.2 POStfiX DECremMent OPEIATOLoiiiiiieiiiieee ettt et e e fh sk bt e st e e e abe e e e e stbe e e e sbeeeessaneeeeaaes 75
11,4 UNGAIY OPEIAtOrS ...oeiiiiiiiiiitiiieee ettt te e s st r e e s s e e e e e s s snrenee e e sdonnn s ae s e e i et e e e e e e s e sernne e e e e s s snenneeeeas 75
I o R I g L= [] I @ T 01T =1 o | G PR 76
I S I L= o [0 @ o 1= = (o) S T SR 76
11.4.3 The typeof OPEIALOFcci ettt e e ab et e et et e e s am e bbb e e et e e e sabneeeeneee 76
11.4.4 PrefiX INCrement OPEIatoroicuveieeie e e ieiiiieeee e e e e seeeeiieaassn e taieeeeeesssssstreeeeeesssnseeeesaasssaiheseeeeesssnnsssneeeens 77
11.4.5 Prefix DeCrement OPEIratOrc.coiiiieeeeiiieeeeiieeeesadheesastieee et e e estbee e s abeeeeaasbeeessnbeeeessnee e fn e e e e enbneeeanees 77
11.4.6 UNAIY 4 OPEIALON ..coceiiiiiiiiiieie ettt e e e sfoibnn e e e e s e streeeene s sdot b ettt e e e s s saare et e ae s s s s anr e e e e s sennrneeeeas 77
11,47 UNAIY = OPEIALOL ..ciiiiiiiiiiiiieee ettt e e ee e s sssna b e s s ife st aas ettt e e e s et e et e ee e s snr e e e e e s s sannrneeeeas 77
11.4.8 BitWiSE NOT OPEIALOr (=) ueeeirreeeeiitieeeiiiieeeiieeeesnuiasesathneessdhanessneneeesstreesantseeesanbeeesasreesaabeeessnsneesannne 78
11.4.9 LOQIiCaAl NOT OPEIALOT (1) uitiiiiiiiiiitiie ettt ettt sib et e s sbr e ettt e e e et et e e et b e e e anbe e e e anbr e e e e anbeeesannneeeeneee 78
11.5 MUltipliCAtiVe OPEIALOIS ..coiveieeiitiee e sl et e ettt e ettt a s sk e b ekt e e s bee e e et b e e e e ssbe e e e enbbe e e e anbeeesanbaeeeennee 78
11.5.1 APPIYING thE * OPEIALOT ...eeiiiiieies it ettt re e s s bt e e e ettt e e ettt e e s aabe e e e abbe e e s anbeeessnbaeeeeneee 78
11.5.2 APPIYING tNE T OPEIALOT ...eeieiiiieee etttk it e et e s aab e fhe st e e e e e bt e e s sabe e e e anbbeeesanbeeesanbaeeeennee 79
TR AN o] o A VAT aTo IR a1 I T @] o =] = Lo G S 79
I ST AN Lo [V2= @ o L= - o] P 80
11.6.1 The AdditioN OPEIraAtOr (4] ime e oveeeeiieeeeeiiiee s ifeesasteeeeestteee e s et ta s e stteeeeabeeeeanbbeeeeasbeeeeanbaeeesanbeeesanneeeeannee 80
11.6.2 The SUubtraCtion OPEIALOF (=) cieeeueeieeeiiiiireteessantieeeeee e s seteeeeeeessassetreeeeeessanraeereaesssnnsesereeeesanasnnnnrees 80
11.6.3 Applying the Additive Operators t0 NUMMDBEIScoooiiiiiiiiiiie e 80
11.7 BitWiSe Shift OPEIALOIS ...uveiiiii it ee et e e s i e e e e e e e e et e e e s e st e et aeesssnraeeeeaeessansrseeeeeessasnanneeens 81
O R I o Lo I =] 1 A @ o 1= = L o () S 81
11.7.2 The Signed Right Shift OPErator (>3)iitiieeeeceiiiiieiiee e e e r e e e e e s e e e e e s ssnnraeeeeas 81
11.7.3 The Unsigned Right Shift Operator (533). 82
I o L= P L oY = R @ 0 =] = 10] £ SRR 82
11.8.1 The LeSS-than OPEratOr (<) ..oiiccuieeieeeiiiiieiee e e e s eiiere e e e e e s e st e e e e e e s s sateaereeeessstaeaeeeeessassstrneeeaeessnnnnnnees 83
11.8.2 The Greater-than OPErator ((31) ..occiiuiie i iiiieeiiieeeestiee e s st e e s st e e e steeeesssteeeeabaeeesssbeeeeabeeeesanseeessnes 83
11.8.3° The Less-than-or-equal OPEIrator (ST) cuuiiiiiieeeiiiieeeiiiee e sttt e e s sieee s stee e e atae e e e ssteeaeassbeeessnteeeesnseeeeannes 83
11.8.4 The Greater-than-0r-equal OPErAtOr (>) .iiiiiiiiiiiiiiee et e e e e e e e e eb e e e e e e e s aneeneeaeas 83
11.8.5 The Abstract Relational Comparison AlGOrthm ... 83
11.8.6 THhe INSTANCEOT OPEIALONceiiiiiiieiitiie ettt ettt e et e e ek b e e e an et e e e br e e e s aabe e e e annreeeannee 84
R T A I g Lo 1 0 I o =T = L | USRS 84
R I o U= L1 AT @] o1 =T g= 10] PP PPTPR PR 85
11.9.1 The EQUAIS OPEIALOT (D2) uiiiiiiiieeiiiie ettt e sttt ettt e e sttt e e sttt e e ettt e e e s be e e e ettt e e e anbe e e e anbbeeeeanbeeeeanseeeeannes 85
11.9.2 The D0es-Not-eqUAalS OPErator (12)i e e e e e e re e e e e s st r e e e e e e s s s nrraneeeas 85
11.9.3 The Abstract Equality Comparison AIGOrithim ... 85
11.9.4 The Strict EQUAIS OPEIrator (Smm) uiiiiiiiiiiiiieie ettt ettt e e e e e et b et e e e e e snbbbe e e e e e s aanbebeeeeeas 86
11.9.5 The Strict Does-not-equal OPErator (152) i 87
11.9.6 The Strict Equality Comparison AIGOrithm ..o 87
11.10 BiNAry BitWiS@ OPEIALOIS ...ccceiiiiiiieiie ettt e ettt e e e e et e e e e e e e sab b bt e e e e e e e sanbbeeeaaeeesnbbseeeaeeeaannbneeeaas 87
11.11 BiNAry LOQICAl OPEIALOIS ..cccciiiiiiiieeie ettt e ettt e ettt e e e e et bbbttt e e e e e aan b b e e e e e e e e anbbtbeeeeeeaannnbneeeeas 88
0 2 OfeY aTo IR [e Y F= U@ o T=T =1 1o] S (R I PSR 89
11.13 ASSIGNMENT OPEIAIOTS . .uteiiiieee ittt e ettt e e e e ettt e e e e e e bbbt e e e e e e e s aabbee e e e e e s e aanbaeeeaaeeeaanbbbseeeaeesannbneeeeas 89
11.13.1 SIMPIE ASSIGNMENT (S) ciiiiiiii it e et e e ee e e e e e e e e e e e e et et e e aaaaaaaaaaaaaaaaaaaaaaaas 90
11.13.2 ComMPOUN ASSIGNMENT ([O7) uuttriteieeiiiiiiitete e e ettt e e e e e rtb et e e e e e s s bbbeeeee e e s s aanbbeeeeaeeeanbbseeeeessaannbneeeens 94
O oY1 0 1 F= T O o 1T =1 (o] A (R PP 94

© Ecma International 2011 1

secmd

12 Statements and DECIAraAtiONScoiiiiiiiiiie et e et e e e s e e e e e 95
2 T =] o od OO P PP PP RRRUPPRTRRTR 96
12.2 Declarations and the Variable StatemMentcocoiiiiiiieie e 99
I R I B T Tod = - L o] o TR UP PP R PURPTRPPR 99
12.2.2 CONSE DECIAIALION ...eeiiiiiee ettt ettt s e s e r e ne e e nne e neas 101
12.2.3 Variable STALEMENTeiiiiieie ettt et r e r e s e s r e r e neas 102
12.2.4 Destructuring BiNdiNg PatterNSocuuiiiiiiiiiiiiie ettt sbbe e e naeeas 104
12,3 EMPLY STAEEMIENT ..ottt e e e e e st e et e e e s b et e e e s e e s s et e e e e e sannrnreeeeeeaaaannne 109
12,4 EXPreSSION SEALEMENT. ...t ittt bt r b bt e s bb et e e sabb et e s b bt e e e sabb e e e snbbe e e s nnnneas 109
D2 T N L= | ST X 1= 1 1= o | PRSPPI 110
2 I 0= -1 A o] g RS = L= =T L 110
12.6.1 The do-While Stat@MENT......ooii e r e e e e e s b ar et e e e e st eeeeessanenreeeeeeenannes 110
2 T I Lo 1] = 1 =Y 4= o | 111
D2 T T I o L= {0 S = =T 0 =T o 111
12.6.4 The for -in StAtEMENTooiii i e e e s e e naaae e e enteeessaeeaaihr e teeeeeeesennnteneeeeeesnnneees 112
12.7 The continUe SEALEMENTcocviiiiii e s e e e sme e s b e nre e e e e ennes 113
12.8 The break StatemMeENt.......cccciiiiiiiiiiiieii e ife e st e e snne e s b e e e e nees 114
12.9 Thereturn StAtEMENT.....c.ciiiiieiiie it afhe st et et e e e se e s amne et e b e e e e nees 114
12.10 The With SEAEMENT ..c.eeiiiiieie e sttt et esre e e senesabe e St e e neeeeeas 114
1211 The SWItCh STAtEMENTocuiiiiiiiiie it e be ettt e e 115
12.12 Labelled StatemMeENnTSooi it sasne i e e e as et s et et e e e 119
12.13 The throw SEAtEMENTooiiiiiiiie e e s a sttt et et e e e s e e s nenneas 119
12,14 TRE MY SEALEMENT .ottt e e e e e R R ettt e e e e e aaabb e et e e e e e e abbbeeeeeeesannbeeeeeeeeannnrees 120
12.15 The debugger STatEMENTo e ittt a b e e e e et e et e e e e e e anbe e e e e e e e sannbbbeeeaeeeaannes 122
13 FUNCHON DEFINITION ...ttt i ettt ittt e e e e e e eeme e e e Sttt e e e e e e e e nnbeeeeaeeesannbnneeeaeeaaannnes 122
13.2 Creating FUNCLION ODJECTS ...oiiiiiiiiiiiiiie ettt B ettt e et e s e s ettt e e e e e ansbe et e e e e e sannbbbeeeaaeeaannes 125
e T2 R | (7= 11 | O O T PP UPROPR 126
R B | e] 4 1] A L] [P U TP PP PP U TP PUPPTO: 126
13.2.3 The [[ThrowTypeError]] FUNCLION ObjJECT . uuiiiiiri ittt 126
N e o Lo =T o I S PSP PP PO PRPRPPPINE 127
14.1 Directive Prologues and the Use StriCt DIr€CHIVEcocuuiiiiiiiie i 127
15 Standard BuUilt-in ECMASCIIPL OBJECES tiveeuuviiiiiieeis it e ettt ee e e s s st re e e e e e st e e e e e e s s snnta e e e e e e s e nnneees 128
70 R I U= €1 o] o = L@] 1= o S 129
15.1.1 Value Properties of the Global ObjJecCt ... e 129
15.1.2 Function Properties of the Global ODJECTcoi i 129
15.1.3 URI Handling FUNCLION PrOPEITIESoiiiiiiiiiiiiiie ettt 131
15.1.4 Constructor Properties of the Global ODJeCT ..o 136
15.1.5 Other Properties of the Global OBJECT ..o 137
ST O] o] [=To @ o] 1=To] £ O PP PP T PU PR PUPPPP 137
15.2.1 The Object Constructor Called as @ FUNCLIONccuiiiiiiiiiiiec e 137
15.2.2 THe OBJECT CONSIIUCTOLveiiiiiiiiieiiie ettt ettt e et e e e st e s aabr e e e s b n e e e enre e e e nnneas 137
15.2.3 Properties of the OBJECT CONSTIUCTONuviiiiiiiie it 138
15.2.4 Properties of the Object Prototype ODJECT.........iiiiiiiiiiie e 141
15.2.5 PropertieS 0f ODJECT INSTANCESciiiiiiiiiiii ettt st ssrbee e e s e e s snbe e e e abbeeeenneeas 142
TG T VT 1l {0 g T o =T = USSR 143
15.3.1 The Function Constructor Called as a FUNCLIONccociiiiiiiiic e 143
15.3.2 The FUNCHION CONSIIUCTON ..oiiiiiiiiiiiie ittt e e r e e s e snn e ennes 143
15.3.3 Properties of the FUNCLION CONSIIUCTONuiiiii it e e e e e e e e s s e e e e e e e nnneees 144
15.3.4 Properties of the Function Prototype ODJECT ... 144
15.3.5 Properties Of FUNCLION INSTANCESuuiiiiiiiie ittt et 146
R N -\ VA O] o] L= o] £ TP P T PU PP TUP PP 148
15.4.1 The Array Constructor Called aS @ FUNCLIONc.oiiiiiiiiiii e 148
15.4.2 THE AITAY CONSIIUCTON ..eiiiiitiiiiiiiiiie ettt ettt ettt et et e e ebb et e s be et e s bb et e e aabe e e e sbbe e e e aabn e e e sabbeeesannneas 148
15.4.3 Properties of the Array CONSIIUCTONoiuiiiiiiiiie et 149
15.4.4 Properties of the Array Prototype ODJECTooi i 149
15.4.5 Properties Of Array INSTANCESuiiiiiiiiiiie ettt e e e e s e ab e e e e e e e e anbereeaaeeeaannes 166
15,5 SHING OB JECES ..ttt oo oottt ettt e e e e e e st ettt e e e e e s st e be e e e e e e e aasnbe et e e e e e eannbbbeeeaeeaaannes 167

v © Ecma International 2011

»ecma

15.5.1 The String Constructor Called as @ FUNCLIONuuiiiiiiiiiiiiiiieeeeeeeeeeeee e e e e e ee e e e e e 167
15.5.2 The STrHNQG CONSIIUCTON ..uviiiiii ittt et e e r e e e s st e e e e e s e st b e e e e e e e s snrbaeeeeeessnnsaraeeeeeesansnrenes 167
15.5.3 Properties 0f the String CONSIIUCTON........uuiiiii i e e e e e e e e s nnenees 168
15.5.4 Properties of the String Prototype ODJECT ... e 168
15.5.5 Properties Of StriNG INSTANCESuuuiii i r e e e e e re e e e e s st r e e e e e s e nnnenees 177
ST ST = Yo o] [T Vg T @ o =T RS 178
15.6.1 The Boolean Constructor Called as @ FUNCLIONcoviiiiiiiiiiiie e ee e 178
15.6.2 The BOOIEAN CONSTIUCTOL ..iiiiiiiiiiiiiiie ettt e e er e e e e et e e e e e e s e smet e e e e e e e snntaeeeeeeesansaneeeeeeeaannnenees 178
15.6.3 Properties of the Boolean CONSIIUCTONcoiuiiiiiiiiiie et 178
15.6.4 Properties of the Boolean Prototype ODJECTccuuiiiiiiiiiiiiie et 178
15.6.5 Properties 0f BOOIEAN INSTANCESooiiiiiiiiiiiiiiiieie e s e 179
15.7 NUMDEN ODJECES ...ttt b e e as et e et et e e ee e s senneees 179
15.7.1 The Number Constructor Called as @ FUNCLIONcoooiiiiiiiiiiiii it 179
15.7.2 The NUMDBEr CONSIIUCTON ..ottt s die et 2 e Bttt e e e e e enbbbe e e e e e e e e nnenees 179
15.7.3 Properties of the NUmber CONSTIUCTONooiiiiiiiiiiiiie et 180
15.7.4 Properties of the Number Prototype ODjJECT.........uviiiiiiiii e s i e 181
15.7.5 Properties 0f NUMDEr INSTANCESccoiiiiiiiiiie e e ettt e e e e e e e e s anae e sie st e e e e e e s eneneeees 184
TR T U= 1Y o T o =T o S S SRR 185
15.8.1 Value Properties of the Math ODJECTuveriiii e e 185
15.8.2 Function Properties of the Math ODJECT ...t e 186
LTS T B = = @ | o] =T o] £ PSPPI 191
15.9.1 Overview of Date Objects and Definitions of Abstract Operatorscccovvveeiriiiieinineeniinen, 191
15.9.2 The Date Constructor Called as @ FUNCHIONuueiiiie it 196
15.9.3 The Date COMNSEIUCTON ...uuutiiiiieee ittt e e ettt e e e e ettt e ee s s s bR bt e e e e e saanteeeeaeeeeannteeeeeaeesaannnneeeeeeeaannnnnees 196
15.9.4 Properties Of the Date CoONStIUCTO i i e et i ettt et e e e e e e s annn e e e sneeees 197
15.9.5 Properties of the Date Prototype OBJeCTot it 198
15.9.6 Properties Of Date INSTANCESuiiiiiiiiiiiiee e i oo ieeeeee s e s ssa e ee e e e e e anbbeseeaessanbereeeaeeesaannenees 206
15.10 RegExp (Regular EXPression) ODJECTS .. ittt e iai ittt e e et e e e e e e e e e e e e s eneees 206
15.10.1 PAIEIMNS .oeieieiiiiiiiieieeee et sn bbbttt R B et ettt ettt ettt et e e e e aeaeaeaaaaaeaaaaaaaaaeaaaeanans 206
15.10.2 PAttern SEMANTICS ... ociiie il cveeeesureeeesisneaseianesssnnneeesnseeeessestessnsseeesassseessnsseeesnnsseeesnsseeesasseessnsseees 208
15.10.3 The RegExp Constructor Called as a FUNCLION..............ccciiiiiie i e 220
15.10.4 The REQGEXP CONSITUCTON ...ooiiiiiiteieiee et irr e e i sttt e e e e s sttt e e e e e e s e santae e e e e e e e santaaneeaeesannnnneeeeeesansnnnnes 220
15.10.5 Properties of the REGEXP CONSIIUCTIOTNuuiiiieiiiieiiee e e e e e e s e e e e e e ae e e e e e s nnnenees 221
15.10.6 Properties ofthe RegEXp Prototype ODJeCt ...t 221
15.10.7 Properties 0f REGEXP INSLANCEScevei ittt e e iaeiieie et e e e sttt e e e e e sesatee e e e e e s s snaaene e e e e s ansneeeeeeeesnnnnnees 223
L 700 R = o] @ o 1= o4 £ T RSO RTPRO 223
15.11.1 The Error.Constructor Called as a FUNCHIONuuiiiiii it 223
T I A I g 1= o | @) 13 B (0] R 224
15.11.3 Properties Of the Error CONSTIUCTONuiiiiiiiiiiiiiie ettt 224
15.11.4 Properties of the Error Prototype ODJECT..........oiiiiiiiiiiiie ettt 224
15.11.5 Properties Of ErrOr INSTANCES .o ui ittt ettt ettt et aia et esnne e e snneees 225
15.11.6 Native Error Types Used in This Standardcccccoiiiiiiiiiiieiiiiie e 225
15.11.7 NatIVEEITOr ODJECT STIUCTUIEeeiiiiiiiiiiitiie ettt ettt ettt e e s e e e s s 226
LT N g < 11 @]\ @] o] =T o] A SRR 227
LT R N TN AT @ N] =T 4 03 = SO 228
T 2 o T= LY I (= B I =Y T PSSR 229
15.12.3 stringify (value [, replacer [, SPACE]]) coorreeiiiiiiiiei e st ee e st r e e e e e r e e e e e e e e e e e e s 230
G =l 0] = T TP PP P PPPTT PP 234
Annex A (informative) Grammar SUMMEATYc..ueeeeeoiiiiiieireeessiisiereeseesssssseeereeessssssseereeesssnsssssresesssnssssereeeees 237
N A I = (o= I] =g 1 4 - PRSP 237
F N U 1 g o 1= g @] V7= T =7 o o =S 243
YN B ¢ o] €111 T o] o E- S PP PP OPPPPRPPPPPN 244
Y S F= 1= 0 1] o1 T PP P TP TP UUPPR TP 248
A5 FUNCLIONS @GN PIrOGIAMIS ...ttt ettt ettt e sa bt e e sk b et e e sab et e e e bb e e e e aabeeeesbbeeeeanbeeeeaas 250
A.6 Universal Resource Identifier Character ClaSSEScuuiuiuiiiiiiii et 251
F N A = To U1 FoT g ot o =111 T o] 1 PR UT I 251
R S N 151 L PRSPPI 254
A.B.1L JSON LEXICAl GIaMIMA .oiiiiiiiiiiieiee ettt e e e ettt e e e e e ettt e e e e e s s bbb e e e e e e s e aabbbe e e e e e e e sanbbeeeeaeeeaansbeseaaaeas 254

© Ecma International 2011 V

secmd

YN TN 11 @ 1\ ISV o] €= Tod A Lol €] =T 1 2 = T P 254
Annex B (normative) Additional ECMAScript Features for Web BrowSersccccceevvvcvvveeee e vevciieneeeeenn 257
2 0 R Ao [0 T (0T g T LIS Y/ 41 - I R 257
B.L.1 NUMEIIC LITEIaAIS ..cieiiiiiiiiei ettt ettt ettt sar e b e e m et e be e e nn e e nnre e e nneenee s 257
2 0 O g Vo = = | RS 257
2 22 Ao [0 T (oY aT= LI o 0] o L=1 =S 258
R R =T o= T LI (S {1 T | PSPPSR OTPRPPPPN 258
B.2.2 UNESCAPE (STFIMQ) -eetiiiitiiieitiiee ittt ettt ettt a bt e e e b bt e e e sa b et e e s bb e e e e aabe e e e aabb e e e e abbeeeeaabaeeeebneeeeas 259
B.2.3 String.prototype.substr (Start, 1€NgE) ... 260
B.2.4 Date.protOtyPe.gEIYEAI () .. meiiiueeeeiiieeeiiiiieeritieeeesieeeesireeessireeeessreeesseneeeesa B sttt e e s e e e s b e e snreee s 260
B.2.5 Date.prototype.SELYEAN (YEAI)eiiiiiiiiiiiiieeiitiee ettt e sttt ettt et e e e e b e aabe e sttt e et e e sbee e e e snneee s 260
B.2.6 Date.prototype.tOGMTSIIING () .eeeeiireeeeiiiiieiiieie et siee et e e eesdhane e st ee sttt e e sanreeesnneeeesneeee s 260
Annex C (informative) The Strict Mode Of ECMASCEIPTueeiiiiiiiiiiiiiie ettt i e e eaaeee s 261
Annex D (informative) Corrections and Clarifications in the 5" Edition with Possible 3" Edition

Compatibility IMPACTeeeiiiiie ettt e et e e e e e s s e bR e e e e aebe e e e e e e e e anneee 263
Annex E (informative) Additions and Changes in the 5!" Edition that Introduce Incompatibilities

WIth The 38 EitiON . ..c.iuieiiiiiiceeee bttt et 265
Annex F (informative) Technically Significant Corrections and Clarifications in the 5.1 Edition 269

VI © Ecma International 2011

© Ecma International 2011

VI

»ecma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that companyds Navigator 2.0 browser.
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not
completed and not published?! as the fourth edition of ECMAScript, it informs continuing evolution of the
language. The fifth edition< of ECMAScript (published as ECMA-262 5 edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and ‘inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition’5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standardISO/IEC 16262:2011.

This present sixth edition of the Standardééé

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScriptEdit i on 4 t he Ecma st an62rH&dintuindre r4 oi EvCavEA

reser

used in the Ecma publicat i-d22 pEdicteisen dheasfaneEdIBEMANt ernat.

exist.

VIII © Ecma International 2011

»ecma

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will .not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2011 IX

secma

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and. support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 3.0 or later and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted encoding
form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is presumed
to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it presumed to
be the UTF-16 encoding form.

A conforming implementation of ECMAScript is.permitted to provide additional types, values, objects,
properties, and functions beyond those described in_this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support progfam syntax that makes use@&l2offthistsgedficafidn.ut ur e

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages i C, including amendment 1 and technical corrigenda 1 and 2

ISO/IEC 10646-1:1993, Information Technology T Universal Multiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific host objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2011 1

secma

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Javad , Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java® Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
2271 241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment. for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes; text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a-means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host'environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScriptd not all parts of the language are described. This
overview is not part of the‘standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be usedd for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These

built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the

2 © Ecma International 2011

»ecma

JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a proper t y n aroi@ype fiothat is used to implement prototype-based inheritance and shared
properties. Objects are created by using constructors in new expressions; for example, new
Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date() produces a string representation of the current date and
time rather than an object.

Every object created by a constructor has an_implicit reference (called the o b j e pratofye) to the value of

its consprototypet Or psofpert y. Furt her mor e,-nuaimpiait cetererceyt@its ma
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,

that reference is to the property of that name in the first object in.the prototype chain that contains a property

of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain

the named property, the prototype for that object is examined next; and so on.

A A ... >
""""" CE implicit prototype link
prototype T cF o .
P1
- CEP1 explicit prototype property

......... oh . py o o
ql ql ql ql ql
g2 q2 g2 g2 g2

Figure 1 0 Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, and structure, behaviour, and state are all inherited.

© Ecma International 2011 3

secma

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfy,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfz0 prototype is CF,. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFy, cfy, cfs, cfs, cfs, or cfs. The property named CFP1in CF,
is shared by cfy, cf,, cfs, cfs, and cfs (but not by CF), as are any properties found in CFy,0 @mplicit prototype
chain that are not named g1, g2, or CFPL1 Notice that there is no implicit prototype link between CF and CF;.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to

them. That i s, constructors are nots required to name

properties. In the above diagram, one could add a new shared property for cfi, cf,, cfs, cfs, and cfs by
assigning a new value to the property in CFy.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions-that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

431

type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2011

or

»ecma

4.3.4
constructor
function object that creates and initialises objects

NOTE The value of protaypen sot rpucotpoerrétsy fi s a tip usedtitoimplement inbesitaneec t t |
and shared properties.

435

prototype

object that provides shared properties for other objects

NOTE When a constructor creates an object, t pratotyp® by epcrto pi enmrpt
for the pur pose of resolving propert protatypef er eparcoepse.r t yh ec amo nbset rrue
program expression constructor .prototype and properties radded to an object

inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object.create built-in function.

4.3.6

native object

object in an ECMAScript implementation whose semantics are fully defined by this specification rather than by
the host environment

NOTE Standard native objects are defined in this specification. Some native objects are built-in; others may be
constructed during the course of execution of an ECMAScript program.

4.3.7

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. Every built-in object is a native object. A built-in constructor is a built-in object that is also a constructor.

4.3.8
host object
object supplied by the host environment to complete the execution environment of ECMAScript

NOTE Any-object that is not native is a host object.

4.3.9
undefined value
primitive value used when a variable has not been assigned a value

4.3.10
Undefined type
type whose sole value is the undefined value

43.11
null value
primitive value that represents the intentional absence of any object value

4.3.12

Null type

type whose sole value is the null value
4.3.13

Boolean value

member of the Boolean type

NOTE There are only two Boolean values, true and false.

© Ecma International 2011 5

secma

4.3.14
Boolean type
type consisting of the primitive values true and false

4.3.15
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal property whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.3.16
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.17
String type
set of all possible String values

4.3.18
String object
member of the Object type that is an instance of the standard built-in String .. constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as
an argument. The resulting object has an.internal property whose value is the String value. A String object can be coerced
to a String value by calling the String constructor as a function (15.5.1).

4.3.19
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.20

Number type

set of al | possi ble Number -ahUmbes rall)vfludsy positiveginfitithh end s peci al

negative infinity

4.3.21
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal property whose value is the Number value. A Number object can be
coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.22
Infinity
number value that is the positive infinite Number value

4.3.23

NaN
number value thatisal EEE 7 5aN uinlNboer 060 val ue

6 © Ecma International 2011

»ecma

4.3.24

function

member of the Object type that is an instance of the standard built-in Function constructor and that may be
invoked as a subroutine

NOTE In addition to its named properties, a function contains executable code and state that determine how it
behaves when i nvoked. orayha beavtitteromeCKIAScriptd e may

4.3.25
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseint and Math.exp .<An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.26

property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value.-may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by apair of accessor functions.

4.3.27
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.28
built-in method
method that is a built-in function

NOTE Standard built-in‘/methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods:

4.3.29
attribute
internal value that defines some characteristic of a property

4.3.30
own.property
property that is directly contained by its object

4.3.31
inherited property

property of an object t hat is not an own property

prototype

5 Notational Conventions
5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars
A context-free grammar consists of a number of productions. Each production has an abstract symbol called a

nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

© Ecma International 2011 7

b

secma

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharactedefined in Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDivor InputElementRegExpthat describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for

ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and

punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,

also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).

Simple white space and single-line comments are discarded and do not appear in the stream of input

elements for the syntactic grammar. A MultiLineCommen{ t h'at i s, a c¢ onfnée*hda mdégarhel d o9
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineCommentontains one or more line terminators, then it is replaced by a single line terminator, which

becomes part of the stream of input elements for the syntactic. grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacterit defines a set of productions, starting from the goal symbol Pattern
that describe how sequences of characters are translated into regular expression patterns.

Productions of the 1| exical and RegExp gr ammarss sarpear @it s tn
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter This
grammar appears in 9.3.1.

Productions of the numeric string grammararedi st i ngui shed by h@avasgpurhateeatciod ro.n

5.1.4 The Syntactic Grammar

The ‘syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Program that describe how sequences of tokens can form syntactically correct
ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript program, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by
a single application of the syntactic grammar. The program is syntactically in error if the tokens in the stream
of input elements cannot be parsed as a single instance of the goal nonterminal Program with no tokens left
over.

Productions of the syntactic grammar :0araes ¢iustcitrugauiiomed b

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
fawkwardo places.

8 © Ecma International 2011

»ecma

In certain cases in order to avoid ambiguities the syntactic grammar uses productions that permit token
sequences that are not valid ECMAScript programs. In such cases a more restrictive supplemental grammar
is provided that further restricts the acceptable token sequences. In such situations, when explicitly specific,
the input elements corresponding to such a production is parsed again using a goal symbol of a supplemental
grammar. The program is syntactically in error if the tokens in the stream of input elements cannot be parsed
as a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and.is similar.to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON | exical gr ammar ::0araes ddepadrne
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions of the JSON
syntactic grammar are di std nagsuisseipeadr abtyi nugs i pnugn cotnuea tciod no

5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric _string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font,. both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a program exactly as written. All terminal symbol characters specified in this way are to be understood as
the appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from
other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar
the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on
succeeding lines. For example, the syntactic definition:

WhileStatement
while (" Expression) Statement

states that the nonterminal WhieStatementepresents the token while , followed by a left parenthesis token,
followed by an Expressionfollowed by a right parenthesis token, followed by a StatementThe occurrences of
Expressiorand Statemenare themselves nonterminals. As another example, the syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList, AssignmentExpression

states that an ArgumentListmay represent either a single AssignmentExpressiam an ArgumentListfollowed by
a comma, followed by an AssignmentExpre&m. This definition of ArgumentLists recursive, that is, it is defined
in terms of itself. The result is that an ArgumentListmay contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpressiorSuch recursive definitions of
nonterminals are common.

The subscr ioot,edwhsiuwcfhf imkaydl appear after a t eptionalsyenbol or
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration
Identifier Initialiserop

© Ecma International 2011 9

secma

is a convenient abbreviation for:
VariableDeclaration:
Identifier
Identifier Initialiser

and that:

IterationStatement
for (ExpresionNolny: ; Expressiogy ; Expressiog,:) Statement

is a convenient abbreviation for:
IterationStatement
for (; Expressiony ; Expressiog) Statement

for (ExpressionNoln; Expressiog, ; Expressiogy) Statement

which in turn is an abbreviation for:

IterationStatement
for (;; Expressiogy) Statement
for (; Expression; Expressiony) Statement
for (ExpressionNoln; ; Expressiog:) Statement

for (ExpressionNoln; Expression; Expressiopy) Statement

which in turn is an abbreviation for:

IterationStatemennt
for(;;) Statement
for (;; Expression) - Statement
for (; Expression;) - Statement
for (; Expression; Expression) Statement

for (ExpressionNoln ;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln, EXxpression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nonterminal IterationStatemendctually has eight alternative right-hand sides.
When t heoneofiddd ofil ow t he colon(s) i signifyathatgeach wfrthe termohad f i ni t i o
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for

ECMAScript contains the production:

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::

O©CoO~NOOOUITRA,WNPE

10 © Ecma International 2011

»ecma

I f t he [epphylo aappé@ar s -hand stddvaf a pradgction, it indicates that the production's right-
hand side contains no terminals or nonterminals.

I f t he [gkbh¢addl se@0 fia p p e the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is a member of the given set The setcan be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDgits DecimalDigit

the definition

LookaheadExample
N [lookahead1 {1, 3,5, 7, 9}] DecimalDigits
DecimalDigit [lookahead I DecimalDigit]

matches either the letter n followed by one or more decimal digits. the first of which is even, or a decimal digit
not followed by another decimal digit.

I f t he [npLheTeamda@merBl0 a p p e ar s -hand sidelofea producfitntof the syntactic grammar, it
indicates that the production is a restricted production: it may not be used.if a LineTerminatoroccurs in the
input stream at the indicated position. For example, the production:

ThrowStatement
throw [no LineTerminatohere] EXpression

indicates that the production may not be used if a LineTerminatoroccurs in the program between the throw
token and the Expression

Unless the presence of a LineTerminatoris forbidden by a restricted production, any number of occurrences of
LineTerminatormay-appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the program.

When-an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
fboutnotdo and then i1indicating the expansions to be exclud

Identifier ::
IdentifierNamebut not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not replace ReservedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter.
any Unicode code unit

© Ecma International 2011 11

secma

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available to implement a given feature.

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations,
are named and written in parameterised functional form so that they may be referenced by name from within
other algorithms.

When an algorithmistopr oduce a val ue as raturmx® siud tysdacdcet adiirreditd avtee fit |
the algorithm is the value of x and that the algorithm should terminate. The notation Resultf) is used as
short handesultofstepidt h e

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Toplevel step
a. Substep.
b. Substep
i. Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep
A step or substep may be written- - as an difo predicate tl
are only applied if the predicate is true: If a step or substep begins withtheword A el seod, it is a pre
the negation of the preceding Aifo predicate step at t he

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its-algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements _and-hence need not be checked by an implementation. They are used simply to clarify
algorithms,

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or - 0 then the corresponding mathematical value is simply 0.

The mathematical function absk) yields the absolute value of x, which is - x if X is negative (less than zero) and
otherwise is x itself.

The mathematical function sign() yields 1 if x is positive and - 1 if X is negative. The sign function is not used in
this standard for cases when x is zero.

The notxamodulaydy rfiust be finite and nonzero) computes a value k of the same sign as y (or zero)
such that absk) < absy) andx- k= g3 y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.

12 © Ecma International 2011

»ecma

NOTE floor(x) = x- (x modulo 1)

| f an algorithm is defined to fAithrow an exceptieno,
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as Alf an

has been encountered the exception is no longer considered to have occurred.

5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript program that may be evaluated. In some situations additional
rules are needed that may be expressed using either ECMAScript algorithm conventions or prose
requirements. Such rules are always associated with a production of a grammar and are called the static
semantics of the production.

An implementation must validate all of the static semantic rules used to parse a Program prior to the first
evaluation of that Program If any of the static semantic rules are violated the Programis invalid and can not be
evaluated. Static semantic rule violations are early errors (see clause 16) and reported in the same manner
as syntax errors.

6 Source Text

ECMAScript source text is represented as a‘'sequence of characters in the Unicode character encoding,
version 3.0 or later. The text is expected to have. been normalised to Unicode Normalization Form C
(canonical composition), as described in " Unicode Technical Report. #15. Conforming ECMAScript
implementations are not required to perform ‘any normalisation of text, or behave as though they were
performing normalisation of text, themselves. ECMAScript-Source text.is assumed to be a sequence of 16-bit
code units for the purposes of this.specification. Such a source text may include sequences of 16-bit code
units that are not valid UTF-16 /character encodings. If an actual source text is encoded in a form other than
16-bit code units it must be processed as if it was first converted to UTF-16.

Syntax

SourceCharacter.
any Unicode code unit

Throughout the rTest of this documé@ohartabeepbrwsel Abeoc
16-bit unsigned value used to represent a single 16-b i t uni t of text. The phrase
used-to refer to the abstract linguistic or typographical unit represented by a single Unicode scalar value

(which may be longer than 16 bits and thus may be represented by more than one code unit). The phrase
Afcode pointodo refers to such a Unicode scalar value.
single Unicode scalar values: the component s of a combining character seque
characters, 0o even though a user might think of the wt

In string literals, regular-expression literals, and identifiers, any character (code unit) may also be expressed
as a Unicode escape sequence consisting of six characters, namely \ u plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or
regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE Al t hough this document someti mes ref eagrso twi tahifin raa nfsdto
16-bi t unsigned integer that is the code wunit of that chara
within a Astringo i s actbiiundignedvaluepr esented using that 16

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \ uO00A, for example, occurs within a single-line comment, it
is interpreted as a line terminator (Unicode character O00A is line feed) and therefore the next character is not
part of the comment. Similarly, if the Unicode escape sequence \ uOOOA occurs within a string literal in a Java

© Ecma International 2011 13

secma

program, it is likewise interpreted as a line terminator, which is not allowed within a string literald one must
write \ n instead of \ uOOOA to cause a line feed to be part of the string value of a string literal. In an
ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contributes a character to the String value of the literal
and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. The InputElementDivsymbol is used in those syntactic
grammar contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExgymbol is used in other syntactic grammar contexts.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteraare permitted. This is not affected by.semicolon insertion (see 7.9); in examples such as the
following:

a=b
/hilg.exec(c).map(d);

where the first non-whitespace, non-comment character after a LineTerminatoris slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator That is, the above example is interpreted in
the same way as:

a=b/hi/g. exec (c).map(d);

Syntax

InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElematRegEXxp:
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

7.1 Unicode Format-Control Characters

The Unicode format-c ont r ol characters (i.e., the <characters

Database such as LEFT-TO-RIGHT MARK Of RIGHT-TO-LEFT MARK) are control codes used to control the formatting
of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals and regular expression literals.

<ZWNJ>and <ZWJ> are format-control characters that are used to make necessary distinctions when forming

words or phrases in certain languages. In ECMAScript source text, <ZWNJ>and <ZWJ> may also be used in
an identifier after the first character.

14 © Ecma International 2011

secmd

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 18 Format-Control Character Usage

Code Unit Value Name Formal Name Usage

\ u200C Zero width non-joiner <ZWNJ> IdenifierPart
\'u200D Zero width joiner <ZWJ> IdentifierPart
\ UFEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may also occur within a StringLiteral or a
RegularExpressionLiterawhere they are considered significant. characters forming part of the literal value) or
within a Commentbut cannot appear within any other kind of token.

The ECMAScript white space characters are listed.in Table 2.

Table 2 3 Whitespace Characters

Code Unit Value Name Formal Name

\ u0009 Tab <TAB>

\ u000B Vertical Tab <VT>

\ udo0C Form Feed <FF>

\ u0020 Space <SP>

\ uOOAO No-break space <NBSP>

\ UFEFF Byte Order Mark <BOM>

Ot her <cat eg Any other Unicode <USP>
ispace sepa

ECMAScript implementations must recognise all of the white space characters defined in Unicode 3.0. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace:
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators

© Ecma International 2011 15

secma

may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral Line terminators may only occur within a StringLiteral
token as part of a LineContinuation

A line terminator can occur within a MultiLineCommen(7.4) but cannot occur within a SingleLineComment

Line terminators are included in the set of white space characters that are matched by the \ s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.

Table 38 Line Terminator Characters

Code Unit Value Name Formal Name
\ uOOOA Line Feed <LF>
\ uod00D Carriage Return <CR>
\ u2028 Line separator <LS>
\ u2029 Paragraph separator <PS>

Only the characters in Table 3 are treated as line terminators. Other new line or line breaking characters are
treated as white space but not as line terminators. The character sequence <CR><LF> is commonly used as
a line terminator. It should be considered a single character for the purpose of reporting line numbers.

Syntax

LineTerminator::
<LF>
<CR>
<S>
<PS>

LineTerminatorSequence
<LF>
<CR>[lookaheadT <LF>]
<LS>
<PS>
<CR><LF>

7.4 Comments
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminatorcharacter, and because of
the general rule that a token is always as long as possible, a single-line comment always consists of all
characters from the /[marker to the end of the line. However, the LineTerminatorat the end of the line is not
considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineCommentcontains a line

terminator character, then the entire comment is considered to be a LineTerminatorfor purposes of parsing by
the syntactic grammar.

16 © Ecma International 2011

»ecma

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:
/* MultiLineCommentChagsg: */

MultiLineCommentChars
MultiLineNotAsteriskChar MultiLineCommgZhars,:
* PostAsteriskCommentChags

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChags

MultiLineNotAsteriskChar:
SourceCharactebut not *

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not one of / or *

SingleLineComment
/I SingleLineCommentChags

SingleLineCommentChars
SingleLineCommentChar SingleLineCommentCfars

SingleLineCommentChar
SourceCharactebut not LineTerminator

7.5 Tokens

Syntax

Token::
IdentifierName
Punctuator
NumericLiteral
StringLiteral

NOTE The DivPunctuatorand RegularExpressionLiterabroductions define tokens, but are not included in the Token
production.

7.6 ldentifier Names and Identifiers

Identifier Names are tokens that areinter pr et ed according to the grammar ¢
chapter 5 of the Unicode standard, with some small modifications. An Identifier is an IdentifierNamethat is not

a ReservedWordsee 7.6.1). The Unicode identifier grammar is based on both normative and informative
character categories specified by the Unicode Standard. The characters in the specified categories in version

3.0 of the Unicode standard must be treated as in those categories by all conforming ECMAScript
implementations.

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted
anywhere in an ldentifierName

Unicode escape sequences are also permitted in an IdentifierName where they contribute a single character to

the IdentifierName as computed by the CV of the UnicodeEscapeSequen¢sece 7.8.4). The \ preceding the
UnicodeEscapeSequendees not contribute a character to the IdentifierName A UnicodeEscapeSequencannot

© Ecma International 2011 17

secma

be used to put a character into an IdentifierNamethat would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequensequence were replaced by its UnicodeEscapeSequere€V, the result must still be
a valid IdentifierNamethat has the exact same sequence of characters as the original ldentifielName All
interpretations of identifiers within this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two IdentifierNamethat are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values). The intent is that the
incoming source text has been converted to normalised form C before it reaches the compiler.

ECMAScript implementations may recognise identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in Unicode
3.0.

Syntax

Identifier::
IdentifierNamebut not ReservedWord

IdentifierName::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart::

UnicodeLetter
$

\ UnicodeEscapeSequence

IdentifierPart::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
<ZWNJ>
<ZWJ>

UnicodeLetter:

any character in the Unicode categories fAiUppercase | e

(Lt)o, AModi iDeheteteeteflLthbo)o6, or fiLetter number (N
UnicodeCombiningMark:

any character i n the-slpmicciondge ntaartke gioMni)eds ofr NoinCo mbi ni ng
UnicodeDigit::

any character in the Unicode category fDeci mal number
UnicodeConnetorPunctuation:

any character in the Unicode category fiConnector punc

The definitions of the nonterminal UnicodeEscapeSequenisagiven in 7.8.4

Semantics
The String valueof the production Identifier :: IdentifierNamebut not ReservedWors determined as follows:

1. Returnthe String value consisting dflentifierName

The String valueof IdentifierNameis determined as follows:

18 © Ecma International 2011

»ecma

1. Return the String value consisting thfe sequence of characters correspondinigléatifierName

7.6.1 Reserved Words

A reserved word is an IdentifierNamethat cannot be used as an Identifier.

Syntax

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiersin ECMAScript programs.

Syntax

Keyword:: one of
break do instanceof typeof
case else new var
catch finally return void
continue for switch while
debugger function this with
default if throw
delete in try

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

Syntax

FutureReservedWord one of
class enum extends super
const export import

The following tokens are also considered to be FutureReservedWordshen they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the
occurrence of a FutureReservedWonrdould produce an error must also produce an equivalent error:

implements let private public yield
interface package protected static

© Ecma International 2011 19

secma

7.7 Punctuators

Syntax
Punctuator:: one of

; , < > <=
>= == I= === ==
+ - * % ++ --
<< >> >>> & | A
! ~ && Il ?
= += -= *= %= <<=
>>= >>>= &= |: N=

DivPunctuator:: one of
/ /=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral
RegularExpressionLiteral

7.8.1 Null Literals

Syntax

NullLiteral ::
null

Semantics

The value of the null literal'null. is the sole value of the Null type, namely null.
7.8.2 Boolean Literals

Syntax

BooleanLiteral::
true
false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely false.

20 © Ecma International 2011

»ecma

7.8.3 Numeric Literals

Syntax

NumericLiteral::
DecimalLiteral
HexIntegerLiteral

DecimalLiteral::
DecimalintegerLiteral DecimalDigitsy: ExponentPatky:
. DecimalDigits ExponentPay:
DecimalintegerLiteral ExponenéPtop:

DecimalintegerLiteral:
0

NonZeroDigit DecimalDigits:

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
ExponentindicatoSignedinteger

Exponentindicator: one of
e E

Signedinteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit:: one of
0123456789abcdefAB CDEF

The source character immediately following a NumericLiteralmust not be an IdentifierStartor DecimalDigit

NOTE For example:
3in
is an error and not the two input elements 3 and in .

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as described
below.

il The MV of NumericLiteral:: DecimalLiteralis the MV of DecimalLiteral
i The MV of NumeicLiteral :: HexIntegerLiterals the MV of HexIntegerLiteral

© Ecma International 2011 21

secma

The MV of DecimalLiteral:: DecimalintegerLiteral is the MV of DecimallntegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral. DecimalDigitsis the MV of DecimalintegerLiteralplus
(the MV of DecimalDigitstimes 10™"), where n is the number of characters in DecimalDigit.
The MV of DecimalLiteral:: DecimallntegerLiteral. ExponentParis the MV of DecimallntegerLiteraltimes

DecimalintegerLiteral .
DecimalintegerLiteralplus (the MV of DecimalDigits times 10") times 10°, where n is the number of

DecimalDigits ExponentPartis (the MV of

DecimalDigitsis the MV of DecimalDigitstimes 10", where n is the number of

DecimalDigits ExponentPait the MV of DecimalDigitstimes 10°", where n is
the number of characters in DedmalDigits and e is the MV of ExponentPart

The MV of DecimalLiteral:: DecimalintegerLiterals the MV of DecimallntegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral ExponentPaid the MV of DecimallntegerLiteratimes 10,

The MV of DecimallntegerLiterat: NonZeroDigitis the MV.-of NonZeroDigit

The MV of DecimalintegerLiteral: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10" plus
the MV of DecimalDigits, where n is the number of characters in DecimalDigits

The MV of DecimalDigits:: DecimalDigitis the MV of DecimalDigit

1
1
1
10°, where e is the MV of ExponentPart
1 The MV of Decimaliteral
characters in DecimalDigisand e is the MV of ExponentPart
i The MV of Decimalliteral ::.
characters in DecimalDigits.
1 The MV of DecimallLiteral::.
1
il
where eis the MV of ExponentPart
i The MV of DecimallntegerLiterat: 0 is 0.
1
1
1
il

The MV of DecimalDigits:: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart: Exponentindicator Signedintegsrthe MV of Signedinteger

The MV of Signedinteger: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: - DecimalDigits is the negative of the MV.of DecimalDigits

The MV of DecimalDigit:: 0-or of HexDigit:: 0'is 0.

The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV _of DecinalDigit ::
The MV of DecimalDigit::
The MV of DecimalDigit::
The MV of DecimalDigit::

1 or of NonZeroDigit::
2 or of NonZeroDigit::
3 or of NonZeroDigit::
4 or of NonZeroDigit::
5 or of NonZeroDigit::
6 or of NonZeroDigit::
7 or of NonZeroDigit::
8 or of NonZeroDigit::
9 or of NonZeroDigit ::

=4 =4 =4 =4 4 4 -4 -a A -f -f A a A oa e e

The MV of HexDigit::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::
The MV of HexDigit ::

a or of HexDigit::
b or of HexDigit::
c.or of HexDigit::
d or of HexDigit::
e or of HexDigit::

Ais 10.
Bis 1l
Cis 12
Dis 13.
Eis 14.

1 or of HexDigit::
2 or of HexDigit::
3 or of HexDigit ::
4 or of HexDigit::
5 or of HexDigit::
6 or of HexDigit ::
7 or of HexDigit ::
8 or of HexDigit::
9 or of HexDigit ::

lisl
2is 2.
3is 3.
4is 4.
5is 5.
6 is 6.
7is7.
8is 8.
9is 9.

The MV of HexDigit:: f or of HexDigit:: Fis 15.
The MV of HexlIntegerLiterat: Ox HexDigitis the MV of HexDigit
The MV of HexlIntegerLiteral: 0X HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral:: HexIntegerLiteralHexDigitis (the MV of HexIntegerLiteraltimes 16) plus the
MV of HexDigit

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteraland the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by

22

© Ecma International 2011

»ecma

replacing each significant digit after the 20th with a O digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentPar&and

1 itisnotO;or
1 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
NumericLiteralto include OctalintegerLiteralas described in B.1.1.

7.8.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence. All characters may appear literally in a string literal except for the closing
guote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character
may appear in the form of an escape sequence.

Syntax

StringLiteral ::
" DoubleStringCharactegs: "
' SingleStringCharacteps '

DoubleStringCharacters
DoubleStringCharacter DoubleStringCharactgts

SingleStringCharacters
SingleStringCharacter SingleStringCharactgrs

DoubleStringCharagtr ::
SourceCharactebut not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter:
SourceCharactebut not one of * or\ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation:
\ LineTerminatorSequence

EscapeSequence
CharacterEscapeSequence
O [lookahead T DecimalDigif
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of
" \' bfnrtyv

NonEscapeCharacte:
SourceCharactebut not one of EscapeCharacteor LineTerminator

© Ecma International 2011 23

secma

EscapeCharacter.

SingleEscapeCharacter
DecimalDigit

X

u

HexEscapeSequence

x HexDigit HexDigit

UnicodeEscapeSequence

u HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacteis defined in clause 6.

Semantics

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the.string literal. As part of this process, some
characters within the string literal are interpreted as having a mathematical value (MV), as described below or
in 7.8.3.

=a =4 =4 -4 -4

= =4

=A =4 =4 =4 4 -8

24

The SV of StringLiteral:: "™ is the empty character sequence.

The SV of StringLiteral :: " is the empty character sequence.

The SV of StringLiteral:: " DoubleStringCharacter$ is the SV of DoubleStringCharacters
The SV of StringLiteral:: ' SingleStringCharacters is the SV of SingleStringCharacters

The SV of DoubleStringChracters:: DoubleStringCharacteis a sequence of one character, the CV of
DoubleStringCharacter

The SV of DoubleStringCharacters DoubleStringCharacteDoubleStringCharacters a sequence of the CV
of DoubleStringCharactefollowed by all the characters in the SV of DoubleStringCharacters order.

The SV of SingleStringCharacters: SingleStringCharacteiis a sequence of one character, the CV of
SingleStringCharacter.

The SV of SingleStringCharacters SingleStringCharactegingleStringCharacters a sequence of the CV of
SingleStringCharactefollowed by all the characters in the SV of SingleStringCharacters order.

The SV of LineContinuation: \ LineTerminatorSequendsthe empty character sequence.

The CV of DoubleStringCharacter.: SourceCheacter but not one of " or \ or LineTerminatoris the
SourceCharactecharacter itself.

The CV of DoubleStringCharacter: \ EscapeSequenégthe CV of the EscapeSequence
The CV of DoubleStringCharacter: LineContinuationis the empty character sequence.

The CV of SingleStringCharacter: SourceCharacteut not one of ' or \ or LineTerminatoris the
SourceCharactecharacter itself.

The CV of SingleStringCharacter. \ EscapeSequendgthe CV of the EscapeSequence

The CV of SingleStringCharacter. LineContinuatioris the empty character sequence.

The CV of EscapeSequenceCharacterEscapeSequensahe CV of the CharacterEscapeSequence
The CV of EscapeSequence0 [lookahead I DecimalDigif is @ <NUL> character (Unicode value 0000).
The CV of Es@peSequence HexEscapeSequenissthe CV of the HexEscapeSequence

The CV of EscapeSequenceUnicodeEscapeSequenisghe CV of the UnicodeEscapeSequence

The CV of CharacterEscapeSequenceSingleEscapeCharactas the character whose code unit value is
determined by the SingleEscapeCharactaccording to Table 4:

Table 4 8 String Single Character Escape Sequences

© Ecma International 2011

»ecma

Escape Sequence Code Unit Value Name Symbol

\b \ u0008 backspace <BS>
\ t \ u0009 horizontal tab <HT>
\n \ uOOOA line feed (new line) <LF>
\'v \ uo00B vertical tab <VT>
\ f \ uoooC form feed <FF>
\r \ uo00D carriage return <CR>
\ " \ u0022 double quote "

\! \ u0027 single quote '

\\ \ u005C backslash \

1 The CV of CharacterEscapeSequenceNonEscapeCharactés the CV of the NonEscapeCharacter

1 The CV of NonEscapeCharacter SourceCharactebut not one of EscapeCharacteor LineTerminatoris the
SourceCharactecharacter itself.

1 The CV of HexEscapeSequencex HexDigit HexDigitisthe character whose code unit value is (16 times
the MV of the first HexDigif) plus the MV of the second HexDigit

1 The CV of UnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the character whose code
unit value is (4096times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus
(16times the MV of the third HexDigit) plus the MV of the fourth HexDigit

A conforming implementation, when processing strict: mode code (see 10.1.1), may not extend the syntax of
EscapeSequende include OctalEscapeSequenes described in B.1.2.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuationto produce the
empty character sequence. The correct.way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \.n or \ uOOOA.

7.8.5 Regular Expression Literals

A regular expression literal is an input element that.is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that
never compare as === to each other even if the two literals' contents are identical. A RegExp object may also
be created at runtime by new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The Strings of characters comprising the
RegularExpressionBodand the RegularEyressionFlagsare passed uninterpreted to the regular expression
constructor, which interprets them according to its own, more stringent grammar. An implementation may
extend the regular expression constructor's grammar, but it must not extend the RegularEpressionBodynd
RegularExpressionFlagsroductions or the productions used by these productions.

Syntax
RegularExpressionLiterat
/ RegularExpressionBody RegularExpressionFlags

RegularExpressionBody
RegularExpressionFirstChar RegularExpressionGhar

RegularExpressionChars

[empty]
RegularExpressionChars RegularExpressionChar

© Ecma International 2011 25

secma

RegularExpressionFirstChar
RegularExpressionNonTerminatbut not one of * or\ or/ or |
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar
RegularExpressionNonTerminatout not one of\ or/ or |
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator
SourceCharactebut not LineTermirator

RegularExpressionClass
[RegularExpressionClassChars

RegularExpressionClassChars
[empty]
RegularExpressionClassChamRRegularExpressionClassChar

RegularExpressionClassChar
RegularExpressionNonTerminatbut not.one of] or\
RegularExpressitBackslashSequence

RegularExpressionFlags
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/

Semantics

A regular expression literal evaluates to a value of the Object type that is an instance of the standard built-in
constructor RegExp.. This value is determined in two steps: first, the characters comprising the regular
expression's RegularExpressionBodyand RegularExpressionFlagsproduction expansions are collected
uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a new
object s created as if by the expression new RegExp(Pattern, Flags) where RegExp is the standard
built-in constructor with that name. . The newly constructed object becomes the value of the
RegularExpressionLiteralf the call to new RegExp would generate an error as specified in 15.10.4.1, the error
must be treated as an early error (Clause 16).

7.9 Automatic Semicolon Insertion

Certain ECMASCcript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion

There are three basic rules of semicolon insertion:

26 © Ecma International 2011

»ecma

1. When, as the program is parsed from left to right, a token (called the offending token) is encountered that
is not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

1 The offending token is separated from the previous token by at least one LineTerminator
1 The offending tokenis } .

2. When, as the program is parsed from left to right, the end of the input stream of tokens is encountered
and the parser is unable to parse the input token stream as a single complete ECMAScript Program then
a semicolon is automatically inserted at the end of the input stream.

3. When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production-and the token would be the first
token for a terminal or nonterminal immediately following the annotation fino LineTerminatorhere]0 within the
restricted production (and therefore such a token is called a restricted token), and the restricted token is
separated from the previous token by at least one LineTerminator then a semicolon is automatically
inserted before the restricted token.

However, there is an additional overriding condition on the_ preceding rules: a semicolon is. never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression
LeftHandSideExpressiomo LineTerminatomere].. ++
LeftHandSideExpressiofno LineTerminatothere] --

ContinueStatement
continue [no LineTerminatorhere] ldentifier;

BreakStatement
break [no LineTerminatorhere] ldentifier ;

ReturnStatement
return [noLineTerminatothere] EXpression

ThrowStatement
throw [no LineTerminatorhere] Expression

The practical effect of these restricted productions is as follows:
When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminatoroccurred between the preceding token and the ++ or -- token, then a semicolon is automatically

inserted before the ++ or -- token.

When a continue. , break , return , or throw token is encountered and a LineTerminatoris encountered before
the next token, a semicolon is automatically inserted after the continue , break , return , or throw token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.
An Expressionin areturn or throw statement should start on the same line as the return or throw token.

An Identifierin a break or continue statement should be on the same line as the break or continue token.

7.9.2 Examples of Automatic Semicolon Insertion

The source
{12}3

© Ecma International 2011 27

secma

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2}3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

12313,
which is a valid ECMAScript sentence.

The source

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+hb
is transformed by automatic semicolon insertion into the following:
return;
a+b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminatorseparates it from the token return

The source
a=b
++C

is transformed by automatic semicolon-insertion into the following:
a=b;
++C;

NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminatoroccurs
betweenb and ++.

The source
if (a > b)
elsec=d
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,

even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=b+c

(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=Db+c(d+ e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the

programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

28 © Ecma International 2011

»ecma

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Object.

A specification type corresponds to meta-values that are used within algorithms to‘describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Property Identifier, Lexical Environment, and Environment Record.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

Withi n t his specifiTpeXpbons ubednat thestype oikd h & h gpe® oriie flier s t
ECMAScript language and specification types defined in this clause.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.2 The Null Type

The Null type has exactly one value, called null.

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(fielementso).. The String type is generally used to r
which‘case each element in the String is treated as a code unit value (see Clause 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers.

The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The length of a

String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore
contains no elements.

When a String contains actual textual data, each element is considered to be a single UTF-16 code unit.
Whether or not this is the actual storage format of a String, the characters within a String are numbered by
their initial code unit element position as though they were represented using UTF-16. All operations on
Strings (except as otherwise stated) treat them as sequences of undifferentiated 16-bit unsigned integers;
they do not ensure the resulting String is in normalised form, nor do they ensure language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. The intent is that textual data coming into the execution environment from outside (e.g., user input, text read
from a file or received over the network, etc.) be converted to Unicode Normalised Form C before the running program
sees it. Usually this would occur at the same time incoming text is converted from its original character encoding to
Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in
Normalised Form C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long
as they do not contain any Unicode escape sequences.

© Ecma International 2011 29

secma

8.5 The Number Type

The Number type has exactly 1843773687484810627 (that is, 254 253+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 900719925474099Qthat is, 25%-2) di st ramNatmb @ Not ¥ thd IEEEsStarmard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +& and - @, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity J)

The other 1843773687445481062¢hat is, 254 2% values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0).and - 0.)

The 184377368744548822 (that is, 254 253- 2) finite nonzero values are of two kinds:
1842872967520006963fhat is, 264 254) of them are normalised, having the form

s3 m3 2°

where sis +1 or - 1, mis a positive integer less than 2° but not less than 2°2, and e is an integer ranging from
- 1074to 971, inclusive.

The remaining 900719925474099Qhat is, 2°*- 2) values are denormalised, having the form

s3 m3 2°

where sis +1.or-1, mis a positive integer less than 2°2, and eis - 1074

Note that all the positive and. negative integers whose magnitude is no greater than 253 are representable in
the Number type (indeed, the integer 0 has two representations, +0 and - 0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

I n t his speci f i cteetNumber,valud forexd p Wh r gepresefits an exact nonzero real
mathematical quantity (which might even be an irrational number such as p) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with - 0 removed and with two
additional values added to it that are not representable in the Number type, namely 2°%* (which is +13 2533
2°Y) and - 21°2% (which is -1 3 2533 297 Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 21924 and - 21°%* are considered to have even significands. Finally, if 21924 was chosen, replace it
with +a; if - 219%24was chosen, replace it with - & ; if +0 was chosen, replace it with - 0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the I EEE 754 #Aro

Some ECMAScript operators deal only with integers in the range - 2% through 23L- 1, inclusive, or in the range
0 through 2%2- 1, inclusive. These operators accept any value of the Number type but first convert each such

30 © Ecma International 2011

secmd

value to one of 2% integer values. See the descriptions of the Tolnt32 and ToUint32 operators in 9.5 and 9.6,

respectively.

8.6 The Object Type

An Object is a collection of properties. Each property is either a named data property, a hamed accessor
property, or an internal property:

1 A named data property associates a name with an ECMAScript language value and a set of Boolean

attributes.

1 A named accessor property associates a hame with one or two accessor. functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

1 An internal property has no name and is not directly accessible via ECMAScript. language operators.
Internal properties exist purely for specification purposes.

There are two kinds of access for named (non-internal) properties: get and put, corresponding to retrieval and

assignment, respectively.

8.6.1 Property Attributes

Attributes are used in this specification to define.and explain the state of named properties. A named data
property associates a name with the attributes listed in Table 5

Table 58 Attributes of a Named Data Property

Attribute Name

Value Domain

Description

[[Value]] Any ECMAScript The value retrieved by reading the property.
language type

[[Writable]] Boolean If false, attempts by ECMAScript code to change the
p r op e[pValuelpastribute using [[Put]] will not succeed.

[[Enumerable]] Boolean If true;.the property will be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be an accessor property, or change its
attributes (other than [[Value]]) will fail.

A named accessor property associates a name with the attributes listed in Table 6.

© Ecma International 2011

31

secma

Table 6 0 Attributes of a Named Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or If the value is an Object it must be a function Object. The
Undefined functionbs [[Cal |]] i ntiecalladawithame t
empty arguments list to return the property value each time
a get access of the property is performed.
[[Set]] Object or If the value is an Object it must be a function Object. The
Undefined functondbs [[Cal |l]] i ntisecalledavithame t

arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to'be a data property, or change its attributes will
fail.

If the value of an attribute is not explicitly specified by this specification for a named property, the default value
defined in Table 7 is used.

Table 7 6 " Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.6.2 Object Internal Properties and Methods

This<specification uses various. internal properties to define the semantics of object values. These internal
properties are not part of the ECMAScript language. They are defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
internal properties in the manner described here. The names of internal properties are enclosed in double
square brackets [[.]]. When'an algorithm uses an internal property of an object and the object does not
implement the indicated internal property, a TypeError exception is thrown.

The Table 8 summarises the internal properties used by this specification that are applicable to all
ECMAScript objects. The Table 9 summarises the internal properties used by this specification that are only
applicable to some ECMAScript objects. The descriptions in these tables indicate their behaviour for native
ECMAScript objects, unless stated otherwise in this document for particular kinds of native ECMAScript
objects. Host objects may support these internal properties with any implementation-dependent behaviour as
long as it is consistent with the specific host object restrictions stated in this document.

The AValue Type Domaino columns of the following tables
properties. The type names refer to the types defined in Clause 8 augmented by the following additional

nameanyd imeans e hmaywada any ECMAScrgrimpittvedol anregaunasg eU ntdief @ .n efidl ,
Bool ean, Stri BpgecOpdr mdNamb etr he Ai nt einterrall method,ap implemgntatios a n
provided procedure defined by an alisfotlowed byalist gf descaptieon s pec
parameter names. If a parameter name is the same as a type name then the name describes the type of the

32 © Ecma International 2011

oecnd

parameter. | f

returned value.

a f S pits patameter listeid fallowadsby the synebol @Yedand the type of the

Table 8 8 Internal Properties Common to All Objects

Internal Property Value Type Domain Description
[[Prototype]] Object or Null The prototype of this object.
[[Extensible]] Boolean If true, own properties may be added to the
object.
[[Get]] SpecOp(propertyName) Y Returns the value of the named property.
any
[[GetOwnProperty]] SpecOp (propertyName) Y | Returns the Property Descriptor of the named
Undefined or Property own property -of this object, or undefined if
Descriptor absent.
[[GetProperty]] SpecOp (propertyName) Y | Returns the fully populated Property Descriptor
Undefined or Property of the. named property. of this object, or
Descriptor undefined if absent.
[[Put]] SpecOp (propertyName, Sets the specified named property to the value
any, Boolean) of the second parameter. The flag controls
failure handling.
[[CanPut]] SpecOp (propertyName) Y | Returns aBoolean value indicating whether a
Boolean [[Put]] operation with PropertyName can be
performed.
[[HasProperty]] SpecOp (propertyName) Y | Returns a Boolean value indicating whether the
Boolean object already has a property with the given
name.
[[Delete]] SpecOp (propertyName, Removes the specified named own property
Boolean) Y Boolean from the. object. The flag controls failure
handling.
[[DefaultValue]] SpecOp (Hint) Y primitive Hint is a String. Returns a default value for the
object.
[[DefineOwnProperty]] | SpecOp (propertyName, Creates or alters the named own property to
PropertyDescriptor, have the state described by a Property
Boolean) Y -Boolean Descriptor. The flag controls failure handling.

Every object (including host objects) must implement all of the internal properties listed in Table 8. However,
the [[DefaultValue]] internal method may, for some objects, simply throw a TypeError exception.

All objects have an internal property called [[Prototype]]. The value of this property is either null or an object
and is used for implementing inheritance. Whether or not a native object can have a host object as its
[[Prototype]] depends on the implementation. Every [[Prototype]] chain must have finite length (that is, starting
from any object, recursively accessing the [[Prototype]] internal property must eventually lead to a null value).
Named data properties of the [[Prototype]] object are inherited (are visible as properties of the child object) for
the purposes of get access, but not for put access. Named accessor properties are inherited for both get
access and put access.

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls whether or not
named properties may be added to the object. If the value of the [[Extensible]] internal property is false then
additional named properties may not be added to the object. In addition, if [[Extensible]] is false the value of
[[Prototype]] internal properties of the object may not be modified. Once the value of an [[Extensible]] internal
property has been set to false it may not be subsequently changed to true.

NOTE This specification defines no ECMAScript language operators or built-in functions that permit a program to
modi fy a n [[Pototype]lc intérral properties or to change the value of [[Extensible]] from false to true.
Implementation specific extensions that modify [[Prototype]] or [[Extensible]] must not violate the invariants defined in the
preceding paragraph.

© Ecma International 2011 33

secma

Unless otherwise specified, the common internal methods of native ECMAScript objects behave as described
in 8.12. Array objects have a slightly different implementation of the [[DefineOwnProperty]] internal method
(see 15.4.5.1) and String objects have a slightly different implementation of the [[GetOwnProperty]] internal
method (see 15.5.5.2). Arguments objects (10.6) have different implementations of [[Get]], [[GetOwnProperty]],
[[DefineOwnProperty]], and [[Delete]]. Function objects (15.3) have a different implementation of [[Get]].

Host objects may implement these internal methods in any manner unless specified otherwise; for example,
one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store property values but
[[HasProperty]] always generates false. However, if any specified manipulation of a host object's internal
properties is not supported by an implementation, that manipulation must throw a TypeError exception when
attempted.

The [[GetOwnProperty]] internal method of a host object must conform to_the following invariants for each
property of the host object:

91 If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

91 If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]j attribute of the property on all calls
to [[GetOwnProperty]].

1 If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

1 If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

T I'f the value of the host < objectds [[Extensible]] inter
be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of a host object must not permit the addition of a new property to a

host object if the [[Extensible]] internal property of that host object has been observed by ECMAScript code to

be false.

If the [[Extensible]] internal property of that host object has been observed by ECMAScript code to be false
then it must.not subsequently become true.

34 © Ecma International 2011

secma

Table 90 Internal Properties Only Defined for Some Objects

Internal Property Value Type Description
Domain

[[NativeBrand]] Members of the A tag value used by this specification to categorize various
NativeBrand kinds of native ECMAScript objects defined in this
enumeration. specification. Host objects do not have this internal property.

[[PrimitiveValue]] primitive Internal state information associated with this object. Of the

standard built-in ECMAScript objects, only Boolean, Date,
Number, and String objects implement [[PrimitiveValue]].

[[Construct]]

SpecOp(a List of
any) Y Object

Creates an object. Invoked via the new operator. The
arguments to the SpecOp are‘the arguments passed to the
new operator. Objects that implement this internal method
are called constructors.

([Call]]

SpecOp(any, a List
of any) Y any or
Reference

Executes code associated with the object. Invoked via a
function call expression. The arguments to the SpecOp are
this object and aist containing the arguments passed to the
function call expression. Objects that implement this internal
method are’ callable. Only callable objects that are host
objects may return Reference values.

[[HasInstance]]

SpecOp(any) Y
Boolean

Returns a Boolean value indicating whether the argument is
likely an Object that‘was constructed by this object. Of the
standard built-in ECMAScript objects, only Function objects
implement [[HasInstance]].

[[Scopel]]

Lexical Environment

A lexical environment that defines the environment in which
a Function object is executed. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Scope]].

[[FormalParameters]]

List of Strings

A possibly empty List containing the identifier Strings of a
Funct iFormaParameterList Of the standard built-in
ECMAScript objects, only Function objects implement
[[FormalParameterList]].

[[Code]]

ECMAScript code

The ECMAScript code of a function. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Code]].

[[TargetFunction]]

Object

The target function of a function object created using the
standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[TargetFunction]] internal property.

[[BoundThis]]

any

The pre-bound this value of a function Object created using
the standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[BoundThis]] internal property.

[[BoundArguments]]

List of any

The pre-bound argument values of a function Object created
using the standard built-in Function.prototype.bind method.
Only ECMAScript objects created using
Function.prototype.bind have a [[BoundArguments]] internal

property.

[[Match]]

SpecOp(String,
index) Y
MatchResult

Tests for a regular expression match and returns a
MatchResult value (see 15.10.2.1). Of the standard built-in
ECMAScript objects, only RegExp objects implement
[[Match]].

[[ParameterMap]]

Object

Provides a mapping between the properties of an arguments
object (see 10.6) and the formal parameters of the
associated function. Only ECMAScript objects that are
arguments objects have a [[ParameterMap]] internal

property.

© Ecma International 2011

35

2eCma

The [[NativeBrand]] internal property is used to identify native ECMASCiript objects as objects that conform to
specific parts of this specification. The value of a [[NativeBrand]] property is a single member of this set of
enumerated values: NativeFunction, NativeArray, StringWrapper, BooleanWrapper, NumberWrapper,
NativeMath, NativeDate, NativeRegExp, NativeError, NativeJSON, NativeArguments. The actual value of the
[[NativeBrand]] internal property is only used to identify specific kinds of native ECMAScript objects. Host
objects do not have this internal property,

Table 10 8 Values of the [[NativeBrand]] Internal Property

Internal Property Category Description
NativeFunction Function objects
NativeArray Array objects
StringWrapper String objects
BooleanWrapper Boolean objects
NumberWrapper Number objects
NativeMath The Math object
NativeDate Date objects
NativeRegExp RegExp objects
NativeError Error objects
NativeJSON The JSON object
NativeArguments Arguments objects

8.7 The Reference Specification Type

The Reference type is used to explain the behaviour of such.operators as delete , typeof , and the
assignment operators. For example, the left-hand operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead; be explained entirely in terms of a case analysis on
the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls are
permitted to return references. This passibility is admitted purely for the sake of host objects. No built-in
ECMAScript function defined by this specification returns a reference and there is no provision for a user-
defined function to return a reference. (Another reason not.to use a syntactic case analysis is that it would be
lengthy and awkward, affecting many parts of the specification.)

A Reference is-a.resolved name binding. A Reference consists of three components, the basevalue, the
referenced namand the Boolean valued strict referencedlag. The base value is either undefined, an Object, a
Boolean,a String, a Number, or an environment record (10.2.1). A base value of undefined indicates that the
reference could not be resolved to a binding. The referenced name is a String.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.
GetReferencedName(V). Returns the referenced name component of the reference V.
IsStrictReference(V). Returns the strict reference component of the reference V.
HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.

IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

=A =4 4 A

1 IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

The following abstract operations are used in this specification to operate on references:

8.7.1 GetValue (V)

1. If Type(V) is not Reference, retuivi.
2. Letbasebe the result of calling GetBasé(

36 © Ecma International 2011

»ecma

3. If IsUnresolvableRferenceY), throw aReferenceError exception.
4. If IsPropertyReferenc®f), then
a. If HasPrimitiveBaseY) is false, then letgetbe the [[Get]] internal method difase otherwise leget
be the special [[Get]] internal method defined below.
b. Return the resultfocalling thegetinternal method usingaseas itsthis valug andpassing
GetReferencedNam¥] for the argument.
5. Else,basemust be an environment record.
a. Return the result of calling the GetBindingValue (see 10.2.1) concrete metthaedegassing
GetReferencedNam&() and IsStrictReferenc¥] as arguments.

The following [[Get]] internal method is used by GetValue when V is a property reference with a primitive base
value. It is called using baseas its this value and with property P as its argument. The following steps are
taken:

1. LetO be ToObjectljase.

2. Letdescbe the result of calling the [[GetProperty]] internal methodofith property namé.

3. If descis undefined, returnundefined.

4. |If IsDataDescriptordesg is true, returndesc[[Value]].

5. Otherwise, IsAccessorDescriptatésd must betrue so, letgetterbedesc[[Get]] (see 8.10).

6. If getteris undefined, returnundefined.

7. Return the result calling the [[Call]] internal methodg#tterprovidingbaseas thethis value and providing
no arguments.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of the object. The only situation where such an actual property access that uses
this internal method can have visible effect is when it invokes an accessor function.

8.7.2 PutValue (V, W)

1. If Type(V) is not Reference, throwReferenceError exception.
2. Letbasebe the result of calling GetBasé(
3. IfIsUnresolvableReferenc¥], then
a. If IsStrictReferencey) is true, then
i. Throw ReferenceError exception.
b. Call the [[Put]] internal method of the global object, passing GetReferencedNafoe the
property nameW for thewvalue, andalse for the Throwflag.
4. Else if IsPropertyReferenc¥),then
a. If HasPrimitiveBaseX) is false, then letputbe the [[Put]] internal method dfase otherwise leput
be the special [[Put]] internal method defined below.
bs Call theputinternalmethod usingaseas itsthis valug andpassing GetReferencedNarwgfor the
property nameW for the value, and IsStrictReferen®®(for the Throwflag.
5. Elsebasemust be a reference whose base is an environment record. So,
a. Call the SetMutableBinding (10.2.1) concrete methotase passing GetReferencedNarug (W,
and IsStrictReferenc¥] as argumets.
6. Return.

The following [[Put]].internal method is used by PutValue when V is a property reference with a primitive base
value. It is called using 'baseas its this value and with property P, value W, and Boolean flag Throw as
arguments. The following steps are taken:

1. LetO be ToObjectljase.
2. If the result of calling the [[CanPut]] internal method@fwith argumentP is false, then
a. If Throwis true, then throw a'ypeError exception.
b. Else return.
3. LetownDescbe the result of calling the [[GetOwnPropertijternal method o with argumentP.
4. |If IsDataDescriptodwnDes¢ is true, then
a. If Throwis true, then throw alypeError exception.
b. Else return.
5. Letdeschbe the result of calling the [[GetProperty]] internal methodofith argumentP. This may be
eithea an own or inherited accessor property descriptor or an inherited data property descriptor.
6. If IsAccessorDescriptodesqg is true, then

© Ecma International 2011 37

secma

a. Letsetterbedesc[[Set]] (see 8.10) which cannot hiadefined.
b. Call the [[Call]] internal method afetterproviding baseas thethis value and an argument list
containing onlyw.
7. Else, this is a request to create an own property on the transient Gbject
a. |If Throwis true, then throw alypeError exception.
8. Return.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of that transient object. The only situations where such an actual property
assignment that uses this internal method can have visible effect are when it either invokes an accessor function or is in
violation of a Throwpredicated error check. When Throwis true any property assignment that would create a new property
on the transient object throws an error.

8.8 The List Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

8.9 The Completion Specification Type

The Completion type is used to explain the behaviour of statements (break , continue |, return and throw)
that perform nonlocal transfers of control. Values of the Completion type are triples of the form (type, value,
target), where type is one of normal, break, continue, return, or throw, value is any ECMAScript language
value or empty, and target is any ECMAScript identifier or empty. If.cv is a completion value then cv.type
cv.valug and cv.targetmay be used to directly refer to its.constituent values.

The term fiabrupt compl et i on tpertberthansormabh any compl eti on wi

8.10 The Property Descriptor and Property Identifier Specification Types

The Property Descriptor type is used to explain the manipulation and reification of named property attributes.

Values of the Property Descriptor type are records compc

attribute name and its'value is a corresponding attribute value as specified in 8.6.1. In addition, any field may
be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors'based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither.a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.6.1 Table 5 or Table 6.

For notational convenience within this specification, an object literal-like syntax can be used to define a
property descriptor value. For example, Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]:
true} defines a data property descriptor. Field name order is not significant. Any fields that are not explicitly
listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property
Descriptor. For example, if D is a property descript or t hen D. [[Val ue]] is sh

[[Value]]o .
The Property Identifier type is used to associate a property nhame with a Property Descriptor. Values of the

Property Identifier type are pairs of the form (name, descriptor), where name is a String and descriptor is a
Property Descriptor value.

38 © Ecma International 2011

ort hand

»ecma

The following abstract operations are used in this specification to operate upon Property Descriptor values:

8.10.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desg the following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDesc[[Get]] andDesc[[Set]] are absent, then retufalse
3. Returntrue.

8.10.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desg the following steps are
taken:

1. If Descis undefined, thenreturnfalse
2. If bothDesc|[Valu€)] and Desc[[Writabl€]] are absent, then retufalse
3. Returntrue.

8.10.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desg the following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If IsAccessorDescriptdbesq and IsDataDescriptddesq arebothfalse then returrtrue.
3. Reurnfalse

8.10.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc the following
steps are taken:

The following algorithm assumes that Descis.a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1. If Descis undefined, then returrundefined.
2. Let obj.be the result of creating new object as if by the expressioew Object() whereObject is the standard
built-in constructor with that name.
3. IfIsDataDescriptoiDesq istrue, then
a. Call the [DefineOwnPropertl internalmethod ofobjwith argumentsvalue ", Property Descriptor
{[[Value]]: Desc[[Value]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
b.. Call the [DefineOwnPropert}f internalmethod ofobj with argumentswritable ", Property Descriptor
{[[Value]]: Desc[[Writabld], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
4. Else,IsAccessorDescriptdbesq must betrue, so
a. Callthe [[DefineOwnPropertl internalmethod ofobj with argumentsget ", Property Descriptor
{[[Value]]: Desc[[Get]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
b. Call the [DefineOwnPropertl} internalmethod ofobj with aguments'set ", Property Descriptor
{[[Value]]: Desc[[Set]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
5. Call the [DefineOwnPropertl} internalmethod ofobjwith argumentSenumerable ", Property Descriptor
{[[Value]]: Desc[[Enumerabl§, [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
6. Call the [DefineOwnPropertl internalmethod ofobj with argumentsconfigurable ", Property Descriptor
{[[Value]]: Desc|[[Configurabld], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
7. Returnobij.

8.10.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

© Ecma International 2011 39

wn e

9.

ecimnd

If Type(Obj) is not Object throw &ypeError exception.
Let descbe the result of creating a new Property Descriptor that initially has no fields.
If the result of calling the [[HasProperty]] internal methodQifj with argument énumerable " is true,
then
a. Letenumbe the result of calling thdGet]] internal method oObj with "enumerable
b. Setthe [[Enumerable]] field adescto ToBoolean¢nun).
If the result of calling the [[HasProperty]] internal methodQifj with argument &onfigurable " is true,
then
a. Letconf be the result of calling thgGet]] internal method oObj with argument
"configurable "
b. Set the [[Configurable]] field oflescto ToBooleangon).
If the result of calling the [[HasProperty]] internal methodGifj with argument Value " is true, then
a. Letvaluebe the result of caltig the [[Get]] internal method @®bjwi t h a rv@lueme.n t
b. Setthe [[Value]] field ofdescto value
If the result of calling the [[HasProperty]] internal methodQifj with argument Writable " is true, then
a. Letwritable be the result of calling the [[@ internal method ofObj with argument Writable "
b. Set the [[Writable]] field ofdescto ToBooleanyritable).
If the result of calling the [[HasProperty]] internal methodGifj with argument get "is true, then
a. Letgetterbe the result of calling the et]] internal method oDbj with argument det ".
b. If IsCallablegetter) is false andgetteris notundefined, then throw al'ypeError exception.
c. Setthe [[Get]] field ofdescto getter.
If the result of calling the [[HasProperty]] internal methodaifj with argument et " is true, then
a. Letsetterbe the result of calling the [[Get]] internal methodQ@$j with argument Set "
b. If IsCallablegettel) is false andsetteris notundefined, then throw arypeError exception.
c. Setthe [[Set]] field oflescto setter
If either desc[[Get]] or desc[[Set]] are present, then
a. |If eitherdesc[[Value]] or desc[[Writable]] are present, then throwTaypeError exception.

10. Returndesc

8.11 The Lexical Environment and.Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and-blocks. These types and the operations upon them are defined in Clause 10.

8.12 Algorithms for Object Internal Methods

In the following algorithm descriptions, assume O is a native ECMAScript object, P is a String, Descis a
Property Description record; and Throwis a Boolean flag.

8.12.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property name P, the following steps are

taken:
1. fOdoesno6t< have an ownretpnurdefieedt vy wi t h name
2. LetD be a nwly created Property Descriptarith no fields.
3. LetXbeO6s own proPBerty named
4. |If Xis a data property, then

a. SetD.[[Value]] to the value oXd6 s [u¢]]\atribute.

b. SetD.[[Writable]]tothevalueoX6s [[Writable]] attribute
5. ElseXis an accessor property, so

a. SetD.[[Get]] to the value oX6 fGet]] attribute.

b. SetD.[[Set]] to the value oXd fSet]] attribute.
6. SetD.[[Enumerable]]tothevalueof6s [[Enumer abl e]] attribute.
7. SetD.[[Configurable]]tothevalueokdés [[Confi gurable]] attribute.
8. ReturnD.

However, if Ois a String object it has a more elaborate [[GetOwnProperty]] internal method defined in 15.5.5.2.

40

© Ecma International 2011

»ecma

8.12.2 [[GetProperty]] (P)
When the [[GetProperty]] internal method of O is called with property name P, the following steps are taken:

Let prop be the result of calling the [[GetOwnProperty]] internal metho@®afith property name.
If propis notundefined, returnprop.

Let proto bethe value of the [[Prototype]] internal property ©f

If protois null, returnundefined.

Return the result of calling the [[GetProperty]] internal methograto with argumentP.

arwdE

8.12.3 [[Get]] (P)
When the [[Get]] internal method of O is called with property name P, the following steps are taken:

Let descbe the result of calling the [[GetProperty]] internal method®aokith property namé.

If descis undefined, returnundefined.

If IsDataDescriptordesq is true, returndesc[[Value]].

Otherwise, IsAcessorDescriptodesd must be true so, laetterbedesc[[Get]].

If getteris undefined, returnundefined.

Return the result calling the [[Call]] internal methodg#tterproviding© as thethis value and providing no
arguments.

onkhwnk

8.12.4 [[CanPut]] (P)
When the [[CanPult]] internal method of O is called with property name P, the following steps are taken:

1. Letdescbe the result of calling the [[GetOwnProperty]}.internal metho®afith argumentP.
2. If descis notundefined, then
a. If IsAccessorDescriptode<) is true, then
i. If desc[[Set]]iisundefined, then returrfalse.
ii. Else returrirue.
b. Else,descmustbe a DataDescriptor so return the valudexc[[Writable]].
Let proto be the [[Prototype]] internal property @f.
If protois null, then return the valuef the [[Extensible]] internal property @.
Letinheritedbe the result of calling the [[GetProperty]] internal methogbmfto with property namé.
If inheritedis undefined, return the value of the [[Extensible]] internal propertyof
If IsAccessobescriptor{nherited) is true, then
a. Af inherited[[Set]] isundefined, then returrfalse.
b: Else returrtrue:
8. Else,inheritedmust be a DataDescriptor
a. |If the [[Extensible]] internal property dD is false, returnfalse.
b. Else return the value afiherited[[Writable]].

Noohkw

Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should not
allow [[Put]] operations in situations where this definition of [[CanPut]] returns false.

8.12.5 [[Put]] (P, V, Throw)

When the [[Put]] internal method of O is called with property P, value V, and Boolean flag Throw, the following
steps are taken:

1. If the result ofcalling the [[CanPut]] internal method @f with argumentP is false, then

a. If Throwis true, then throw alypeError exception

b. Else return.
2. LetownDescbe the result of calling the [[GetOwnPropertyjternalmethod ofO with argumentP.
3. If IsDataDescriptodwnDesg is true, then

a. LetvalueDesde the Property Descriptor {[[Value]\}.

b. Call the [[DefineOwnProperty]] internal mebd of O passingP, valueDesgandThrowas

arguments
c. Return.

© Ecma International 2011 41

secma

4. Letdescbe the result of calling the [[GetPropertyhiternalmethod ofO with argumentP. This may be
either an own or inherited accessor property descriptor or an inherited data properiptdes
5. If IsAccessorDescriptodesqg is true, then
a. Letsetterbedesc[[Set]] which cannot beindefined.
b. Call the [[Call]]internalmethod ofsetterproviding O as thethis value and providing/ as the sole
argument.
6. Else, create a named data propertgned P on objectO as follows
a. LetnewDesde the Property Descriptor
{[[vValue]l: V, [[Writable]]: true, [[Enumerable]]itrue, [[Configurable]]:true}.
b. Call the [[DefineOwnProperty]] internal method @fpassingP, newDes¢candThrowas arguments
7. Return.

8.12.6 [[HasProperty]] (P)
When the [[HasProperty]] internal method of O is called with property name P, the following steps are taken:

1. Letdescbe the result of calling thg GetProperty]linternalmethod ofO with property. namé.
2. If descis undefined, then returnfalse.
3. Else retirntrue.

8.12.7 [[Delete]] (P, Throw)

When the [[Delete]] internal method of O is called with property name P and the Boolean flag Throw, the
following steps are taken:

Let descbe the result of callinghe [[GetOwnPrperty]] intemal method ofO with property namé>.
If descis undefined, then returrtrue.
If desc[[Configurable]] istrue, then
a. Remove the own property with namRefrom O.
b. Returntrue.
4. Else if Throw, then throw arypeError exception.
5. Returnfalse.

wh e

8.12.8 [[DefaultValue]]/(hint)

When the [[DefaultValue]] internal method of O is called with hint String, the following steps are taken:

1. LettoStringbe the result of calling the [[Get]] internal method of obj@awith argument toString
2. If IsCallabletoString)is true then,
a. Letstrbe the result of calling the [[Call]] internal methodtofString, with O as thethis value and
an empty argument list.
b. If stris a primitive value, returstr.
3. LetvalueOfbe the result of calling the [[Get]] internal method of obj@aith argument ValueOf "
4. |If IsCallablef{alueO} is true then,

a. Letvalbe the result of calling the [[Call]] internal methodw#lueOf with O as the this value and
an empty argument list.
b. If valis a primitive value, returmal.
5. Throw aTypeError exception.

When the [[DefaultValue]] internal method of O is called with hint Number, the following steps are taken:

1. LetvalueOfbe the result of calling the [[Get]] internal method of obj@owith argument valueOf

2. If IsCallablefralueOj is true then,
a. Letvalbe the result of calling the [[Call]] internal method w&lueOf with O as thethis value and
an empty argument list.
b. If valis a primitive value, returmal.
3. LettoStringbe the result of calling the [[Get]] internal method of obj@avith argument toString "
4. |If IsCallabletoString) is true then,

a. Letstrbe the result of calling the [[Call]] internal methodtofString, with O as the this value and
an empty argument list.

42 © Ecma International 2011

»ecma

b. If stris a primitive value, returstr.
5. Throw aTypeError exception.

When the [[DefaultValue]] internal method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9.6), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a host object
implements its own [[DefaultValue]] internal method, it must ensure that its [[DefaultValue]] internal method
can return only primitive values.

8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following al gor i t hm, t he t er ThrowiiRteuge, eren thrownae Ty pekrroifidxdeption,
otherwise return falsed The algorithm contains steps that test various fields of the Property Descriptor Descfor
specific values. The fields that are tested in this manner need not actually exist in. Desc If a field is absent
then its value is considered to be false.

When the [[DefineOwnProperty]] internal method of O is called with property name P, property descriptor Desg
and Boolean flag Throw, the following steps are taken:

1. Letcurrentbe the result of calling the [[GetOwnProperty]] internal-metho®afith property namé>.
2. Letextensibleébe the value of the [[Extensible]] internal property@f
3. If currentis undefined andextensiblds false, then Reject.
4. If current is undefined andextensibles true, then
a. If IsGenericDescriptoifesq or IsDataDescriptofjesd is true, then
i Create an own data property nanfedf objectO whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values aresciébed byDesc If the value of
an attribute field oDescis absentthe attribute of the newly created property is set to its
default value.
b. Else,Descmust be an-accessor Property Descriptor so,
i Create an‘own accessor property narReaf objectO whose[[Get]], [[Set]],
[[Enumerable]] and [[Configurable]] attribute values are describe®ésc If the value of
an attribute field oDescis absent, the attribute of the newly created property is set to its
default value.
c. Returntrue.
Returntrue, if everyfield in Descis absent.
Returntrue, if every field inDescalso occurs ircurrentand the value of every field iDescis the same
value as‘the corresponding fieldéorrentwhen compared usintdpe SameValue algorithm (9.12).
7. If the[[Configurable]] field of currentis falsethen
a. Reject, if the [[Configurable]] field oDescis true.
b. Reject, if the [[Enumerable]] field ddescis present and the [[Enumerable]] fieldsafrrentand
Descare the Boolean negation of each other.
If IsGenericDescriptofesq is true, then no further validation is required.
Else, if IsDataDescriptoc(rrent) and IsDataDescriptoblesq have different results, then
a. Reject, if the [[Configurable]] field oEurrentis false.
b. If IsDataDescriptorgurrent) is true, then
i Convert theproperty namedP of objectO from a data property to an accessor property.
Preserve the existing values of the conver:t
[Enumer abl e]] attributes and set the rest

o o

© o

c. Else,
i Convert the property namdlof objectO from an accessor property to a data property.
Preserve the existing values of the conver:t
[[Enumer abl e]] attributes and set t haues est
10. Else, if IsDataDescriptocrrent) and IsDataDescriptoblesq are bothtrue, then
a. If the [[Configurable]] field ofcurrentis false, then
i. Reject, if the [[Writable]] field ofcurrentis falseand the [[Writable]] field oDescis true.
ii. If the [[Writable]] field ofcurrentis false, then
1. Reject, if the [[Value]] field ofDescis present and SameValldsc[[Value]],
current[[Value]]) is false.
b. else, the [[Configurable]] field ofurrentis true, so any change is acceptable.

© Ecma International 2011 43

secma

11. Else, IsAccessorDescript@urrent) and IsAccessorDescript@ésqg are bothtrue so,
a. |If the [[Configurable]] field ofcurrentis false, then
i. Reject, if the [[Set]] field oDescis present and SameValidsc[[Set]], current[[Set]]) is
false.
ii. Reject, if the [[Get]] field oDescis present and SameValixsc[[Get]], current[[Get]])
is false.
12. For each attribute field dbescthat is present, set the correspondingly named attribute of the property
namedP of objectO to the value of the field.
13. Returntrue.

However, if O has an [[NativeBrand]] internal property whose value is NativeArray O also has a more
elaborate [[DefineOwnProperty]] internal method defined in 15.4.5.1.

NOTE Step 10.b allows any field of Desc to be different from the corresponding fiel d o f current i
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false.

This is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is

first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

9 Type Conversion and Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion abstract operations. These abstract operations are
not a part of the language; they are defined here to aid the specification of the semantics of the language. The
conversion abstract operations are polymorphic; that is, they can accept a value of any ECMAScript language
type, but not of specification types.

9.1 ToPrimitive

The abstract operation ToPrimitivertakes an input argument and an optional argument PreferredType The
abstract operation ToPrimitive’converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredTypeto favour that type.
Conversion occurs according to Table 11:

Table 11 6 ToPrimitive Conversions

Input Type Result

Undefined The result equals the inputargument (no conversion).

Null The result equals the inputargument (no conversion).

Boolean The result equals the inputargument (no conversion).

Number The result equals the inputargument (no conversion).

String The result equals the inputargument (no conversion).

Object Return a default value for the Object. The default value of an object is
retrieved by calling the [[DefaultValue]] internal method of the object,
passing the optional hint PreferredType The behaviour of the
[[DefaultValue]] internal method is defined by this specification for all native
ECMAScript objects in 8.12.8.

9.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 12:

Table 126 ToBoolean Conversions

44 © Ecma International 2011

eCmna

Argument Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, - 0, or NaN; otherwise the result is
true.

String The result is false if the argument is the empty String (its length is zero);
otherwise the result is true.

Object true

9.3 ToNumber

The abstract operation ToNumber converts its argument to a value ‘of type Number according to Table 13:

Table 138 To Number Conversions

Argument Type Result

Undefined NaN

Null +0

Boolean The result is 1 if the argument is true. The result is +0 if the argument is
false.

Number The result equals the input argument.(no conversion).

String See grammar and note below:

Object Apply the following steps:
1. LetprimValuebe ToPrimitiveinput argumenthint Number).
2. Return ToNumbegrimValue.

9.3.1 ToNumber Applied to the'String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret
the String as an expansion of StringNumericLiteralthen the result of ToONumber is NaN.

Syntax

StringNumericLiteral::
StrWhiteSpacsg:

StrwhiteSpacg: StrNumericLiteral StrWhiteSpage

StrWhiteSpace:

StrWhiteSpaceCh&strWhiteSpacg:

StrWhiteSpaceChar:
WhiteSpace
LineTerminator

StrNumericLiterat::

StrDecimalLiteral
HexIntegerLiteral

© Ecma International 2011

45

ecimd

StrDecimalLiteral:::

StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiterat:

Infinity

DecimalDigits. DecimalDigitsy: ExponentPa:
. DecimalDigits ExponentPayg:

DecimalDigits ExponentPayi:

DecimalDigits:::

DecimalDigit
DecimalDigitsDecimalDigit

DecimalDigit::: one of

0123456789

ExponentPart::

Exporentindicator Signedinteger

Exponentindicator:: one of

e E

Signedinteger::

DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiterat::

Ox HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of

0123456789abc defABCDEF
Some differences should be noted between the syntax of a StringNumericLiteraland a NumericLiteral (see
7.8.3):
1 A StringNumericLiteraimay be preceded and/or followed by white space and/or line terminators.
1 A StringNumericLiterakhat is decimal may have any number of leading 0 digits.
1 A StringNumericLiterathat is decimal may be preceded by + or - to indicate its sign.
1 A StringNumericLiterathat is empty or contains only white space is converted to +0.

The conversion of @ String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

=a =4 =4

E I

46

The MV of StringNumericLiterat:: [empty] is O.

The MV of StringNumericLieral ::: StrwhiteSpaces 0.

The MV of StringNumericLiteral ::: StrWhiteSpacg: StrNumericLiteral StrWhiteSpacg: is the MV of
StrNumericLiteral no matter whether white space is present or not.

The MV of StrNumericLiterat:: StrDecimalLiteralis the MV of StrDecimalLiteral

The MV of StrNumericLiteral:: HexIntegerLiteralis the MV of HexIntegerLiteral

The MV of StrDecimallLiteral::: StrUnsignedDecimalLiterak the MV of StrUnsignedDecimalLiteral

The MV of StrDecimallLiteral::: + StrUnsignedDecimaiteral is the MV of StrUnsignedDecimalLiteral

© Ecma International 2011

=

=

=4 =4 =4 =4 -4 -4 4 -4 4 4 -4 - -4 -8 -4 -8 -8 -8 -4 -4 -8 -89

ecing

The MV of StrDecimalLiteral ::: - StrUnsignedDecimallLiteralis the negative of the MV of
StrUnsignedDecimalLiteralNote that if the MV of StrUnsignedDecimalLiterak O, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or - 0 as appropriate.)

The MV of StrUnsignedDecimalLiteral: Infinity is 1010990 (3 value so large that it will round to +g).

The MV of StrUnsgnedDecimalLiteral: DecimalDigits is the MV of DecimalDigits

The MV of StrUnsignedDecimallLiteral: DecimalDigits. DecimalDigitsis the MV of the first DecimalDigits
plus (the MV of the second DecimalDigitstimes 10°"), where n is the number of characters in the second
DecimalDigits

The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentPartis the MV of DecimalDigitstimes 106,
whereeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigits DecimalDigits ExponentParis (the MV of the first
DecimalDigitsplus (the MV of the secondecimalDigitstimes 10") times 10, wheren is the number of characters
in the secondecimalDigits andeis the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat. DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is the
number of characters DecimalDigit.

The MV of StrUnsignedDecimalLiterat. DecimalDigits ExponentPaiis the MV of DecimalDigitstimes 16",
wheren is the number of charactersrecimalDigits ande is.the MV of ExponentPart

The MV of StrUnsignedDecimalLiterat DecimalDigitsis the MV of DecimalDigits

The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentPartis the MV of DecimalDigits times 10,
whereeis the MV of ExponentPart

The MV of DecimalDigits::: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart:: Exponentindicator Signedintegierthe MV of Signedinteger

The MV of Signedinteger:: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: = DecimalDigitsis the negative of the MV ddecimalDigits

The MV of DedmalDigit::: 0 or of HexDigit::: 0 is 0.

The MV of DecimalDigit::: 1 or of HexDigit::: 1 is 1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

The MV of DecimalDigit::: 3 or.of HexDigit::: 3 is 3:

The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

The MV-of DecimalDigit::: 5 or of HexDigit::: 5is 5.

The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV of DecimalDigt ::: 9 or of HexDigit::: 9is 9.

The MV of HexDigit::: a or of HexDigit::: Ais 10.

The MV of HexDigit::: b'or of HexDigit::: Bis 11.

The MV of HexDigit::: ¢ or of HexDigit::: Cis 12.

The MV of HexDigit::: d or of HexDigit::: Dis 13.

The MV of HexDigit::: e or of HexDigit::: Eis 14.

The MV of HexDigit::: f or of HexDigit::: Fis 15.

The MV of HexIntegerLiteral:: Ox HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral:: 0X HexDigitis the MV of HexDigit

The MV of HexIntegerLiteal ::: HexIntegerLiteralHexDigit is (the MV of HexIntegerLiteraltimes 16) plus the
MV of HexDigit

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
String nume+di,c ilni twehriaclh icsa sée -0.fOtherwise,uhe doended valué must be tke
Number value for the MV (in the sense defined in 8.5), unless the literal includes a SrUnsignedDecimallLiteral

© Ecma International 2011 47

secma

and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a O digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

1 itisnotO; or

9 thereis a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

9.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

1. Letnumberbe theresult of calling ToNumber on the input argument.
2. If numberis NaN, return+0.

3. If numberis +0, - 0, +o, or - @, returnnumber

4. Return the result of computing sign(mbej 3 floor(absfiumbel).

9.

5 TolInt32: (Signed 32 Bit Integer)

The abstract operation ToInt32 converts its argument to one of 232 integer values in the range - 23! through
231, inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

If numberis NaN, +0, - 0, +a, or- &, return+0.

Let posintbe signfumbe) * floor(absfiumbey).

Let int32bit be posintmodulo 22 that is, a finite integer value k of Number type with positive sign and less
than 22 in magnitude such that the mathematical differencepadintand k is mathematitig an integer
multiple of 22,

5. If int32bitis greater than.or equal té'2returnint32bit- 22, otherwise returmnt32bit

PonppE

NOTE Given the above definition of Tolnt32:

1 The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

1 Tolnt32(ToUint32K)) is equal to ToInt32() for all values of x. (It is to preserve this latter property that +& and -@ are
mapped to +0.)

1 ToInt32 maps - 0 to +0.

9.6 _ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 232 integer values in the range 0 through 232 1,
inclusive. This abstraction operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

If numberis NaN, +0,- 0, +a, or- &, return+0.

Let posintbe signumbe) 3 floor(absfumbe}).

Let int32bit be posintmodulo 2?; that is, a finite integer value k of Number type with positive sign and less
than 22 in magnitude such that the mathematical differencgadintand k is mathematically an integer
multiple of 22,

5. Returnint32bit.

PoONPE

NOTE Given the above definition of ToUInt32:

1 Step 5 is the only difference between ToUint32 and Tolnt32.

1 The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

1 ToUint32(Tolnt32K)) is equal to ToUint32() for all values of x. (It is to preserve this latter property that +a and - & are
mapped to +0.)

1 ToUint32 maps - 0 to +0.

48 © Ecma International 2011

secmd

9.7 ToUintl6: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 28 integer values in the range 0 through 2%6- 1,
inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

If numberis NaN, +0,- 0, +a, or- o, return+0.

Let posintbe signumbej 3 floor(absfiumbej).

Let int16bit be posintmodulo 25; that is, a finite integer valule of Number type with positive sign and less
than 2% in magnitude such that the mathematicaffatience ofposintand k is.mathematically an integer
multiple of 26,

5. Returnint16bit.

PR

NOTE Given the above definition of ToUint16:

91 The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.
1 ToUint16 maps - 0 to +0.

9.8 ToString
The abstract operation ToString converts its argument toa value of type String according to Table 14:

Table 14 8 ToString Conversions

Argument Type Result

Undefined "undefined"

Null "null"

Boolean If the argument is true, then the result is “true”
If the-argument is false, then the result is "false”

Number See 9.8.1.

String Return the input argument (no conversion)

Object Apply the following steps:
1. LetprimValuebe ToPrimitive(input argument, hint String).
2. Return ToString{rimValue).

9.8.1 ToString Applied to the Number Type
The abstract operation ToString converts.a Number mto String format as follows:

If' mis.NaN, return the StringNaN" .

If mis +0.or -0, return the String0" .

If mis less than zero, return the String catemation of the Strin§j-" and ToString{m).

If mis infinity, return the StrindInfinity"

Otherwise, len, k; ands be integers such th&tz 1, 10! ¢ s< 10¢, the Number value fos3 10"*is m, and

kis as small as possible. Note tlkas the number of digits in the decimal representationspthats is not

divisible by 10, and that the least significant digitsa$ not necessarily uniquely determined by these

criteria.

6. If k¢ nd¢ 21, return the String consisting of tkeligits of the decimatepresentation of s (in order, with no
leading zeroes), followed bhy-koccurrences ®6.t he character 6

7. 1f0<n¢ 21, return the String consisting of the most significaligits of the decimal representation $f
foll owed by aod d»@eanbyaHe remaning-n digits of the decimal representation ©f

8. If-6<n¢O, return the Stri ngO006confsoilsltoiwiegd obfyo6tah dd @dchH aamaabc
-noccurrences db6,t hel t bkdiyith oftthe decithBrepresentation of.

9. Otherwise, itk = 1, return the String consisting of the single digisof f ol | owed by ledwer c

foll owed bwydaop!| ms fnda sagcsciogrnd i 6nrg 1 is positiwehoe nedpatve, followed by

the decimakepresentation of the integer abs{) (with no leading zeroes).

aghrhwDd PR

© Ecma International 2011 49

secma

10. Return the String consisting of the most significant digit of the decimal representatspfolbwed by a
deci mal point 6. 06, KW Dbdigitscoftleedectmyl represeniai of spfaliowed loydhe
| ower cas eebc,h afroacltoewe do+d yorma mi wds sascscigogrndd onrg 1 is positiwenh et h e r
or negative, followed by the decimal representation of the integenabs(with no leading zeroes).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

1 If xis any Number value other than - 0, then ToNumber(ToString(x)) is exactly the same Number value as x.
1 The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, len, k, ands be integers such tha 1, 16°1 ¢ s< 10, theNumbervalue fors3 10™¥is m, andk is as small as
possible. If there are multiple possibilities &rchoose the value sffor whichs? 10™Kis closestri value tom. If there are
two such possible values gfchoose the one that is even. Note kiatthe number of digits in the decimal representation of
sand thasis not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as

http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib mirror sites.

9.9 ToObject
The abstract operation ToObject converts its argument to a value of type Object according to Table 15:

Table 15 6 ~ToObject

Argument Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError.exception.

Boolean Create a new Boolean object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.6 for a description of Boolean
objects.

Number Create a new Number object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.7 for a description of Number
objects.

String Create a new String object whose [[PrimitiveValue]] internal property is set
to the value of the argument. See 15.5 for a description of String objects.

Object The result is the input argument (no conversion).

9.10 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 16:

Table 16 8 CheckObjectCoercible Results

50 © Ecma International 2011

ecind

Argument Type Result
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return
Number Return
String Return
Object Return

9.11 IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language value,

is a callable function Object according to Table 17:

Table 17 8 IsCallable Results

Argument Type Result

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Object If the argument object has a [[Call]] internal method, then return true,

otherwise return false.

9.12 The SameValue Algorithm

The internal comparison abstract operation SameValue(X, y), where x and y are ECMAScript language values,
produces true or false:<Such a comparison is performed as follows:

If Type(x) is different from Typey), returnfalse.
If Type(x) is Undefined, returnrue.
If Type(x) is Null, returntrue.
If Type(x) is Number, then.
a. If xis NaN andy is NaN, returntrue.
b. If xis +0 andy is -0, returnfalse.
c.. If xis -0 andy is +0, returnfalse.
d. If xis the same Number value gsreturntrue.
e. Returnfalse
5. If Type(x)is String, then returtrue if x andy are exactly the same sequence of characters (same length and
same characters in corganding positions); otherwise, retufalse.
If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse; otherwise, returiialse.
Return true ifx andy refer to the same object. Otherwise, rettalse.

PODPE

No

10 Executable Code and Execution Contexts

10.1 Types of Executable Code
There are three types of ECMAScript executable code:

1 Global code is source text that is treated as an ECMAScript Program The global code of a
particular Programdoes not include any source text that is parsed as part of a FunctionBody

© Ecma International 2011 51

secma

1 Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a String, it is treated as an ECMAScript Program The eval code for a
particular invocation of eval is the global code portion of that Program

1 Function code is source text that is parsed as part of a FunctionBody The function code of a
particular FunctionBody does not include any source text that is parsed as part of a nested
FunctionBody Function code also denotes the source text supplied when using the built-in
Function object as a constructor. More precisely, the last parameter provided to the Function
constructor is converted to a String and treated as the FunctionBody If more than one parameter is
provided to the Function constructor, all parameters except the last one_ are converted to Strings
and concatenated together, separated by commas. The resulting String is interpreted as the
FormalParameterListfor the FunctionBodydefined by the last parameter. The function code for a
particular instantiation of a Function does not include any source‘text that is parsed as part of a
nested FunctionBody

10.1.1 Strict Mode Code

An ECMAScript Program syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict
global code, strict eval code, and strict function code. Code is interpreted-as strict mode code in the following
situations:

1 Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.1).

1 Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if
the call to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

1 Function code that is part of a FunctionDeclarationFunctionExpressionor accessor PropertyAssignmeris
strict function code if its FunctionDeclaration FunctionExpresion, or PropertyAssignmeris contained in strict
mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

1 Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBodybegins with a Directive
Prologue that contains a Use Strict Directive.

1 Unless. specified otherwise, extended code (10.1.2) is also strict mode code.

10.1.2 Extended Code

Extended code is any code contained in an ECMAScript Program syntactic unit that contains occurrences of
lexical or syntactic productions defined subsequent to the Fifth Edition of the ECMAScript specification. Code
is interpreted as extended code in the following situations:

1 Global code is extended global code if it is contained in an ECMAScript Program syntactic unit that has
been designated as an extended Programunit in an implementation defined manner or if ???.

1 Eval code is extended eval code if the call to eval is a direct call (see 15.1.2.1.1) to the eval function that
is contained in extended mode code or if it begins with ??7?.

1 Function code that is part of a FunctionDeclaration FunctionExpressionor accessor PropertyAssignmerit
extended function code if its FunctionDeclaration FunctionExpressionor PropertyAssignmeris contained in
extended mode code or if the function code begins with ???.

1 Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBodybegins with ??7.

52 © Ecma International 2011

»ecma

The term fstrict codeois used to designate both actual strict mode code and extended code while the term
fextended codeoonly designates actual extended code.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiersto specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration a WithStatementor a Catch clause of a TryStatemenand a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclarationcontains two nested FunctionDeclarationsthen the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current execution of the surrounding function:.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMASecript implementation.. It is impossible for an ECMAScript
program to directly access or manipulate such values.

10.2.1 Environment Records

There are two kinds of Environment Record values used in this specification: declarative environment records
and object environment records. Declarative environment records are used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarationsVariableDeclarations and Catchclauses that directly
associate identifier bindings with ECMAScript language values. Object environment records are used to define
the effect of ECMAScript elements such as Program and WithStatementhat associate identifier bindings with
the properties of some object.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment. Record is an abstract class with two concrete subclasses, declarative
environment record and object environment record. The abstract class includes the abstract specification
methods defined in Table 18. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

© Ecma International 2011 53

secmd

Table 18 8 Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D)

Create a new mutable binding in an environment record. The
String value N is the text of the bound name. If the optional
Boolean argument D is true the binding is may be subsequently
deleted.

SetMutableBinding(N,V, S)

Set the value of an already existing mutable binding in an
environment record. The String«value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. Sis a Boolean flag. If Sis true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict. mode references.

GetBindingValue(N,S)

Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. Sis used to identify strict mode references. If Sis true
and the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N)

Delete a binding from an environment record. The String value N
is.the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

ImplicitThisValue()

Returns the value to use as the this value on calls to function
objects that< are obtained as binding values from this
environment record.

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with.an ECMAScript program scope containing variable,
constant, and/or function declarations. A declarative environment record binds the set of identifiers defined by

the declarations contained within its scope.

In addition to the mutable bindings supported by all Environment Records, declarative environment records
also provide for immutable bindings. An immutable binding is one where the association between an identifier
and <a value may not be modified once it has been established. Creation and initialisation of declarative
binding are distinct steps so it is possible for such bindings to exist in either an initialised or uninitialised state.
Declarative environment records support the methods listed in Table 19 in addition to the Environment Record

abstract specification methods:

Table 19 8 Additional Methods of Declarative Environment Records

Method Purpose

CreatelmmutableBinding(N)

Create a new but uninitialised immutable binding in an
environment record. The String value N is the text of the bound
name.

InitializeBinding(N,V)

Set the value of an already existing but uninitialised binding in
an environment record. The String value N is the text of the
bound name. V is the value for the binding and is a value of any
ECMAScript language type.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the

following algorithms.

54

© Ecma International 2011

»ecma

10.2.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. LetenvRede the declarative environment recdod which the method was invoked.
2. If envRedas a binding for the name that is the valudpfeturntrue.
3. If it does not have such a binding, retdatse.

10.2.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is initialised to the value undefined. A binding must not already
exist in this Environment Record for N. If Boolean argument D is provided and has the value true the new
binding is marked as being subject to deletion.

1. LetenvRede the declarative environment record for which‘the method was invoked.

2. Assert:envRedoes not already have a binding fér

3. Create a mutable binding envRedor N andand record that it isninitialised If D is true record that the
newly created binding may be deleted by a subsequent DeleteBinding call.

10.2.1.1.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeError is thrown if Sis true.

Let envRede the declarative environment record for which the method was invoked.
Assert:envReanust have a binding fax.

Assert:The binding forN.in envRedas already been initialised.

If the binding forN in envReds a muable binding, change its bound value\o

Else if binding forNin envRedas not yet been initialized throw a ReferenceError exception.

Else this must be‘an attempt to change the value of an immutable binding drifie throw aTypeError
exception.

onkwnk

10.2.1.1.4 GetBindingValue(N,S)

The concrete Environment. Record method GetBindingValue for declarative environment records simply
returnsthe value of its bound identifier whose name is the value of the argument N. The binding must already
exist. If Sis true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

1. LetenvRede the declarative environment record for which the method was invoked.
2. Assert:envRedas a binding foN.
3. If the binding forN in envReds an uninitalisedbinding, then
a. If Sisfalse, return the valueindefined, otherwise throw &eferenceError exception.
4. Else, return the value currently boundNan envRec

10.2.1.1.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

Let envRede the declarative environment record for which the method was invoked.
If envRedaoes not have a binding for the nathat is the value o, returntrue.

If the binding forN in envReds cannot be deleted, retufalse.

Remove the binding foN from envRec

Returntrue.

arwdE

© Ecma International 2011 55

secma

10.2.1.1.6 ImplicitThisValue()
Declarative Environment Records always return undefined as their ImplicitThisValue.

1. Returnundefined.

10.2.1.1.7 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is initialised to the value undefined. A binding must not
already exist in this environment record for N.

1. LetenvRede the declarative environment record for which the method was invoked.
2. Assert:envRedoes not already have a binding fér
3. Create an immutable binding envRedor N andrecord that it is uninitialised.

10.2.1.1.8 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for 'declarative environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the value
of argument V. An uninitialised binding for N must already exist.

1. LetenvRede the declarative environment record for which the method was invoked.
2. Assert:envReanust have an uninitialiseoinding for N.

3. Set the bound value fd¥ in envRedo V.

4. Record that théinding forN in envRecdhas beeninitialised.

10.2.1.2 Object Environment Records

Each object environment record is associated with an object called its binding object. An object environment
record binds the set of identifier names that directly correspond to the property names of its binding object.
Property names that are notan IdentifierNameare not included in the set of bound identifiers. Both own and
inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because
properties can be dynamically added and deleted from objects, the set of identifiers bound by an object
environment record may potentially change as a side-effect of any operation that adds or deletes properties.
Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if
the Writable attribute of the corresponding property has the value false. Immutable bindings do not exist for
object environment records.

Object environment records can be configured to provide their binding object as an implicit this value for use
in function calls. This capability is used to specify the behaviour of With Statement (12.10) induced bindings.
The capability is controlled by a provideThisBoolean value that is associated with each object environment
record. By default, the value of provideThisis false for any object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. LetenvRede the object environment record for which the method was invoked.
2. Lethbindingsbe the binding object fognvRec

3. Return the result of calling the [[HasProperty]] internal methobinflings passingN as theproperty name.

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates in
an environment recordbds associated binding o btasestt

56 © Ecma International 2011

a

prop

»ecma

to the value undefined. A property named N must not already exist in the binding object. If Boolean argument
D is provided and has the value truet he new propertyods [[Co nrug, gthemviaehtlise |]
set to false.

1. LetervRecbe the object environment record for which the method was invoked.

2. Lethindingsbe the binding object foenvRec

3. Assert: The result of calling the [[HasProperty]] internal methobinflings passingN as the property
name, isfalse.

4. If Dis true then letconfigValuebetrue otherwise leconfigValuebefalse

5. Call the [[DefineOwnProperty]] internal method biihndings passingN, Property Descriptor
{[[Value]l: undefined, [[Writable]]: true, [[Enumerable]]:true , [[Configurable]]:configValud, and true as
arguments.

10.2.1.2.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to set

the value of the environment recordds associ atoktde bi n
argument N to the value of argument V. A property named N should already exist but if it does not or is not
currently writable, error handling is determined by the value of the Boolean argument S.

1. LetenvRede the object environment record for et the method was invoked.
2. Letbindingsbe the binding object foenvRec
3. Call the [[Put]] internal method dfindingswith arguments\, V, andS.

10.2.1.2.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value
of its associated binding objectds property wiNoTkee na
property should already exist but if it does not the result depends upon the value of the Sargument:

1. LetenvRede theobject environment record for which the method was invoked.
2. Letbindingsbe the binding object fognvRec
3. Letvaluebe the result of calling the [[HasProperty]] internal methodiaflings passing\ as the property
name.
4. |If valueis false, then
a. If Sisfalse, return the valueindefined, otherwise throw &eferenceError exception.
5. Return the result of calling the [[Get]] internal methodbaridings passingN for the argument.

10.2.1.2.5 < DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

1. LetenvRede the objectienvironment record for which the method was invoked.
2. Letbindingsbe the binding object foenvRec
3. Return the result of calling the [[Delete]] internal methoduofdings passingN andfalseas arguments.

10.2.1.2.6 ImplicitThisValue()
Object Environment Records return undefined as their ImplicitThisValue unless their provideThisflag is true.
1. LetenvRede the object environment record for which the method was invoked.

2. Ifthe provideThisflag of envReds true, return the binding object fanvRec
3. Otherwise, returrundefined.

10.2.2 Lexical Environment Operations

The following abstract operations are used in this specification to operate upon lexical environments:

© Ecma International 2011 57

secma

10.2.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name and a
Boolean flag strict. The value of lexmay be null. When called, the following steps are performed:

1. |If lexis the valuenull, then
a. Return a value of type Reference whose base valuadefined, whose referenced nameriame
and whosetsict mode flag isstrict.
2. LetenvRedelexbs environment record.
3. Letexistsbe the result of calling the HasBindimg)(concrete method @&nvRegassingnameas the
argumenth.
4. |If existsistrue , then
a. Return a value of type Reference whose base valamiRe¢whose referenced nhameriame and
whose strict mode flag istrict.
5. Else
a. Letouterbe the value of e »u@tey environment reference.
b. Retun the result of calling GetldentifierReference passonger, name andstrict as arguments

10.2.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null
as argument E the following steps are performed:

Let envbe a new Lexical Environment.

LetenvRede a newdeclarativeenvironmentrecord containing no bindings.
Sete n veavironment record to benvRec

Set the outer lexical emmonment reference aénvto E.

Returnenv.

aorwdPE

10.2.2.3 NewObjectEnvironment (O, E)

When the abstract operation'NewObjectEnvironment is called with an Object O and a Lexical Environment E
(or null) as arguments, the following steps are performed:

Let envbe a new Lexical Environment:

LetenvRede a new object environment record containigs the binding object.
Sete n veavironment record to benvRec

Set the outer lexical environment referencesafvto E.

Returnenv.

aorwdPE

10.2.3 The Global Environment

The global environment is a unigque Lexical Environment which is created before any ECMAScript code is
execut ed. The gl obal envi r ormmebjett&wirornent recom rwhosenktindinBe c or d i
object is the/ global object (15.1). The gulobal environme

As ECMAScript code is' executed, additional properties may be added to the global object and the initial
properties may be modified.

10.3 Execution Contexts

When control is transferred to ECMAScript executable code, control is entering an execution context. Active
execution contexts logically form a stack. The top execution context on this logical stack is the running
execution context. A new execution context is created whenever control is transferred from the executable
code associated with the currently running execution context to executable code that is not associated with
that execution context. The newly created execution context is pushed onto the stack and becomes the
running execution context.

An execution context contains whatever state is necessary to track the execution progress of its associated
code. In addition, each execution context has the state components listed in Table 20.

58 © Ecma International 2011

»ecma

Table 20 & Execution Context State Components

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds

bindings created by VariableStatementand FunctionDeclarationswithin
this execution context.

ThisBinding The value associated with the this keyword within ECMAScript code
associated with this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment
components initially have the same value. The value of the VariableEnvironment component never changes
while the value of the LexicalEnvironment component may change during execution. of code within an
execution context.

In most situations only the running execution context (the top of the execution context stack) is directly
mani pul at ed by algorithms wi t hisn this specificatio
iVari ableEnvironmento and WAThisBindingd are wused wi
components of the running execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact
of an ECMAScript implementation. It is impossible for. an ECMAScript. program to access an execution
context.

10.3.1 Identifier Resolution

Identifier resolution is the process of determining the binding of an IdentifieMName using the
LexicalEnvironment of the running execution context. During execution of ECMAScript code, Identifier
Resolution is performed using the following algorithm:

1. Letenvbe the rwunning execution contextoés Lexical Envi
2. If the syntactic production that is being evaluated is contained in a strict mode code, tteictlbe true,

else letstrict befalse.
3. Return the result of calling GetldentifierReference function passmgthe String value containing the

same sequence of characterddemntifierName andstrict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component
equal to the Identifier String.

10.4 Establishing an Execution Context

Evaluation of global code or code using the eval function (15.1.2.1) establishes and enters a new execution
context. Every invocation of an ECMAScript code function (13.2.1) also establishes and enters a new
execution context, even if a function is calling itself recursively. Every return exits an execution context. A

thrown exception may also exit one or more execution contexts.

When control enters an execution context, the executi

and initial LexicalEnvironment are defined, and declaration binding instantiation (10.5) is performed. The exact
manner in which these actions occur depend on the type of code being entered.

10.4.1 Entering Global Code
The following steps are performed when control enters the execution context for global code:

1. Initialise the execution context using the global code as described in 10.4.1.1.

© Ecma International 2011 59

secma

2. PerformDeclaration Binding Instantiation as described in 10.5 using the global code.

10.4.1.1 Initial Global Execution Context
The following steps are performed to initialise a global execution context for ECMAScript code C:

1. Set the VariableEnvironment tbe Global Environment.
2. Set the LexicalEnvironment to the Global Environment.
3. Setthe ThisBinding to the global object.

10.4.2 Entering Eval Code
The following steps are performed when control enters the execution context for eval code:

1. If there is no cding context or if the eval code is not being evaluated by a direct call (15.1.2.1.1) to the eval
function then,
a. Initialise the execution context as if it was a global execution context using the eval cGdes as
described in 10.4.1.1.
2. Else,
a. Setthe Thisbhding to the same value as the ThisBinding of the calling execution context.
b. Setthe LexicalEnvironment to the same value as the LexicalEnvironment of the calling execution
context.
c. Setthe VariableEnvironment to the same value as the VariableEnvirorh#rg calling execution
context.
3. Ifthe eval code is strict code, then
a. LetstrictvarEnvbe the result of calling NewDeclarativeEnvironmeuassing the
LexicalEnvironment as the argument.
b. Setthe LexicalEnvironment tstrictVarEnv
c. Setthe VariableEnviranent tostrictVarEnv
4. Perform Declaration Binding Instantiation as described in 10.5 using the eval code.

10.4.2.1 Strict Mode Restrictions
The eval code cannot instantiate variable or function bindings in the variable environment of the calling

context that invoked the eval if either the code of the calling context or the eval code is strict code. Instead
such bindings are instantiated in a.new VariableEnvironment that is only accessible to the eval code.

10.4.3 Entering Function Code

The following steps are performed when control enters the execution context for function code contained in
function ebject F, a caller provided thisArg and a caller provided argumentsList

1. |Ifthe function code is strict code, set the ThisBindinghisArg.

2. Else ifthisArgis null or undefined, set the ThisBinding to the global object.

3. Else if TypethisArg) is.not Object, set the ThisBinding to ToObjeht§Arg).

4. Else set the ThisBinding tihisArg.

5. LetlocalEnvbe the result of calling NewDeclarativeEnvironmguassing the alue of the [[Scope]] internal
property ofF as the argument.

6. Set the LexicalEnvironment focalEnv.

7. Set the VariableEnvironment tocalEnv.

8. LetcodebethevalueoF6s [[Code]] internal property.

9. Perform Declaration Binding Instantiation using the ftioic codecodeandargumentsListis described in
10.5.

10.5 Declaration Binding Instantiation
Every execution context has an associated VariableEnvironment. Variables and functions declared in

ECMAScript code evaluated in an execution context are addedas bi ndi ngs in that Variabl
Environment Record. For function code, parameters are also added as bindings to that Environment Record.

60 © Ecma International 2011

ecing

Which Environment Record is used to bind a declaration and its kind depends upon the type of ECMAScript
code executed by the execution context, but the remainder of the behaviour is generic. On entering an
execution context, bindings are created in the VariableEnvironment as follows using the caller provided code
and, if it is function code, argument List args

1. Letenvbe the environment record component of the run
2. If codeis eval code, then laetonfigurableBindingdetrue else letconfigurableBindingdefalse.
3. If codeis strictcode, then lestrict betrue else le strict befalse.
4. If codeis function code, then
a. Letfuncbe the function whose [[Call]] internal method initiated executiocarfe Let namesbhe
the valueofuncd s [[For mal Parameters]] <internal proper
b. LetargCountbe the number of elements amgs.
c. Letn be the number 0.
d. For each StringirgNamein namesin list order do
i Let n be the current value af plus 1.
ii. If nis greater thamrgCount letv beundefined otherwise letvbe the value of thed t h
element ofargs.
iii. Let argAlreadyDeclarede the rsult of callinge n vHasBinding concrete method passing
argNameas the argument.

iv. If argAlreadyDeclareds false, then
1. Calle n vGiemteMutableBinding concrete . method passingNameas the
argument.

2. Callends I nitializeBi ndi iygrgNameaodunedfieedase t h o c
the arguments.
V. Calle n vS&tMutableBinding concrete method passamgName v, andstrict as the
arguments.
5. For eachFunctionDeclarationf in code in source text order do
a. Letfnbe theldentifierin FunctionDeclarationf.
b. Letfobe the result of instantiatingunctionDeclaration fas-described in Clause 13.
c. LetfuncAlreadyDeclarede the result of calling n vHasBinding concrete method passiimgs
the argument.
d. If funcAlreadyDeclareds false, then
i Calle n vGCiemteMuableBinding concrete method passiimgndconfigurableBindingsas
the arguments.
ii. Callends Ini tiali zeBi ndi nfp acdondefinedds¢he amguindns.d p a
e. Else ifenvis the environment record component of the global environment then
i Let go be the global object.
ii. LetexistingPropbe the resulbf calling the [[GeDwnProperty]] internal method ajo with
argumentn.
iii. If existingPropis undefined or existingProp[[Configurable]] istrue, then
1. Call the [[DefineOwnProperty]] internal methad go, passingn, Property
Descriptor {[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]itrue ,
[[Configurable]]: configurableBindingg, and true as arguments.
iv. Else if IsAccessorDesiptor(existingProy) or existingPropdoes not have attribute wsds
{[[Writable]]: true, [[Enumerable]litrue}, then
1. Throw a TypeError exception.
f. Calle n vS&tMutableBinding concrete method passfingfo, andstrict as the arguments.
6. LetargumentsAlreadyDeclareble the result of calling n vHasBinding concrete metil passing
"arguments" as the argument.
7. If codeis function code andrgumentsAlreadyDeclareid false, then
a. LetargsObjbe the result of calling the abstract operation CreateArgumentsObject (10.6) passing
func, names, arggnvandstrict as arguments.
b. |If strictis true, then
i Callends Createl mmut abl eBi ndi ng ¢ angunergst "eas met h
the argument.
c. Else,
i Callend s Cr e at e lhg toacbete enBthod plassing the Strimgguments " as the
argument.
d. cCallenw #nitializeBinding concrete method passingrguments " andargsObjas arguments.

© Ecma International 2011 61

secma

8. For eachvariableDeclarationandVariableDeclarationNolrd in code, in source text order do
a. Letdnbe theldentifierin d.
b. LetvarAlreadyDeclarede the result of calling n vHasBinding concrete method passithgas the
argument.
c. |If varAlreadyDeclareds false, then
i Callends Creat eMut abl eBi ndihgdgandconfigunabdeBindingsst h
the arguments.
il Callends I nitiali zeBi ndi ndn andumdefines asehe argumbntsd
iii. Callenw SetMutableBindingconcrete method passimy, undefined, andstrict as the
arguments.
d. else ifenvis the environment record component of the global environment then
i Let go be the global object.
ii. Let existingPropbe the resulof calling the [[GetOwnProperty]] internal method gd with
argumentfn.
iii. If existingPropis undefined, then
1. Call the [[DefineOwnPoperty]] internal method oo, passingdn, Property
Descriptor {[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]itrue ,
[[Configurable]]: configurableBindingg, and true as arguments.

10.5.XXX Block Declaration Instantiation

When a Block or CasBlockproduction is evaluated a new Declarative Environment Record is created and
bindings for each block scoped variable, constant, or function declarated in the block are instantiated in the
environment record.

Block Declaration Instantiation is performed as follows using arguments codeand env. code is the grammar
production corresponding to the body of the block. envis the declarative environment record in which
bindings are to be.

1. Assert:parameterNamebas-no duplicate entries.
2. Letdeclarationsbe the LexicalDeclarations abde
3. For eachFunctionDeclarationf in declarations in list orderdo

a. Letfnbe theldentifierin FunctionDeclarationf.

b. Letfobe the result of instantiatingunctionDeclaration fas described in Clause 13.

c. Calle n vCrestdviutableBindingconcrete method passirig andconfigurableBindingsas the

arguments.

d Callends I nitializeBindi nin acdiomstheangenentset hod pass
4. For eachLetDeclarationandConstDeclaratiord in codedo

a. For each elemertdn of the BoundNamesof d do

i If d is aLetDeclaration then

od pa:

passi |

ing

1. Callends CreateMutabl eBi ndi nmgandfadseasthet e met hod

arguments.
ii. Else,
1. Callends Createl mmut abl eBi ndidnapthe argumante t e

10.6 Arguments Object

When control enters an execution context for function code, an arguments object is created unless (as
specified in 10.5) the identifier arguments occurs as an Identifieri n t he fFarmalParanceter.istor
occurs as the Identifier of a FunctiorDeclarationcontained in the function code.

The arguments object is created by calling the abstract operation CreateArgumentsObject with arguments func

the function object whose code is to be evaluated, namesa Li st containing theterf u
names, argsthe actual arguments passed to the [[Call]] internal method, envthe variable environment for the
function code, and strict a Boolean that indicates whether or not the function code is strict code. When
CreateArgumentsObiject is called the following steps are performed:

1. Letlenbe the number of elements angs.
2. Letobjbe the result of creating a new ECMAScript object.

62 © Ecma International 2011

met h

nctio

»ecma

Setall the internal methodsf obj as specified in 8.12

Add the [[NativeBrand] internal propertto obj with value NativeArguments

Set the [[Prototype]] internal property obj to the standard buiin Object prototype object (15.2.4).
Call the [[DefineOwnProperty]] interal method orobj passing'length ", the Property Descriptor
{[[Value]]: len, [[Writable]]: true, [[Enumerable]]false, [[Configurable]]:true}, andfalse as arguments.
Let mapbe the result of creating a new object as if by the expressanObject() where Object is
the standard buHin constructor with that name

8. LetmappedNamebe an empty List.

9. Letindx=len - 1.

10. Repeat whilendx>= 0,

a. Letvalbe the element adrgsat 0-origined list positionindx.

b. Call the [[DefineOwnProperty]] internal method obj passing ToString(dx), the property
descriptor {[[Value]]:val, [[Writable]]: true, [[Enumerable]]:true; [[Configurable]]:true}, and
falseas arguments.

c. If indxis less than the number of elementsames then

i Let namebe the element afamesat 0-origined list positionndx.
ii. If strictis falseandnameis not an element ofnappedNamedhen
1. Addnameas an element of the listappedNames
2. Letgbe the result of calling thelakeArgGetteabstract operation with arguments
nameandenv.
3. Letp be theresult of calling'theMlakeArgSettenbstract operation with arguments
nameandenv.
4. Call the [[DefineOwnProperty]] internal method wfap passing ToStringGdx), the
Property Descriptor {[[Set]]p, [[Get]]: g, [[Configurable]]:true}, andfalse as
argumats.
d. Letindx=indx-1
11. If mappedNameis not empty, then

a. Setthe [[ParameterMap]] internal propertyaifj to map

b. Setthe [[Get]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]] internal methodsbpf
to the definitions provided below.

12. If strict is false, then

a. Call the [[DefineOwnProperty]] internal method obj passing tallee ", the property descriptor
{[[vValue]l: func [[Writable]]: true, [[Enumerable]]false, [[Configurable]]:true}, andfalseas
arguments.

13. Else,strict is true so

a. Letthrowerbe the [[ThrowTypeError]] function Object (13.2.3).

b. Call.the [[DefineOwnProperty]] internal method olj with arguments'caller”
PropertyDescriptor {[[Get]]thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:
false}, andfalse.

c. Call the [[DefineOwnProperty]] internal method obj with argumentscallee”
PropertyDescriptor {[[Get]]thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:
false}, andfalse.

14. Returnobj

The abstract operation MakeArgGetter called with String nameand environment record envcreates a function
object that when executed returns the value bound for namein env. It performs the following steps:

o0k w

N

1. Letbodybe the result of concatenating the Stringsttirn ", name and ' ".
2. Return the result of eating a function object as described in 13.2 usinganalParameterListbodyfor
FunctionBody envasScope andtrue for Strict.

The abstract operation MakeArgSetter called with String hameand environment record envcreates a function
object that when executed sets the value bound for namein env. It performs the following steps:

1. Letparambe the Stringhameconcatenated with the String drg ".
2. Letbodybe the Strind<name> = <param>; " with <name>replaced by the value efameand<param>
replacedby the value oparam

3. Return the result of creating a function object as described in 13.2 using a List containing the single String

paramasFormalParameterListbodyfor FunctionBody envasScope andtrue for Strict.

© Ecma International 2011 63

secma

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when
called with a property name P performs the following steps:

1. Letmapbe the value of the [[ParameterMap]] internal property of the arguments object.
2. LetisMappedbe the result ofalling the [[GetOwnProperty]] internal method wiappassingP as the
argument.
3. If the value ofisMappedis undefined, then
a. Letvbe the result of calling the default [[Get]] internal method (8.12.3) on the arguments object
passingP as the argument.
b. If Pis"caller" andv is astrict modeFunction object, throw & ypeError exception.
c. Returnv.
4. Else,mapcontains a formal parameter mapping Poso,
a. Return the result of calling the [[Get]] internal methodndip passingP as the argument.

The [[GetOwnProperty]] internal method of an arguments object for a_non-strict-mode function with formal
parameters when called with a property name P performs the following steps:

1. Letdescbe the result of calling the default [[GetOwnProperty]] internal method (8.1h e arguments
object passing as the argument.

2. If descis undefinedthen returndesc

3. Letmapbe the value of the [[ParameterMap]] internal property of the arguments object.

4. LetisMappedbe the result of calling the [[GetOwnProperty]] internal metlobchap passingP as the
argument.

5. If the value ofisMappedis notundefined, then

a. Setdesc[[Value]] to the result of calling the [[Get]] internal methodrofppassingP as the
argument.
6. Returndesc

The [[DefineOwnProperty]] internal method of an arguments object. for a non-strict mode function with formal
parameters when called with a property name P, Property Descriptor Des¢ and Boolean flag Throw performs
the following steps:

1. Letmapbe the value of the [[ParameterMap]]internal property of theraggus object.
2. LetisMappedbe theresult of calling the [[GetOwnProperty]] internal methodhap passingP as the
argument.
3. Letallowedbe the result of calling the default [[DefineOwnProperty]] internal method (8)1¢h the
arguments objeqgtassingP, Desg andfalseas the arguments.
4. |If allowedis false, then
a. Af Throwis true then throw alypeError exception, otherwise retufialse.
5. If the'value ofisMappedis notundefined, then
a. If IsAccessorDescriptoBesq.istrue, then
i Call the [[Delete]] internamethod ofmappassingP, andfalse as the arguments.
b. Else
i If Desc[[Value]] is present, then
1. Call the[[Put]] internal method omap passingP, Desc[[Value]], andThrowas the
arguments.
ii. If Desc[[Writable]] is present and its value false, then
1. Call the [[Delete]] internal method ahappassingP andfalse as arguments.
6. Retuntrue.

The [[Delete]] internal method of an arguments object for a non-strict mode function with formal parameters
when called with a property name P and Boolean flag Throw performs the following steps:

1. Letmapbe the value of the [[ParameterMap]] internal property of the arguments object.

2. LetisMappedbe the result of calling the [[GetOwnProperty]] internal methodhappassingP as the
argument.

3. Letresultbe the result of caltig the default [[Delete]] internal method (8.12.7) on the arguments object
passingP andThrowas the arguments.

4. |If resultis true and the value ofsMappedis notundefined, then

a. Call the [[Delete]] internal method ehappassingP, andfalse as the argments.
5. Returnresult

64 © Ecma International 2011

»ecma

NOTE 1 For non-strict mode functions the array index (defined in 15.4) named data properties of an arguments object

whose numeric name values are less than the number of formal parameters of the corresponding function object initially
share their values with the corresponding argument binding:
the property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if

such a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode
functions, the values of the arguments objectds properties
there is no dynamic linkage between the property values and the formal parameter values.

NOTE 2 The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller and
"callee " which throw a TypeError exception on access. The "callee " property has a more specific meaning for non-
strict mode functions and a "caller " property has historically been provided as an implementation-defined extension by
some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is
defined in any other manner by conforming ECMAScript implementations.

11 Expressions
11.1 Primary Expressions

Syntax

PrimaryExpression
this
Identifier
Literal
ArrayLiteral
ObijectLiteral
(Expression

11.1.1 Thethis Keyword

The this keyword evaluates to the value of the ThisBinding of the current execution context.

11.1.2 Identifier Reference

An Identifier is evaluated by performing ldentifier Resolution as specified in 10.3.1 using the IdentifielName
corresponding to Identifier. The result of evaluating an Identifier is always a value of type Reference.

11.1.3 Literal Reference

A Literal is evaluated as described in 7.8.

11.1.4 Array Initialiser

An array initialiser is an expression describing the initialisation of an Array object, written in a form of a literal.
It is a list of zero or more expressions, each of which represents an array element, enclosed in square
brackets. The elements need not be literals; they are evaluated each time the array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the
element list is not preceded by an AssignmentExpressiofi.e., a comma at the beginning or after another
comma), the missing array element contributes to the length of the Array and increases the index of
subsequent elements. Elided array elements are not defined. If an element is elided at the end of an array,
that element does not contribute to the length of the Array.

© Ecma International 2011 65

secma

Syntax

ArrayLiteral :
[Elisiong:]
[ElementList]
[ElementList Elisiong:]

ElementList
Elisiong: AssignmentExpression
Elisiony: € AssignmentExpression
ElementList, Elisiony,: AssignmentExpression
ElementList Elisiony,,: € AssignmentExpression

Elision :
Elision,
Semantics

The production ArrayLiteral : [Elisiony] is evaluated asfollows:

1. Letarray be the result of creating a new object as if bygkpressiomew Array() where Array is
the standard builin constructor with that name.

2. Letpadbe the result of evaluatiniglision; if not present, use the numeric value zero.

3. Call the [[Put]] internal method dadrray with.arguments length ", pad, andfalse.

4. Returnarray.

The production ArraylLiteral: [ElementList] is evaluated as follows:
1. Return the result of evaluatidé@lementList

The production ArrayLiteral: [ElementList Elisionop] is evaluated as follows:

Let array be the result of evaltieg ElementList

Let padbe the result of evaluatinglision; if not present, use the numeric value zero.
Letlenbe the result of callingthe [[Get]] internal methodasfay with argument length

Call the [[Put]].internal method cdrray with argumens " length ", ToUint32pad+len), andfalse.
Returnarray.

akrownPE

The production ElementList Elisiono: AssignmentExpressiois evaluated as follows:

1. Letarray be the result of creating a new object as if by the expressanArray() where Array is
the standat built-in constructor with that name.

2. Letfirstindexbe the result of evaluatinglision; if not present, use the numeric value zero.

3. LetinitResultbe the result of evaluatingssignmentExpression

4. LetinitValuebe GetValuefitResul).

5. Call the [[Defin@OwnProperty]] internal method @afrray with arguments ToStrindifstindeX), the Property

Descriptor { [[Value]]:initValue, [[Writable]]: true, [[Enumerable]]itrue, [[Configurable]]:true}, and
false.
6. Returnarray.

The static semantics of the production ElementList Elisiony,,: € AssignmentExpressiare:

1 Itis a Syntax Error if the source code parsed with this production is not extended code.

The production ElementList Elisiony,,: € AssignmentExpressiois evaluated as follows:

1. Letarray be the result of creating a new object as if by the expresseawm Array() where Array is
the standard builin constructor with that name.

66 © Ecma International 2011

»ecma

Letindexbe the result of evaluatiniglision; if not present, use the numeric value zero.

Let spreadRd be the result oévaluatingAssignmentExpression

Let spread/aluebe GetValuegpreadRef

Let spreaddbj be ToObjectgpread/alue.

Let lenValbe the result of calling the [[Get]] internal methodspireadDbj with argumentfilength o .
Let spreadLerbe ToUint32(enVal).

Let n=0;

Repeat, whilen < spreadLen

a. Letexistsbe the result of calling the [[HasProperty]] internal methodmeadbj with ToStringf).
b. If existsis true then,

i. Letvbe the result of calling the [[Get]] internal methodspireadbj passing ToStringy() as tre
argument.

ii. Callthe [[DefineOwnProperty]] internal method afray with arguments
ToString(ToUint32({ndeX), Property Descriptor {[[Value]lv, {[Writable]]: true, [[Enumerable]]:
true, [[Configurable]]:true}, and false.

c. Letn=n+1.
d. Letindex=index+1.
10. Returnarray.

LN~ ®N

The production ElementList ElementList Elision,,: AssignmentExpressiois evaluated as follows:

Let array be the result of evaluatinglementList

Let padbe the result of evaluatinglision; if not present, use the numeric valueae

LetinitResultbe the result of evaluatingssignmentExpression

LetinitValuebe GetValuefitResul).

Letlenbe the result of calling the [[Get]] internal. methodasfay with.argument length .

Call the [[DefineOwnProperty]] internal method afray with arguments ToString(ToUint33{&d+len)) and
the Property Descriptor { [[Value]lnitValue, [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:
true}, andfalse.

7. Returnarray.

oahr~wNE

The static semantics of the production ElementList ElementList Elision,,: € AssignmentExpressiare:

1 Itis a Syntax Error if the source code parsed with this production is not extended code.

The production ElementList ElementList Elision,,: € AssignmentExpressiois evaluated as follows:

1. Letarray bethe result of evaluatinglementList

2. Letpadbe the result of evaluatinglision; if not present, use the numeric value zero.

3. LetspreadRebe the result of evaluatingssignmentExpression

4. Letspread/aluebe GetValuegpreadReft

5. Letspreadbjbe ToObjedtspread/alue).

6. Letindexbe the result of calling the [[Get]] internal methodasfay with argument length

7. LetlenValbe the result of calling the [[Get]] internal methodspreaddbj with argumenfilength 0 .

8. LetspreadlLerbe ToUint32(enVal).

9. Letn=0;

10. Repeat, whilen < spreadlLen
a. Letexistsbe the result of calling the [[HasProperty]] internal methodmeaddbj with ToStringf).
b. If existsis true then,

i. Letvbe the result of calling the [[Get]] internal methodspireaddbj passing ToString() as the
argument.

ii. Call the [[DefineOwnProperty]] internal method afray with arguments
ToString(ToUint32((pad+index)) and the Property Descriptor { [[Value}, [[Writable]]: true,
[[Enumerable]]:true, [[Configurable]]:true}, andfalse.

c. Letn=n+1.
d. Letindex=index+1.
11. Returnarray.

The production Elision: , is evaluated as follows:

© Ecma International 2011 67

secma

1. Return the numeric valuke
The production Elision: Elision, is evaluated as follows:

1. Letprecedingbe the result of evaluatiniglision.
2. Returnpreceding1.

NOTE [[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the standard
built-in Array prototype object has been modified in a manner that would preclude the creation of new own properties
using [[Put]].

11.1.5 Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a
literal. It is a list of zero or more pairs of property names and associatedvalues, enclosed in curly braces. The
values need not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

ObjectLiteral:

{}
{ PropertyNameAndValueLis}

{ PropertyNameAndValuelList }

PropertyNameAndValueList
PropertyAssignment
PropertyNameAndValueList PropertyAssignment

PropertyAssignment
IdentifierName
PropertyName AssignmentExpression
get PropertyName() { FunctionBody}
set PropertyName(PropertySetParameterLisj{ FunctionBody}

PropertyName
IdentifierName
StringLiteral
NumericLiteral

PropertySetParameterList
Identifier

Semantics

The production ObjectLiteral: { } is evaluated as follows:

1. Return a new object created as if by the expressam Object() whereObject is the standard but
in construcor with that name

The productions ObjectLiteral: { PropertyNameAndValueList and
ObjectLiteral: { PropertyNameAndValuelList are evaluated as follows:

1. Return the result of evaluatiropertyNameAndValueList

The PropertyDefinitionListhame of the production
PropertyAssignmentPropertyName AssignmentExgssion

is determined as follows:

1. If PropNameof PropertyAssignmeris notnamereturn the empty List
2. Returna List containingPropertyAssignment

68 © Ecma International 2011

»ecma

The production PropertyNameAndValueList PropertyAssignmernis evaluated as follows:

1. Letobjbe the resulbf creating a new object as if by the expressiemw Object() whereObject is the
standard builin construcor with that name

2. Letpropldbe the result of evaluatingropertyAssignment

3. Call the [[DefineOwnProperty]] internal method olbj with argumentgpropld.name,propld.descriptor, and
false.

4. Returnobij.

The PropertyDefinitionListhame of the production
PropertyNameAndValuelList PropertyNameAndValueList PropertyAssignment
is determined as follows:

1. LetpreviousbePropertyDefinitionListbamé of PropertyNameAndValueList
2. If PropNameof PropertyAssignmeris namethen

a. Append PropertyAssignmerto the end ofprevious
3. Returnprevious

The static semantics of the production PropertyNameAndValueList: PropertyNameAndValuelList,
PropertyAssignmengre:

1 It is a Syntax Error if this production is contained in strict code, PropertyAssignments the production
PropertyAssignment PropertyName: AssignmentExpressiprand PropertyDefinitionLis€PropNameof
PropertyAssignmehbf PropertyNameAndValueltigs not the empty List.

1 Itis a Syntax Error if PropertyAssignmentis the production

PropertyAssignmentget PropertyNamd) { FunctionBody}
and PropertyDefinitionList(PropNameof PropertyAssignmehof PropertyNameAndValueLigicludes a
production of the form PropertyAssignmentPropertyName AssignmentExpression

1 ltis a Syntax Error if PropertyAssignments the production

PropertyAssignmentset PropertyName ' PropertySetParameterLisy { FunctionBody}
and PropertyDefinitionList(PropNameof PropertyAssignmehof PropertyNameAndValueLigicludes a
production of the form PropertyAssignmentPropertyName AssignmentExpression

1 Itis a Syntax Error if PropertyAssignments the production

PropertyAssignmentget PropertyName) { FundionBody }
and PropertyDefinitionList(PropNameof PropertyAssignmehof PropertyNameAndValueLigticludes a
production of the form PropertyAssignmentget PropertyNamg){ FunctionBody}.

1 Itis.a Syntax Error if PropertyAssignments the production

PropertyAssignmentset PropertyName PropertySetParameterLis} { FunctionBody}
and PropertyDefinitionList(PropNameof PropertyAssignmehof PropertyNameAndValueLigtcludes a
production of the form

PropertyAssignmentset PropertyName PropettySetParameterLis) { FunctionBody} .

The production
PropertyNameAndValuelist PropertyNameAndValueList PropertyAssignment
is evaluated as follows:

1. Letobjbe the result of evaluatingropertyNameAndValuelList

2. Letpropldbe the result of evaluatg PropertyAssignment

3. Call the [[DefineOwnProperty]] internal method obj with argumentgpropld.name,propld.descriptor, and
false.

4. Returnobij.

If the above steps would throw a SyntaxError then an implementation must treat the error as an early error
(Clause 16).

The PropNameof the production PropertyAssignmentldentifieMNameis determined as follows:

1. ReturnPropNameldentifierNameg.

© Ecma International 2011 69

secma

The production PropertyAssignmentldentifielNameis evaluated as follows:

Let propNamebe PropNamd{entifierName.

Let exprValuebe the result operforming ldentifier Resolution as specified in 10.3.1 udoentifierName
Let propValuebe GetValuegxprValug.

Let descbe the Property Descriptor{[[Value]propValue [[Writable]]: true, [[Enumerable]]:true,
[[Configurable]]: true}

5. Return Property ldentifiepfopName desq.

PwnE

The PropNameof the production PropertyAssignma : PropertyName AssignmentExpressios determined as
follows:

1. Return PropNam&ropertyNamg.
The production PropertyAssignmentPropertyName AssignmentExpressios evaluated as follows:

Let propNamebe PropNamePropertyNane).

Let exprValuebe the result of evaluatingssignmentExpression

Let propValuebe GetValuegxprValug.

Let descbe the Property Descriptor{[[ValuelpropValug [[Writable]]: true, [[Enumerable]]true,
[[Configurable]]: true}

5. Return Property ldentifire(propName desg.

PonPE

The PropNameof the production PropertyAssignmentget PropertyNamg){ FunctionBody} is determined
as follows:

1. ReturnPropNamePropertyNamé.

The production Propertyfssignment get PropertyNamd){ FunctionBody} is evaluated as follows:

1. LetpropNamebe PropNamePropertyNamg.

2. Letclosurebe the result of creating a new Function object as specified in 13.2 with an empty parameter list
and baly specified byFunctionBody Pass in the LexicalEnvironment of the running execution context as the
ScopePass intrue as theStrict flag'if the PropertyAssignmeris contained in strict code or if its
FunctionBodyis strict code.

3. Letdescbe the Propewt Descriptor{[[Get]]: closure [[Enumerable]]true, [[Configurable]]:true}

4. Return Property.ldentifierpfopName desg.

The PropNameof the production PropertyAssignment set PropertyName(PropertySetParameterList)
{ FunctionBody} is determined as follows:

1. Returnthe result ofPropNamePropertyNamg.

The production - PropertyAssignment set PropertyName(PropertySetParameterLisy { FunctionBody} is
evaluated as follows:

1. LetpropNamebePropNamePropertyNamé.

2. Letclosurebe the result of creating a new Function object as specified in 13.2 with parameters specified by
PropertySetParameterListnd body specified bifunctionBody Pass in the LexicalEnvironment dfet
running execution context as tiseope Pass intrue as theStrict flag if the PropertyAssignmernis contained
in strict code or if itd~unctionBodyis strict code.

3. Letdesche the Property Descriptor{[[Set]Elosure [[Enumerable]]itrue, [[Configuralde]]: true}

4. Return Property ldentifiempfopName desq.

The static semantics of the production PropertyAssignment set PropertyName(PropertySetParameterLis}
{ FunctionBody} are:

70 © Ecma International 2011

»ecma

1 Itis a Syntax Error if the Identifier "eval® or the Identifier "argume nts" occurs as the Identifierin a
PropertySetParameterListof a PropertyAssignmentthat is either contained in strict code owhose
FunctionBodyis strict code

The PropNameof the production PropertyName IdentifierNameis evaluated as follows:
1. ReturnPropNameldentifierNamé.

The PropNameof the production PropertyName StringLiteral is evaluated as follows:
1. Return the SV of th&tringLiteral

The PropNameof the production PropertyName NumericLiteral is evaluated as follows:

1. Letnbrbe the result of forming the value of theimericLiteral
2. Return ToStringtgbr).

The PropNameof the token IdentifierNameis determined as follows:

1. Return the String value contairg the same sequence of characterklantifierName

11.1.6 The Grouping Operator
The production PrimaryExpression (Expression) is evaluated as follows:

1. Return the result of evaluatirgxpressionThis may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this
is so that operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression
PrimaryExpession
FunctionExpression
MemberExpressiop Expressior]
MemberExpression IdentifierName
new MemberExpressionrArguments

NewExpression
MemberExpression
new NewEXxpression

CallExpression
MemberExpressiorArguments
CallExpression Arguments
CallExpressio [Expression
CallExpression ldentifierName

Arguments

()
(ArgumentList)

© Ecma International 2011 71

secma

ArgumentList
AssignmentExpression
AssignmentExpression
ArgumentList AssignmentExpression
ArgumentList ... AssignmentExpression

LeftHandSideExpressian
NewExpressin
CallExpression

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation:
MemberExpression IdentifierName
CallExpression IdentifierName

or the bracket notation:

MemberExpressioh Expression
CallExpressior] Expresson]

The dot notation is explained by the following syntactic conversion:
MemberExpression IdentifierName
is identical in its behaviour to
MemberExpressioh <identifier-namestring>]
and similarly
CallExpression IdentifierName
is identical in its behaviour to
CallExpressior] <identifier-namestring>]
where <identifier-namestring> is a string literal.containing the same sequence of characters after processing
of Unicode escape sequences as the IdentifierName

The production MemberExpressionMembeExpressiorf Expressior] is evaluated as follows:

LetbaseReferenckee the result of evaluatinglemberExpressian

Let baseValude GetValuefaseReferenge

Let propertyNameReferendee the result of evaluatingxpression

Let propertyNameValube GetValu¢propertyNameReferenge

Call CheckObjectCoerciblegseValug.

Let propertyNameStringpe ToStringpropertyNameValue

If the syntactic production that is being evaluated is contained in strict mode codiidelbe true, else let
strict befalse.

Returna value of type Reference whose base valum&g/alueand whose referenced name is
propertyNameStringand whose strict mode flag ssrict.

NoagkrwnpE

c

The production CallExpression CallExpressior] Expressior is evaluated in exactly the same manner, except
that the contained CallExpressions evaluated in step 1.

11.2.2 The new Operator
The production NewExpression new NewExpressiors evaluated as follows:

1. Letrefbe the result of evaluatingewExpression
2. Letconstructorbe GetValueref).

72 © Ecma International 2011

akrw

ecind

If Type(construcbr) is not Object, throw 8ypeError exception.

If constructordoes not implement the [[Construct]] internal method, throWwypeError exception.

Return the result of calling the [[Construct]] internal methodctonstructor providing no arguments (that
is, an empty list of arguments).

The production MemberExpressionnew MemberExpressioArgumentss evaluated as follows:

onkwnk

Letref be the result of evaluatinglemberExpressian

Let constructorbe GetValuefef).

Let argList be the result of evaluatingrgumerts, producing an internal list of argument values (11.2.4).
If Type(constructo) is not Object, throw dypeError exception.

If constructordoes not implement the [[Construct]] internal method, throWypeError exception.

Return the result of calling thHgConstruct]] internal method ooonstructor providing the listargListas the
argument values.

11.2.3 Function Calls

The production CallExpression MemberExpressioArgumentds evaluated as follows:

oakrwnNE

Letref be the result of evaluatinglemberExpressian
Let funcbe GetValueref).
Let argList be the result of evaluatingrguments producing an internal list of argument values (see 11.2.4).
If Type(func) is not Object, throw 8ypeError exception.
If IsCallablefunc) is false, throw aTypeError exception.
If Type(ref) is Reference, then
a. If IsPropertyReferencegf) is true, then
i. LetthisValuebe GetBasegf).
b. Else, the base okfis an Environment Record
i Let thisValuebe the result of calling.the ImplicitThisValue concrete method of
GetBaseief):
Else, Typéref) is not Reference.
a. LetthisValuebe undefined.
Return the result of‘calling the [[Call]] internal method faimc, providingthisValueas thethis value and
providing the listargList as the argument values.

The production CallExpression CallExpresson Argumentsis evaluated in exactly the same manner, except that
the contained CallExpressioris evaluated in step 1.

NOTE The returned result will never be of type Reference if funcis a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementation-dependent. If a value of type Reference is returned, it
mustbe a non-strict Property Reference.

11.2.4 Argument Lists

The evaluation of an argument list produces a List of values (see 8.8).

The production Argunents: () is evaluated as follows:

1.

Return an empty List.

The production Arguments (ArgumentList) is evaluated as follows:

1.

Return the result of evaluatingrgumentList

The production ArgumentList AssignmentExpressiors evaluated as follows:

1.
2.
3.

Let ref be the result of evaluatingssignmentExpression
Letarg be GetValue(ef).
Return a List whose sole item asg.

© Ecma International 2011 73

ecimnd

The static semantics of the production ArgumentList € AssignmentExpressiare:

1 Itis a Syntax Error if the source code parsed with this production is not extended code.

The production ArgumentList € AssignmentExpressiois evaluated as follows:

9.

Nk wNE

Letlist be an empty List.

Let spreadRebe the result of evaluatingssignmentExpression

Let spread/aluebe GetValuegpreadRef.

Let spreadObj be ToObjectgpread/alue).

LetlenValbe the result of calling the [[Get]] internal methodspfreadDbj with argumentfilength o .

Let spreadLerbe ToUint32{enVal).

Letn=0.

Repeat, whilen < spreadLen

b. LetnextArgbe the result of calling the [[Gétinternal method ofpreadbj passing ToString() as the
argument.

c. AppendnextArgas the last element tift.

d. Letn=n+1.

Returnlist.

The production ArgumentList ArgumentList, AssignmentExpressiois evaluated as follows:

PonpE

Let precedingArgde the reult of evaluatingArgumentList

Let ref be the result of evaluatingssignmentExpression

Let arg be GetValuetef).

Return a List whose length is one greater than the lengpnezfedingArgsand whose items are the items of
precedingArgsin order, folloned at the end bgrg which is the last item of the new list.

The static semantics of the production ArgumentList ArgumentList; . é AssignmentExpressi@re:

1 Itis a Syntax Error if the.source code parsed with this production is not extended code.

The production ArgumentList ArgumentList, é AssignmentExpressiois evaluated as follows:

9.

Nk~ wNE

Let precedingArgde an empty List.

Let spreadRebe the result of evaluatingssignmentExpression

Let spread/aluebe GetValuegpreadRef.

Let spreaddbjbe ToObgct(spread/alue).

Let lenValbe the result of calling the [[Get]] internal methodspfreadDbj with argumentiilength o .

Let spreadLerbe ToUint32(enVal).

Letn= 0.

Repeat, whilen < spreadLen

e. LetnextArgbe the result of calling the [[Get]] internal meth of spreadbj passing ToStringy() as the
argument.

f. AppendnextArgas the last element pfecedingArgs

g. Letn=n+l.

ReturnprecedingArgs

11.2.5 Function Expressions

The production MemberExpressionFunctionExpressiois evaluated as follows:

1.

74

Return the result of evaluatingfunctionExpression

© Ecma International 2011

»ecma

11.3 Postfix Expressions

Syntax

PostfixExpression
LeftHandSideExpression
LeftHandSideExpressiofno LineTerminatorhere] ++
LeftHandSideExpressiofo LineTerminatorhere] --

11.3.1 Postfix Increment Operator
The production PostfixExpression LeftHandSideExpressiofno LineTerminatorhere] ++ is evaluated as follows:

1. Letlhsbe the result of evaluatinigeftHandSide Expression
2. Throw aSyntaxError exception if the following conditions are all'true:
i Type(hs) is Rderence isrue
i IsStrictReferencghs) is true
1 Type(GetBasdlis)) is Environment Record
i GetReferencedNamkg) is either"eval” or “arguments "
3. LetoldValuebe ToNumber(GetValud{s)).
4. LetnewValuebe the result of adding the valdeto oldValug using thesame rules as for thie operator (see
11.6.3).
5. Call PutValuelhs, newValug.
6. ReturnoldValue

11.3.2 Postfix Decrement Operator
The production PostfixExpression LeftHandSideExpressiofo LineTerminatothere] -- is evaluated as follows:

1. Letlhsbe the rsult of evaluatind_eftHandSideExpression
2. Throw aSyntaxError exception if the following conditions are all true:
i Type(hs) is Reference isrue
i IsStrictReferencghs) is true
i Type(GetBasdlis)) is Environment Record
i GetReferencedNamig@) is either'eval " or "arguments
3. LetoldVvaluebe ToNumber(GetValué{s)).
4. LetnewValuebe the result of subtracting the vallidrom oldValue using the same rules as for the
operator (11.6.3).
5. Call PutValuelhs, newValug.
6. ReturnoldValue

11.4 Unary Operators

Syntax

UnaryExpression
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

© Ecma International 2011 75

secma

11.4.1 The delete Operator
The production UnaryExpression delete UnaryExpressions evaluated as follows:

Let ref be the result of evaluatingnaryExpression
If Type(ref) is not Reference, retutnue.
If IsUnresolvableReferencedf) then,
a. If IsStrictReferenceéf) is true, throw aSyntaxError exception.
b. Else, returrtrue.
If IsPropertyReferencegf) is true, then
a. Return the result of calling the [[Delete]] internal method on ToObject(GetBsf¥eproviding
GetReferencedNameff) and IsStrictReferencedf) as the arguments.
5. Else,refis a Referege toan EnvironmentRecordbinding, so
a. If IsStrictReferencegf) is true, throw aSyntaxError exception.
b. Letbindingsbe GetBaséref).
c. Return the result of calling the DeleteBinding concretethodof bindings providing
GetReferencedNamegf) as the argment.

wn e

e

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its
UnaryExpressions a direct reference to a variable, function argument, or function name. In addition, if a delete operator
occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError
exception is thrown.

11.4.2 The void Operator

The production UnaryExpression void UnaryExpressioris evaluated as follows:
1. Letexprbe the result of evaluatinUnaryExpression

2. Call GetValueéxpn.

3. Returnundefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.
11.4.3 The typeof Operator
The production UnaryExpression typeof UnaryExpressiors evaluated as follows:
1. Letvalbe the result of evaluatingnaryExpression
2. If Type(val) is Reference, then
a. |If IsUnresolvableReferencedl) is true, return"undefined"

b. Letvalbe GetValue(al).
3. Return a String determined by Typa() according toTable21.

Table 21 8 typeof Operator Results

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean”
Number "number"
String "string"
Object (native and does "object"

not implement [[Call]])

Object (native or host and | "function”
does implement [[Call]])

76 © Ecma International 2011

»ecma

Object (host and does not | Implementation-defined except may
implement [[Call]]) not be "undefined"” , "boolean”
"number ", or "string".

11.4.4 Prefix Increment Operator
The production UnaryExpression ++ UnaryExpressioris evaluated as follows:

1. Letexprbe the result of evaluating UnaryExpression.
2. Throw aSyntaxError exception if the following conditions are all true:
i Type(expy is Reference isrue
i IsStrictReferenc@xpy) is true
i Type(GetBase(xpn) is Environment Record
i GetReferencedNamexyr) is either"eval" or "arguments
3. LetoldValuebe ToNumber(GetValuekpr)).
4. LetnewValuebe the result of adding the valdeto oldValue using the same rules as for th@perator (see
11.6.3).
5. Call PutValueéxpr, newValug.
6. ReturnnewValue

11.4.5 Prefix Decrement Operator
The production UnaryExpression -- UnaryExpressions evaluated as follows:

1. Letexprbe the result of evaluating UnaryExpression.
2. Throw aSyntaxError exception if the following conditions are all true:
1 Type(expn is Reference isrue
1 IsStrictReferenc@xpy) is true
i Type(GetBasea(xpr).is.Environment Record
i GetReferencedNamexpr) is either'eval" or "arguments
3. LetoldValuebe ToNumber(GetValuekpr)).
4. LetnewValuebe the.result of subtractinge valuel from oldValue using the samaules as for the
operator (see 11.6.3).
5. Call PutValueéxpr, newValug.
6. ReturnnewValue

11.4.6 Unary + Operator
The unary + operator converts its operand.to Number type.
The production UnaryExpression + UnaryExpressions evaluated as follows:

1. Letexp be the result of evaluating UnaryExpression.
2. Return ToNumber(GetValuekpr)).

11.4.7 Unary - Operator

The unary - operator converts its operand to Number type and then negates it. Note that negating +0
produces - 0, and negating - O produces +0.

The production UnaryExpression - UnaryExpressionis evaluated as follows:

Let exprbe the result of evaluating UnaryExpression.

Let oldValuebe ToNumber(GetValuekpr)).

If oldValueis NaN, returnNaN.

Return the result of negatirgjdValue that is, compute a Nuber with the same magnitude but opposite
sign.

PoODNPE

© Ecma International 2011 77

secma

11.4.8 Bitwise NOT Operator (~)

The production UnaryExpression ~ UnaryExpressioris evaluated as follows:

1. Letexprbe the result of evaluatingnaryExpression
2. LetoldValuebe ToInt32(GetValuefxpr)).
3. Retun the result of applying bitwise complementdiolVValue The result is a signed 3#t integer.

11.4.9 Logical NOT Operator (!)

The production UnaryExpression ! UnaryExpressiornis evaluated as follows:

1. Letexprbe the result of evaluatingnaryExpressn.
2. LetoldValuebe ToBoolean(GetValuekpr)).

3. If oldValueis true, returnfalse.

4. Returntrue.

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression
UnaryExpression
MultiplicativeExpressiorf UnaryExpression
MultiplicativeExpressiod UnaryExpression
MultiplicativeExpressiofoUnaryExpression

Semantics

The production MultiplicativeExpression. MultiplicativeExpression@ UnaryExpressionwhere @ stands for one
of the operators in the above definitions, is evaluated as follows:

NoghrwNE

Let left be the resli-of evaluating MultiplicativeExpression.

Let leftValuebe GetValudgft).

Letright be the result of evaluating UnaryExpression.

LetrightValuebe GetValuefght).

Let leftNumbe ToNumbergftValue.

Let rightNumbe ToNumbenightValue).

Return the restlof applying the specified operation (*, /, or %)ledtNumandrightNum See the Notes

below 11.5.111.5.2, 11.5.3

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.
Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision

arithmetic:

f
il

il

78

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

Multiplication of an infinity by a zero results in NaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the
rule already stated above.

Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is
determined by the rule already stated above.

© Ecma International 2011

»ecma

1 In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.2 Applying the/ Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The.operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:
1 If either operand is NaN, the result is NaN.
1 The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.
1 Division of an infinity by an infinity results in NaN.
9 Division of an infinity by a zero results in an infinity. The sign is determined by the rule
already stated above.
1 Division of an infinity by a nonzero finite‘value results in.a signed infinity. The sign is
determined by the rule already stated above.
1 Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.
9 Division of a zero by a zero results.in NaN; division of zero by any other finite value results
in zero, with the sign determined by the rule already stated above.
1 Division of a nonzero finite value by a zero. results in a signed infinity. The sign is
determined by the rule already stated above.

1 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
guotient is computed and rounded to the nearest representable value using IEEE 754 round-
to-nearest mode: If the magnitude is too large to represent, the operation overflows; the
result is then an infinity of appropriate 'sign. If the magnitude is too small to represent, the
operation underflows and /the result is'a zero of the appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

11.5.3 Applying the %Operator

The %operator yields the remainder of its operands from an implied division; the left operand is the dividend
and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-
point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
iremainder o operation defined by | EEE 754. The | EEE
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual
integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to
behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the

C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
1 If either operand is NaN, the result is NaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the
dividend.

=A =4 -4 =4

© Ecma International 2011 79

secma

1 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r = n - (d 3 g) where q is an integer that is negative only if n/d is negative and
positive only if n/d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d. r is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

11.6 Additive Operators

Syntax

AdditiveExpression
MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

11.6.1 The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression AdditiveExpressior MultiplicativeExpressions evaluated as follows:

1. Letlref be the result of evaluating AdditiveExpression.
2. Letlval be GetValud¢ef).
3. Letrref be the result of evaluating MultiplicativeExpression.
4. Letrval be GetValuefef).
5. Letlprim be ToPrimitive(val).
6. Letrprim be ToPrimitivefval).
7. If Type(lprim) is String or Typefprim) is String, then
a. Return the String. that is the result of concatenating ToStpnig{) followed by ToString(prim)
8. Return the rsult of applying the addition operation to ToNumbjrifn) and ToNumberprim). See the

Note below 11.6.3.

NOTE 1 No hint is provided in the calls‘'to ToPrimitive in'steps 5 and 6. All native ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the
hint String were given. Host objects may handle the absence of a hint in some other manner.

NOTE 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.5), by using the
logical-or operation instead of the logical-and operation.

11.6:2 The Subtraction Operator (-)
The production AdditiveExpression AdditiveExpression MultiplicativeExpressioris evaluated as follows:

Let Iref be the result of evaluating AdditiveExpression.

Letlval be GetValudfef).

Let rref be the result of evaluating MultiplicativeExpression.

Letrval be GetValuefef).

Let Inumbe ToNumbeigal).

Let rnumbe ToNumbenfal).

Return the result of applying the dudction operation ttnumandrnum See the note below 11.6.3.

NookrwNE

11.6.3 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

80 © Ecma International 2011

»ecma

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:
1 If either operand is NaN, the result is NaN.
The sum of two infinities of opposite sign is NaN.
The sum of two infinities of the same sign is the infinity of that sign.
The sum of an infinity and a finite value is equal to the infinite operand.
The sum of two negative zeroes is - 0. The sum of two positive zeroes, or of two zeroes of
opposite sign, is +0.
The sum of a zero and a nonzero finite value is equal to the nonzero operand.
The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

1 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the same sign or have different magnitudes, the sum is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
maghnitude is too large to represent, the operation overflows and the result is then an infinity
of appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

=A =4 4 =4

= =

The - operator performs subtraction when applied to two operands of numeric type, producing the difference
of its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric
operands a and b, it is always the case that ai b produces the same resultasa+(1b) .

11.7 Bitwise Shift Operators

Syntax

ShiftExpression
AdditiveExpression
ShiftExpressior< AdditiveExpression
ShiftExpressiorr> AdditiveExpression
ShiftExpressiorr>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)
Performs a bitwise left shift operation on the left operand. by the amount specified by the right operand.
The production ShiftExpression ShiftExpressior< AdditiveExpressiois evaluated as follows:

Letdref be the result of evaluatinghiftExpression

Let lval be GetValudfef).

Let rref be the result of evaating AdditiveExpression

Let rval be GetValuefef).

Let Inumbe Tolnt32[val).

Let rnumbe ToUint32(val).

Let shiftCountbe the result of masking out all but the least significant 5 bithiaf, that is, computenum
& Ox1F.

Return the result of lefhifting Inum by shiftCountbits. The result is a signed 3fit integer.

NooahswNE

o

11.7.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression ShiftExpressior> AdditiveExpressiois evaluated as follows:
1. Letlref be the result of evaluatinghiftExpression

2. Letlval be GetValudfef).
3. Letrref be the result of evaluatingdditiveExpression

© Ecma International 2011 81

secma

Nooa

o

Letrval be GetValuefref).

LetInumbe Tolnt32(val).

Letrnumbe ToUint32(val).

Let shiftCountbe the result of masking out all but the least significant 5 bitswin, that is, computenum
& Ox1F.

Return the result of performing a sigixtending right shift ofnumby shiftCountbits. The most significant
bit is propagated. The result is a sighedi@3Rinteger.

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression ShiftExpressiorn>> AdditiveExpressiois evaluated as follows:

NogokrwNPE

©

Let Iref be the result of evaluatinghiftExpression

Letlval be GetValudtef).

Let rref be the result of evaluatingdditiveExpression

Letrval be GetValuefef).

Letlnumbe ToUint32(val).

Letrnumbe ToUint32¢val).

Let shiftCountbe the result of masking out all but the least significant 5 bitswifn, that is, computenum
& Ox1F.

Return the result of performing a zefiling right shift of Inumby shiftCountbits. Vacated bits are filled
with zero. The result is an unsigned-BR2 integer.

11.8 Relational Operators

Syntax

RelationalExpression

ShiftExpression

RelationalExpressior ShiftExpression
RelationalExpressior. ShiftExpression
RelationalExpressiog= ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressioinstanceof ShiftExpression
RelationalExpressioim ShiftExpression

RelationalExpressionNoln

NOTE

ShiftExpression

RelationalExpressionNolr ShiftExpression
RelationalExpressionNolra ShiftExpression
RelationalExpressionNol®= ShiftExpression
RelationalExpressionNoln= ShiftExpression
RelationalExpressionNolimstanceof ShiftExpression

The ANolnd wvariants are n@&eaperator ih a relatignaliexpressionnwithutleiim g

operator in a for statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The RelationalExpressionNolmproductions are evaluated in the same manner as the RelationalExpression
productions except that the contained RelationalExpressionNolris evaluated instead of the contained
RelationalExpressian

82

© Ecma International 2011

t

he

»ecma

11.8.1 The Less-than Operator (<)
The production RelationalExpression RelationalExpressior ShiftExpressiolis evaluated as follows:

Let Iref be the result of evaluatingelationalExpression

Let lval be GetValud¢ef).

Let rref be the result of evaluatinghiftExpression

Letrval be GetValuefef).

Letr be the result bperforming abstract relational comparisimal < rval. (see 11.8.5)
If r is undefined, returnfalse. Otherwise, returm.

ok wnpE

11.8.2 The Greater-than Operator (>)

The production RelationalExpression : RelationalExpressior ShiftExpressiois evaluated as follows:

1. Letlref be the result of evaluatingelationalExpression

2. Letlval be GetValudfef).

3. Letrref be the result of evaluatinghiftExpression

4. Letrval be GetValuefef).

5. Letr be the result of performing abstract relational.comparisah < Ival with LeftFirst equal tofalse. (see
11.8.5).

6. If r is undefined, returnfalse. Otherwise, returm.

11.8.3 The Less-than-or-equal Operator (<=))

The production RelationalExpression : RelationalExpressior=_ ShiftExpressiolis evaluated as follows:

1. Letlref be the result of evaluatingelationalExpression

2. Letlval be GetValudfef).

3. Letrref be the result of evaluatinghiftExpression

4. Letrval be GetValue(ef).

5. Letr be the result of performing abstract relational comparisah < lval with LeftFirst equal tofalse. (see
11.8.5).

6. If r istrue or undefined, returnfalse. Otherwise, returtrue.

11.8.4 The Greater-than-or-equal Operator (>=)
The production RelationalExpression : RelationalExpressior= ShiftExpressiolis evaluated as follows:

Let Iref bethe result of evaluatin®elationalExpression

Letlval be GetValudfef).

Let rref be the result of evaluatinghiftExpression

Let rval be GetValuefef).

Letr be the result of performing abstract relational comparisah< rval. (see 11.8.5)
If r is true or undefined, returnfalse. Otherwise, returitrue.

oakwnpE

11.8.5 The Abstract Relational Comparison Algorithm

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the leftof theypar amet er 6 s cor r e s pleftFustisfglse ethe peveess is the qase
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. If the LeftFirstflag istrue, then
a. Letpxbe the result of calling ToPrimitive(hint Number).

© Ecma International 2011 83

secma

b. Letpybe the result of calling ToPrimitivg(hint Number).

2. Else theorder of evaluation needs to be reversed to preserve left to right evaluation

a. Letpybe the result of calling ToPrimitiveg(hint Number).

b. Letpxbe the result of calling ToPrimitive(hint Number).

3. Ifitis not the case that both Typ®(is String andType(py) is String, then
a. Letnxbe the result of calling ToNumbgx(). Becausgx andpy are primitive values evaluation
order is not important.
Let ny be the result of calling ToNumbey).
If nxis NaN, returnundefined.
If nyis NaN, returnundefined.
If nxandny are the samBlumbervalue, returrfalse.
If nxis +0 andny s - O, returnfalse.
If nxis-0andnyis +0, returnfalse.
If nxis +a, returnfalse.
If nyis +a, returntrue.
If nyis - o, returnfalse.
If nxis-a, returntrue.
If the mathematial value ofnxis less than the mathematical valuengfd note that these
mathematical values are both finite and not both @emturntrue. Otherwise, returfialse.
4. Else, bothpx andpy are Strings

a. If pyis a prefix ofpx, returnfalse. (A Stringvaluep is a prefix ofStringvalueq if q can be the
result of concatenating and some othestringr. Note that anystringis a prefix of itself, because
may be the empt$tring.)

b. If pxis a prefix ofpy, returntrue.

c. Letkbe the smallest nonnegative integeich that the character at positiowithin pxis different
from the character at positidnwithin py. (There must be suchka for neitherStringis a prefix of
the other.)

d. Letmbe the integer that is the code unit value for the character at pokiwihin px.

e. Letnbe the integer that is the code unit value for the character at pokiwahin py.

If m<n, returntrue.-Otherwise, returfialse:

TRT T S@moa0T

—h

NOTE 1 Step 3 differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented. definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

11.8:6 The instanceof operator
The production RelationalExpressianRelationalExpressiomstanceof ShiftExpessionis evaluated as follows:

Let Iref be the result of ‘evaluatingelationalExpression

Letlval be GetValudfef).

Let rref be the result of evaluatinghiftExpression

Letrval be GetValuefref).

If Type(rval) is not Object, throw d&ypeError exception.

If rval does not have a [[HasInstance]] internal method, thraw@eError exception.
Return the result of callinthe [[HasInstance]] internal method ofal with argumentval.

NookrwNPE

11.8.7 The in operator
The production RelationalExpression RelationalExpessionin ShiftExpressiolis evaluated as follows:
1. Letlref be the result of evaluatingelationalExpression

2. Letlval be GetValudf(ef).
3. Letrref be the result of evaluatinghiftExpression

84 © Ecma International 2011

»ecma

4. Letrval be GetValuefef).
5. If Type(rval) is not Object, throwa TypeError exception.
6. Return the result of callinthe [[HasProperty]] internal method ofal with argument ToStrindyal).

11.9 Equality Operators

Syntax

EqualityExpression
RelationalExpression
EqualityExpressior= RelationalExpression
EqualityExpresion!= RelationalExpression
EqualityExpressior== RelationalExpression
EqualityExpressiot== RelationalExpression

EqualityExpressionNoln
RelationalExpressionNoln
EqualityExpressionNolr= RelationalExpressionNoln
EqualityExpressionNolt- RelationalExressionNoln
EqualityExpressionNolr== RelationalExpressionNoln
EqualityExpressionNolb== RelationalExpressionNoln

Semantics

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The EqualityExpressionNolnproductions are evaluated in the same manner as the EqualityExpression
productions except that the contained EqualityExpressionNolrand RelationalExpressionNolrare evaluated
instead of the contained EqualityExpressiomnd RelationalExpressiarrespectively.

11.9.1 The Equals Operator (==
The production EqualityExpression : EqualityExpressior= RelationalExpressiois evaluated as follows:

Let Iref be the result of evaluatingqualityExpressio.

Let lval be GetValudfef).

Let rref be the result of evaluatingelationalExpression

Letrval be GetValuefef).

Return the result of performing abstract equality comparisah== lval. (see 11.9.3).

S

11.9.2 The Does-not-equals Operator (!=)
The production EqualityExpression : EqualityExpressioft= RelationalExpressiors evaluated as follows:

Let Iref be the result of evaluatingqualityExpression

Letlval be GetValudfef).

Let rref be the result of evaluatingelationalExpression

Letrval be GeValue(ref).

Letr be the result of performing abstract equality comparis@h == Ival. (see 11.9.3).
If r is true, returnfalse. Otherwise, returnrue.

SRR RN

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Typ@(then

© Ecma International 2011 85

eCina

a. If Type(x) is Undefined, returrirue.
b. If Type(x) is Null, returntrue.
c. If Type(x) is Number, then
i. If x is NaN, returnfalse.
il If yis NaN, returnfalse.
iii. If xis the saméNumbervalue asy, returntrue.

iv. If xis +0andy is - 0, returntrue.
V. If xis-0andy is +0, returntrue.
Vi. Returnfalse.

d. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and sam characters in corresponding positions). Otherwise, réalse.
e. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse. Otherwise, returfialse.
f. Returntrue if x andy refer to the same object. Otherwise, rettaise
2. If xis null andy is undefined, returntrue.
3. If xis undefined andy is null, returntrue.
4. If Type(x) is Number and Typ#®] is String,
return the result of the comparisgrF= ToNumbery).
5. If Type(x) is String and Typsf is Number,
return the result of the comparisooNumberg) ==
6. If Type(x) is Boolean, return the result of the comparison ToNumert y.
7. If Type(y) is Boolean, return the result of the comparisor= ToNumbery).
8. If Type(X) is either String or Number and Typ#(s Object,
return the result of theomparisorx == ToPrimitivef).
9. If Type(x) is Object and Typgj is either String or Number,
return the result of the comparison ToPrimitdet=y.
10. Returnfalse.

NOTE 1 Given the above definition of equality:

i String comparison can be forced by: "™ +a= =""+b
1 Numeric comparison can be forced by: +a == +b
1 Boolean comparison can be forced by: 'a == b

NOTE 2 The equality operators maintain the following invariants:
1 A!= Bis equivalentto !(A ==B).
1 A== Bis equivalentto B== A, except in the order of evaluation of A and B.

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each
representing the same String value; each String object would be considered equal to the String value by the == operator,
but the two String objects would not be equal to each other. For Example:

1 new String("a") =="a" and"a" == new String("a") are both true.
I new String("a") ==new String("a") is false.

NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to
use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalised form.

11.9.4 The Strict Equals Operator (===
The production EqualityExpression : EqualityExpressior== RelationalExpressiois evaluated as follows:

Let Iref be the result of evaluatingqualityExpression

Letlval be GetValudtef).

Let rref be the result of evaluatingelationalExpression

Letrval be GetValuefef).

Return the result of performing the strict equality comparisval === lval. (See 11.9.6)

aorondPE

86 © Ecma International 2011

ecind

11.9.5 The Strict Does-not-equal Operator (!==

The production EqualityExpression : EqualityExpressioft== RelationalExpressiois evaluated as follows:

ok wnpE

Let Iref be the result of evaluatingqualityExpression

Let lval be GetValue(ref).

Let rref be the result of evaluatingelationalExpression

Letrval be GetValuefef).

Letr be the result of performing strict equality compariseal === Ival. (See 11.9.6)
If r is true, returnfalse. Otherwise, returtrue.

11.9.6 The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

1. If Type(x) is different from Typey), returnfalse.

2. If Type(x) is Undefined, returitrue.

3. If Type(x) is Null, returntrue.

4. If Type(x) is Number, then

a. If xis NaN, returnfalse.
b. If yis NaN, returnfalse.
c. If xis the samé&Numbervalue asy, returntrue.
d. If xis+0andyis -0, returntrue.
e. If xis-0andyis +0, returntrue.
f. Returnfalse
5. If Type(x) is String, then returrirue if x andy are exactly the same sequence of characters (same length and
same characters in corresponding positions); otherwise, rélsm
6. If Type(x) is Boolean, returirue if x andy are bothtrue or bothfalse; otherwise, returiialse
7. Returntrue if x andy refer to the same object. Otherwise, rettaise.
NOTE This algorithm differs from the SameValue Algorithm (9.12) in its treatment of signed zeroes and NaNs.

11.10 Binary Bitwise Operators

Syntax

BitwiseANDEXxpression

EqualityExpression
BitwiseANDEXxpressio& EqualityExpression

BitwiseANDExpressionNolIn

EqualityExpressionNoln
BitwiseANDExpressionNol& EqualityExpressionNoln

BitwiseXOREXxpression

BitwiseANDEXpression
Bitwise XORExpressioh BitwiseANDEXxpression

BitwiseXORExpgssionNoln

BitwiseANDEXxpressionNoln
BitwiseXORExpressionNoMmBitwiseANDExpressionNoln

BitwiseOREXxpression

BitwiseXOREXxpression
BitwiseORExpressioh Bitwise XORExpression

© Ecma International 2011 87

secma

BitwiseORExpressionNotn
BitwiseXORExpressionNoln
BitwiseORExpressionNoln Bitwise XORExpressionNoln

Semantics

The production A: A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

Let Iref be the result of evaluating.

Letlval be GetValudfef).

Let rref be the result of evaluating.

Letrval be GetValuefref).

LetInumbe Tolnt32(val).

Letrnumbe Tolnt32(¢val).

Return the result of applying the bitwise operator @ntanandrnum. The result is a signed 32 bit integer.

NogrwNE

11.11 Binary Logical Operators

Syntax

LogicalANDEXxpression
BitwiseORExpression
LogicalANDExpressio&& BitwiseORExpression

LogicalANDEXxpressionNoln
BitwiseORExpressionNoln
LogicalANDExpressionNol&& BitwiseOREXxpressionNoln

LogicalORExpression
LogicalANDExpression
LogicalORExpressiof]’ LogicalANDExpression

LogicalORExpressionNoln
LogicalANDExpressionNoln
LogicalORExpressionNoljj LogicalANDExpressionNoln

Semantics

The production LogicalANDEXxpression LogicalANDEXxpressiod.& BitwiseORExpressiois evaluated as follows:

LetIref be the result of evaluatinigogical ANDExpression
LetIval be GetValudfef).

If ToBoolean(val) is false, returnlval.

Let rref be the result of evaluatinBitwiseORExpressian
Return GetValuea¢ef).

okronRE

The production LogicalORExpression LogicalORExpressioff LogicalANDEXxpressiois evaluated as follows:

Let Iref be the result of evaluatingogical ORExpression
Letlval be GetValudtef).

If ToBoolean(val) is true, returnlval.

Let rref be the result of evaluatingogical ANDEXxpression
Return GetValuatef).

orwdPE

The LogicalANDExpressionNaland LogicalORExpressionNolproductions are evaluated in the same manner
as the LogicalANDExpression and LogicalORExpression productions except that the contained
LogicalANDExpressionNo|rBitwiseORExpressionNoland LogicalORExpressionNolare evaluated instead of the
contained LogicalANDExpressiorBitwiseORExpressioand LogicalORExpressigrrespectively.

88 © Ecma International 2011

»ecma

NOTE The value produced by a &&or || operator is not necessarily of type Boolean. The value produced will always
be the value of one of the two operand expressions.

11.12 Conditional Operator (? :)

Syntax

ConditionalExpression
LogicalOREXxpression
LogicalORExpression? AssignmentExpressianAssignmentExpression

ConditionalExpressionNoln
LogicalORExpressionNoln
LogicalORExpressionNolr? AssignmetExpression AssignmentExpressionNoln

Semantics

The production ConditionalExpression LogicalORExpressiof? AssignmentExpressionAssignmentExpressias
evaluated as follows:

1. Letlref be the result of evaluatingogicalORExpression

2. If ToBoolean(GetVale(ref)) is true, then
a. LettrueRefbe the result of evaluatintpe firstAssignmentExpression

b. Return GetValudfueRej.

3. Else
a. LetfalseRefe the result of evaluatinipe secondissignmentExpression
b. Return GetValudg@lseReY.

The ConditionalExpressionNal production is evaluated in' the same-manner as the ConditionalExpression
production except that the.. contained = LogicalORExpressionNojn AssignmentExpression and

AssignmentExpressionNolnare evaluated instead of the contained LogicalORExpressign first

AssgnmentExpressioand second AssignmentExpressiprespectively.

NOTE The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java, which
each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression.
The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a
conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

11.13 Assignment Operators

Syntax

AssignmentExpressian
ConditionalExpression
LeftHandSideExpressignAssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoin
ConditionalExpresionNoln
LeftHandSideExpressionAssignmentExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperatarone of
*= /= %= += - = <<= >>= >>>= &= N= I:

Supplemental Syntax

In certain circumstances when processing the production AssignmentExpression LeftHandSideExpression
AssignmentExpressidhe following grammar is used to refine the interpretation of LeftHandSideExpression

© Ecma International 2011 89

secma

AssignmerRattern:

ObjectAssignmentPattern
ArrayAssignmentPattern

ObjectAssignmerRatern:

{}
{ AssignmentPropertyLis}

{ AssignmentPropertyList }

ArrayAssignmerRattern:

[Elisiong: AssignmentRestElemeggi
[AssignmentElementList Elisiono: AssignmentRestElemegi

AssignmerRropertyList:

AssignmentProperty
AssignmentPropéyList, AssignmentProperty

AssignmerilementList

Elisionop: AssignmentElement
AssignmentElementListElisiony: AssignmentElement

AssignmerRroperty:

Identifier
PropertyName: LeftHandSideExpression

Assignmerilement

LeftHandSideExpression

AssgnmenRestElement

é LeftHandSideExpression

Semantics

The AssignmentExpressionNoloroductions are evaluated in the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoliand AssignmentExpressionNohre evaluated
instead of the contained ConditionalExpressiomand AssignmentExpressiprespectively.

11.13.1 Simple Assignment (=)

The static semantics of AssignmentExpressiarLeftHandSideExpression AssignmentExpressiare:

f
f

It is.a Syntax Error if the AssignmentExpressida contained in strict code and LeftHandSideExpressidn
the Identifier eval or the Identifier arguments .

It is a Syntax Error if the AssignmentExpressioris contained in extended code and the
LeftHandSideExpressida a Literal or a FunctiorExpression

It is a Syntax Error if the AssignmentExpressioris contained in extended code and the
LeftHandSideExpressiois an Identifier that does not statically resolve to a declarative environment record
binding or if the resolved binding an immutable binding.

It is a Syntax Error if the LeftHandSideExpressios PrimaryExpression (Expresfon) and Expression
derived a production that would produce a Syntax Error according to these rules. This rule is
recursively applied.

It is a Syntax Error if the AssignmentExpressioris contained in extended code and the
LeftHandSideExpressiois an ObjectLiteral or an ArraylLiteral and the source code corresponding to
LeftHandSideExpsson cannot be parsed using AssignmentPatteras the goal symbol.

The production AssignmentExpressiarLeftHandSideExpression AssignmentExpressias evaluated as follows:

1. If LeftHandSideExpressias neither arObjectLiteralnor anArrayLiteral then

90

a. Letlref be the result of evaluatingeftHandSideExpression

© Ecma International 2011

»ecma

Let rref be the result of evaluatingssignmentExpression
Letrval be GetValuefef).
Call PutValuelref, rval).

e. Returnrval.
If this is not extended code, throwR&ferenceError exception.
Let AssignmentPatterbe the parse of the source code correspondingftHandSideExppesson using
AssignmentPatteras the goal symbol.
Let rref be the result of evaluatingssignmentExpression
Letrval be ToObjectGetValuefref)).
EvaluateAssignmentPatternsingrval as theobj parameter.
Returnrval.

w N
coso

Noahs

NOTE When an assignment occurs within strict mode code, Iref in step 1.d must.not be an unresolvable reference. If
it is, a ReferenceError exception is thrown upon assignment. The LeftHandSidealso may not be a reference to a data
property with the attribute value {[[Writable]]: false}, to an accessor property with the attribute value {[[S€]]: undefined}, nor
to a non-existent property of an object whose [[Extensible]] internal property has the value false. In these cases a
TypeError exception is thrown.

11.13.1.1 Destructuring Assighment

The supplemental production AssignmentPattern ObjectAssignmeRettern s evaluated with the parameter obj
as follows:

1. EvaluateObjectAssignmematternusingobj as theobj parameter.

The supplemental production AssignmentPattern ArrayAssignmeriatternis evaluated with the parameter obj as
follows:

1. EvaluateArrayAssgnmenPatternusingobj as theobjparameter.

The supplemental production ObjectAssignmePRattern: {} ,the production ArrayAssignmetRattern: [] and
the production ArrayAssignmerattern: [Elision] when evaluated with the parameter obj do nothing.

The supplemental productions ObjectAssignmeRiattern: { AssignmentPropertyLis} and
ObjectAssignmeRattern: { AssignmentPropertyList } are evaluated with the parameter obj as follows:

1. EvaluateAssignmentPropertyLisusingobj as theobj parameter.

The supplemental production AssignmerRropertyList: AssignmentPropertis evaluated with the parameter obj
as follows:

1. EvaluateAssignmentPropertysingobj as theobj parameter.

The supplemental production AssignmerRropertyList: AssignmentPropertyList AssignmentPropertyis evaluated
with the parameter obj as follows:

1. EvaluateAssignmentPropertyListsingobj as theobj parameter.
2. EvaluateAssignmentPropertysingobj as theobj parameter.

The supplemental production AssignmentPropertyldentifier is evaluated with the parameter obj as follows:
1. Letvbe the result of calling the [[Get]] internal methodadif passing thedentifier string as the argument.
2. Letlref be the result of performing ldentifier Resolution(10.3.1) ughngldentifierNamecorresponding to

Identifier.
3. Call Putvaluelref,v).

© Ecma International 2011 91

secma

The static semantics of the supplemental production
AssignmentProperty PropertyName LeftHandSideExpressiand the supplemental production
AssignmentElement_eftHandSideExpressiare:

1 Itis a Syntax Error if LeftHandSideExpressias the Identifier eval or the Identifierarguments .

1 Itis a Syntax Error if LeftHandSideExpressias the Identifier this or the Identifiersup er .

1 Itis a Syntax Error if the LeftHandSideExpressids a Literal, a FunctiorExpressioror aClassExpressian

1 It is a Syntax Error if the LeftHandSideExpressios an Identifier that does.not statically resolve to a
declarative environment record binding or if the resolved binding an immutable binding.

1 It is a Syntax Error if the LeftHandSideExpressiaa an ObjectLiteral or-an ArrayLiteral and the source
code corresponding to LeftHandSideExmsson using cannot be parsed using AssignmentPatteras the
goal symbol.

1 Itis a Syntax Error if the LeftHandSideExpressias PrimaryExpression (Expression) and Expression
derived a production that would produce a Syntax Error. according to these rules. This rule is
recursively applied.

The supplemental production AssignmentProperty PropertyName LeftHandSideExpresside evaluated with the
parameter obj as follows:

1. Letnamebe the result of evaluatinBropertyName
2. Letvbe the result of calling the [[Get]] internal methodallj passingnameas the argument.
3. |If LeftHandSideExpressios anObjectLiteral or anArrayLiteral then
a. Let AssignmentPatterbe the parse of the source code correspondingtiHandSideExpmsson
usingAssignmentPatteras the goal symbol
b. LetvObjbe ToObjecty).
c. EvaluateAssignmentPattrn usingvObjas theobj parameter.
d. Return.
4. Letlref be the result of evaluatinigeftHandSideExpression
5. Call PutValuelref,v).

The supplemental production ArrayAssignmeiRattern: [Elisiony,: AssignmentRestElemdntis evaluated with
the parameter obj as follows:

1. If Elisionis present, then letkipbe the result of evaluatinglision, otherwise leskipbe 0.
2. EvaluateAssignmerRRestElementusingobj as theobj parameter andkip as theindexparameter.

The supplemental production
ArrayAssignmeiRattern: [AssignmentElementList Elisiony: AssignmentRestElemegt
is evaluated with the parameter obj as follows:

1. Letlastindexbe the result of evaluatingssignmerlementList usingobj as theobj parameter and 0 as the
indexparameter.

2. If Elisionis present, then leskipbe the result of evaluatiniglision, otherwise leskipbe 0.

3. If AssignmerRRestElemenis present, then evaluafssignmerRestElementusingobj as theobj parameter
andlastindex+skip as theindexparameter.

The supplemental production AssignmentElementList Elisiono: AssignmentElementis evaluated with the
parameters obj and indexas follows:
1. If Elisionis present, then letkipbe the result of evaluatinglision, otherwise leskipbe 0.

2. Evaluak Assignmerilement usingobj as theobj parameter anthdexrskipas theindexparameter.
3. Returnindextskip+1.

92 © Ecma International 2011

»ecma

The supplemental production AssignmentElementList AssignmentElementList Elisionop: AssignmentEleent is
evaluated with the parameters obj and indexas follows:

1. LetlistNextbe the result of evaluatingssignmetElementist usingobj as theobj parameter anthdexas
theindexparameter

2. |If Elisionis present, then letkipbe the result of evahtingElision, otherwise leskipbe 0.

3. EvaluateAssignmerlement usingobj as theobj parameter antistNextrskip as theindexparameter.

4. ReturnlistNext-skip+1.

The supplemental production AssignmentElemeén LeftHandSideExpresside evaluated with the parameters obj
and indexas follows:

1. Letnamebe ToString{ndex.
2. Letvbe the result of calling the [[Get]] internal methodatif passingnameas the argument.
3. If LeftHandSideExpressias anObjectLiteralor anArrayLiteral then
a. LetAssignmentPatterbe the parse of the source code correspondingtiHandSideExpmpsson
using AssignmentPatteras the goal symbol
b. LetvObjbe ToObjecty).
c. EvaluateAssignmentPatternsingvODbjas theobj parameter.
d. Return.
4. Letlref be the result of evaluatingeftHandSideExpression
5. Call PutValuelref,v).

The static semantics of the supplemental production AssignmerRestElementé LeftHandSideExpressiare:

1 Itis a Syntax Error if LeftHandSideExpressias the Identifiereval orthe Identifierarguments .

1 Itis a Syntax Error if LeftHandSideExpressias the Identifierthis or the Identifier super .

1 It is a Syntax Error if'the LeftHandSideExpressiois a Literal, an ObjectLiteral an ArrayLiteral, a
FunctiorExpressionor aClassExpressian

1 It is a Syntax Error if the LeftHandSideExpressiois an Identifier that does not statically resolve to a
declarative environment record binding or if the resolved binding an immutable binding.

1 It is a Syntax Error.if the LeftHandSideExpmesionis PrimaryExpression (Expression) and Expression
derived a production. that-would produce a Syntax Error according to these rules. This rule is
recursively applied.

The supplemental production AssignmerRestElement: é LeftHandSideExpressions evaluated with the
parameters obj and indexas follows:

Let Iref be the result of evaluatinigeftHandSideExpression
Let lenValbe the result of calling the [[Get]] internal methodati] with argumentilength o .
Letlenbe ToUint32(enVal).
Let Abe a new eray object created as if by the expressimw Array() whereArray is the standard
built-in constructor with that name.
Let n=0;
Repeat, whilendex<len
a. LetPbe ToStringindex).
b. Letexistsbe the result of calling the [[HasProperty]] internal methoalgfwith argumentP.
c. If existsis true, then

i. Letvbe the result of calling the [[Get]] internal methodadff passing ToString(dex as the
argument.

ii. Call the [[DefineOwnProperty]] internal method Afwith arguments ToString{, Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:true}, and
false.

d. Letn=n+1l.
e. Letindex=indext1.
7. Call PutValuelref,A).

PonpE

o o

© Ecma International 2011 93

ecimnd

11.13.2 Compound Assighment (op=)

The production AssignmentExpressianLeftHandSideExpressioAssignmerperator AssignmentExpressipmwhere
AssignmentOperatds @= and @ represents one of the operators indicated above, is evaluated as follows:

oankwnE

7.
8.

Let Iref be the result of evaluatinigeftHandSideExpression
Letlval be GetValudtef).

Let rref be the result oévaluatingAssignmentExpression
Letrval be GetValuefef).

Letr be the result of applying operator @Iv@al andrval.

Throw aSyntaxError exception if the following conditions are all true:

i Type(ref) is Reference isrue

1 IsStrictReferencéi(ef) is true

i Type(GetBaséfef)) is Environment Record

1 GetReferencedName(Iref) &ther"eval® or "arguments
Call PutValuelfef, r).
Returnr.

NOTE See NOTE 11.13.1.

11.14 Comma Operator (,)

Syntax

Expression

AssignmentExpression
Expression AssignmentExgssion

ExpressionNoln

AssignmentExpressionNoln
ExpressionNoln AssignmentExpressionNoln

Semantics

The production Expression Expression AssignmentExpressias evaluated as follows:

1
2.
3.
4

Letdref be the result of evaluatingxpression

Call GetValuelref).

Let rref be the result of evaluatingssignmentExpression
Return GetValuetef).

The ExpressionNolrproduction is evaluated in the same manner as the Expressionproduction except that the
contained ExpressionNolrand AssignmentExpressionNoaéme evaluated instead of the contained Expressionand
AssignmentExpressiprespectively.

NOTE

94

GetValue must be called even though its value is not used because it may have observable side-effects.

© Ecma International 2011

»ecma

12 Statements and Declarations

Syntax

Statement
BlockStatement
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
lterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement
DebuggerStatement

Declaration:
FunctionDeclaratia
LetDeclaration
ConstDeclaration

Semantics

A Statementan be part of a LabelledStatementvhich itself can be part of a LabelledStatementand so on. The

|l abels introduced this way are collectivel ythesemandcsr ed
of individual statements. A 'LabelledStatemeritas no semantic meaning other than the introduction of a label to

a label set. The label set of an IterationStatemenbr a SwitchStatemeninitially contains the single element
empty. The label set of any other statement.is.initially empty.

The VarDeclaredNames of the productions:
Statement EmptyStatement
Statement Expressioistatement
Statement ContinueStatement
Statement BreakStatement
Statement ReturrStatement
Statemat : ThrowStatement
Statement DebuggerStatement
is determined as follows:

1. Return a new empty List.

The VarDeclaredNames of the productions:
Statement BlockStatement
Statement If Statement
Statement IterationStatement
Statement WithSatement
Statement Labelledstatement
Statement SwitctBtatement
Statement TryStatement
is determined as follows:

1. Return the VarDeclaredNamesthie single nofterminal symbol that is the right hand side of the
production

© Ecma International 2011 95

secma

The VarDeclaredNames of the production Statement VariableStatemeris determined as follows:

1. Return theBoundNames ofVariableStatement

The Statemenproductions are all evaluated as as follows

1. Return the result of evaluating the single ftemtminal symbol that is theght hand side of the production.
NOTE The result of evaluating a Statemenbr Declarationis always a Completion value.

The BoundNamef the Declarationproductions are determined as follows:

1. Return the BoundNames ttie single norterminal symbol thats the right'hand side of the production
The Declaration productions are all evaluated as as follows

1. Return the result of evaluating the single sienminal symbol.that is the right hand side of the production.
12.1 Block

Syntax

BlockStatement
Block

Block:
{ StatementLig: }

StatementList
Statemertfistltem
Statementist Statemenmhistlitem
StatementListem:

Statement
Declaration

Semantics

The VarDeclaredNames of the production BlockStatement Blockis determined as follows:
1. Return the VarDeclaredNames Bfock
The production BlockStatement Blockis evaluated as follows:

1. Returnthe result of evaluatin@lock

The LexicallyDeclaredNames of the production Block: { } is determined as follows:

1. Return a new empty List.

The VarDeclaredNames of the production Block: { } is determined as follows:
1. Returna new empty LSt

The production Block: { } is evaluated as follows:

1. Return formal, empty, empty).

96 © Ecma International 2011

»ecma

The static semantics of the production Block: { StatementLis} are:

1 It is a Syntax Error if StatementListincludes a StatementListem : Declaration production whose
Declarationis a Declaration: FunctionDeclarationproduction and the source code matching this Block
production is not contained in extended code.

It is a Syntax Error if the LexicallyDeclaredNames of StatementListontains any duplicate entires.

It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementLisalso occurs in the
VarDeclaredNames of StatementList

=a =4

The LexicallyDeclaredNames of the production Block: { StatementLis} is determined as follows:
1. Return the LexicallyDeclaredines ofStatemeritistitem

The VarDeclaredNames of the production Block: { StatementLis} is determined as follows:

2. Return the VarDeclaredNames 8fatemeritist.

The production Block: { StatementLis}is evaluated as follows:

1. LetoldEnvbetherunning x ecuti on contextds Lexical Environment
2. LetblockEnvbe the result of calling NewDeclarativeEnvironment- passitgEnvas the argument.
3. Perform Block Declaration Instantiation usiSgatementLisandblockEnv
4. For each elemergaram of formals

a. Letvaluebe thepositionallycorresponding elment @rguments

b. CallblockEnw s | ni ti al i zeBi ndi nparam@anmdealueat the angameht® d pas s
5. LetblockValuebethe result of evaluatin§tatementList
6. Set the running executnmeotmooldEovnt ext 6s Lexi cal Envir ot
7. ReturnblockValue
NOTE No matter how control leaves the Blockthe LexicalEnvironment is always restored to its former state.

The LexicallyDeclaredNames of the production StatementList Statemeiitistitemis determined as follows:

1. ReturnthelLexicallyDeclaredNamesf Statemeritistitem

The LexicalDeclarations of the production StatementList Statemertistitemis determined as follows:

1. ReturnithelexicalDeclaration®f Statemeritistitem

The VarDeclaredNames of the production StatementLis: Statemeritistitemis determined as follows:

1. Return the VarDeclaredNames $fatemeritistitem

The production StatementListStatemerttistitemis evaluated as follows:

1. Letsbe the result of evaluatingtatemeritistitem

2. If an exception was throwrreturn (throw, V, empty) whereV is the exception. (Execution now proceeds as
if no exception were thrown.)

3. Returns.

The LexicallyDeclaredNames of the production StatementList StatementList Statemérgtitemis determined as
follows:

1. Letnameshe LexicalyDeclaredNames oftatementList
2. Append tonamesthe elements of theexicallyDeclaredNamesf Statemeritistitem
3. Returnnames

The LexicalDeclarations of the production StatementList StatementList Statemérgtitem is determined as
follows:

© Ecma International 2011 97

secma

1. Letdeclarationsbe LexicalDeclarations dbtatementList
2. Append tonamesthe elements of theexicalDeclaration®f Statemeritistitem
3. Returndeclarations

The VarDeclaredNames of the production StatementList StatementList Statemérgtitem is determined as
follows:

1. Letnameshe VarDeclaredNames &tatementList
2. Append tonamesthe elements of the VarDeclaredNamesStdtemeritistitem
3. Returnnames

The production StatementList StatementList Statemérgtitemis evaluated as follows:

1. Letslbe the result of eluatingStatementList

2. If slis an abrupt completion, retush

3. Letsbe the result of evaluatingtatement

4. If an exception was thrown, returthfow, V, empty) whereV is the exception. (Execution now proceeds as

if no exception were thrown.)

5. If s.value isempty, letV = sl.value, otherwise le¥ = s.value.

6. Return 6.type,V, s.target).

NOTE Steps 5 and 6 of the above algoritm ensure that the value of a.StatementLisis the value of the last value

producing Statement in the StatementList For example, the following calls to.the eval function all return the value 1:
eval("1;;::")
eval(“1{)")

eval("l;var a;")

The LexicallyDeclaredNames and the LexicalDeclarations of the production Statemertistitem: Statemenare
determined as follows:

1. Returna new enpty List

The VarDeclaredNames of the production Statementistitem: Statemenis determined as follows:
1. Return the VarDeclaredNames $fatement

The production Statemertfistitem: Statemenis evaluated as follows:

1. Return the result of evaluatirtgtatanent

The LexicallyDeclaredNames of the production Statementistitem: Declarationis determined as follows:
1. Return theBoundNameof Declaration

The LexicalDeclarations of the production Statemeiitistitem: Declarationis determined as follows:
1. Returnreturn a new List containinBeclaration

The VarDeclaredNames of the production Statemertistitem: Declarationis determined as follows:
1. Return a new empty List

The production Statemeritistitem: Declarationis evaluated as follows:

1. Return the resultfoevaluatingDeclaration

98 © Ecma International 2011

»ecma

12.2 Declarations and the Variable Statement
12.2.1 Let Declaration

Syntax
LetDeclaration:
let LetBindind.ist;

LetBindind.ist :
LetBinding
LetBindind.ist, LetBinding

LetBinding.istNoln:

LetBindingNoln

LetBindind-istNoln, LetBndingNoln
LetBinding:

Bindingdentifier Initialiserp:

BindingPattern Initialiser
LetBindingNoln:

Bindingdentifier InitialiserNolrpt

BindingPattern InitialiserNoln

Bindingldentifier :
Identifier

Initialiser :
= AssignmentExpression

InitialiserNoln:
= AssignmentExpressionNoln

NOTE Alet declaration defines variables that are scopedtothec ur r ent e x e ¢ WexicaEnviranhoentt Letx t 6 s
variables are created when their containing Lexical Environment is instantiated but may not be accssed in any way until
t he v arLétBindihgeséegecuted. A variable defined by a LetBindingwith an Initialiser is assigned the value of its

Initialiserd AssignmentExpressiamhen the LetBindingis executed, not when the variable is created. If a LetBindingdoes not
have an an Initialiser the variable is assigned the value undefined when the LetBindingis executed.

Semantics

The static semantics of the production LetDeclaration: let LetBindingd.ist; are:
1 Itis a Syntax Error if the code that matches this production is not contained in extended code.
The BoundName®f the production LetDeclaration: let LetBindind.ist; is determined as follows:
1. Return BoundNames dfetBindind.ist.
The production LetDeclaration: let LetBindingd.ist; is evaluated as follows:

1. EvauateletBindingd.ist.
2. Return fiormal, empty, empty).

The BoundName®f the production LetBindingList: LetBindingis determined as follows:

1. Return BoundNames dfetBinding

© Ecma International 2011 99

secma

The production LetBindind.ist : LetBindingis evaluated as follows:

1. EvaluatelLetBinding.

The BoundName®f the production LetBindingList: LetBindingList, LetBindingis determined as follows:
1. Letnamesbe BoundNames dfetBindingList.

2. Append tonamesthe elements of BoundNames loétBinding.

3. Returnnames

The production LetBindingList : LetBindingdList, LetBindingis evaluated as follows:

1. EvaluatelLetBindingList.
2. EvaluateletBinding

The BoundName®f the production LetBinding: Bindingdentifier Initialiser is determined as follows:
1. Return the BoundNames 8&findingldentifier.
The production LetBinding: Bindinddentifier is evaluated as follows:

1. Letenvbe the running execution contextos Lexical Environi
2. PerformBinding Initialization for Bindingldentifier passingundefined andenvas the arguments

The production LetBinding: Bindinddentifier Initialiser is evaluated as follows:

Letrhs be the result of evaluatinigitialiser.

Let valuebe GetValuerhs).

Letenvbe the running execution contextdéds Lexical Environi
Perform Binding Initialization-foBindingldentifier passingvalueandenvas the arguments

PwbPE

The BoundName®f the production LetBinding BindingPatterninitialiser is determined as follows:

1. Return the BoundNames 8findingPattern

The production LetBinding BindingPatterninitialiser is evaluated as follows:

1. Letrhsbe the result of evaluatinigitialiser.

2. Letrval be GetValuets).

3. Letenvbe the running execution contextés Lexical Environ]
4. EvaluateBindingPatternusingrval as theobj parameter anénvas theenvironmenparameter.

The BoundName®f the production Bindingdentifier : Identifier is determined as follows:

1. Return a new List containing tHdentifierNamecorresponding tadentifier.

The String valueof the production Bindinddentifier : Identifier is determined as follows:

2. Return a String valueamsisting of the same sequence of characters asi¢mtifierNamecorresponding to
Identifier.

Binding Initialization of the production Bindingdentifier : Identifier with arguments value and enviornmentis
performed as follows:

1. If enviornmenis notundefined, then
a. Callthe InitializeBinding concrete method efviornmenipassingdentifier andvalueas the
arguments
2. Else
a. Letlhsbe the result of evaluatiniglentifier as described in 11.1.2.

100 © Ecma International 2011

»ecma

b. Call PutValuelhs, valug.
NOTE undefined is passed for envirommentto indicate that a PutValue operation should be used to assign the
initialization value. This is the the case for var statements and similar situations where a lexical binding is hosted and

preinitialized prior to evaluation of its initializer.

The static semantics of the production Bindingldentifier : Identifier are:

1 It is a Syntax Error if the Bindingdentifier is contained in strict code and if the Identifier is eval or
arguments .

The production Bindinddentifier : Identifier is evaluated as follows:

1. Return the result ofvaluaing ldentifier as described in 11.1.2

The production Initialiser : = AssignmentExpressias evaluated as follows:

1. Return the result of evaluatifgssignmentExpression

The LetBindind.istNoln, LetBindingNoln and InitialiserNoln‘productions areevaluated in the same manner as
the LetBindind.ist, LetBinding and Initialiser productions except that the contained LetBindingd.istNoln
LetBindindNoln, InitialiserNoln and AssignmentExpressionNolmare <evaluated instead of the contained
LetBindind-ist, LetBinding Initialiser and AssignmentExpressiprespectively.

12.2.2 Const Declaration

Syntax

ConstDeclaration
const ConstBindingist ;

ConstBindindyist :
ConstBinding
ConstBindingList, ConstBinding

ConstBinding
BindingdentifierInitialiser
BindingPattern|nitialiser

NOTE® A const declaration defines read-only variables that are scoped to the curr ent execution

LexicalEnvironment. Constant variables are created when their containing Lexical Environment is instantiated but may not
be accssed in any waopnstBindirigis dxecuted.eA variabte idedifed ey & €onstBindingis assigned the
value of its Initialiserdé AssignmentExpressiomhen the ConstBindings executed, not when the variable is created.

Semanti cs

The static semantics of the production ConstDeclaration const ConstBindingiist; are:

1 Itis a Syntax Error if the code that matches this production is not contained in extended code.
The BoundName®f the production ConstDeclaration const ConstBndingList; is determined as follows:
1. Return BoundNames d@fonstBindindpist.

The production ConstDeclaration const ConstBindindist; is evaluated as follows:

1. EvaluateConstBinding.ist.
2. Return fiormal, empty, empty).

© Ecma International 2011 101

secma

The BoundName®f the production ConstBindindList: ConstBindings determined as follows:

1. Return BoundNames @onstBinding

The production ConstBindingiist: ConstBindings evaluated as follows:

1. EvaluateConstBinding

The BoundName®f the production ConstBindindist: ConstBindindtist, ConstBindings determined as follows:
1. Letnamesbe BoundNames dfonstBindingist.

2. Append tonamesthe elements of BoundNames ©bnstBinding.

3. Returnnames

The production ConstBindingist : ConstBindingist, ConstBindings evaluated as follows:

1. EvaluateConstBinding.ist.
2. EvaluateConstBinding

The BoundName®f the production ConstBinding Bindingdentifier Initialiser is determined as follows:
1. Return the BoundNames 8&findingldentifier.

The production ConstBinding Bindingdentifier Initialiser is evaluated as follows:

Letrhs be the result of evaluatinigitialiser.

Let valuebe GetValuerhs).

Letenvbe the running execution contextdéds Lexical Environi
Perform Binding Initialization foBindingldentifier passingvalueandenvas the arguments

PwbdPE

The BoundName®f the production ConstBinding BindingPatterninitialiser is determined as follows:
1. Return the BoundNames 8findingPattern
The production ConstBinding BindingPatterninitialiser is evaluated as follows:

1. Letrhsbe the result of evaldiag Initialiser.

2. Letrvalbe GetValueths).

3. Letenvbe the running execution contextés Lexical Environi
4. EvaluateBindingPatternusingrval as theobj parameter anénvas theenvironmenparameter.

12.2.3 Variable Statement

Syntax

VariableStatement
var VariableDeclarationList

VariableDeclarationList
VariableDeclaration
VariableDeclarationList VariableDeclaration

VariableDeclarationListNoln
VariableDeclarationNoln
VariableDeclarationListNoln VariableDeclarationNoln

VariableDeclaration:

Bindingldentifier Initialiserp:
BindingPattern Initialiser

102 © Ecma International 2011

»ecma

VariableDeclarationNoln
Bindingdentifier InitialiserNolrypt
BindingPattern InitialiserNoln

NOTE Avar statement declares variables that are scopedtothec ur r ent e x e ¢ WariabteBnviroronertt. ¥act 6 s

variables are created when their containing Lexical Environment is instantiated and are initialised to undefined when
created. Within the scope of any VariableEnvironemnt a common Identifier may appear in more than one
VariableDeclarationbut those declarations collective define only one variable. A variable defined by a VariableDeclaration
with an Initialiser is assigned the value of its Initialiserd #ssignmentExpressiomhen the VariableDeclarationis executed, not
when the variable is created.

Semantics

The BoundName®f the production VariableStatementvar VariableDeclarationList is determined as follows:
1. Return BoundNames ofariableDeclarationList
The production VariableStatementvar VariableDeclarationList is evaluated as follows:

1. EvaluateVariableDeclarationList
2. Return fiormal, empty, empty).

The BoundName®f the production VariableDeclarationList VariableDeclarationis determined as follows:
1. Return BoundNames ofariableDeclaration

The production VariableDeclarationList VariableDeclarationis evaluated as follows:

1. EvaluateVariableDeclaration

The BoundNamesof the production VariableDeclarationList: VariableDeclarationList, VariableDeclarationis
determined as follows:

1. Letnamesbe BoundNames dfariableDeclarationLis.
2. Append tonamesthe elements of BoundNames \ariableDeclaration
3. Returnnames

The production VariableDeclarationList VariableDeclarationList, VariableDeclarationis evaluated as follows:

1. EvaluateVariableDeclarationList
2. EvaluateVariableDeclaraton.

The BoundName®f the production VariableDeclaration: Bindingdentifier Initialiserop is determined as follows:
1. Return the BoundNames 8findingldentifier.

The production VariableDeclaration: Bindinddentifier is evaluated as follows:

1. Returnthe String valueof Bindingldentifier.

The production VariableDeclaration: Bindingdentifier Initialiseris evaluated as follows:

1. Letrhsbe the result of evaluatinigitialiser.

2. Letvaluebe GetValueths).

3. Perform Binding Initialization foBindingldentifier passingvalueandundefined as the arguments

NOTE 1 The String value of a VariableDeclarationis used in the evaluation of for-in statements (12.6.4).

© Ecma International 2011 103

secma

NOTE 2 If a VariableDeclarationis nested within a with statement and the Identifier in the VariableDecération is the
same as a property name of the binding object of the with stat
value to the property instead of to the VariableEnvironment binding of the Identifier.

The static semantics of the production VariableDeclaration: BindingPatterninitialiser are:

91 Itis a Syntax Error if the source code matching this production is not contained in extended code.
The BoundName®f the production VariableDeclaration: BindingPatternlinitialiser is determined as follows:
1. Return the BoundNames 8&findingPattern
The production VariableDeclaration: BindingPatterninitialiser is evaluated as follows:

1. Letrhsbe the result of evaluatinigitialiser.
2. Letrval be ToObjectGetValueths)).
3. EvaluateBindingPatternusing rval as theobj parameter andndefined as theenvironmenparameter.

The VariableDeclarationListNoln VariableDeclarationNolnand nitialiserNoln productions are evaluated in the
same manner as the VariableDeclarationList VariableDeclarationand Initialiser productions except that the
contained VariableDeclarationListNoln VariableDeclarationNoln InitialiserNoln and AssignmentExpressionNoln
are evaluated instead of the contained VariableDeclarationList VariableDeclaration Initialiser and
AssignmeriExpressionrespectively.

12.2.4 Destructuring Binding Patterns

Syntax

BindingPattern:
ObjecBindingPattern
ArrayBindingPattern

ObjecBindingPattern:
{}
{ BindingPropertyList }
{ BindingPropertyList , }

ArrayBindingPattern:
[Elisiony,,: BindingRestElemeny:]
[BindingelementList, Elisiony: BindingRestElemeny;]

BindingPropertyList:
BindingProperty
BindingPropertyList, BindingProperty

BindingElementList
Elisiong: BindingElement
BindingelementList Elisiony,: BindingElement

BindingProperty:
SingleNameBinding
PropertyName: SingleNameBinding
PropertyName : BindingPatterninitialiserqpt

BindingElement

SingleNameBinding
BindingPatterninitialiseropt

104 © Ecma International 2011

»ecma

SingleNameBinding
Bindingdentifier Initialiserqpt

BindingRestElement
€ Bindingldentifier

Semantics

The BoundName®f the production BindingPattern: ObjectBindingPatterris determined as follows:

1. Return BoundNames dbjectBindingPattern

The production BindingPattern: ObjectBindingPatterris evaluated with parameters valueand envas follows:
1. Evaluak ObjectBindingPatterrusingvalueas theobj paraneter ancenvas theenvironmenparameter.
The BoundName®f the production BindingPattern: ArrayBindingPatternis determined as follows:

1. Return BoundNames dirrayBindingPattern

The production BindingPattern: ArrayBindingPatternis evaluated with parameters valueand envas follows:
1. EvaluateArrayBindingPatternusingvalueas theobj parameter anénvas theenvironmenparameter.
The BoundName®f the production ObjectBindingPattern{} is determined as follows:

1. Returnan empty List

The production ObjectBindingPattern{ } is evaluated with-parameters valueand envas follows:

1. If valueis neither ofnull or'undefined, then perform ToObjectfalue) and discard the result.

The BoundNamef the productions ObjectBindingPattern{ BindingPropertyLi$ } and ObjectBindingPattern
{ BindingPropertyList;" } is determined as follows:

1. Return the BoundNames &iindingPropertyList

The productions ObjectBindingPattern { BindingPropertyList } and ObjectBindingPattern :
{ BindingPropertyL$t , } are evaluated with parameters valueand envas follows:

1. If valueis neither ofnull” or undefined, then

a. Letobjbe ToObjectyalue).

Else, letobj be undefined.

EvaluateBindingPropertyList using obj as theobj parameter anénvas theenvironmeniparameter.

wn

The BoundName®f the production ArrayBindingPattern: [Elisiony:] is determined as follows:

1. Return an empty List

The production ArrayBindingPattern: [Elisionypt] is evaluated with parameters value and envas follows:
1. If valueis neither ofnull or undefined, then performlroObjectalue) and discard the result.

The BoundNamesf the production ArrayBindingPattern: [Elisiony,: BindingRestElement is determined as
follows:

1. Returnthe BoundNames d8indingElementist.

© Ecma International 2011 105

secma

The production ArrayBindingPattern [Elisiony,: BindingRestElement is evaluated with parameters value and
envas follows:

1. If Elisionis present, theket skipbe the result of evaluatinglision, otherwise leskipbe 0.
2. If valueis neither ofnull or undefined, then

a. Letobjbe ToObject¢alue).
3. Else, letobj beundefined.

4. EvaluateBindingRestElementisingobj as theobj parameterenvas theenvironmeh, andskip as theindex
parameter.

The BoundNamesof the production ArrayBindingPattern: [Bindingelementtist , < Elision,:] is determined as
follows:

1. Return the BoundNames 8&iindingElementist.

The production ArrayBindingPattern[Bindingelementist, Elisions . is evaluated with parameters valueand
envas follows:

1. |If valueis neither ofnull or undefined, then
a. Letobjbe ToObjectyalue).
2. Else, letobj beundefined.
3. Letindexbe the result of evaluatinBindingElementist usingobj as theobj paramegr, envas the
environmentand 0 as thendexparameter.
4. |If Elisionis present, then letkipbe the result.of evaluatiniglision, otherwise leskipbe 0.

The BoundNames of the production ArrayBindingPattern : [BindingElementist , Elisiony
BindingRetElement] is determined as follows:

1. Letnamesbe BoundNames dBindingElementList.
2. Append tonamesthe elements of BoundNames BindingRestElement
3. Returnnames

The production ArrayBindingPattern [<BindingElemenitist, Elision,: BindingRestElemeni is evaluated with
parameters valueand envas follows:

1. |If valueis_neither ofnull or undefined, then
a. <Letobjbe ToObjectyalue).

2. Elsey letobj beundefined.

3. Letindexbe the result of evaluatingindingElementistusingobj as theobj parameterenvasthe
environmentand O as thendexparameter.

4. If Elisionis present, then letkipbe the result of evaluatiniglision, otherwise leskipbe 0.

5. EvaluateBindingRestElementisingobj as theobj parameterenvas theenvironment andindextskipas the
indexparameter.

The BoundName®f the production BindingPropertyList BindingProperty is determined as follows:

1. Return BoundNames d@indingProperty

The production BindingPropertyList BindingProperty is evaluated with parameters obj and envas follows:
1. EvaluateBindingPropery usingobjas theobjparameter anédnvas theenvironmenparameter.

The BoundNameof the production BindingPropertyList BindingPropertyList, BindingProperty is determined
as follows:

1. Letnamesbe BoundNames dBindingPropetyList.

2. Append tonamesthe elements of BoundNames BindingProperty
3. Returnnames

106 © Ecma International 2011

»ecma

The production BindingPropertyList: BindingPropertyList, BindingProperty is evaluated with parameters obj
and envas follows:

1. EvaluateBindingProperyList usingobjastheobjparameter andnvas theenvironmeniparameter.
2. EvaluateBindingPropery usingobjas theobj parameter andnvas theenvironmenparameter.

The BoundName®f the production Bindingelementist: Elisiony,,: BindingElement is determined as follows:
1. Return BoundNames d@indingElement

The production BindingelementList Elision,: Bindingelement is evaluated with the parameters obj, eny, and
indexas follows:

1. |If Elisionis present, then letkipbe the result of evaluatinglision, otherwise leskip be 0.

2. EvaluateBindingElementusingobj as theobj parameterenvas theenvparameterandindex+skip as the
indexparameter.

3. Returnindex+skip+1.

The BoundNamesof the production BindingElementist : BindingElementist , Elisiony: BindingElementis
determined as follows:

1. Letnamesbe BoundNames ddindingelemenList.
2. Append tonamesthe elements of BoundNames BindingElement
3. Returnnames

The production BindingElementtist : Bindingelementist , Elision,: Bindingelement is evaluated with the
parameters obj, eny, and indexas follows:

1. LetlistNextbe the result of evaluatingindingElemenkist usingobj as theobj parameterenvas theenv
parameterandindexas theindexparameter

2. If Elisionis present, then'legkipbe the result of evaluaig Elision, otherwise leskipbe 0.

3. EvaluateBindingElementusingobj as theobj parameterenvas theenvparameterandlistNext-skipas the
indexparameter.

4. ReturnlistNext-skipt1.

The BoundNames of the productions BindingProperty : SingleNameBinding and BindingProperty :
PropertyName_SingleNameBinding determined as follows:

1. Return the BoundNames &ingleNameBinding

The production BindingProperty. SingleNameBinding evaluated with the parameters obj and envas follows:
1. LetnamebetheldentifierNamethat is theonly element of BoundNames 8ingleNameBinding

2. Let P bethePropNameof name

3. EvaluateSingleNameBindingsing P, obj, andenvas thearguments

The production BindingProperty: PropertyName SingleNameBindings evaluated with the parameters obj and
envas follows:

1. LetP be thePropNameof PropertyName
2. EvaluateSingleNameBindingsing P, obj, andenvas the arguments.

The BoundNamef the production BindingProperty: PropeityName: BindingPatterninitialiserqp is determined
as follows:

1. Return the BoundNames 8&iindingPattern

The production BindingProperty: PropertyName BindingPatterninitialiserop is evaluated with the parameters
obj and envas follows:

© Ecma International 2011 107

secma

Let P be thePropNameof PropertyName
Let existsbe the result of calling the [[HasProperty]] internal methodhjfwith argumentP.
If existsis true, then
a. Letvbe the result of calling the [[Get]] internal methodatlj passingP as the argument.
4. Else
a. If Initialiserop: is present, then
i Letv be the result of evaluatinigitialiser.
b. Else,
i Let v beundefined.
5. EvaluateBindingPatternpassingv andenvasarguments

wn e

The BoundName®f the production SingleNameBinding Bindinddentifier Initialiserqpt IS determined as follows:

1. Returnthe BoundNames d3indingldentifier.

The production SingleNameBinding Bindingdentifier Initialiserop is evaluated with the parameters propertyName,
obj, and envas follows:

1. Letexistsbe the result otalling the [[HasProperty]] internal method olbj with argumentP:
2. If existsis true, then
a. Letv be the result of calling the [[Get]] internal methododf passingP as the argument.
3. Else
a. If Initialiserop: is present, then
i. Letvbe the result of evaluimg Initialiser.
b. Else,
i. Letvbeundefined.
4. PerformBinding Initialization for BindingldentiferusingA as thevalueandenvas theenviornment

The BoundName®f the production BindingElement SingleNameBinding determined as follows:
1. Return the Boundames ofSingleNameBinding

The production Bindingelement SingleNameBindings evaluated with the parameters obj, env and index as
follows:

1. LetP beToString{ndex.
2. EvaluateSingleNameBindingsing P, obj, andenvas the arguments.

The BoundName®f the production BindingElement BindingPatterninitialisero is determined as follows:
1. Return the BoundNames 8findingPattern

The production Bindingelement BindingPatterninitialiserq is evaluated with the parameters obj, envand index
as follows:

1. LetP be ToStringindex.
2. Letexistsbe the result of calling the [[HasProperty]] internal methoalgjfwith argumentP.
3. If existsis true, then
a. Letvbe the result of calling the [[Get]] internal methodatj passingP as the argument.
4. Else
a. |If Initialiserqp is present, then
i. Letvbe the result of evaluatinigitialiser.
b. Else,
i. Letvbeundefined.
5. EvaluateBindingPatternpassingv andenvas arguments.

The BoundNamef the production BindingRestElement ... Bindinddentifier is determined as follows:

1. Return the BoundNames &indingldentifier.

108 © Ecma International 2011

»ecma

The production BindingRestElementé Bindinddentifier is evaluated with the parameters obj, eny, and indexas
follows:

1. LetlenValbe the result of calling the [[Get]] internal methodadi with argumentilength o .
2. Letlenbe ToUint32[enVal).
3. Let Abe a new array object created as if by the expresseanArray() whereArray is the standard
built-in constructor with that name.
4. Letn=0,
5. Repeat, whilendex< len
a. LetP be ToStringindex).
b. Letexistsbe the result of calling the [[HasProperty]] internal methoalgjfwith argumentP.
c. If existsis true, then
i. Letvbe the result of céihg the [[Get]] internal method afbj passingP as the argument.
ii. Callthe [[DefineOwnProperty]] internal method Afwith arguments ToStringj, Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]:itrue, [[Configurable]]:true}, and false
d. Letn=n+1l.
e. Letindex=indext1.
6. PerformBinding Initialization for BindingldentiferusingA as thevalueandenvas theenviornment

12.3 Empty Statement

Syntax
EmptyStatement

Semantics

The production EmptyStatement; is evaluated as follows:

1. Return(normal, empty, empty).
12.4 Expression Statement

Syntax

ExpressionStatement
[lookahead 1 {{, function " }] Expression

NOTE An ExpressionStatemengannot start with an opening curly brace because that might make it ambiguous with a
Block Also, an ExpressionStatemen&nnot start with the function keyword because that might make it ambiguous with a
FunctionDeclaration

Semantics

The production ExpressionStatementiookahead 1 {{, function }] Expression is evaluated as follows:

1. LetexprRefbe theresult of evaluatindgeExpression
2. Return fiormal, GetValueéxprRef, empty).

© Ecma International 2011 109

secma

12.5 Theif Statement

Syntax

IfStatement
if (Expressior) Statementelse Statement
if (Expressior) Statement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible
if that would otherwise have no corresponding else .

Semantics
The VarDeclaredNames of the production IfStatement if (Expressior) Statemenelse Statemenis
determined as follows:

1. Letnamesbe VarDeclaredNamesf the firstStatement
2. Append tonamesthe elements of the VarDeclaredNamegh#secondStatement
3. Returnnames

The production IfStatement if (Expressior) Statemenglse Statements evaluated as follows:

1. LetexprRefbe the result of evaluatinigxpression
2. If ToBoolean(GetValuefxprReJ) is true, then
a. Return the result of evaluating the fiStatement
3. Else,
a. Return the result of evaluating the sec@tdtement

The VarDeclaredNames of the production IfStatement if (" Expression. Statemenis determined as follows:
1. Returnthe VarDeclaredNames &tatement

The production IfStatement if (Expressior) Statemenis evaluated as follows:

1. LetexprRefbe the result of evaluatinigxpression

2. If ToBoolean(GetValuefxprRej) is false, return formal, empty, empty).
3. Return the result of evaluatirfgtatement

12.6 Iteration Statements

Syntax

IterationStatement
do Statementwhile (Expression);
while (Expression Statement
for (ExpressionNolg; Expressions; Expressiog.) Statement
for (var VariableDeclarationListNoln Expressiogy; Expressiogy) Statement
for (LeftHandSideExpressidn Expressior) Statement
for (var VariableDeclarationNolrin Expressior) Statement

12.6.1 The do-while Statement

The VarDeclaredNames of the production do Statemenivhile (Expressior); is determined as follows:
1. Return the VarDeclaredNames $fatement

The production do Statementvhile (Expression); is evaluated as follows:

1. LetV=empty.

110 © Ecma International 2011

»ecma

2. Letiteratingbetrue.
3. Repeat, whilaterating is true
a. Letstmtbe the result of evaluatin§tatement
b. If stmtvalue is noempty, letV = stmtvalue
c. If stmttype is nofcontinue or stmttarget is not in the current label set, then
i If stmttype isbreak andstmttarget is in the current label set, retunofmal, V, empty).
ii. If stmtis an abrupt completion, retustmt
d. LetexprRefbe the result of evaluatingxpression
e. If ToBoolean(GetValuedxprReJ) is false, setiterating to false.
4. Return formal, V, empty);

12.6.2 The while Statement

The VarDeclaredNames of the production IterationStatementwhile (Expression. Statements determined as
follows:

1. Return the VarDeclaredNames $fatement
The production IterationStatementwhile (Expressior) Statements evaluated as follows:

1. LetV=empty.

2. Repeat

Let exprRefbe the result of evaluatingxpressia.

If ToBoolean(GetValuedxprReJ) is false, return formal, V, empty).

Let stmtbe the result of evaluatingtatement

If stmtvalue is noempty, letV =stmtvalue:

If stmttype is notcontinue or stmttarget is ot in the current label set, then
i If stmttype isbreak andstmttarget is in the current label set, then

1. Return formal, V, empty).

ii. If stmtis an-abrupt.completion, retusitmt

©coooTp

12.6.3 The for Statement

The VarDeclaredNames of the production for.. (ExpresionNolny: ; Expressiosy ; Expressiony) Statementis
determined as follows:

1. Return the VarDeclaredNames $fatement

The production
IterationStatement for (‘ExpressionNolgy ; Expressiogy:; Expressiog,) Statement

is evaluated as follows:

1. If ExpressionNolns present, then.
a. LetexprRefbe the result of evaluatingxpressionNoln
b. Call GetValueéxprReJ. (This value is not uselut the call may have sideffects)
2. LetV=-empty.
3. Repeat
a. If the first Expressions present, then
i Let testExprRebe the result of evaluating the firEkpressia.
ii. If ToBooleanGetValuetestExprRe)) is false, return formal, V, empty).
Let stmtbe the result of evaluatingtatement
If stmtvalue is noempty, letV = stmtvalue
If stmttype isbreak andstmttarget & in the current label set, returnofmal, V, empty).
If stmttype is notcontinue or stmttarget is not in the current label set, then
i If stmtis an abrupt completion, retustmt
If the secondExpressions present, then
i Let incExprRefbe the resulbf evaluating the seconxpressia.
ii. Call GetValueincExprRejf. (This value is not used.)

mooo

—h

© Ecma International 2011 111

