

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA- 262
6 th Edition / Draft September 23 , 2011

ECMAScript Language
Specification

2 nd Draft

Ecma/TC39/2011/040

Draft

 COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2011

© Ecma International 2011 I

Contents Page

Introduction ..vii

1 Scope..1

2 Conformance ...1

3 Normative references ...1

4 Overview ..1
4.1 Web Scripting ...2
4.2 Language Overview ...2
4.2.1 Objects ...3
4.2.2 The Strict Variant of ECMAScript ..4
4.3 Terms and definitions..4

5 Notational Conventions ..7
5.1 Syntactic and Lexical Grammars ...7
5.1.1 Context-Free Grammars ...7
5.1.2 The Lexical and RegExp Grammars ...8
5.1.3 The Numeric String Grammar ..8
5.1.4 The Syntactic Grammar..8
5.1.5 The JSON Grammar ..9
5.1.6 Grammar Notation ..9
5.2 Algorithm Conventions ...12
5.3 Static Semantic Rules ...13

6 Source Text ..13

7 Lexical Conventions ...14
7.1 Unicode Format-Control Characters..14
7.2 White Space ..15
7.3 Line Terminators ..15
7.4 Comments...16
7.5 Tokens ...17
7.6 Identifier Names and Identifiers ...17
7.6.1 Reserved Words ..19
7.7 Punctuators ..20
7.8 Literals ..20
7.8.1 Null Literals..20
7.8.2 Boolean Literals ..20
7.8.3 Numeric Literals ..21
7.8.4 String Literals ..23
7.8.5 Regular Expression Literals ..25
7.9 Automatic Semicolon Insertion ..26
7.9.1 Rules of Automatic Semicolon Insertion ...26
7.9.2 Examples of Automatic Semicolon Insertion ..27

8 Types ..29
8.1 The Undefined Type ...29
8.2 The Null Type..29
8.3 The Boolean Type ..29
8.4 The String Type ..29
8.5 The Number Type ...30
8.6 The Object Type ...31
8.6.1 Property Attributes ...31
8.6.2 Object Internal Properties and Methods ..32

II © Ecma International 2011

8.7 The Reference Specification Type... 36
8.7.1 GetValue (V) .. 36
8.7.2 PutValue (V, W) ... 37
8.8 The List Specification Type .. 38
8.9 The Completion Specification Type .. 38
8.10 The Property Descriptor and Property Identifier Specification Types ... 38
8.10.1 IsAccessorDescriptor (Desc) ... 39
8.10.2 IsDataDescriptor (Desc) .. 39
8.10.3 IsGenericDescriptor (Desc) .. 39
8.10.4 FromPropertyDescriptor (Desc) ... 39
8.10.5 ToPropertyDescriptor (Obj) .. 39
8.11 The Lexical Environment and Environment Record Specification Types 40
8.12 Algorithms for Object Internal Methods ... 40
8.12.1 [[GetOwnProperty]] (P) ... 40
8.12.2 [[GetProperty]] (P) ... 41
8.12.3 [[Get]] (P) .. 41
8.12.4 [[CanPut]] (P) .. 41
8.12.5 [[Put]] (P, V, Throw) ... 41
8.12.6 [[HasProperty]] (P) ... 42
8.12.7 [[Delete]] (P, Throw)... 42
8.12.8 [[DefaultValue]] (hint) .. 42
8.12.9 [[DefineOwnProperty]] (P, Desc, Throw) ... 43

9 Type Conversion and Testing ... 44
9.1 ToPrimitive ... 44
9.2 ToBoolean .. 44
9.3 ToNumber... 45
9.3.1 ToNumber Applied to the String Type ... 45
9.4 ToInteger .. 48
9.5 ToInt32: (Signed 32 Bit Integer) ... 48
9.6 ToUint32: (Unsigned 32 Bit Integer) .. 48
9.7 ToUint16: (Unsigned 16 Bit Integer) .. 49
9.8 ToString .. 49
9.8.1 ToString Applied to the Number Type ... 49
9.9 ToObject ... 50
9.10 CheckObjectCoercible .. 50
9.11 IsCallable .. 51
9.12 The SameValue Algorithm .. 51

10 Executable Code and Execution Contexts .. 51
10.1 Types of Executable Code ... 51
10.1.1 Strict Mode Code ... 52
10.1.2 Extended Code ... 52
10.2 Lexical Environments ... 53
10.2.1 Environment Records ... 53
10.2.2 Lexical Environment Operations ... 57
10.2.3 The Global Environment ... 58
10.3 Execution Contexts ... 58
10.3.1 Identifier Resolution .. 59
10.4 Establishing an Execution Context ... 59
10.4.1 Entering Global Code .. 59
10.4.2 Entering Eval Code .. 60
10.4.3 Entering Function Code .. 60
10.5 Declaration Binding Instantiation .. 60
10.5.XXX Block Declaration Instantiation .. 62
10.6 Arguments Object ... 62

11 Expressions .. 65
11.1 Primary Expressions... 65
11.1.1 The this Keyword... 65
11.1.2 Identifier Reference ... 65

© Ecma International 2011 III

11.1.3 Literal Reference ..65
11.1.4 Array Initialiser ...65
11.1.5 Object Initialiser ...68
11.1.6 The Grouping Operator..71
11.2 Left-Hand-Side Expressions ...71
11.2.1 Property Accessors ...72
11.2.2 The new Operator ...72
11.2.3 Function Calls ...73
11.2.4 Argument Lists ...73
11.2.5 Function Expressions ..74
11.3 Postfix Expressions ...75
11.3.1 Postfix Increment Operator ...75
11.3.2 Postfix Decrement Operator ...75
11.4 Unary Operators ...75
11.4.1 The delete Operator ...76
11.4.2 The void Operator ...76
11.4.3 The typeof Operator ...76
11.4.4 Prefix Increment Operator ...77
11.4.5 Prefix Decrement Operator ...77
11.4.6 Unary + Operator ..77
11.4.7 Unary - Operator ..77
11.4.8 Bitwise NOT Operator (~) ..78
11.4.9 Logical NOT Operator (!) ..78
11.5 Multiplicative Operators ..78
11.5.1 Applying the * Operator ..78
11.5.2 Applying the / Operator ..79
11.5.3 Applying the % Operator ..79
11.6 Additive Operators ...80
11.6.1 The Addition operator (+) ..80
11.6.2 The Subtraction Operator (-) ..80
11.6.3 Applying the Additive Operators to Numbers ...80
11.7 Bitwise Shift Operators ...81
11.7.1 The Left Shift Operator (<<) ..81
11.7.2 The Signed Right Shift Operator (>>)...81
11.7.3 The Unsigned Right Shift Operator (>>>) ..82
11.8 Relational Operators ..82
11.8.1 The Less-than Operator (<) ...83
11.8.2 The Greater-than Operator (>) ..83
11.8.3 The Less-than-or-equal Operator (<=) ...83
11.8.4 The Greater-than-or-equal Operator (>=) ...83
11.8.5 The Abstract Relational Comparison Algorithm ...83
11.8.6 The instanceof operator ..84
11.8.7 The in operator ...84
11.9 Equality Operators ...85
11.9.1 The Equals Operator (==) ..85
11.9.2 The Does-not-equals Operator (!=)..85
11.9.3 The Abstract Equality Comparison Algorithm ..85
11.9.4 The Strict Equals Operator (===) ..86
11.9.5 The Strict Does-not-equal Operator (!==) ...87
11.9.6 The Strict Equality Comparison Algorithm ...87
11.10 Binary Bitwise Operators ..87
11.11 Binary Logical Operators ..88
11.12 Conditional Operator (? :) ...89
11.13 Assignment Operators...89
11.13.1 Simple Assignment (=) ..90
11.13.2 Compound Assignment (op=) ...94
11.14 Comma Operator (,) ..94

IV © Ecma International 2011

12 Statements and Declarations .. 95
12.1 Block ... 96
12.2 Declarations and the Variable Statement ... 99
12.2.1 Let Declaration ... 99
12.2.2 Const Declaration .. 101
12.2.3 Variable Statement .. 102
12.2.4 Destructuring Binding Patterns ... 104
12.3 Empty Statement ... 109
12.4 Expression Statement... 109
12.5 The if Statement .. 110
12.6 Iteration Statements .. 110
12.6.1 The do -while Statement... 110
12.6.2 The while Statement .. 111
12.6.3 The for Statement .. 111
12.6.4 The for -in Statement ... 112
12.7 The continue Statement ... 113
12.8 The break Statement .. 114
12.9 The return Statement.. 114
12.10 The with Statement .. 114
12.11 The switch Statement .. 115
12.12 Labelled Statements .. 119
12.13 The throw Statement .. 119
12.14 The try Statement .. 120
12.15 The debugger statement .. 122

13 Function Definition ... 122
13.2 Creating Function Objects ... 125
13.2.1 [[Call]].. 126
13.2.2 [[Construct]] ... 126
13.2.3 The [[ThrowTypeError]] Function Object .. 126

14 Program ... 127
14.1 Directive Prologues and the Use Strict Directive .. 127

15 Standard Built-in ECMAScript Objects .. 128
15.1 The Global Object .. 129
15.1.1 Value Properties of the Global Object ... 129
15.1.2 Function Properties of the Global Object ... 129
15.1.3 URI Handling Function Properties ... 131
15.1.4 Constructor Properties of the Global Object .. 136
15.1.5 Other Properties of the Global Object ... 137
15.2 Object Objects ... 137
15.2.1 The Object Constructor Called as a Function .. 137
15.2.2 The Object Constructor .. 137
15.2.3 Properties of the Object Constructor .. 138
15.2.4 Properties of the Object Prototype Object.. 141
15.2.5 Properties of Object Instances... 142
15.3 Function Objects ... 143
15.3.1 The Function Constructor Called as a Function .. 143
15.3.2 The Function Constructor .. 143
15.3.3 Properties of the Function Constructor .. 144
15.3.4 Properties of the Function Prototype Object.. 144
15.3.5 Properties of Function Instances... 146
15.4 Array Objects ... 148
15.4.1 The Array Constructor Called as a Function .. 148
15.4.2 The Array Constructor .. 148
15.4.3 Properties of the Array Constructor .. 149
15.4.4 Properties of the Array Prototype Object ... 149
15.4.5 Properties of Array Instances .. 166
15.5 String Objects .. 167

© Ecma International 2011 V

15.5.1 The String Constructor Called as a Function... 167
15.5.2 The String Constructor ... 167
15.5.3 Properties of the String Constructor... 168
15.5.4 Properties of the String Prototype Object .. 168
15.5.5 Properties of String Instances ... 177
15.6 Boolean Objects .. 178
15.6.1 The Boolean Constructor Called as a Function ... 178
15.6.2 The Boolean Constructor ... 178
15.6.3 Properties of the Boolean Constructor ... 178
15.6.4 Properties of the Boolean Prototype Object .. 178
15.6.5 Properties of Boolean Instances ... 179
15.7 Number Objects .. 179
15.7.1 The Number Constructor Called as a Function ... 179
15.7.2 The Number Constructor .. 179
15.7.3 Properties of the Number Constructor ... 180
15.7.4 Properties of the Number Prototype Object ... 181
15.7.5 Properties of Number Instances .. 184
15.8 The Math Object .. 185
15.8.1 Value Properties of the Math Object ... 185
15.8.2 Function Properties of the Math Object .. 186
15.9 Date Objects .. 191
15.9.1 Overview of Date Objects and Definitions of Abstract Operators ... 191
15.9.2 The Date Constructor Called as a Function ... 196
15.9.3 The Date Constructor.. 196
15.9.4 Properties of the Date Constructor ... 197
15.9.5 Properties of the Date Prototype Object ... 198
15.9.6 Properties of Date Instances .. 206
15.10 RegExp (Regular Expression) Objects ... 206
15.10.1 Patterns .. 206
15.10.2 Pattern Semantics ... 208
15.10.3 The RegExp Constructor Called as a Function.. 220
15.10.4 The RegExp Constructor .. 220
15.10.5 Properties of the RegExp Constructor ... 221
15.10.6 Properties of the RegExp Prototype Object ... 221
15.10.7 Properties of RegExp Instances .. 223
15.11 Error Objects ... 223
15.11.1 The Error Constructor Called as a Function .. 223
15.11.2 The Error Constructor... 224
15.11.3 Properties of the Error Constructor .. 224
15.11.4 Properties of the Error Prototype Object .. 224
15.11.5 Properties of Error Instances ... 225
15.11.6 Native Error Types Used in This Standard ... 225
15.11.7 NativeError Object Structure ... 226
15.12 The JSON Object ... 227
15.12.1 The JSON Grammar .. 228
15.12.2 parse (text [, reviver]) .. 229
15.12.3 stringify (value [, replacer [, space]]) .. 230

16 Errors... 234

Annex A (informative) Grammar Summary .. 237
A.1 Lexical Grammar .. 237
A.2 Number Conversions ... 243
A.3 Expressions .. 244
A.4 Statements .. 248
A.5 Functions and Programs ... 250
A.6 Universal Resource Identifier Character Classes ... 251
A.7 Regular Expressions .. 251
A.8 JSON .. 254
A.8.1 JSON Lexical Grammar .. 254

VI © Ecma International 2011

A.8.2 JSON Syntactic Grammar ... 254

Annex B (normative) Additional ECMAScript Features for Web Browsers ... 257
B.1 Additional Syntax ... 257
B.1.1 Numeric Literals ... 257
B.1.2 String Literals ... 257
B.2 Additional Properties ... 258
B.2.1 escape (string) ... 258
B.2.2 unescape (string) ... 259
B.2.3 String.prototype.substr (start, length) .. 260
B.2.4 Date.prototype.getYear () ... 260
B.2.5 Date.prototype.setYear (year) .. 260
B.2.6 Date.prototype.toGMTString () .. 260

Annex C (informative) The Strict Mode of ECMAScript .. 261

Annex D (informative) Corrections and Clarifications in the 5th Edition with Possible 3rd Edition
Compatibility Impact ... 263

Annex E (informative) Additions and Changes in the 5th Edition that Introduce Incompatibilities
with the 3rd Edition ... 265

Annex F (informative) Technically Significant Corrections and Clarifications in the 5.1 Edition 269

© Ecma International 2011 VII

VIII © Ecma International 2011

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that companyôs Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not

completed and not published1 as the fourth edition of ECMAScript, it informs continuing evolution of the

language. The fifth edition of ECMAScript (published as ECMA-262 5th edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC 16262:2011.

This present sixth edition of the Standardééé

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number ñECMA-262 Edition 4ò was reserved but not
used in the Ecma publication process. Therefore ñECMA-262 Edition 4ò as an Ecma International publication does not

exist.

© Ecma International 2011 IX

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2011 1

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 3.0 or later and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted encoding
form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is presumed
to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it presumed to
be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the ñfuture reserved wordsò listed in 7.6.1.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages ï C, including amendment 1 and technical corrigenda 1 and 2

ISO/IEC 10646-1:1993, Information Technology ï Universal Multiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda

4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific host objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

2 © Ecma International 2011

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular

Javaã, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The JavaÓ Language Specification. Addison Wesley Publishing Co.,

1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227ï241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScriptðnot all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be usedðfor example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the

© Ecma International 2011 3

JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a property named ñprototype ò that is used to implement prototype-based inheritance and shared

properties. Objects are created by using constructors in new expressions; for example, new

Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that

depend on the constructor. For example, Date() produces a string representation of the current date and

time rather than an object.

Every object created by a constructor has an implicit reference (called the objectôs prototype) to the value of
its constructorôs ñprototype ò property. Furthermore, a prototype may have a non-null implicit reference to its

prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property
of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

Figure 1 ð Object/Prototype Relationships

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, and structure, behaviour, and state are all inherited.

 cf5

 q1

 q2

 cf4

 q1

 q2

 cf3

 q1

 q2

 CFp

 CFP1

 CF

 prototype

 P1

 P2

 cf1

 q1

 q2

 cf2

 q1

 q2

implicit prototype link

explicit prototype property

4 © Ecma International 2011

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf1, cf2,

cf3, cf4, and cf5. Each of these objects contains properties named q1 and q2 . The dashed lines represent the

implicit prototype relationship; so, for example, cf3ôs prototype is CFp. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFp, cf1, cf2, cf3, cf4, or cf5. The property named CFP1 in CFp

is shared by cf1, cf2, cf3, cf4, and cf5 (but not by CF), as are any properties found in CFpôs implicit prototype
chain that are not named q1 , q2 , or CFP1. Notice that there is no implicit prototype link between CF and CFp.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or any of the constructed objectôs
properties. In the above diagram, one could add a new shared property for cf1, cf2, cf3, cf4, and cf5 by
assigning a new value to the property in CFp.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1
type
set of data values as defined in Clause 8 of this specification

4.3.2
primitive value
member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8

NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.

4.3.3
object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

© Ecma International 2011 5

4.3.4
constructor
function object that creates and initialises objects

NOTE The value of a constructorôs ñprototype ò property is a prototype object that is used to implement inheritance

and shared properties.

4.3.5
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructorôs ñprototype ò property

for the purpose of resolving property references. The constructorôs ñprototype ò property can be referenced by the

program expression constructor .prototype , and properties added to an objectôs prototype are shared, through

inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object.create built-in function.

4.3.6
native object
object in an ECMAScript implementation whose semantics are fully defined by this specification rather than by
the host environment

NOTE Standard native objects are defined in this specification. Some native objects are built-in; others may be

constructed during the course of execution of an ECMAScript program.

4.3.7
built-in object
object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and

define others. Every built-in object is a native object. A built-in constructor is a built-in object that is also a constructor.

4.3.8
host object
object supplied by the host environment to complete the execution environment of ECMAScript

NOTE Any object that is not native is a host object.

4.3.9
undefined value
primitive value used when a variable has not been assigned a value

4.3.10
Undefined type
type whose sole value is the undefined value

4.3.11
null value
primitive value that represents the intentional absence of any object value

4.3.12
Null type
type whose sole value is the null value

4.3.13
Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false.

6 © Ecma International 2011

4.3.14
Boolean type
type consisting of the primitive values true and false

4.3.15
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean

value as an argument. The resulting object has an internal property whose value is the Boolean value. A Boolean object

can be coerced to a Boolean value.

4.3.16
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that

they must be 16-bit unsigned integers.

4.3.17
String type
set of all possible String values

4.3.18
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as

an argument. The resulting object has an internal property whose value is the String value. A String object can be coerced
to a String value by calling the String constructor as a function (15.5.1).

4.3.19
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.20
Number type
set of all possible Number values including the special ñNot-a-Numberò (NaN) values, positive infinity, and
negative infinity

4.3.21
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value

as an argument. The resulting object has an internal property whose value is the Number value. A Number object can be
coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.22
Infinity
number value that is the positive infinite Number value

4.3.23
NaN
number value that is a IEEE 754 ñNot-a-Numberò value

© Ecma International 2011 7

4.3.24
function
member of the Object type that is an instance of the standard built-in Function constructor and that may be

invoked as a subroutine

NOTE In addition to its named properties, a function contains executable code and state that determine how it

behaves when invoked. A functionôs code may or may not be written in ECMAScript.

4.3.25
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp . An implementation may provide

implementation-dependent built-in functions that are not described in this specification.

4.3.26
property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a

primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.27
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.28
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify

and provide other additional built-in methods.

4.3.29
attribute
internal value that defines some characteristic of a property

4.3.30
own property
property that is directly contained by its object

4.3.31
inherited property
property of an object that is not an own property but is a property (either own or inherited) of the objectôs
prototype

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

8 © Ecma International 2011

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharacter defined in Clause 6. It defines a set of

productions, starting from the goal symbol InputElementDiv or InputElementRegExp, that describe how

sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).
Simple white space and single-line comments are discarded and do not appear in the stream of input
elements for the syntactic grammar. A MultiLineComment (that is, a comment of the form ñ/* é*/ ò regardless

of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineComment contains one or more line terminators, then it is replaced by a single line terminator, which

becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern,

that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons ñ::ò as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This

grammar appears in 9.3.1.

Productions of the numeric string grammar are distinguished by having three colons ñ:::ò as punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Program, that describe how sequences of tokens can form syntactically correct

ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript program, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by
a single application of the syntactic grammar. The program is syntactically in error if the tokens in the stream
of input elements cannot be parsed as a single instance of the goal nonterminal Program, with no tokens left

over.

Productions of the syntactic grammar are distinguished by having just one colon ñ:ò as punctuation.

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
ñawkwardò places.

© Ecma International 2011 9

In certain cases in order to avoid ambiguities the syntactic grammar uses productions that permit token
sequences that are not valid ECMAScript programs. In such cases a more restrictive supplemental grammar
is provided that further restricts the acceptable token sequences. In such situations, when explicitly specific,
the input elements corresponding to such a production is parsed again using a goal symbol of a supplemental
grammar. The program is syntactically in error if the tokens in the stream of input elements cannot be parsed
as a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical grammar are distinguished by having two colons ñ::ò as separating
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions of the JSON
syntactic grammar are distinguished by using one colon ñ:ò as separating punctuation.

5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and

throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a program exactly as written. All terminal symbol characters specified in this way are to be understood as
the appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from
other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the

nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar
the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on
succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while , followed by a left parenthesis token,

followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of

Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :

AssignmentExpression

ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by
a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined
in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of

nonterminals are common.

The subscripted suffix ñoptò, which may appear after a terminal or nonterminal, indicates an optional symbol.
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration :

Identifier Initialiseropt

10 © Ecma International 2011

is a convenient abbreviation for:

VariableDeclaration :

Identifier

Identifier Initialiser

and that:

IterationStatement :

for (ExpressionNoInopt ; Expressionopt ; Expressionopt) Statement

is a convenient abbreviation for:

IterationStatement :

for (; Expressionopt ; Expressionopt) Statement

for (ExpressionNoIn ; Expressionopt ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ; Expressionopt) Statement

for (; Expression ; Expressionopt) Statement

for (ExpressionNoIn ; ; Expressionopt) Statement

for (ExpressionNoIn ; Expression ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Statement

for (; ; Expression) Statement

for (; Expression ;) Statement

for (; Expression ; Expression) Statement

for (ExpressionNoIn ; ;) Statement

for (ExpressionNoIn ; ; Expression) Statement

for (ExpressionNoIn ; Expression ;) Statement

for (ExpressionNoIn ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

When the words ñone ofò follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit ::
1

2

3

4

5

6

7

8

9

© Ecma International 2011 11

If the phrase ñ[empty]ò appears as the right-hand side of a production, it indicates that the production's right-
hand side contains no terminals or nonterminals.

If the phrase ñ[lookahead Î set]ò appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is a member of the given set. The set can be written

as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit

DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead Î {1, 3, 5, 7, 9}] DecimalDigits

DecimalDigit [lookahead Î DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit

not followed by another decimal digit.

If the phrase ñ[no LineTerminator here]ò appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the

input stream at the indicated position. For example, the production:

ThrowStatement :

throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the program between the throw

token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without

affecting the syntactic acceptability of the program.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
ñbut notò and then indicating the expansions to be excluded. For example, the production:

Identifier ::

IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace

IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::

any Unicode code unit

12 © Ecma International 2011

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available to implement a given feature.

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations,
are named and written in parameterised functional form so that they may be referenced by name from within
other algorithms.

When an algorithm is to produce a value as a result, the directive ñreturn xò is used to indicate that the result of

the algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is used as

shorthand for ñthe result of step nò.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-level step

a. Substep.

b. Substep

i. Subsubstep.

ii. Subsubstep.

1. Subsubsubstep

a Subsubsubsubstep

A step or substep may be written as an ñifò predicate that conditions its substeps. In this case, the substeps
are only applied if the predicate is true. If a step or substep begins with the word ñelseò, it is a predicate that is
the negation of the preceding ñifò predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be

finite, and if it is +0 or -0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is -x if x is negative (less than zero) and

otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and -1 if x is negative. The sign function is not used in

this standard for cases when x is zero.

The notation ñx modulo yò (y must be finite and nonzero) computes a value k of the same sign as y (or zero)

such that abs(k) < abs(y) and x-k = q ³ y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.

© Ecma International 2011 13

NOTE floor(x) = x-(x modulo 1).

If an algorithm is defined to ñthrow an exceptionò, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as ñIf an exception was thrownéò. Once such an algorithm step
has been encountered the exception is no longer considered to have occurred.

5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript program that may be evaluated. In some situations additional
rules are needed that may be expressed using either ECMAScript algorithm conventions or prose
requirements. Such rules are always associated with a production of a grammar and are called the static
semantics of the production.

An implementation must validate all of the static semantic rules used to parse a Program prior to the first
evaluation of that Program. If any of the static semantic rules are violated the Program is invalid and can not be

evaluated. Static semantic rule violations are early errors (see clause 16) and reported in the same manner
as syntax errors.

6 Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding,
version 3.0 or later. The text is expected to have been normalised to Unicode Normalization Form C
(canonical composition), as described in Unicode Technical Report #15. Conforming ECMAScript
implementations are not required to perform any normalisation of text, or behave as though they were
performing normalisation of text, themselves. ECMAScript source text is assumed to be a sequence of 16-bit
code units for the purposes of this specification. Such a source text may include sequences of 16-bit code
units that are not valid UTF-16 character encodings. If an actual source text is encoded in a form other than
16-bit code units it must be processed as if it was first converted to UTF-16.

Syntax

SourceCharacter ::

any Unicode code unit

Throughout the rest of this document, the phrase ñcode unitò and the word ñcharacterò will be used to refer to a
16-bit unsigned value used to represent a single 16-bit unit of text. The phrase ñUnicode characterò will be
used to refer to the abstract linguistic or typographical unit represented by a single Unicode scalar value
(which may be longer than 16 bits and thus may be represented by more than one code unit). The phrase
ñcode pointò refers to such a Unicode scalar value. ñUnicode characterò only refers to entities represented by
single Unicode scalar values: the components of a combining character sequence are still individual ñUnicode
characters,ò even though a user might think of the whole sequence as a single character.

In string literals, regular expression literals, and identifiers, any character (code unit) may also be expressed
as a Unicode escape sequence consisting of six characters, namely \ u plus four hexadecimal digits. Within a

comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or
regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE Although this document sometimes refers to a ñtransformationò between a ñcharacterò within a ñstringò and the
16-bit unsigned integer that is the code unit of that character, there is actually no transformation because a ñcharacterò

within a ñstringò is actually represented using that 16-bit unsigned value.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \ u000A , for example, occurs within a single-line comment, it

is interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is not

part of the comment. Similarly, if the Unicode escape sequence \ u000A occurs within a string literal in a Java

14 © Ecma International 2011

program, it is likewise interpreted as a line terminator, which is not allowed within a string literalðone must
write \ n instead of \ u000A to cause a line feed to be part of the string value of a string literal. In an

ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contributes a character to the String value of the literal
and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. The InputElementDiv symbol is used in those syntactic

grammar contexts where a leading division (/) or division-assignment (/=) operator is permitted. The

InputElementRegExp symbol is used in other syntactic grammar contexts.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the

following:

a = b

/hi/g.exec(c).map(d);

where the first non-whitespace, non-comment character after a LineTerminator is slash (/) and the syntactic context allows

division or division-assignment, no semicolon is inserted at the LineTerminator. That is, the above example is interpreted in

the same way as:

a = b / hi / g. exec (c).map(d);

Syntax

InputElementDiv ::
WhiteSpace

LineTerminator

Comment

Token

DivPunctuator

InputElementRegExp ::

WhiteSpace

LineTerminator

Comment

Token

RegularExpressionLiteral

7.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category ñCfò in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formatting
of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals and regular expression literals.

<ZWNJ> and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ> and <ZWJ> may also be used in

an identifier after the first character.

© Ecma International 2011 15

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow

detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes

also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 1 ð Format-Control Character Usage

Code Unit Value Name Formal Name Usage

\ u200C Zero width non-joiner <ZWNJ> IdentifierPart

\ u200 D Zero width joiner <ZWJ> IdentifierPart

\ uFEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may also occur within a StringLiteral or a
RegularExpressionLiteral (where they are considered significant characters forming part of the literal value) or

within a Comment, but cannot appear within any other kind of token.

The ECMAScript white space characters are listed in Table 2.

Table 2 ð Whitespace Characters

Code Unit Value Name Formal Name

\ u0009 Tab <TAB>

\ u000B Vertical Tab <VT>

\ u000C Form Feed <FF>

\ u0020 Space <SP>

\ u00A0 No-break space <NBSP>

\ uFEFF

Other category ñZsò

Byte Order Mark

Any other Unicode
ñspace separatorò

<BOM>

<USP>

ECMAScript implementations must recognise all of the white space characters defined in Unicode 3.0. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace ::
<TAB>

<VT>

<FF>

<SP>

<NBSP>

<BOM>

<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators

16 © Ecma International 2011

may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral. Line terminators may only occur within a StringLiteral

token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (7.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space characters that are matched by the \ s class in regular

expressions.

The ECMAScript line terminator characters are listed in Table 3.

Table 3 ð Line Terminator Characters

Code Unit Value Name Formal Name

\ u000A Line Feed <LF>

\ u000D Carriage Return <CR>

\ u2028 Line separator <LS>

\ u2029 Paragraph separator <PS>

Only the characters in Table 3 are treated as line terminators. Other new line or line breaking characters are
treated as white space but not as line terminators. The character sequence <CR><LF> is commonly used as
a line terminator. It should be considered a single character for the purpose of reporting line numbers.

Syntax

LineTerminator ::
<LF>

<CR>

<LS>

<PS>

LineTerminatorSequence ::
<LF>

<CR> [lookahead Î <LF>]

<LS>

<PS>

<CR> <LF>

7.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminator character, and because of

the general rule that a token is always as long as possible, a single-line comment always consists of all
characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is not

considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing by

the syntactic grammar.

© Ecma International 2011 17

Syntax

Comment ::

MultiLineComment

SingleLineComment

MultiLineComment ::

/* MultiLineCommentCharsopt */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

MultiLineNotAsteriskChar ::

SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::

SourceCharacter but not one of / or *

SingleLineComment ::

// SingleLineCommentCharsopt

SingleLineCommentChars ::

SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::

SourceCharacter but not LineTerminator

7.5 Tokens

Syntax

Token ::
IdentifierName

Punctuator

NumericLiteral

StringLiteral

NOTE The DivPunctuator and RegularExpressionLiteral productions define tokens, but are not included in the Token

production.

7.6 Identifier Names and Identifiers

Identifier Names are tokens that are interpreted according to the grammar given in the ñIdentifiersò section of
chapter 5 of the Unicode standard, with some small modifications. An Identifier is an IdentifierName that is not
a ReservedWord (see 7.6.1). The Unicode identifier grammar is based on both normative and informative

character categories specified by the Unicode Standard. The characters in the specified categories in version
3.0 of the Unicode standard must be treated as in those categories by all conforming ECMAScript
implementations.

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted

anywhere in an IdentifierName.

Unicode escape sequences are also permitted in an IdentifierName, where they contribute a single character to

the IdentifierName, as computed by the CV of the UnicodeEscapeSequence (see 7.8.4). The \ preceding the

UnicodeEscapeSequence does not contribute a character to the IdentifierName. A UnicodeEscapeSequence cannot

18 © Ecma International 2011

be used to put a character into an IdentifierName that would otherwise be illegal. In other words, if a

\ UnicodeEscapeSequence sequence were replaced by its UnicodeEscapeSequence's CV, the result must still be

a valid IdentifierName that has the exact same sequence of characters as the original IdentifierName. All

interpretations of identifiers within this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two IdentifierName that are canonically equivalent according to the Unicode standard are not equal unless

they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values). The intent is that the
incoming source text has been converted to normalised form C before it reaches the compiler.

ECMAScript implementations may recognise identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in Unicode
3.0.

Syntax

Identifier ::

IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart

IdentifierName IdentifierPart

IdentifierStart ::
UnicodeLetter
$

_

\ UnicodeEscapeSequence

IdentifierPart ::
IdentifierStart

UnicodeCombiningMark

UnicodeDigit

UnicodeConnectorPunctuation

<ZWNJ>

<ZWJ>

UnicodeLetter ::

any character in the Unicode categories ñUppercase letter (Lu)ò, ñLowercase letter (Ll)ò, ñTitlecase letter
(Lt)ò, ñModifier letter (Lm)ò, ñOther letter (Lo)ò, or ñLetter number (Nl)ò.

UnicodeCombiningMark ::

any character in the Unicode categories ñNon-spacing mark (Mn)ò or ñCombining spacing mark (Mc)ò

UnicodeDigit ::

any character in the Unicode category ñDecimal number (Nd)ò

UnicodeConnectorPunctuation ::

any character in the Unicode category ñConnector punctuation (Pc)ò

The definitions of the nonterminal UnicodeEscapeSequence is given in 7.8.4

Semantics

The String value of the production Identifier :: IdentifierName but not ReservedWord is determined as follows:

1. Return the String value consisting of IdentifierName.

The String value of IdentifierName is determined as follows:

© Ecma International 2011 19

1. Return the String value consisting of the sequence of characters corresponding to IdentifierName.

7.6.1 Reserved Words

A reserved word is an IdentifierName that cannot be used as an Identifier.

Syntax

ReservedWord ::
Keyword

FutureReservedWord

NullLiteral

BooleanLiteral

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript programs.

Syntax

Keyword :: one of
break do instanceof typeof

case else new var

catch finally return void

continue for switch while

debugger function this with

default if throw

delete in try

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

Syntax

FutureReservedWord :: one of
class enum extends super

const export import

The following tokens are also considered to be FutureReservedWords when they occur within strict mode code

(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the
occurrence of a FutureReservedWord would produce an error must also produce an equivalent error:

implements let private public yield

interface package protected static

20 © Ecma International 2011

7.7 Punctuators

Syntax

Punctuator :: one of
{ } () []

. ; , < > <=

>= == != === !==

+ - * % ++ --

<< >> >>> & | ^

! ~ && || ? :

= += - = *= %= <<=

>>= >>>= &= |= ^=

DivPunctuator :: one of
/ /=

7.8 Literals

Syntax

Literal ::
NullLiteral

BooleanLiteral

NumericLiteral

StringLiteral

RegularExpressionLiteral

7.8.1 Null Literals

Syntax

NullLiteral ::
null

Semantics

The value of the null literal null is the sole value of the Null type, namely null.

7.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true

false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely false.

© Ecma International 2011 21

7.8.3 Numeric Literals

Syntax

NumericLiteral ::

DecimalLiteral

HexIntegerLiteral

DecimalLiteral ::
DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPartopt

DecimalIntegerLiteral ::
0

NonZeroDigit DecimalDigitsopt

DecimalDigits ::
DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::

DecimalDigits

+ DecimalDigits

- DecimalDigits

HexIntegerLiteral ::
0x HexDigit

0X HexDigit

HexIntegerLiteral HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

The source character immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.

NOTE For example:

3in

is an error and not the two input elements 3 and in .

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as described
below.

¶ The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

¶ The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

22 © Ecma International 2011

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral . is the MV of DecimalIntegerLiteral.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits is the MV of DecimalIntegerLiteral plus

(the MV of DecimalDigits times 10ïn), where n is the number of characters in DecimalDigits.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral . ExponentPart is the MV of DecimalIntegerLiteral times

10e, where e is the MV of ExponentPart.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits ExponentPart is (the MV of

DecimalIntegerLiteral plus (the MV of DecimalDigits times 10ïn)) times 10e, where n is the number of
characters in DecimalDigits and e is the MV of ExponentPart.

¶ The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits times 10ïn, where n is the number of

characters in DecimalDigits.

¶ The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10eïn, where n is

the number of characters in DecimalDigits and e is the MV of ExponentPart.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral is the MV of DecimalIntegerLiteral.

¶ The MV of DecimalLiteral :: DecimalIntegerLiteral ExponentPart is the MV of DecimalIntegerLiteral times 10e,
where e is the MV of ExponentPart.

¶ The MV of DecimalIntegerLiteral :: 0 is 0.

¶ The MV of DecimalIntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

¶ The MV of DecimalIntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10n) plus
the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

¶ The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

¶ The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

¶ The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.

¶ The MV of SignedInteger :: DecimalDigits is the MV of DecimalDigits.

¶ The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.

¶ The MV of SignedInteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

¶ The MV of DecimalDigit :: 0 or of HexDigit :: 0 is 0.

¶ The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 is 1.

¶ The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 is 2.

¶ The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 is 3.

¶ The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 is 4.

¶ The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 is 5.

¶ The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 is 6.

¶ The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 is 7.

¶ The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

¶ The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.

¶ The MV of HexDigit :: a or of HexDigit :: A is 10.

¶ The MV of HexDigit :: b or of HexDigit :: B is 11.

¶ The MV of HexDigit :: c or of HexDigit :: C is 12.

¶ The MV of HexDigit :: d or of HexDigit :: D is 13.

¶ The MV of HexDigit :: e or of HexDigit :: E is 14.

¶ The MV of HexDigit :: f or of HexDigit :: F is 15.

¶ The MV of HexIntegerLiteral :: 0x HexDigit is the MV of HexDigit.

¶ The MV of HexIntegerLiteral :: 0X HexDigit is the MV of HexDigit.

¶ The MV of HexIntegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the

MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the

MV (as specified in 8.5), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits,

in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by

© Ecma International 2011 23

replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th

significant digit position. A digit is significant if it is not part of an ExponentPart and

¶ it is not 0; or

¶ there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
NumericLiteral to include OctalIntegerLiteral as described in B.1.1.

7.8.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence. All characters may appear literally in a string literal except for the closing
quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character
may appear in the form of an escape sequence.

Syntax

StringLiteral ::

" DoubleStringCharactersopt "

' SingleStringCharactersopt '

DoubleStringCharacters ::

DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::

SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::

SourceCharacter but not one of " or \ or LineTerminator

\ EscapeSequence

LineContinuation

SingleStringCharacter ::

SourceCharacter but not one of ' or \ or LineTerminator

\ EscapeSequence

LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead Î DecimalDigit]

HexEscapeSequence

UnicodeEscapeSequence

CharacterEscapeSequence ::
SingleEscapeCharacter

NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b f n r t v

NonEscapeCharacter ::

SourceCharacter but not one of EscapeCharacter or LineTerminator

24 © Ecma International 2011

EscapeCharacter ::

SingleEscapeCharacter

DecimalDigit
x

u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacter is defined in clause 6.

Semantics

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some
characters within the string literal are interpreted as having a mathematical value (MV), as described below or
in 7.8.3.

¶ The SV of StringLiteral :: "" is the empty character sequence.

¶ The SV of StringLiteral :: '' is the empty character sequence.

¶ The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

¶ The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

¶ The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV of
DoubleStringCharacter.

¶ The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of the CV
of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order.

¶ The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one character, the CV of
SingleStringCharacter.

¶ The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of the CV of
SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order.

¶ The SV of LineContinuation :: \ LineTerminatorSequence is the empty character sequence.

¶ The CV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the

SourceCharacter character itself.

¶ The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

¶ The CV of DoubleStringCharacter :: LineContinuation is the empty character sequence.

¶ The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the

SourceCharacter character itself.

¶ The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

¶ The CV of SingleStringCharacter :: LineContinuation is the empty character sequence.

¶ The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

¶ The CV of EscapeSequence :: 0 [lookahead Î DecimalDigit] is a <NUL> character (Unicode value 0000).

¶ The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

¶ The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

¶ The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is

determined by the SingleEscapeCharacter according to Table 4:

Table 4 ð String Single Character Escape Sequences

© Ecma International 2011 25

Escape Sequence Code Unit Value Name Symbol

\ b \ u0008 backspace <BS>

\ t \ u0009 horizontal tab <HT>

\ n \ u000A line feed (new line) <LF>

\ v \ u000B vertical tab <VT>

\ f \ u000C form feed <FF>

\ r \ u000D carriage return <CR>

\ " \ u0022 double quote "

\ ' \ u0027 single quote '

\ \ \ u005C backslash \

¶ The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

¶ The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
SourceCharacter character itself.

¶ The CV of HexEscapeSequence :: x HexDigit HexDigit is the character whose code unit value is (16 times

the MV of the first HexDigit) plus the MV of the second HexDigit.

¶ The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the character whose code

unit value is (4096 times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus

(16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

A conforming implementation, when processing strict mode code (see 10.1.1), may not extend the syntax of
EscapeSequence to include OctalEscapeSequence as described in B.1.2.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \ n or \ u000A .

7.8.5 Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that
never compare as === to each other even if the two literals' contents are identical. A RegExp object may also

be created at runtime by new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The Strings of characters comprising the
RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular expression

constructor, which interprets them according to its own, more stringent grammar. An implementation may
extend the regular expression constructor's grammar, but it must not extend the RegularExpressionBody and

RegularExpressionFlags productions or the productions used by these productions.

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::

RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

26 © Ecma International 2011

RegularExpressionFirstChar ::

RegularExpressionNonTerminator but not one of * or \ or / or [

RegularExpressionBackslashSequence

RegularExpressionClass

RegularExpressionChar ::

RegularExpressionNonTerminator but not one of \ or / or [

RegularExpressionBackslashSequence

RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::

SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::

RegularExpressionNonTerminator but not one of] or \

RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/ .

Semantics

A regular expression literal evaluates to a value of the Object type that is an instance of the standard built-in
constructor RegExp. This value is determined in two steps: first, the characters comprising the regular
expression's RegularExpressionBody and RegularExpressionFlags production expansions are collected

uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a new
object is created as if by the expression new RegExp(Pattern, Flags) where RegExp is the standard

built-in constructor with that name. The newly constructed object becomes the value of the
RegularExpressionLiteral. If the call to new RegExp would generate an error as specified in 15.10.4.1, the error

must be treated as an early error (Clause 16).

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do -while

statement, continue statement, break statement, return statement, and throw statement) must be

terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion

There are three basic rules of semicolon insertion:

© Ecma International 2011 27

1. When, as the program is parsed from left to right, a token (called the offending token) is encountered that
is not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

¶ The offending token is separated from the previous token by at least one LineTerminator.

¶ The offending token is } .

2. When, as the program is parsed from left to right, the end of the input stream of tokens is encountered
and the parser is unable to parse the input token stream as a single complete ECMAScript Program, then

a semicolon is automatically inserted at the end of the input stream.

3. When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production and the token would be the first
token for a terminal or nonterminal immediately following the annotation ñ[no LineTerminator here]ò within the

restricted production (and therefore such a token is called a restricted token), and the restricted token is
separated from the previous token by at least one LineTerminator, then a semicolon is automatically

inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] --

ContinueStatement :
continue [no LineTerminator here] Identifier ;

BreakStatement :
break [no LineTerminator here] Identifier ;

ReturnStatement :
return [no LineTerminator here] Expression ;

ThrowStatement :
throw [no LineTerminator here] Expression ;

The practical effect of these restricted productions is as follows:

When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one

LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is automatically

inserted before the ++ or -- token.

When a continue , break , return , or throw token is encountered and a LineTerminator is encountered before

the next token, a semicolon is automatically inserted after the continue , break , return , or throw token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.

An Expression in a return or throw statement should start on the same line as the return or throw token.

An Identifier in a break or continue statement should be on the same line as the break or continue token.

7.9.2 Examples of Automatic Semicolon Insertion

The source

{ 1 2 } 3

28 © Ecma International 2011

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{ 1

2 } 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{ 1

;2 ;} 3;

which is a valid ECMAScript sentence.

The source

for (a; b

)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of

the two semicolons in the header of a for statement.

The source

return

a + b

is transformed by automatic semicolon insertion into the following:

return;

a + b;

NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminator separates it from the token return .

The source

a = b

++c

is transformed by automatic semicolon insertion into the following:

a = b;

++c;

NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs

between b and ++.

The source

if (a > b)

else c = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,

even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a = b + c

(d + e).print()

is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a = b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

© Ecma International 2011 29

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Object.

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Property Identifier, Lexical Environment, and Environment Record.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

Within this specification, the notation ñType(x)ò is used as shorthand for ñthe type of xò where ñtypeò refers to the

ECMAScript language and specification types defined in this clause.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.2 The Null Type

The Null type has exactly one value, called null.

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(ñelementsò). The String type is generally used to represent textual data in a running ECMAScript program, in
which case each element in the String is treated as a code unit value (see Clause 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers.
The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The length of a
String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore
contains no elements.

When a String contains actual textual data, each element is considered to be a single UTF-16 code unit.
Whether or not this is the actual storage format of a String, the characters within a String are numbered by
their initial code unit element position as though they were represented using UTF-16. All operations on
Strings (except as otherwise stated) treat them as sequences of undifferentiated 16-bit unsigned integers;
they do not ensure the resulting String is in normalised form, nor do they ensure language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. The intent is that textual data coming into the execution environment from outside (e.g., user input, text read
from a file or received over the network, etc.) be converted to Unicode Normalised Form C before the running program
sees it. Usually this would occur at the same time incoming text is converted from its original character encoding to
Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in
Normalised Form C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long

as they do not contain any Unicode escape sequences.

30 © Ecma International 2011

8.5 The Number Type

The Number type has exactly 18437736874454810627 (that is, 264-253+3) values, representing the double-

precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,

except that the 9007199254740990 (that is, 253-2) distinct ñNot-a-Numberò values of the IEEE Standard are

represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN.) In some implementations, external code might be able to detect a difference

between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values

are also referred to for expository purposes by the symbols +¤ and -¤, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -

Infinity .)

The other 18437736874454810624 (that is, 264-253) values are called the finite numbers. Half of these are

positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for

expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number

values are produced by the program expressions +0 (or simply 0) and - 0.)

The 18437736874454810622 (that is, 264-253-2) finite nonzero values are of two kinds:

18428729675200069632 (that is, 264-254) of them are normalised, having the form

s ³ m ³ 2e

where s is +1 or -1, m is a positive integer less than 253 but not less than 252, and e is an integer ranging from

-1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 253-2) values are denormalised, having the form

s ³ m ³ 2e

where s is +1 or -1, m is a positive integer less than 252, and e is -1074.

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in

the Number type (indeed, the integer 0 has two representations, +0 and - 0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two

forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase ñthe Number value for xò where x represents an exact nonzero real

mathematical quantity (which might even be an irrational number such as p) means a Number value chosen in

the following manner. Consider the set of all finite values of the Number type, with -0 removed and with two

additional values added to it that are not representable in the Number type, namely 21024 (which is +1 ³ 253 ³

2971) and -21024 (which is -1 ³ 253 ³ 2971). Choose the member of this set that is closest in value to x. If two

values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two

extra values 21024 and -21024 are considered to have even significands. Finally, if 21024 was chosen, replace it

with +¤; if -21024 was chosen, replace it with -¤; if +0 was chosen, replace it with -0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure

corresponds exactly to the behaviour of the IEEE 754 ñround to nearestò mode.)

Some ECMAScript operators deal only with integers in the range -231 through 231-1, inclusive, or in the range

0 through 232-1, inclusive. These operators accept any value of the Number type but first convert each such

© Ecma International 2011 31

value to one of 232 integer values. See the descriptions of the ToInt32 and ToUint32 operators in 9.5 and 9.6,

respectively.

8.6 The Object Type

An Object is a collection of properties. Each property is either a named data property, a named accessor
property, or an internal property:

¶ A named data property associates a name with an ECMAScript language value and a set of Boolean
attributes.

¶ A named accessor property associates a name with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

¶ An internal property has no name and is not directly accessible via ECMAScript language operators.
Internal properties exist purely for specification purposes.

There are two kinds of access for named (non-internal) properties: get and put, corresponding to retrieval and
assignment, respectively.

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of named properties. A named data
property associates a name with the attributes listed in Table 5

Table 5 ð Attributes of a Named Data Property

Attribute Name Value Domain Description

[[Value]] Any ECMAScript
language type

The value retrieved by reading the property.

[[Writable]] Boolean If false, attempts by ECMAScript code to change the
propertyôs [[Value]] attribute using [[Put]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other than [[Value]]) will fail.

A named accessor property associates a name with the attributes listed in Table 6.

32 © Ecma International 2011

Table 6 ð Attributes of a Named Accessor Property

Attribute Name Value Domain Description

[[Get]] Object or
Undefined

If the value is an Object it must be a function Object. The
functionôs [[Call]] internal method (8.6.2) is called with an
empty arguments list to return the property value each time
a get access of the property is performed.

[[Set]] Object or
Undefined

If the value is an Object it must be a function Object. The
functionôs [[Call]] internal method (8.6.2) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be a data property, or change its attributes will
fail.

If the value of an attribute is not explicitly specified by this specification for a named property, the default value
defined in Table 7 is used.

Table 7 ð Default Attribute Values

Attribute Name Default Value

[[Value]] undefined

[[Get]] undefined

[[Set]] undefined

[[Writable]] false

[[Enumerable]] false

[[Configurable]] false

8.6.2 Object Internal Properties and Methods

This specification uses various internal properties to define the semantics of object values. These internal
properties are not part of the ECMAScript language. They are defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
internal properties in the manner described here. The names of internal properties are enclosed in double
square brackets [[]]. When an algorithm uses an internal property of an object and the object does not
implement the indicated internal property, a TypeError exception is thrown.

The Table 8 summarises the internal properties used by this specification that are applicable to all
ECMAScript objects. The Table 9 summarises the internal properties used by this specification that are only
applicable to some ECMAScript objects. The descriptions in these tables indicate their behaviour for native
ECMAScript objects, unless stated otherwise in this document for particular kinds of native ECMAScript
objects. Host objects may support these internal properties with any implementation-dependent behaviour as
long as it is consistent with the specific host object restrictions stated in this document.

The ñValue Type Domainò columns of the following tables define the types of values associated with internal
properties. The type names refer to the types defined in Clause 8 augmented by the following additional
names. ñanyò means the value may be any ECMAScript language type. ñprimitiveò means Undefined, Null,
Boolean, String, or Number. ñSpecOpò means the internal property is an internal method, an implementation
provided procedure defined by an abstract operation specification. ñSpecOpò is followed by a list of descriptive
parameter names. If a parameter name is the same as a type name then the name describes the type of the

© Ecma International 2011 33

parameter. If a ñSpecOpò returns a value, its parameter list is followed by the symbol ñŸò and the type of the
returned value.

Table 8 ð Internal Properties Common to All Objects

Internal Property Value Type Domain Description

[[Prototype]] Object or Null The prototype of this object.

[[Extensible]] Boolean If true, own properties may be added to the
object.

[[Get]] SpecOp(propertyName) Ÿ
any

Returns the value of the named property.

[[GetOwnProperty]] SpecOp (propertyName) Ÿ
Undefined or Property
Descriptor

Returns the Property Descriptor of the named
own property of this object, or undefined if
absent.

[[GetProperty]] SpecOp (propertyName) Ÿ
Undefined or Property
Descriptor

Returns the fully populated Property Descriptor
of the named property of this object, or
undefined if absent.

[[Put]] SpecOp (propertyName,
any, Boolean)

Sets the specified named property to the value
of the second parameter. The flag controls
failure handling.

[[CanPut]] SpecOp (propertyName) Ÿ
Boolean

Returns a Boolean value indicating whether a
[[Put]] operation with PropertyName can be
performed.

[[HasProperty]] SpecOp (propertyName) Ÿ
Boolean

Returns a Boolean value indicating whether the
object already has a property with the given
name.

[[Delete]] SpecOp (propertyName,
Boolean) Ÿ Boolean

Removes the specified named own property
from the object. The flag controls failure
handling.

[[DefaultValue]] SpecOp (Hint) Ÿ primitive Hint is a String. Returns a default value for the
object.

[[DefineOwnProperty]] SpecOp (propertyName,
PropertyDescriptor,
Boolean) Ÿ Boolean

Creates or alters the named own property to
have the state described by a Property
Descriptor. The flag controls failure handling.

Every object (including host objects) must implement all of the internal properties listed in Table 8. However,
the [[DefaultValue]] internal method may, for some objects, simply throw a TypeError exception.

All objects have an internal property called [[Prototype]]. The value of this property is either null or an object
and is used for implementing inheritance. Whether or not a native object can have a host object as its
[[Prototype]] depends on the implementation. Every [[Prototype]] chain must have finite length (that is, starting
from any object, recursively accessing the [[Prototype]] internal property must eventually lead to a null value).
Named data properties of the [[Prototype]] object are inherited (are visible as properties of the child object) for
the purposes of get access, but not for put access. Named accessor properties are inherited for both get
access and put access.

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls whether or not
named properties may be added to the object. If the value of the [[Extensible]] internal property is false then
additional named properties may not be added to the object. In addition, if [[Extensible]] is false the value of
[[Prototype]] internal properties of the object may not be modified. Once the value of an [[Extensible]] internal
property has been set to false it may not be subsequently changed to true.

NOTE This specification defines no ECMAScript language operators or built-in functions that permit a program to
modify an objectôs [[Prototype]] internal properties or to change the value of [[Extensible]] from false to true.
Implementation specific extensions that modify [[Prototype]] or [[Extensible]] must not violate the invariants defined in the

preceding paragraph.

34 © Ecma International 2011

Unless otherwise specified, the common internal methods of native ECMAScript objects behave as described
in 8.12. Array objects have a slightly different implementation of the [[DefineOwnProperty]] internal method
(see 15.4.5.1) and String objects have a slightly different implementation of the [[GetOwnProperty]] internal
method (see 15.5.5.2). Arguments objects (10.6) have different implementations of [[Get]], [[GetOwnProperty]],
[[DefineOwnProperty]], and [[Delete]]. Function objects (15.3) have a different implementation of [[Get]].

Host objects may implement these internal methods in any manner unless specified otherwise; for example,
one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store property values but
[[HasProperty]] always generates false. However, if any specified manipulation of a host object's internal
properties is not supported by an implementation, that manipulation must throw a TypeError exception when
attempted.

The [[GetOwnProperty]] internal method of a host object must conform to the following invariants for each
property of the host object:

¶ If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

¶ If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

¶ If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

¶ If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

¶ If the value of the host objectôs [[Extensible]] internal property has been observed by ECMAScript code to
be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of a host object must not permit the addition of a new property to a
host object if the [[Extensible]] internal property of that host object has been observed by ECMAScript code to
be false.

If the [[Extensible]] internal property of that host object has been observed by ECMAScript code to be false
then it must not subsequently become true.

© Ecma International 2011 35

Table 9 ð Internal Properties Only Defined for Some Objects

Internal Property Value Type
Domain

Description

[[NativeBrand]] Members of the
NativeBrand
enumeration.

A tag value used by this specification to categorize various
kinds of native ECMAScript objects defined in this
specification. Host objects do not have this internal property.

[[PrimitiveValue]] primitive Internal state information associated with this object. Of the
standard built-in ECMAScript objects, only Boolean, Date,
Number, and String objects implement [[PrimitiveValue]].

[[Construct]] SpecOp(a List of
any) Ÿ Object

Creates an object. Invoked via the new operator. The

arguments to the SpecOp are the arguments passed to the
new operator. Objects that implement this internal method
are called constructors.

[[Call]] SpecOp(any, a List
of any) Ÿ any or

Reference

Executes code associated with the object. Invoked via a
function call expression. The arguments to the SpecOp are
this object and a list containing the arguments passed to the
function call expression. Objects that implement this internal
method are callable. Only callable objects that are host
objects may return Reference values.

[[HasInstance]] SpecOp(any) Ÿ

Boolean
Returns a Boolean value indicating whether the argument is
likely an Object that was constructed by this object. Of the
standard built-in ECMAScript objects, only Function objects
implement [[HasInstance]].

[[Scope]] Lexical Environment A lexical environment that defines the environment in which
a Function object is executed. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Scope]].

[[FormalParameters]] List of Strings A possibly empty List containing the identifier Strings of a
Functionôs FormalParameterList. Of the standard built-in

ECMAScript objects, only Function objects implement
[[FormalParameterList]].

[[Code]] ECMAScript code The ECMAScript code of a function. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Code]].

[[TargetFunction]] Object The target function of a function object created using the
standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[TargetFunction]] internal property.

[[BoundThis]] any The pre-bound this value of a function Object created using
the standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[BoundThis]] internal property.

[[BoundArguments]] List of any The pre-bound argument values of a function Object created
using the standard built-in Function.prototype.bind method.
Only ECMAScript objects created using
Function.prototype.bind have a [[BoundArguments]] internal
property.

[[Match]] SpecOp(String,
index) Ÿ
MatchResult

Tests for a regular expression match and returns a
MatchResult value (see 15.10.2.1). Of the standard built-in
ECMAScript objects, only RegExp objects implement
[[Match]].

[[ParameterMap]] Object Provides a mapping between the properties of an arguments
object (see 10.6) and the formal parameters of the
associated function. Only ECMAScript objects that are
arguments objects have a [[ParameterMap]] internal
property.

36 © Ecma International 2011

The [[NativeBrand]] internal property is used to identify native ECMASCript objects as objects that conform to
specific parts of this specification. The value of a [[NativeBrand]] property is a single member of this set of
enumerated values: NativeFunction, NativeArray, StringWrapper, BooleanWrapper, NumberWrapper,
NativeMath, NativeDate, NativeRegExp, NativeError, NativeJSON, NativeArguments. The actual value of the
[[NativeBrand]] internal property is only used to identify specific kinds of native ECMAScript objects. Host
objects do not have this internal property,

Table 10 ð Values of the [[NativeBrand]] Internal Property

Internal Property Category Description

NativeFunction Function objects

NativeArray Array objects

StringWrapper String objects

BooleanWrapper Boolean objects

NumberWrapper Number objects

NativeMath The Math object

NativeDate Date objects

NativeRegExp RegExp objects

NativeError Error objects

NativeJSON The JSON object

NativeArguments Arguments objects

8.7 The Reference Specification Type

The Reference type is used to explain the behaviour of such operators as delete , typeof , and the

assignment operators. For example, the left-hand operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on
the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls are
permitted to return references. This possibility is admitted purely for the sake of host objects. No built-in
ECMAScript function defined by this specification returns a reference and there is no provision for a user-
defined function to return a reference. (Another reason not to use a syntactic case analysis is that it would be
lengthy and awkward, affecting many parts of the specification.)

A Reference is a resolved name binding. A Reference consists of three components, the base value, the
referenced name and the Boolean valued strict reference flag. The base value is either undefined, an Object, a

Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined indicates that the
reference could not be resolved to a binding. The referenced name is a String.

The following abstract operations are used in this specification to access the components of references:

¶ GetBase(V). Returns the base value component of the reference V.

¶ GetReferencedName(V). Returns the referenced name component of the reference V.

¶ IsStrictReference(V). Returns the strict reference component of the reference V.

¶ HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.

¶ IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

¶ IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

The following abstract operations are used in this specification to operate on references:

8.7.1 GetValue (V)

1. If Type(V) is not Reference, return V.

2. Let base be the result of calling GetBase(V).

© Ecma International 2011 37

3. If IsUnresolvableReference(V), throw a ReferenceError exception.

4. If IsPropertyReference(V), then

a. If HasPrimitiveBase(V) is false, then let get be the [[Get]] internal method of base, otherwise let get

be the special [[Get]] internal method defined below.

b. Return the result of calling the get internal method using base as its this value, and passing

GetReferencedName(V) for the argument.

5. Else, base must be an environment record.

a. Return the result of calling the GetBindingValue (see 10.2.1) concrete method of base passing

GetReferencedName(V) and IsStrictReference(V) as arguments.

The following [[Get]] internal method is used by GetValue when V is a property reference with a primitive base

value. It is called using base as its this value and with property P as its argument. The following steps are

taken:

1. Let O be ToObject(base).

2. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

3. If desc is undefined, return undefined.

4. If IsDataDescriptor(desc) is true , return desc.[[Value]].

5. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]] (see 8.10).

6. If getter is undefined, return undefined.

7. Return the result calling the [[Call]] internal method of getter providing base as the this value and providing

no arguments.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of the object. The only situation where such an actual property access that uses

this internal method can have visible effect is when it invokes an accessor function.

8.7.2 PutValue (V, W)

1. If Type(V) is not Reference, throw a ReferenceError exception.

2. Let base be the result of calling GetBase(V).

3. If IsUnresolvableReference(V), then

a. If IsStrictReference(V) is true , then

i. Throw ReferenceError exception.

b. Call the [[Put]] internal method of the global object, passing GetReferencedName(V) for the

property name, W for the value, and false for the Throw flag.

4. Else if IsPropertyReference(V), then

a. If HasPrimitiveBase(V) is false, then let put be the [[Put]] internal method of base, otherwise let put

be the special [[Put]] internal method defined below.

b. Call the put internal method using base as its this value, and passing GetReferencedName(V) for the

property name, W for the value, and IsStrictReference(V) for the Throw flag.

5. Else base must be a reference whose base is an environment record. So,

a. Call the SetMutableBinding (10.2.1) concrete method of base, passing GetReferencedName(V), W,

and IsStrictReference(V) as arguments.

6. Return.

The following [[Put]] internal method is used by PutValue when V is a property reference with a primitive base
value. It is called using base as its this value and with property P, value W, and Boolean flag Throw as

arguments. The following steps are taken:

1. Let O be ToObject(base).

2. If the result of calling the [[CanPut]] internal method of O with argument P is false, then

a. If Throw is true , then throw a TypeError exception.

b. Else return.

3. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

4. If IsDataDescriptor(ownDesc) is true , then

a. If Throw is true , then throw a TypeError exception.

b. Else return.

5. Let desc be the result of calling the [[GetProperty]] internal method of O with argument P. This may be

either an own or inherited accessor property descriptor or an inherited data property descriptor.

6. If IsAccessorDescriptor(desc) is true , then

38 © Ecma International 2011

a. Let setter be desc.[[Set]] (see 8.10) which cannot be undefined.

b. Call the [[Call]] internal method of setter providing base as the this value and an argument list

containing only W.

7. Else, this is a request to create an own property on the transient object O

a. If Throw is true , then throw a TypeError exception.

8. Return.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of that transient object. The only situations where such an actual property
assignment that uses this internal method can have visible effect are when it either invokes an accessor function or is in
violation of a Throw predicated error check. When Throw is true any property assignment that would create a new property

on the transient object throws an error.

8.8 The List Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function

calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

8.9 The Completion Specification Type

The Completion type is used to explain the behaviour of statements (break , continue , return and throw)

that perform nonlocal transfers of control. Values of the Completion type are triples of the form (type, value,
target), where type is one of normal, break, continue, return, or throw, value is any ECMAScript language
value or empty, and target is any ECMAScript identifier or empty. If cv is a completion value then cv.type,

cv.value, and cv.target may be used to directly refer to its constituent values.

The term ñabrupt completionò refers to any completion with a type other than normal.

8.10 The Property Descriptor and Property Identifier Specification Types

The Property Descriptor type is used to explain the manipulation and reification of named property attributes.
Values of the Property Descriptor type are records composed of named fields where each fieldôs name is an
attribute name and its value is a corresponding attribute value as specified in 8.6.1. In addition, any field may
be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.6.1 Table 5 or Table 6.

For notational convenience within this specification, an object literal-like syntax can be used to define a
property descriptor value. For example, Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]:
true} defines a data property descriptor. Field name order is not significant. Any fields that are not explicitly
listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property
Descriptor. For example, if D is a property descriptor then D.[[Value]] is shorthand for ñthe field of D named
[[Value]]ò.

The Property Identifier type is used to associate a property name with a Property Descriptor. Values of the
Property Identifier type are pairs of the form (name, descriptor), where name is a String and descriptor is a
Property Descriptor value.

© Ecma International 2011 39

The following abstract operations are used in this specification to operate upon Property Descriptor values:

8.10.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desc, the following steps

are taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.

3. Return true.

8.10.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desc, the following steps are

taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.

3. Return true.

8.10.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps

are taken:

1. If Desc is undefined, then return false.

2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.

3. Return false.

8.10.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following

steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from

[[GetOwnProperty]] (see 8.12.1).

1. If Desc is undefined, then return undefined.

2. Let obj be the result of creating a new object as if by the expression new Object() where Object is the standard

built-in constructor with that name.

3. If IsDataDescriptor(Desc) is true, then

a. Call the [[DefineOwnProperty]] internal method of obj with arguments "value ", Property Descriptor

{[[Value]]: Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

b. Call the [[DefineOwnProperty]] internal method of obj with arguments "writable ", Property Descriptor

{[[Value]]: Desc.[[Writable]] , [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

4. Else, IsAccessorDescriptor(Desc) must be true, so

a. Call the [[DefineOwnProperty]] internal method of obj with arguments "get " , Property Descriptor

{[[Value]]: Desc.[[Get]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

b. Call the [[DefineOwnProperty]] internal method of obj with arguments "set ", Property Descriptor

{[[Value]]: Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

5. Call the [[DefineOwnProperty]] internal method of obj with arguments "enumerable ", Property Descriptor

{[[Value]]: Desc.[[Enumerable]] , [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

6. Call the [[DefineOwnProperty]] internal method of obj with arguments "configurable ", Property Descriptor

{[[Value]]: Desc.[[Configurable]] , [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

7. Return obj.

8.10.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

40 © Ecma International 2011

1. If Type(Obj) is not Object throw a TypeError exception.

2. Let desc be the result of creating a new Property Descriptor that initially has no fields.

3. If the result of calling the [[HasProperty]] internal method of Obj with argument "enumerable " is true ,

then

a. Let enum be the result of calling the [[Get]] internal method of Obj with "enumerable ".

b. Set the [[Enumerable]] field of desc to ToBoolean(enum).

4. If the result of calling the [[HasProperty]] internal method of Obj with argument "configurable " is true ,

then

a. Let conf be the result of calling the [[Get]] internal method of Obj with argument

"configurable ".

b. Set the [[Configurable]] field of desc to ToBoolean(conf).

5. If the result of calling the [[HasProperty]] internal method of Obj with argument "value " is true , then

a. Let value be the result of calling the [[Get]] internal method of Obj with argument ñvalue ò.

b. Set the [[Value]] field of desc to value.

6. If the result of calling the [[HasProperty]] internal method of Obj with argument "writable " is true , then

a. Let writable be the result of calling the [[Get]] internal method of Obj with argument "writable ".

b. Set the [[Writable]] field of desc to ToBoolean(writable).

7. If the result of calling the [[HasProperty]] internal method of Obj with argument "get " is true , then

a. Let getter be the result of calling the [[Get]] internal method of Obj with argument "get ".

b. If IsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.

c. Set the [[Get]] field of desc to getter.

8. If the result of calling the [[HasProperty]] internal method of Obj with argument "set " is true , then

a. Let setter be the result of calling the [[Get]] internal method of Obj with argument "set ".

b. If IsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.

c. Set the [[Set]] field of desc to setter.

9. If either desc.[[Get]] or desc.[[Set]] are present, then

a. If either desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.

10. Return desc.

8.11 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.12 Algorithms for Object Internal Methods

In the following algorithm descriptions, assume O is a native ECMAScript object, P is a String, Desc is a

Property Description record, and Throw is a Boolean flag.

8.12.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property name P, the following steps are

taken:

1. If O doesnôt have an own property with name P, return undefined.

2. Let D be a newly created Property Descriptor with no fields.

3. Let X be Oôs own property named P.

4. If X is a data property, then

a. Set D.[[Value]] to the value of Xôs [[Value]] attribute.

b. Set D.[[Writable]] to the value of Xôs [[Writable]] attribute

5. Else X is an accessor property, so

a. Set D.[[Get]] to the value of Xôs [[Get]] attribute.

b. Set D.[[Set]] to the value of Xôs [[Set]] attribute.

6. Set D.[[Enumerable]] to the value of Xôs [[Enumerable]] attribute.

7. Set D.[[Configurable]] to the value of Xôs [[Configurable]] attribute.

8. Return D.

However, if O is a String object it has a more elaborate [[GetOwnProperty]] internal method defined in 15.5.5.2.

© Ecma International 2011 41

8.12.2 [[GetProperty]] (P)

When the [[GetProperty]] internal method of O is called with property name P, the following steps are taken:

1. Let prop be the result of calling the [[GetOwnProperty]] internal method of O with property name P.

2. If prop is not undefined, return prop.

3. Let proto be the value of the [[Prototype]] internal property of O.

4. If proto is null , return undefined.

5. Return the result of calling the [[GetProperty]] internal method of proto with argument P.

8.12.3 [[Get]] (P)

When the [[Get]] internal method of O is called with property name P, the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true , return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter providing O as the this value and providing no

arguments.

8.12.4 [[CanPut]] (P)

When the [[CanPut]] internal method of O is called with property name P, the following steps are taken:

1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

2. If desc is not undefined, then

a. If IsAccessorDescriptor(desc) is true , then

i. If desc.[[Set]] is undefined, then return false.

ii. Else return true .

b. Else, desc must be a DataDescriptor so return the value of desc.[[Writable]].

3. Let proto be the [[Prototype]] internal property of O.

4. If proto is null , then return the value of the [[Extensible]] internal property of O.

5. Let inherited be the result of calling the [[GetProperty]] internal method of proto with property name P.

6. If inherited is undefined, return the value of the [[Extensible]] internal property of O.

7. If IsAccessorDescriptor(inherited) is true , then

a. If inherited.[[Set]] is undefined, then return false.

b. Else return true .

8. Else, inherited must be a DataDescriptor

a. If the [[Extensible]] internal property of O is false, return false.

b. Else return the value of inherited.[[Writable]].

Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should not
allow [[Put]] operations in situations where this definition of [[CanPut]] returns false.

8.12.5 [[Put]] (P, V, Throw)

When the [[Put]] internal method of O is called with property P, value V, and Boolean flag Throw, the following

steps are taken:

1. If the result of calling the [[CanPut]] internal method of O with argument P is false, then

a. If Throw is true , then throw a TypeError exception.

b. Else return.

2. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

3. If IsDataDescriptor(ownDesc) is true , then

a. Let valueDesc be the Property Descriptor {[[Value]]: V}.

b. Call the [[DefineOwnProperty]] internal method of O passing P, valueDesc, and Throw as

arguments.

c. Return.

42 © Ecma International 2011

4. Let desc be the result of calling the [[GetProperty]] internal method of O with argument P. This may be

either an own or inherited accessor property descriptor or an inherited data property descriptor.

5. If IsAccessorDescriptor(desc) is true , then

a. Let setter be desc.[[Set]] which cannot be undefined.

b. Call the [[Call]] internal method of setter providing O as the this value and providing V as the sole

argument.

6. Else, create a named data property named P on object O as follows

a. Let newDesc be the Property Descriptor

{[[Value]]: V, [[Writable]]: true , [[Enumerable]]: true , [[Configurable]]: true}.

b. Call the [[DefineOwnProperty]] internal method of O passing P, newDesc, and Throw as arguments.

7. Return.

8.12.6 [[HasProperty]] (P)

When the [[HasProperty]] internal method of O is called with property name P, the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

2. If desc is undefined, then return false.

3. Else return true .

8.12.7 [[Delete]] (P, Throw)

When the [[Delete]] internal method of O is called with property name P and the Boolean flag Throw, the

following steps are taken:

1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with property name P.

2. If desc is undefined, then return true .

3. If desc.[[Configurable]] is true , then

a. Remove the own property with name P from O.

b. Return true .

4. Else if Throw, then throw a TypeError exception.

5. Return false.

8.12.8 [[DefaultValue]] (hint)

When the [[DefaultValue]] internal method of O is called with hint String, the following steps are taken:

1. Let toString be the result of calling the [[Get]] internal method of object O with argument "toString ".

2. If IsCallable(toString) is true then,

a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this value and

an empty argument list.

b. If str is a primitive value, return str.

3. Let valueOf be the result of calling the [[Get]] internal method of object O with argument "valueOf ".

4. If IsCallable(valueOf) is true then,

a. Let val be the result of calling the [[Call]] internal method of valueOf, with O as the this value and

an empty argument list.

b. If val is a primitive value, return val.

5. Throw a TypeError exception.

When the [[DefaultValue]] internal method of O is called with hint Number, the following steps are taken:

1. Let valueOf be the result of calling the [[Get]] internal method of object O with argument "valueOf ".

2. If IsCallable(valueOf) is true then,

a. Let val be the result of calling the [[Call]] internal method of valueOf, with O as the this value and

an empty argument list.

b. If val is a primitive value, return val.

3. Let toString be the result of calling the [[Get]] internal method of object O with argument "toString ".

4. If IsCallable(toString) is true then,

a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this value and

an empty argument list.

© Ecma International 2011 43

b. If str is a primitive value, return str.

5. Throw a TypeError exception.

When the [[DefaultValue]] internal method of O is called with no hint, then it behaves as if the hint were

Number, unless O is a Date object (see 15.9.6), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a host object
implements its own [[DefaultValue]] internal method, it must ensure that its [[DefaultValue]] internal method
can return only primitive values.

8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithm, the term ñRejectò means ñIf Throw is true, then throw a TypeError exception,
otherwise return falseò. The algorithm contains steps that test various fields of the Property Descriptor Desc for
specific values. The fields that are tested in this manner need not actually exist in Desc. If a field is absent

then its value is considered to be false.

When the [[DefineOwnProperty]] internal method of O is called with property name P, property descriptor Desc,

and Boolean flag Throw, the following steps are taken:

1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
2. Let extensible be the value of the [[Extensible]] internal property of O.

3. If current is undefined and extensible is false, then Reject.

4. If current is undefined and extensible is true , then

a. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true , then

i. Create an own data property named P of object O whose [[Value]], [[Writable]],

[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of

an attribute field of Desc is absent, the attribute of the newly created property is set to its

default value.

b. Else, Desc must be an accessor Property Descriptor so,

i. Create an own accessor property named P of object O whose [[Get]], [[Set]],

[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of

an attribute field of Desc is absent, the attribute of the newly created property is set to its

default value.

c. Return true .

5. Return true , if every field in Desc is absent.

6. Return true , if every field in Desc also occurs in current and the value of every field in Desc is the same

value as the corresponding field in current when compared using the SameValue algorithm (9.12).

7. If the [[Configurable]] field of current is false then

a. Reject, if the [[Configurable]] field of Desc is true .

b. Reject, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current and

Desc are the Boolean negation of each other.

8. If IsGenericDescriptor(Desc) is true , then no further validation is required.

9. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then

a. Reject, if the [[Configurable]] field of current is false.

b. If IsDataDescriptor(current) is true , then

i. Convert the property named P of object O from a data property to an accessor property.

Preserve the existing values of the converted propertyôs [[Configurable]] and

[[Enumerable]] attributes and set the rest of the propertyôs attributes to their default values.

c. Else,

i. Convert the property named P of object O from an accessor property to a data property.

Preserve the existing values of the converted propertyôs [[Configurable]] and

[[Enumerable]] attributes and set the rest of the propertyôs attributes to their default values.

10. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true , then

a. If the [[Configurable]] field of current is false, then

i. Reject, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true .

ii. If the [[Writable]] field of current is false, then

1. Reject, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]],

current.[[Value]]) is false.

b. else, the [[Configurable]] field of current is true , so any change is acceptable.

44 © Ecma International 2011

11. Else, IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true so,

a. If the [[Configurable]] field of current is false, then

i. Reject, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is

false.

ii. Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]])

is false.

12. For each attribute field of Desc that is present, set the correspondingly named attribute of the property

named P of object O to the value of the field.

13. Return true .

However, if O has an [[NativeBrand]] internal property whose value is NativeArray O also has a more

elaborate [[DefineOwnProperty]] internal method defined in 15.4.5.1.

NOTE Step 10.b allows any field of Desc to be different from the corresponding field of current if currentôs
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false.
This is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is

first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

9 Type Conversion and Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion abstract operations. These abstract operations are
not a part of the language; they are defined here to aid the specification of the semantics of the language. The
conversion abstract operations are polymorphic; that is, they can accept a value of any ECMAScript language
type, but not of specification types.

9.1 ToPrimitive

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.

Conversion occurs according to Table 11:

Table 11 ð ToPrimitive Conversions

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is
retrieved by calling the [[DefaultValue]] internal method of the object,
passing the optional hint PreferredType. The behaviour of the

[[DefaultValue]] internal method is defined by this specification for all native
ECMAScript objects in 8.12.8.

9.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 12:

Table 12 ð ToBoolean Conversions

© Ecma International 2011 45

Argument Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, -0, or NaN; otherwise the result is

true.

String The result is false if the argument is the empty String (its length is zero);
otherwise the result is true.

Object true

9.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 13:

Table 13 ð To Number Conversions

Argument Type Result

Undefined NaN

Null +0

Boolean The result is 1 if the argument is true. The result is +0 if the argument is
false.

Number The result equals the input argument (no conversion).

String See grammar and note below.

Object Apply the following steps:

1. Let primValue be ToPrimitive(input argument, hint Number).

2. Return ToNumber(primValue).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret
the String as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

Syntax

StringNumericLiteral :::
StrWhiteSpaceopt

StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::

StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
WhiteSpace

LineTerminator

StrNumericLiteral :::
StrDecimalLiteral

HexIntegerLiteral

46 © Ecma International 2011

StrDecimalLiteral :::

StrUnsignedDecimalLiteral

+ StrUnsignedDecimalLiteral

- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity

 DecimalDigits . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalDigits ExponentPartopt

DecimalDigits :::
DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9

ExponentPart :::
ExponentIndicator SignedInteger

ExponentIndicator ::: one of
e E

SignedInteger :::
DecimalDigits

+ DecimalDigits

- DecimalDigits

HexIntegerLiteral :::
0x HexDigit

0X HexDigit

HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see

7.8.3):

¶ A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.

¶ A StringNumericLiteral that is decimal may have any number of leading 0 digits.

¶ A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

¶ A StringNumericLiteral that is empty or contains only white space is converted to +0.

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

¶ The MV of StringNumericLiteral ::: [empty] is 0.

¶ The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

¶ The MV of StringNumericLiteral ::: StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt is the MV of
StrNumericLiteral, no matter whether white space is present or not.

¶ The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

¶ The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

¶ The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

¶ The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

© Ecma International 2011 47

¶ The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of

StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this MV is

also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a

floating-point +0 or -0 as appropriate.)

¶ The MV of StrUnsignedDecimalLiteral::: Infinity is 1010000 (a value so large that it will round to +¤).

¶ The MV of StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.

¶ The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits

plus (the MV of the second DecimalDigits times 10-n), where n is the number of characters in the second
DecimalDigits.

¶ The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10e,

where e is the MV of ExponentPart.

¶ The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first

DecimalDigits plus (the MV of the second DecimalDigits times 10-n)) times 10e, where n is the number of characters

in the second DecimalDigits and e is the MV of ExponentPart.

¶ The MV of StrUnsignedDecimalLiteral::: . DecimalDigits is the MV of DecimalDigits times 10-n, where n is the

number of characters in DecimalDigits.

¶ The MV of StrUnsignedDecimalLiteral::: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10e-n,

where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

¶ The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV of DecimalDigits.

¶ The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10e,

where e is the MV of ExponentPart.

¶ The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

¶ The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of

DecimalDigit.

¶ The MV of ExponentPart ::: ExponentIndicator SignedInteger is the MV of SignedInteger.

¶ The MV of SignedInteger ::: DecimalDigits is the MV of DecimalDigits.

¶ The MV of SignedInteger ::: + DecimalDigits is the MV of DecimalDigits.

¶ The MV of SignedInteger ::: - DecimalDigits is the negative of the MV of DecimalDigits.

¶ The MV of DecimalDigit ::: 0 or of HexDigit ::: 0 is 0.

¶ The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.

¶ The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.

¶ The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.

¶ The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.

¶ The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.

¶ The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.

¶ The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.

¶ The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.

¶ The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.

¶ The MV of HexDigit ::: a or of HexDigit ::: A is 10.

¶ The MV of HexDigit ::: b or of HexDigit ::: B is 11.

¶ The MV of HexDigit ::: c or of HexDigit ::: C is 12.

¶ The MV of HexDigit ::: d or of HexDigit ::: D is 13.

¶ The MV of HexDigit ::: e or of HexDigit ::: E is 14.

¶ The MV of HexDigit ::: f or of HexDigit ::: F is 15.

¶ The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.

¶ The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

¶ The MV of HexIntegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the

MV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the

String numeric literal is ó-ô, in which case the rounded value is -0. Otherwise, the rounded value must be the

Number value for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimalLiteral

48 © Ecma International 2011

and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart

and

¶ it is not 0; or

¶ there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

9.4 ToInteger

The abstract operation ToInteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

1. Let number be the result of calling ToNumber on the input argument.

2. If number is NaN, return +0.

3. If number is +0, -0, +¤, or -¤, return number.

4. Return the result of computing sign(number) ³ floor(abs(number)).

9.5 ToInt32: (Signed 32 Bit Integer)

The abstract operation ToInt32 converts its argument to one of 232 integer values in the range -231 through

231-1, inclusive. This abstract operation functions as follows:

1. Let number be the result of calling ToNumber on the input argument.

2. If number is NaN, +0, -0, +¤, or -¤, return +0.

3. Let posInt be sign(number) * floor(abs(number)).

4. Let int32bit be posInt modulo 232; that is, a finite integer value k of Number type with positive sign and less

than 232 in magnitude such that the mathematical difference of posInt and k is mathematically an integer

multiple of 232.

5. If int32bit is greater than or equal to 231, return int32bit - 232, otherwise return int32bit.

NOTE Given the above definition of ToInt32:

¶ The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

¶ ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It is to preserve this latter property that +¤ and -¤ are
mapped to +0.)

¶ ToInt32 maps -0 to +0.

9.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 232 integer values in the range 0 through 232-1,

inclusive. This abstraction operation functions as follows:

1. Let number be the result of calling ToNumber on the input argument.

2. If number is NaN, +0, -0, +¤, or -¤, return +0.

3. Let posInt be sign(number) ³ floor(abs(number)).

4. Let int32bit be posInt modulo 232; that is, a finite integer value k of Number type with positive sign and less

than 232 in magnitude such that the mathematical difference of posInt and k is mathematically an integer

multiple of 232.

5. Return int32bit.

NOTE Given the above definition of ToUInt32:

¶ Step 5 is the only difference between ToUint32 and ToInt32.

¶ The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

¶ ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +¤ and -¤ are
mapped to +0.)

¶ ToUint32 maps -0 to +0.

© Ecma International 2011 49

9.7 ToUint16: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 216 integer values in the range 0 through 216-1,

inclusive. This abstract operation functions as follows:

1. Let number be the result of calling ToNumber on the input argument.

2. If number is NaN, +0, -0, +¤, or -¤, return +0.

3. Let posInt be sign(number) ³ floor(abs(number)).

4. Let int16bit be posInt modulo 216; that is, a finite integer value k of Number type with positive sign and less

than 216 in magnitude such that the mathematical difference of posInt and k is mathematically an integer

multiple of 216.

5. Return int16bit.

NOTE Given the above definition of ToUint16:

¶ The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.

¶ ToUint16 maps -0 to +0.

9.8 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 14:

Table 14 ð ToString Conversions

Argument Type Result

Undefined "undefined"

Null "null"

Boolean If the argument is true, then the result is "true" .

If the argument is false, then the result is "false" .

Number See 9.8.1.

String Return the input argument (no conversion)

Object Apply the following steps:

1. Let primValue be ToPrimitive(input argument, hint String).

2. Return ToString(primValue).

9.8.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number m to String format as follows:

1. If m is NaN, return the String "NaN" .

2. If m is +0 or -0, return the String "0" .

3. If m is less than zero, return the String concatenation of the String " - " and ToString(-m).

4. If m is infinity, return the String "Infinity" .

5. Otherwise, let n, k, and s be integers such that k ² 1, 10k-1 ¢ s < 10k, the Number value for s ³ 10n-k is m, and

k is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not

divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these

criteria.

6. If k ¢ n ¢ 21, return the String consisting of the k digits of the decimal representation of s (in order, with no

leading zeroes), followed by n-k occurrences of the character ó0ô.

7. If 0 < n ¢ 21, return the String consisting of the most significant n digits of the decimal representation of s,

followed by a decimal point ó. ô, followed by the remaining k-n digits of the decimal representation of s.

8. If -6 < n ¢ 0, return the String consisting of the character ó0ô, followed by a decimal point ó. ô, followed by

-n occurrences of the character ó0ô, followed by the k digits of the decimal representation of s.

9. Otherwise, if k = 1, return the String consisting of the single digit of s, followed by lowercase character óeô,

followed by a plus sign ó+ô or minus sign ó-ô according to whether n-1 is positive or negative, followed by

the decimal representation of the integer abs(n-1) (with no leading zeroes).

50 © Ecma International 2011

10. Return the String consisting of the most significant digit of the decimal representation of s, followed by a

decimal point ó.ô, followed by the remaining k-1 digits of the decimal representation of s, followed by the

lowercase character óeô, followed by a plus sign ó+ô or minus sign ó-ô according to whether n-1 is positive

or negative, followed by the decimal representation of the integer abs(n-1) (with no leading zeroes).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative

requirements of this Standard:

¶ If x is any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as x.

¶ The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is

recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k ² 1, 10k-1 ¢ s < 10k, the Number value for s ³ 10n-k is m, and k is as small as

possible. If there are multiple possibilities for s, choose the value of s for which s ³ 10n-k is closest in value to m. If there are

two such possible values of s, choose the one that is even. Note that k is the number of digits in the decimal representation of

s and that s is not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal

conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as
http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib mirror sites.

9.9 ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 15:

Table 15 ð ToObject

Argument Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Create a new Boolean object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.6 for a description of Boolean
objects.

Number Create a new Number object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.7 for a description of Number
objects.

String Create a new String object whose [[PrimitiveValue]] internal property is set
to the value of the argument. See 15.5 for a description of String objects.

Object The result is the input argument (no conversion).

9.10 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 16:

Table 16 ð CheckObjectCoercible Results

© Ecma International 2011 51

Argument Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return

Number Return

String Return

Object Return

9.11 IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language value,
is a callable function Object according to Table 17:

Table 17 ð IsCallable Results

Argument Type Result

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Object If the argument object has a [[Call]] internal method, then return true,
otherwise return false.

9.12 The SameValue Algorithm

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,

produces true or false. Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.

2. If Type(x) is Undefined, return true .

3. If Type(x) is Null, return true .

4. If Type(x) is Number, then.

a. If x is NaN and y is NaN, return true .

b. If x is +0 and y is -0, return false.

c. If x is -0 and y is +0, return false.

d. If x is the same Number value as y, return true .

e. Return false.

5. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and

same characters in corresponding positions); otherwise, return false.

6. If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.

7. Return true if x and y refer to the same object. Otherwise, return false.

10 Executable Code and Execution Contexts

10.1 Types of Executable Code

There are three types of ECMAScript executable code:

¶ Global code is source text that is treated as an ECMAScript Program. The global code of a

particular Program does not include any source text that is parsed as part of a FunctionBody.

52 © Ecma International 2011

¶ Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter

to the built-in eval function is a String, it is treated as an ECMAScript Program. The eval code for a

particular invocation of eval is the global code portion of that Program.

¶ Function code is source text that is parsed as part of a FunctionBody. The function code of a
particular FunctionBody does not include any source text that is parsed as part of a nested

FunctionBody. Function code also denotes the source text supplied when using the built -in
Function object as a constructor. More precisely, the last parameter provided to the Function

constructor is converted to a String and treated as the FunctionBody. If more than one parameter is

provided to the Function constructor, all parameters except the last one are converted to Strings

and concatenated together, separated by commas. The resulting String is interpreted as the
FormalParameterList for the FunctionBody defined by the last parameter. The function code for a

particular instantiation of a Function does not include any source text that is parsed as part of a

nested FunctionBody.

10.1.1 Strict Mode Code

An ECMAScript Program syntactic unit may be processed using either unrestricted or strict mode syntax and

semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict
global code, strict eval code, and strict function code. Code is interpreted as strict mode code in the following
situations:

¶ Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.1).

¶ Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if
the call to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

¶ Function code that is part of a FunctionDeclaration, FunctionExpression, or accessor PropertyAssignment is
strict function code if its FunctionDeclaration, FunctionExpression, or PropertyAssignment is contained in strict

mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

¶ Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBody begins with a Directive

Prologue that contains a Use Strict Directive.

¶ Unless specified otherwise, extended code (10.1.2) is also strict mode code.

10.1.2 Extended Code

Extended code is any code contained in an ECMAScript Program syntactic unit that contains occurrences of

lexical or syntactic productions defined subsequent to the Fifth Edition of the ECMAScript specification. Code
is interpreted as extended code in the following situations:

¶ Global code is extended global code if it is contained in an ECMAScript Program syntactic unit that has

been designated as an extended Program unit in an implementation defined manner or if ???.

¶ Eval code is extended eval code if the call to eval is a direct call (see 15.1.2.1.1) to the eval function that
is contained in extended mode code or if it begins with ???.

¶ Function code that is part of a FunctionDeclaration, FunctionExpression, or accessor PropertyAssignment is
extended function code if its FunctionDeclaration, FunctionExpression, or PropertyAssignment is contained in

extended mode code or if the function code begins with ???.

¶ Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBody begins with ???.

© Ecma International 2011 53

The term ñstrict codeò is used to designate both actual strict mode code and extended code while the term
ñextended codeò only designates actual extended code.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables

and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration, a WithStatement, or a Catch clause of a TryStatement and a new Lexical Environment is

created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then the Lexical

Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current execution of the surrounding function.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

10.2.1 Environment Records

There are two kinds of Environment Record values used in this specification: declarative environment records
and object environment records. Declarative environment records are used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly

associate identifier bindings with ECMAScript language values. Object environment records are used to define
the effect of ECMAScript elements such as Program and WithStatement that associate identifier bindings with

the properties of some object.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with two concrete subclasses, declarative
environment record and object environment record. The abstract class includes the abstract specification
methods defined in Table 18. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

54 © Ecma International 2011

Table 18 ð Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D) Create a new mutable binding in an environment record. The
String value N is the text of the bound name. If the optional
Boolean argument D is true the binding is may be subsequently

deleted.

SetMutableBinding(N,V, S) Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. S is a Boolean flag. If S is true and
the binding cannot be set throw a TypeError exception. S is

used to identify strict mode references.

GetBindingValue(N,S) Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. S is used to identify strict mode references. If S is true

and the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N) Delete a binding from an environment record. The String value N
is the text of the bound name If a binding for N exists, remove

the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

ImplicitThisValue() Returns the value to use as the this value on calls to function
objects that are obtained as binding values from this
environment record.

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable,
constant, and/or function declarations. A declarative environment record binds the set of identifiers defined by
the declarations contained within its scope.

In addition to the mutable bindings supported by all Environment Records, declarative environment records
also provide for immutable bindings. An immutable binding is one where the association between an identifier
and a value may not be modified once it has been established. Creation and initialisation of declarative
binding are distinct steps so it is possible for such bindings to exist in either an initialised or uninitialised state.
Declarative environment records support the methods listed in Table 19 in addition to the Environment Record
abstract specification methods:

Table 19 ð Additional Methods of Declarative Environment Records

Method Purpose

CreateImmutableBinding(N) Create a new but uninitialised immutable binding in an
environment record. The String value N is the text of the bound

name.

InitializeBinding(N,V) Set the value of an already existing but uninitialised binding in
an environment record. The String value N is the text of the
bound name. V is the value for the binding and is a value of any

ECMAScript language type.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

© Ecma International 2011 55

10.2.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. Let envRec be the declarative environment record for which the method was invoked.

2. If envRec has a binding for the name that is the value of N, return true .

3. If it does not have such a binding, return false.

10.2.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is initialised to the value undefined. A binding must not already

exist in this Environment Record for N. If Boolean argument D is provided and has the value true the new

binding is marked as being subject to deletion.

1. Let envRec be the declarative environment record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create a mutable binding in envRec for N and and record that it is uninitialised. If D is true record that the

newly created binding may be deleted by a subsequent DeleteBinding call.

10.2.1.1.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a

TypeError is thrown if S is true.

1. Let envRec be the declarative environment record for which the method was invoked.

2. Assert: envRec must have a binding for N.

3. Assert: The binding for N in envRec has already been initialised.

4. If the binding for N in envRec is a mutable binding, change its bound value to V.

5. Else if binding for N in envRec has not yet been initialized throw a ReferenceError exception.

6. Else this must be an attempt to change the value of an immutable binding so if S if true throw a TypeError

exception.

10.2.1.1.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. The binding must already

exist. If S is true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

1. Let envRec be the declarative environment record for which the method was invoked.

2. Assert: envRec has a binding for N.

3. If the binding for N in envRec is an uninitialised binding, then

a. If S is false, return the value undefined, otherwise throw a ReferenceError exception.

4. Else, return the value currently bound to N in envRec.

10.2.1.1.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

1. Let envRec be the declarative environment record for which the method was invoked.

2. If envRec does not have a binding for the name that is the value of N, return true .

3. If the binding for N in envRec is cannot be deleted, return false.

4. Remove the binding for N from envRec.

5. Return true .

56 © Ecma International 2011

10.2.1.1.6 ImplicitThisValue()

Declarative Environment Records always return undefined as their ImplicitThisValue.

1. Return undefined.

10.2.1.1.7 CreateImmutableBinding (N)

The concrete Environment Record method CreateImmutableBinding for declarative environment records
creates a new immutable binding for the name N that is initialised to the value undefined. A binding must not

already exist in this environment record for N.

1. Let envRec be the declarative environment record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create an immutable binding in envRec for N and record that it is uninitialised.

10.2.1.1.8 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for declarative environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the value

of argument V. An uninitialised binding for N must already exist.

1. Let envRec be the declarative environment record for which the method was invoked.

2. Assert: envRec must have an uninitialised binding for N.

3. Set the bound value for N in envRec to V.

4. Record that the binding for N in envRec has been initialised.

10.2.1.2 Object Environment Records

Each object environment record is associated with an object called its binding object. An object environment
record binds the set of identifier names that directly correspond to the property names of its binding object.
Property names that are not an IdentifierName are not included in the set of bound identifiers. Both own and

inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because
properties can be dynamically added and deleted from objects, the set of identifiers bound by an object
environment record may potentially change as a side-effect of any operation that adds or deletes properties.
Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if
the Writable attribute of the corresponding property has the value false. Immutable bindings do not exist for
object environment records.

Object environment records can be configured to provide their binding object as an implicit this value for use
in function calls. This capability is used to specify the behaviour of With Statement (12.10) induced bindings.
The capability is controlled by a provideThis Boolean value that is associated with each object environment

record. By default, the value of provideThis is false for any object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. Let envRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Return the result of calling the [[HasProperty]] internal method of bindings, passing N as the property name.

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates in
an environment recordôs associated binding object a property whose name is the String value and initialises it

© Ecma International 2011 57

to the value undefined. A property named N must not already exist in the binding object. If Boolean argument

D is provided and has the value true the new propertyôs [[Configurable]] attribute is set to true, otherwise it is

set to false.

1. Let envRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Assert: The result of calling the [[HasProperty]] internal method of bindings, passing N as the property

name, is false.

4. If D is true then let configValue be true otherwise let configValue be false.

5. Call the [[DefineOwnProperty]] internal method of bindings, passing N, Property Descriptor

{[[Value]]: undefined, [[Writable]]: true , [[Enumerable]]: true , [[Configurable]]: configValue}, and true as

arguments.

10.2.1.2.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to set
the value of the environment recordôs associated binding objectôs property whose name is the value of the
argument N to the value of argument V. A property named N should already exist but if it does not or is not

currently writable, error handling is determined by the value of the Boolean argument S.

1. Let envRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Call the [[Put]] internal method of bindings with arguments N, V, and S.

10.2.1.2.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value
of its associated binding objectôs property whose name is the String value of the argument identifier N. The

property should already exist but if it does not the result depends upon the value of the S argument:

1. Let envRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Let value be the result of calling the [[HasProperty]] internal method of bindings, passing N as the property

name.

4. If value is false, then

a. If S is false, return the value undefined, otherwise throw a ReferenceError exception.

5. Return the result of calling the [[Get]] internal method of bindings, passing N for the argument.

10.2.1.2.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

1. Let envRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Return the result of calling the [[Delete]] internal method of bindings, passing N and false as arguments.

10.2.1.2.6 ImplicitThisValue()

Object Environment Records return undefined as their ImplicitThisValue unless their provideThis flag is true.

1. Let envRec be the object environment record for which the method was invoked.

2. If the provideThis flag of envRec is true , return the binding object for envRec.

3. Otherwise, return undefined.

10.2.2 Lexical Environment Operations

The following abstract operations are used in this specification to operate upon lexical environments:

58 © Ecma International 2011

10.2.2.1 GetIdentifierReference (lex, name, strict)

The abstract operation GetIdentifierReference is called with a Lexical Environment lex, a String name, and a

Boolean flag strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null , then

a. Return a value of type Reference whose base value is undefined, whose referenced name is name,

and whose strict mode flag is strict.

2. Let envRec be lexôs environment record.

3. Let exists be the result of calling the HasBinding(N) concrete method of envRec passing name as the

argument N.

4. If exists is true , then

a. Return a value of type Reference whose base value is envRec, whose referenced name is name, and

whose strict mode flag is strict.

5. Else

a. Let outer be the value of lexôs outer environment reference.

b. Return the result of calling GetIdentifierReference passing outer, name, and strict as arguments.

10.2.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null
as argument E the following steps are performed:

1. Let env be a new Lexical Environment.

2. Let envRec be a new declarative environment record containing no bindings.

3. Set envôs environment record to be envRec.

4. Set the outer lexical environment reference of env to E.

5. Return env.

10.2.2.3 NewObjectEnvironment (O, E)

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E

(or null) as arguments, the following steps are performed:

1. Let env be a new Lexical Environment.

2. Let envRec be a new object environment record containing O as the binding object.

3. Set envôs environment record to be envRec.

4. Set the outer lexical environment reference of env to E.

5. Return env.

10.2.3 The Global Environment

The global environment is a unique Lexical Environment which is created before any ECMAScript code is
executed. The global environmentôs Environment Record is an object environment record whose binding
object is the global object (15.1). The global environmentôs outer environment reference is null.

As ECMAScript code is executed, additional properties may be added to the global object and the initial
properties may be modified.

10.3 Execution Contexts

When control is transferred to ECMAScript executable code, control is entering an execution context. Active
execution contexts logically form a stack. The top execution context on this logical stack is the running
execution context. A new execution context is created whenever control is transferred from the executable
code associated with the currently running execution context to executable code that is not associated with
that execution context. The newly created execution context is pushed onto the stack and becomes the
running execution context.

An execution context contains whatever state is necessary to track the execution progress of its associated
code. In addition, each execution context has the state components listed in Table 20.

© Ecma International 2011 59

Table 20 ðExecution Context State Components

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds
bindings created by VariableStatements and FunctionDeclarations within

this execution context.

ThisBinding The value associated with the this keyword within ECMAScript code

associated with this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment
components initially have the same value. The value of the VariableEnvironment component never changes
while the value of the LexicalEnvironment component may change during execution of code within an
execution context.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms ñLexicalEnvironmentò,
ñVariableEnvironmentò and ñThisBindingò are used without qualification they are in reference to those
components of the running execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact
of an ECMAScript implementation. It is impossible for an ECMAScript program to access an execution
context.

10.3.1 Identifier Resolution

Identifier resolution is the process of determining the binding of an IdentifierName using the

LexicalEnvironment of the running execution context. During execution of ECMAScript code, Identifier
Resolution is performed using the following algorithm:

1. Let env be the running execution contextôs LexicalEnvironment.

2. If the syntactic production that is being evaluated is contained in a strict mode code, then let strict be true ,

else let strict be false.

3. Return the result of calling GetIdentifierReference function passing env, the String value containing the

same sequence of characters as IdentifierName, and strict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component
equal to the Identifier String.

10.4 Establishing an Execution Context

Evaluation of global code or code using the eval function (15.1.2.1) establishes and enters a new execution
context. Every invocation of an ECMAScript code function (13.2.1) also establishes and enters a new
execution context, even if a function is calling itself recursively. Every return exits an execution context. A
thrown exception may also exit one or more execution contexts.

When control enters an execution context, the execution contextôs ThisBinding is set, its VariableEnvironment
and initial LexicalEnvironment are defined, and declaration binding instantiation (10.5) is performed. The exact
manner in which these actions occur depend on the type of code being entered.

10.4.1 Entering Global Code

The following steps are performed when control enters the execution context for global code:

1. Initialise the execution context using the global code as described in 10.4.1.1.

60 © Ecma International 2011

2. Perform Declaration Binding Instantiation as described in 10.5 using the global code.

10.4.1.1 Initial Global Execution Context

The following steps are performed to initialise a global execution context for ECMAScript code C:

1. Set the VariableEnvironment to the Global Environment.

2. Set the LexicalEnvironment to the Global Environment.

3. Set the ThisBinding to the global object.

10.4.2 Entering Eval Code

The following steps are performed when control enters the execution context for eval code:

1. If there is no calling context or if the eval code is not being evaluated by a direct call (15.1.2.1.1) to the eval

function then,

a. Initialise the execution context as if it was a global execution context using the eval code as C as

described in 10.4.1.1.

2. Else,

a. Set the ThisBinding to the same value as the ThisBinding of the calling execution context.

b. Set the LexicalEnvironment to the same value as the LexicalEnvironment of the calling execution

context.

c. Set the VariableEnvironment to the same value as the VariableEnvironment of the calling execution

context.

3. If the eval code is strict code, then
a. Let strictVarEnv be the result of calling NewDeclarativeEnvironment passing the

LexicalEnvironment as the argument.

b. Set the LexicalEnvironment to strictVarEnv.

c. Set the VariableEnvironment to strictVarEnv.

4. Perform Declaration Binding Instantiation as described in 10.5 using the eval code.

10.4.2.1 Strict Mode Restrictions

The eval code cannot instantiate variable or function bindings in the variable environment of the calling
context that invoked the eval if either the code of the calling context or the eval code is strict code. Instead
such bindings are instantiated in a new VariableEnvironment that is only accessible to the eval code.

10.4.3 Entering Function Code

The following steps are performed when control enters the execution context for function code contained in
function object F, a caller provided thisArg, and a caller provided argumentsList:

1. If the function code is strict code, set the ThisBinding to thisArg.

2. Else if thisArg is null or undefined, set the ThisBinding to the global object.

3. Else if Type(thisArg) is not Object, set the ThisBinding to ToObject(thisArg).

4. Else set the ThisBinding to thisArg.

5. Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the [[Scope]] internal

property of F as the argument.

6. Set the LexicalEnvironment to localEnv.

7. Set the VariableEnvironment to localEnv.

8. Let code be the value of Fôs [[Code]] internal property.

9. Perform Declaration Binding Instantiation using the function code code and argumentsList as described in

10.5.

10.5 Declaration Binding Instantiation

Every execution context has an associated VariableEnvironment. Variables and functions declared in
ECMAScript code evaluated in an execution context are added as bindings in that VariableEnvironmentôs
Environment Record. For function code, parameters are also added as bindings to that Environment Record.

© Ecma International 2011 61

Which Environment Record is used to bind a declaration and its kind depends upon the type of ECMAScript
code executed by the execution context, but the remainder of the behaviour is generic. On entering an
execution context, bindings are created in the VariableEnvironment as follows using the caller provided code

and, if it is function code, argument List args:

1. Let env be the environment record component of the running execution contextôs VariableEnvironment.

2. If code is eval code, then let configurableBindings be true else let configurableBindings be false.

3. If code is strict code, then let strict be true else let strict be false.

4. If code is function code, then

a. Let func be the function whose [[Call]] internal method initiated execution of code. Let names be

the value of funcôs [[FormalParameters]] internal property.

b. Let argCount be the number of elements in args.

c. Let n be the number 0.

d. For each String argName in names, in list order do

i. Let n be the current value of n plus 1.

ii. If n is greater than argCount, let v be undefined otherwise let v be the value of the nôth

element of args.

iii. Let argAlreadyDeclared be the result of calling envôs HasBinding concrete method passing

argName as the argument.

iv. If argAlreadyDeclared is false, then

1. Call envôs CreateMutableBinding concrete method passing argName as the

argument.

2. Call envôs InitializeBinding concrete method passing argName, and undefined as

the arguments.

v. Call envôs SetMutableBinding concrete method passing argName, v, and strict as the

arguments.

5. For each FunctionDeclaration f in code, in source text order do

a. Let fn be the Identifier in FunctionDeclaration f.

b. Let fo be the result of instantiating FunctionDeclaration f as described in Clause 13.

c. Let funcAlreadyDeclared be the result of calling envôs HasBinding concrete method passing fn as

the argument.

d. If funcAlreadyDeclared is false, then

i. Call envôs CreateMutableBinding concrete method passing fn and configurableBindings as

the arguments.

ii. Call envôs InitializeBinding concrete method passing fn, and undefined as the arguments.

e. Else if env is the environment record component of the global environment then

i. Let go be the global object.

ii. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of go with

argument fn.

iii. If existingProp is undefined or existingProp.[[Configurable]] is true , then

1. Call the [[DefineOwnProperty]] internal method of go, passing fn, Property

Descriptor {[[Value]]: undefined, [[Writable]]: true , [[Enumerable]]: true ,

[[Configurable]]: configurableBindings }, and true as arguments.

iv. Else if IsAccessorDescriptor(existingProp) or existingProp does not have attribute values

{[[Writable]]: true , [[Enumerable]]: true}, then

1. Throw a TypeError exception.

f. Call envôs SetMutableBinding concrete method passing fn, fo, and strict as the arguments.

6. Let argumentsAlreadyDeclared be the result of calling envôs HasBinding concrete method passing

"arguments" as the argument.

7. If code is function code and argumentsAlreadyDeclared is false, then

a. Let argsObj be the result of calling the abstract operation CreateArgumentsObject (10.6) passing

func, names, args, env and strict as arguments.

b. I f strict is true , then

i. Call envôs CreateImmutableBinding concrete method passing the String "arguments " as

the argument.

c. Else,

i. Call envôs CreateMutableBinding concrete method passing the String "arguments " as the

argument.

d. Call envôs InitializeBinding concrete method passing "arguments " and argsObj as arguments.

62 © Ecma International 2011

8. For each VariableDeclaration and VariableDeclarationNoIn d in code, in source text order do

a. Let dn be the Identifier in d.

b. Let varAlreadyDeclared be the result of calling envôs HasBinding concrete method passing dn as the

argument.

c. If varAlreadyDeclared is false, then

i. Call envôs CreateMutableBinding concrete method passing dn and configurableBindings as

the arguments.

ii. Call envôs InitializeBinding concrete method passing dn, and undefined as the arguments.

iii. Call envôs SetMutableBinding concrete method passing dn, undefined, and strict as the

arguments.

d. else if env is the environment record component of the global environment then

i. Let go be the global object.

ii. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of go with

argument fn.

iii. If existingProp is undefined, then

1. Call the [[DefineOwnProperty]] internal method of go, passing dn, Property

Descriptor {[[Value]]: undefined, [[Writable]]: true , [[Enumerable]]: true ,

[[Configurable]]: configurableBindings }, and true as arguments.

10.5.XXX Block Declaration Instantiation

When a Block or CaseBlock production is evaluated a new Declarative Environment Record is created and

bindings for each block scoped variable, constant, or function declarated in the block are instantiated in the
environment record.

Block Declaration Instantiation is performed as follows using arguments code and env. code is the grammar
production corresponding to the body of the block. env is the declarative environment record in which

bindings are to be.

1. Assert: parameterNames has no duplicate entries.

2. Let declarations be the LexicalDeclarations of code.

3. For each FunctionDeclaration f in declarations, in list order do

a. Let fn be the Identifier in FunctionDeclaration f.

b. Let fo be the result of instantiating FunctionDeclaration f as described in Clause 13.

c. Call envôs CreateMutableBinding concrete method passing fn and configurableBindings as the

arguments.

d. Call envôs InitializeBinding concrete method passing fn, and fo as the arguments.

4. For each LetDeclaration and ConstDeclaration d in code do

a. For each element dn of the BoundNames of d do

i. If d is a LetDeclaration, then

1. Call envôs CreateMutableBinding concrete method passing dn and false as the

arguments.

ii. Else,

1. Call envôs CreateImmutableBinding concrete method passing dn as the argument.

10.6 Arguments Object

When control enters an execution context for function code, an arguments object is created unless (as
specified in 10.5) the identifier arguments occurs as an Identifier in the functionôs FormalParameterList or

occurs as the Identifier of a FunctionDeclaration contained in the function code.

The arguments object is created by calling the abstract operation CreateArgumentsObject with arguments func

the function object whose code is to be evaluated, names a List containing the functionôs formal parameter
names, args the actual arguments passed to the [[Call]] internal method, env the variable environment for the
function code, and strict a Boolean that indicates whether or not the function code is strict code. When

CreateArgumentsObject is called the following steps are performed:

1. Let len be the number of elements in args.

2. Let obj be the result of creating a new ECMAScript object.

© Ecma International 2011 63

3. Set all the internal methods of obj as specified in 8.12.

4. Add the [[NativeBrand]] internal propert to obj with value NativeArguments.

5. Set the [[Prototype]] internal property of obj to the standard built-in Object prototype object (15.2.4).

6. Call the [[DefineOwnProperty]] internal method on obj passing " length " , the Property Descriptor

{[[Value]]: len, [[Writable]]: true , [[Enumerable]]: false, [[Configurable]]: true }, and false as arguments.

7. Let map be the result of creating a new object as if by the expression new Object() where Object is

the standard built-in constructor with that name

8. Let mappedNames be an empty List.

9. Let indx = len - 1.

10. Repeat while indx >= 0,

a. Let val be the element of args at 0-origined list position indx.

b. Call the [[DefineOwnProperty]] internal method on obj passing ToString(indx), the property

descriptor {[[Value]]: val, [[Writable]]: true , [[Enumerable]]: true , [[Configurable]]: true}, and

false as arguments.

c. If indx is less than the number of elements in names, then

i. Let name be the element of names at 0-origined list position indx.

ii. If strict is false and name is not an element of mappedNames, then

1. Add name as an element of the list mappedNames.

2. Let g be the result of calling the MakeArgGetter abstract operation with arguments

name and env.

3. Let p be the result of calling the MakeArgSetter abstract operation with arguments

name and env.

4. Call the [[DefineOwnProperty]] internal method of map passing ToString(indx), the

Property Descriptor {[[Set]]: p, [[Get]]: g, [[Configurable]]: true }, and false as

arguments.

d. Let indx = indx - 1

11. If mappedNames is not empty, then

a. Set the [[ParameterMap]] internal property of obj to map.

b. Set the [[Get]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]] internal methods of obj

to the definitions provided below.

12. If strict is false, then

a. Call the [[DefineOwnProperty]] internal method on obj passing "callee ", the property descriptor

{[[Value]]: func, [[Writable]]: true , [[Enumerable]]: false, [[Configurable]]: true}, and false as

arguments.

13. Else, strict is true so

a. Let thrower be the [[ThrowTypeError]] function Object (13.2.3).

b. Call the [[DefineOwnProperty]] internal method of obj with arguments "caller" ,

PropertyDescriptor {[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]:

false}, and false.

c. Call the [[DefineOwnProperty]] internal method of obj with arguments "callee" ,

PropertyDescriptor {[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]:

false}, and false.

14. Return obj

The abstract operation MakeArgGetter called with String name and environment record env creates a function

object that when executed returns the value bound for name in env. It performs the following steps:

1. Let body be the result of concatenating the Strings "return ", name, and "; ".

2. Return the result of creating a function object as described in 13.2 using no FormalParameterList, body for

FunctionBody, env as Scope, and true for Strict.

The abstract operation MakeArgSetter called with String name and environment record env creates a function

object that when executed sets the value bound for name in env. It performs the following steps:

1. Let param be the String name concatenated with the String "_arg ".

2. Let body be the String "<name> = <param>; " with <name> replaced by the value of name and <param>

replaced by the value of param.

3. Return the result of creating a function object as described in 13.2 using a List containing the single String

param as FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

64 © Ecma International 2011

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when
called with a property name P performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.

2. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the

argument.

3. If the value of isMapped is undefined, then

a. Let v be the result of calling the default [[Get]] internal method (8.12.3) on the arguments object

passing P as the argument.

b. If P is "caller" and v is a strict mode Function object, throw a TypeError exception.

c. Return v.

4. Else, map contains a formal parameter mapping for P so,

a. Return the result of calling the [[Get]] internal method of map passing P as the argument.

The [[GetOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P performs the following steps:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on the arguments

object passing P as the argument.

2. If desc is undefined then return desc.

3. Let map be the value of the [[ParameterMap]] internal property of the arguments object.

4. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the

argument.

5. If the value of isMapped is not undefined, then

a. Set desc.[[Value]] to the result of calling the [[Get]] internal method of map passing P as the

argument.

6. Return desc.

The [[DefineOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P, Property Descriptor Desc, and Boolean flag Throw performs

the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.

2. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the

argument.

3. Let allowed be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on the

arguments object passing P, Desc, and false as the arguments.

4. If allowed is false, then

a. If Throw is true then throw a TypeError exception, otherwise return false.

5. If the value of isMapped is not undefined, then

a. If IsAccessorDescriptor(Desc) is true , then

i. Call the [[Delete]] internal method of map passing P, and false as the arguments.

b. Else

i. I f Desc.[[Value]] is present, then

1. Call the [[Put]] internal method of map passing P, Desc.[[Value]], and Throw as the

arguments.

ii. If Desc.[[Writable]] is present and its value is false, then

1. Call the [[Delete]] internal method of map passing P and false as arguments.

6. Return true .

The [[Delete]] internal method of an arguments object for a non-strict mode function with formal parameters
when called with a property name P and Boolean flag Throw performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.

2. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the

argument.

3. Let result be the result of calling the default [[Delete]] internal method (8.12.7) on the arguments object

passing P and Throw as the arguments.

4. If result is true and the value of isMapped is not undefined, then

a. Call the [[Delete]] internal method of map passing P, and false as the arguments.

5. Return result.

© Ecma International 2011 65

NOTE 1 For non-strict mode functions the array index (defined in 15.4) named data properties of an arguments object
whose numeric name values are less than the number of formal parameters of the corresponding function object initially
share their values with the corresponding argument bindings in the functionôs execution context. This means that changing
the property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if
such a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode
functions, the values of the arguments objectôs properties are simply a copy of the arguments passed to the function and

there is no dynamic linkage between the property values and the formal parameter values.

NOTE 2 The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use

such objects to implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller " and

"callee " which throw a TypeError exception on access. The "callee " property has a more specific meaning for non-

strict mode functions and a "caller " property has historically been provided as an implementation-defined extension by

some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is

defined in any other manner by conforming ECMAScript implementations.

11 Expressions

11.1 Primary Expressions

Syntax

PrimaryExpression :
this

Identifier

Literal

ArrayLiteral

ObjectLiteral

(Expression)

11.1.1 The this Keyword

The this keyword evaluates to the value of the ThisBinding of the current execution context.

11.1.2 Identifier Reference

An Identifier is evaluated by performing Identifier Resolution as specified in 10.3.1 using the IdentifierName

corresponding to Identifier. The result of evaluating an Identifier is always a value of type Reference.

11.1.3 Literal Reference

A Literal is evaluated as described in 7.8.

11.1.4 Array Initialiser

An array initialiser is an expression describing the initialisation of an Array object, written in a form of a literal.
It is a list of zero or more expressions, each of which represents an array element, enclosed in square
brackets. The elements need not be literals; they are evaluated each time the array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the
element list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another

comma), the missing array element contributes to the length of the Array and increases the index of
subsequent elements. Elided array elements are not defined. If an element is elided at the end of an array,
that element does not contribute to the length of the Array.

66 © Ecma International 2011

Syntax

ArrayLiteral :

[Elisionopt]

[ElementList]

[ElementList , Elisionopt]

ElementList :
Elisionopt AssignmentExpression

Elisionopt é AssignmentExpression

ElementList , Elisionopt AssignmentExpression

ElementList , Elisionopt é AssignmentExpression

Elision :
,

Elision ,

Semantics

The production ArrayLiteral : [Elisionopt] is evaluated as follows:

1. Let array be the result of creating a new object as if by the expression new Array() where Array is

the standard built-in constructor with that name.

2. Let pad be the result of evaluating Elision; if not present, use the numeric value zero.

3. Call the [[Put]] internal method of array with arguments " length " , pad, and false.

4. Return array.

The production ArrayLiteral : [ElementList] is evaluated as follows:

1. Return the result of evaluating ElementList.

The production ArrayLiteral : [ElementList , Elisionopt] is evaluated as follows:

1. Let array be the result of evaluating ElementList.

2. Let pad be the result of evaluating Elision; if not present, use the numeric value zero.

3. Let len be the result of calling the [[Get]] internal method of array with argument " length " .

4. Call the [[Put]] internal method of array with arguments " length " , ToUint32(pad+len), and false.

5. Return array.

The production ElementList : Elisionopt AssignmentExpression is evaluated as follows:

1. Let array be the result of creating a new object as if by the expression new Array() where Array is

the standard built-in constructor with that name.

2. Let firstIndex be the result of evaluating Elision; if not present, use the numeric value zero.

3. Let initResult be the result of evaluating AssignmentExpression.

4. Let initValue be GetValue(initResult).

5. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(firstIndex), the Property

Descriptor { [[Value]]: initValue, [[Writable]]: true , [[Enumerable]]: true , [[Configurable]]: true}, and

false.

6. Return array.

The static semantics of the production ElementList : Elisionopt é AssignmentExpression are:

¶ It is a Syntax Error if the source code parsed with this production is not extended code.

The production ElementList : Elisionopt é AssignmentExpression is evaluated as follows:

1. Let array be the result of creating a new object as if by the expression new Array() where Array is

the standard built-in constructor with that name.

© Ecma International 2011 67

2. Let index be the result of evaluating Elision; if not present, use the numeric value zero.

3. Let spreadRef be the result of evaluating AssignmentExpression.

4. Let spreadValue be GetValue(spreadRef).

5. Let spreadObj be ToObject(spreadValue).

6. Let lenVal be the result of calling the [[Get]] internal method of spreadObj with argument ñlength ò.

7. Let spreadLen be ToUint32(lenVal).

8. Let n=0;

9. Repeat, while n < spreadLen

a. Let exists be the result of calling the [[HasProperty]] internal method of spreadObj with ToString(n).

b. If exists is true then,

i. Let v be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the

argument.

ii. Call the [[DefineOwnProperty]] internal method of array with arguments

ToString(ToUint32(index)), Property Descriptor {[[Value]]: v, [[Writable]]: true , [[Enumerable]]:

true , [[Configurable]]: true }, and false.

c. Let n = n+1.

d. Let index = index +1.

10. Return array.

The production ElementList : ElementList , Elisionopt AssignmentExpression is evaluated as follows:

1. Let array be the result of evaluating ElementList.

2. Let pad be the result of evaluating Elision; if not present, use the numeric value zero.

3. Let initResult be the result of evaluating AssignmentExpression.

4. Let initValue be GetValue(initResult).

5. Let len be the result of calling the [[Get]] internal method of array with argument " length " .

6. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(ToUint32((pad+len)) and

the Property Descriptor { [[Value]]: initValue, [[Writable]]: true , [[Enumerable]]: true , [[Configurable]]:

true}, and false.

7. Return array.

The static semantics of the production ElementList : ElementList , Elisionopt é AssignmentExpression are:

¶ It is a Syntax Error if the source code parsed with this production is not extended code.

The production ElementList : ElementList , Elisionopt é AssignmentExpression is evaluated as follows:

1. Let array be the result of evaluating ElementList.

2. Let pad be the result of evaluating Elision; if not present, use the numeric value zero.

3. Let spreadRef be the result of evaluating AssignmentExpression.

4. Let spreadValue be GetValue(spreadRef).

5. Let spreadObj be ToObject(spreadValue).

6. Let index be the result of calling the [[Get]] internal method of array with argument " length " .

7. Let lenVal be the result of calling the [[Get]] internal method of spreadObj with argument ñlength ò.

8. Let spreadLen be ToUint32(lenVal).

9. Let n=0;

10. Repeat, while n < spreadLen

a. Let exists be the result of calling the [[HasProperty]] internal method of spreadObj with ToString(n).

b. If exists is true then,

i. Let v be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the

argument.

ii. Call the [[DefineOwnProperty]] internal method of array with arguments

ToString(ToUint32((pad+index)) and the Property Descriptor { [[Value]]: v, [[Writable]]: true ,
[[Enumerable]]: true , [[Configurable]]: true}, and false.

c. Let n = n+1.

d. Let index = index +1.

11. Return array.

The production Elision : , is evaluated as follows:

68 © Ecma International 2011

1. Return the numeric value 1.

The production Elision : Elision , is evaluated as follows:

1. Let preceding be the result of evaluating Elision.

2. Return preceding+1.

NOTE [[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the standard
built-in Array prototype object has been modified in a manner that would preclude the creation of new own properties

using [[Put]].

11.1.5 Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a
literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The
values need not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

ObjectLiteral :
{ }

{ PropertyNameAndValueList }

{ PropertyNameAndValueList , }

PropertyNameAndValueList :
PropertyAssignment

PropertyNameAndValueList , PropertyAssignment

PropertyAssignment :
IdentifierName

PropertyName : AssignmentExpression

get PropertyName () { FunctionBody }

set PropertyName (PropertySetParameterList) { FunctionBody }

PropertyName :

IdentifierName

StringLiteral

NumericLiteral

PropertySetParameterList :
Identifier

Semantics

The production ObjectLiteral : { } is evaluated as follows:

1. Return a new object created as if by the expression new Object() where Object is the standard built-

in constructor with that name.

The productions ObjectLiteral : { PropertyNameAndValueList } and

ObjectLiteral : { PropertyNameAndValueList , } are evaluated as follows:

1. Return the result of evaluating PropertyNameAndValueList.

The PropertyDefinitionList(name) of the production
 PropertyAssignment : PropertyName : AssignmentExpression

is determined as follows:

1. If PropName of PropertyAssignment is not name return the empty List.

2. Return a List containing PropertyAssignment.

© Ecma International 2011 69

The production PropertyNameAndValueList : PropertyAssignment is evaluated as follows:

1. Let obj be the result of creating a new object as if by the expression new Object() where Object is the

standard built-in constructor with that name.

2. Let propId be the result of evaluating PropertyAssignment.

3. Call the [[DefineOwnProperty]] internal method of obj with arguments propId.name, propId.descriptor, and

false.

4. Return obj.

The PropertyDefinitionList(name) of the production

 PropertyNameAndValueList : PropertyNameAndValueList , PropertyAssignment

is determined as follows:

1. Let previous be PropertyDefinitionList(name) of PropertyNameAndValueList.

2. If PropName of PropertyAssignment is name then,

a. Append PropertyAssignment to the end of previous.

3. Return previous.

The static semantics of the production PropertyNameAndValueList : PropertyNameAndValueList ,

PropertyAssignment are:

¶ It is a Syntax Error if this production is contained in strict code, PropertyAssignment is the production

PropertyAssignment : PropertyName : AssignmentExpression, and PropertyDefinitionList(PropName of

PropertyAssignment) of PropertyNameAndValueList is not the empty List.

¶ It is a Syntax Error if PropertyAssignment is the production
 PropertyAssignment : get PropertyName () { FunctionBody }

and PropertyDefinitionList (PropName of PropertyAssignment) of PropertyNameAndValueList includes a

production of the form PropertyAssignment : PropertyName : AssignmentExpression.

¶ It is a Syntax Error if PropertyAssignment is the production
 PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody }

and PropertyDefinitionList (PropName of PropertyAssignment) of PropertyNameAndValueList includes a

production of the form PropertyAssignment : PropertyName : AssignmentExpression.

¶ It is a Syntax Error if PropertyAssignment is the production
 PropertyAssignment : get PropertyName () { FunctionBody }

and PropertyDefinitionList (PropName of PropertyAssignment) of PropertyNameAndValueList includes a

production of the form PropertyAssignment : get PropertyName () { FunctionBody } .

¶ It is a Syntax Error if PropertyAssignment is the production
 PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody }

and PropertyDefinitionList (PropName of PropertyAssignment) of PropertyNameAndValueList includes a

production of the form
 PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody } .

The production
 PropertyNameAndValueList : PropertyNameAndValueList , PropertyAssignment

is evaluated as follows:

1. Let obj be the result of evaluating PropertyNameAndValueList.

2. Let propId be the result of evaluating PropertyAssignment.

3. Call the [[DefineOwnProperty]] internal method of obj with arguments propId.name, propId.descriptor, and

false.

4. Return obj.

If the above steps would throw a SyntaxError then an implementation must treat the error as an early error
(Clause 16).

The PropName of the production PropertyAssignment : IdentifierName is determined as follows:

1. Return PropName(IdentifierName).

70 © Ecma International 2011

The production PropertyAssignment : IdentifierName is evaluated as follows:

1. Let propName be PropName(IdentifierName).

2. Let exprValue be the result of performing Identifier Resolution as specified in 10.3.1 using IdentifierName.

3. Let propValue be GetValue(exprValue).

4. Let desc be the Property Descriptor{[[Value]]: propValue, [[Writable]]: true , [[Enumerable]]: true ,

[[Configurable]]: true}

5. Return Property Identifier (propName, desc).

The PropName of the production PropertyAssignment : PropertyName : AssignmentExpression is determined as

follows:

1. Return PropName(PropertyName).

The production PropertyAssignment : PropertyName : AssignmentExpression is evaluated as follows:

1. Let propName be PropName(PropertyName).

2. Let exprValue be the result of evaluating AssignmentExpression.

3. Let propValue be GetValue(exprValue).

4. Let desc be the Property Descriptor{[[Value]]: propValue, [[Writable]]: true , [[Enumerable]]: true ,

[[Configurable]]: true}

5. Return Property Identifier (propName, desc).

The PropName of the production PropertyAssignment : get PropertyName () { FunctionBody } is determined

as follows:

1. Return PropName(PropertyName).

The production PropertyAssignment : get PropertyName () { FunctionBody } is evaluated as follows:

1. Let propName be PropName(PropertyName).

2. Let closure be the result of creating a new Function object as specified in 13.2 with an empty parameter list

and body specified by FunctionBody. Pass in the LexicalEnvironment of the running execution context as the

Scope. Pass in true as the Strict flag if the PropertyAssignment is contained in strict code or if its

FunctionBody is strict code.

3. Let desc be the Property Descriptor{[[Get]]: closure, [[Enumerable]]: true , [[Configurable]]: true}

4. Return Property Identifier (propName, desc).

The PropName of the production PropertyAssignment : set PropertyName (PropertySetParameterList)

{ FunctionBody } is determined as follows:

1. Return the result of PropName(PropertyName).

The production PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody } is

evaluated as follows:

1. Let propName be PropName(PropertyName).

2. Let closure be the result of creating a new Function object as specified in 13.2 with parameters specified by

PropertySetParameterList and body specified by FunctionBody. Pass in the LexicalEnvironment of the

running execution context as the Scope. Pass in true as the Strict flag if the PropertyAssignment is contained

in strict code or if its FunctionBody is strict code.

3. Let desc be the Property Descriptor{[[Set]]: closure, [[Enumerable]]: true , [[Configurable]]: true}

4. Return Property Identifier (propName, desc).

The static semantics of the production PropertyAssignment : set PropertyName (PropertySetParameterList)

{ FunctionBody } are:

© Ecma International 2011 71

¶ It is a Syntax Error if the Identifier "eval" or the Identifier "argume nts" occurs as the Identifier in a

PropertySetParameterList of a PropertyAssignment that is either contained in strict code or whose

FunctionBody is strict code.

The PropName of the production PropertyName : IdentifierName is evaluated as follows:

1. Return PropName(IdentifierName).

The PropName of the production PropertyName : StringLiteral is evaluated as follows:

1. Return the SV of the StringLiteral.

The PropName of the production PropertyName : NumericLiteral is evaluated as follows:

1. Let nbr be the result of forming the value of the NumericLiteral.

2. Return ToString(nbr).

The PropName of the token IdentifierName is determined as follows:

1. Return the String value containing the same sequence of characters as IdentifierName.

11.1.6 The Grouping Operator

The production PrimaryExpression : (Expression) is evaluated as follows:

1. Return the result of evaluating Expression. This may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this
is so that operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression :
PrimaryExpression

FunctionExpression

MemberExpression [Expression]

MemberExpression . IdentifierName

new MemberExpression Arguments

NewExpression :
MemberExpression

new NewExpression

CallExpression :
MemberExpression Arguments

CallExpression Arguments

CallExpression [Expression]

CallExpression . IdentifierName

Arguments :
()

(ArgumentList)

72 © Ecma International 2011

ArgumentList :

AssignmentExpression

... AssignmentExpression

ArgumentList , AssignmentExpression

ArgumentList , ... AssignmentExpression

LeftHandSideExpression :
NewExpression

CallExpression

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation:

MemberExpression . IdentifierName

CallExpression . IdentifierName

or the bracket notation:

MemberExpression [Expression]

CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:

MemberExpression . IdentifierName

is identical in its behaviour to

MemberExpression [<identifier-name-string>]

and similarly

CallExpression . IdentifierName

is identical in its behaviour to

CallExpression [<identifier-name-string>]

where <identifier-name-string> is a string literal containing the same sequence of characters after processing

of Unicode escape sequences as the IdentifierName.

The production MemberExpression : MemberExpression [Expression] is evaluated as follows:

1. Let baseReference be the result of evaluating MemberExpression.

2. Let baseValue be GetValue(baseReference).

3. Let propertyNameReference be the result of evaluating Expression.

4. Let propertyNameValue be GetValue(propertyNameReference).

5. Call CheckObjectCoercible(baseValue).

6. Let propertyNameString be ToString(propertyNameValue).

7. If the syntactic production that is being evaluated is contained in strict mode code, let strict be true , else let

strict be false.

8. Return a value of type Reference whose base value is baseValue and whose referenced name is

propertyNameString, and whose strict mode flag is strict.

The production CallExpression : CallExpression [Expression] is evaluated in exactly the same manner, except

that the contained CallExpression is evaluated in step 1.

11.2.2 The new Operator

The production NewExpression : new NewExpression is evaluated as follows:

1. Let ref be the result of evaluating NewExpression.

2. Let constructor be GetValue(ref).

© Ecma International 2011 73

3. If Type(constructor) is not Object, throw a TypeError exception.

4. If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.

5. Return the result of calling the [[Construct]] internal method on constructor, providing no arguments (that

is, an empty list of arguments).

The production MemberExpression : new MemberExpression Arguments is evaluated as follows:

1. Let ref be the result of evaluating MemberExpression.

2. Let constructor be GetValue(ref).

3. Let argList be the result of evaluating Arguments, producing an internal list of argument values (11.2.4).

4. If Type(constructor) is not Object, throw a TypeError exception.

5. If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.

6. Return the result of calling the [[Construct]] internal method on constructor, providing the list argList as the

argument values.

11.2.3 Function Calls

The production CallExpression : MemberExpression Arguments is evaluated as follows:

1. Let ref be the result of evaluating MemberExpression.

2. Let func be GetValue(ref).

3. Let argList be the result of evaluating Arguments, producing an internal list of argument values (see 11.2.4).

4. If Type(func) is not Object, throw a TypeError exception.

5. If IsCallable(func) is false, throw a TypeError exception.

6. If Type(ref) is Reference, then

a. If IsPropertyReference(ref) is true , then

i. Let thisValue be GetBase(ref).

b. Else, the base of ref is an Environment Record

i. Let thisValue be the result of calling the ImplicitThisValue concrete method of

GetBase(ref).

7. Else, Type(ref) is not Reference.

a. Let thisValue be undefined.

8. Return the result of calling the [[Call]] internal method on func, providing thisValue as the this value and

providing the list argList as the argument values.

The production CallExpression : CallExpression Arguments is evaluated in exactly the same manner, except that

the contained CallExpression is evaluated in step 1.

NOTE The returned result will never be of type Reference if func is a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementation-dependent. If a value of type Reference is returned, it

must be a non-strict Property Reference.

11.2.4 Argument Lists

The evaluation of an argument list produces a List of values (see 8.8).

The production Arguments : () is evaluated as follows:

1. Return an empty List.

The production Arguments : (ArgumentList) is evaluated as follows:

1. Return the result of evaluating ArgumentList.

The production ArgumentList : AssignmentExpression is evaluated as follows:

1. Let ref be the result of evaluating AssignmentExpression.

2. Let arg be GetValue(ref).

3. Return a List whose sole item is arg.

74 © Ecma International 2011

The static semantics of the production ArgumentList : é AssignmentExpression are:

¶ It is a Syntax Error if the source code parsed with this production is not extended code.

The production ArgumentList : é AssignmentExpression is evaluated as follows:

1. Let list be an empty List.

2. Let spreadRef be the result of evaluating AssignmentExpression.

3. Let spreadValue be GetValue(spreadRef).

4. Let spreadObj be ToObject(spreadValue).

5. Let lenVal be the result of calling the [[Get]] internal method of spreadObj with argument ñlength ò.

6. Let spreadLen be ToUint32(lenVal).

7. Let n = 0.

8. Repeat, while n < spreadLen

b. Let nextArg be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the

argument.

c. Append nextArg as the last element of list.

d. Let n = n+1.

9. Return list.

The production ArgumentList : ArgumentList , AssignmentExpression is evaluated as follows:

1. Let precedingArgs be the result of evaluating ArgumentList.

2. Let ref be the result of evaluating AssignmentExpression.

3. Let arg be GetValue(ref).

4. Return a List whose length is one greater than the length of precedingArgs and whose items are the items of

precedingArgs, in order, followed at the end by arg which is the last item of the new list.

The static semantics of the production ArgumentList : ArgumentList , é AssignmentExpression are:

¶ It is a Syntax Error if the source code parsed with this production is not extended code.

The production ArgumentList : ArgumentList , é AssignmentExpression is evaluated as follows:

1. Let precedingArgs be an empty List.

2. Let spreadRef be the result of evaluating AssignmentExpression.

3. Let spreadValue be GetValue(spreadRef).

4. Let spreadObj be ToObject(spreadValue).

5. Let lenVal be the result of calling the [[Get]] internal method of spreadObj with argument ñlength ò.

6. Let spreadLen be ToUint32(lenVal).

7. Let n = 0.

8. Repeat, while n < spreadLen

e. Let nextArg be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the

argument.

f. Append nextArg as the last element of precedingArgs.

g. Let n = n+1.

9. Return precedingArgs.

11.2.5 Function Expressions

The production MemberExpression : FunctionExpression is evaluated as follows:

1. Return the result of evaluating FunctionExpression.

© Ecma International 2011 75

11.3 Postfix Expressions

Syntax

PostfixExpression :

LeftHandSideExpression

LeftHandSideExpression [no LineTerminator here] ++

LeftHandSideExpression [no LineTerminator here] --

11.3.1 Postfix Increment Operator

The production PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++ is evaluated as follows:

1. Let lhs be the result of evaluating LeftHandSideExpression.

2. Throw a SyntaxError exception if the following conditions are all true:

¶ Type(lhs) is Reference is true

¶ IsStrictReference(lhs) is true

¶ Type(GetBase(lhs)) is Environment Record

¶ GetReferencedName(lhs) is either "eval" or " arguments "

3. Let oldValue be ToNumber(GetValue(lhs)).

4. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see

11.6.3).

5. Call PutValue(lhs, newValue).

6. Return oldValue.

11.3.2 Postfix Decrement Operator

The production PostfixExpression : LeftHandSideExpression [no LineTerminator here] -- is evaluated as follows:

1. Let lhs be the result of evaluating LeftHandSideExpression.

2. Throw a SyntaxError exception if the following conditions are all true:

¶ Type(lhs) is Reference is true

¶ IsStrictReference(lhs) is true

¶ Type(GetBase(lhs)) is Environment Record

¶ GetReferencedName(lhs) is either "eval " or " arguments "

3. Let oldValue be ToNumber(GetValue(lhs)).

4. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -

operator (11.6.3).

5. Call PutValue(lhs, newValue).

6. Return oldValue.

11.4 Unary Operators

Syntax

UnaryExpression :

PostfixExpression

delete UnaryExpression

void UnaryExpression

typeof UnaryExpression

++ UnaryExpression

-- UnaryExpression

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

! UnaryExpression

76 © Ecma International 2011

11.4.1 The delete Operator

The production UnaryExpression : delete UnaryExpression is evaluated as follows:

1. Let ref be the result of evaluating UnaryExpression.

2. If Type(ref) is not Reference, return true .

3. If IsUnresolvableReference(ref) then,

a. If IsStrictReference(ref) is true , throw a SyntaxError exception.

b. Else, return true .

4. If IsPropertyReference(ref) is true , then

a. Return the result of calling the [[Delete]] internal method on ToObject(GetBase(ref)) providing

GetReferencedName(ref) and IsStrictReference(ref) as the arguments.

5. Else, ref is a Reference to an Environment Record binding, so

a. If IsStrictReference(ref) is true , throw a SyntaxError exception.

b. Let bindings be GetBase(ref).

c. Return the result of calling the DeleteBinding concrete method of bindings, providing

GetReferencedName(ref) as the argument.

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its

UnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if a delete operator

occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError

exception is thrown.

11.4.2 The void Operator

The production UnaryExpression : void UnaryExpression is evaluated as follows:

1. Let expr be the result of evaluating UnaryExpression.

2. Call GetValue(expr).

3. Return undefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

11.4.3 The typeof Operator

The production UnaryExpression : typeof UnaryExpression is evaluated as follows:

1. Let val be the result of evaluating UnaryExpression.

2. If Type(val) is Reference, then

a. If IsUnresolvableReference(val) is true , return "undefined" .

b. Let val be GetValue(val).

3. Return a String determined by Type(val) according to Table 21.

Table 21 ð typeof Operator Results

Type of val Result

Undefined "undefined"

Null "object"

Boolean "boolean"

Number "number"

String "string"

Object (native and does
not implement [[Call]])

"object"

Object (native or host and
does implement [[Call]])

"function"

© Ecma International 2011 77

Object (host and does not
implement [[Call]])

Implementation-defined except may
not be "undefined" , "boolean" ,

"number ", or "string".

11.4.4 Prefix Increment Operator

The production UnaryExpression : ++ UnaryExpression is evaluated as follows:

1. Let expr be the result of evaluating UnaryExpression.

2. Throw a SyntaxError exception if the following conditions are all true:

¶ Type(expr) is Reference is true

¶ IsStrictReference(expr) is true

¶ Type(GetBase(expr)) is Environment Record

¶ GetReferencedName(expr) is either "eval" or " arguments "

3. Let oldValue be ToNumber(GetValue(expr)).

4. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see

11.6.3).

5. Call PutValue(expr, newValue).

6. Return newValue.

11.4.5 Prefix Decrement Operator

The production UnaryExpression : -- UnaryExpression is evaluated as follows:

1. Let expr be the result of evaluating UnaryExpression.

2. Throw a SyntaxError exception if the following conditions are all true:

¶ Type(expr) is Reference is true

¶ IsStrictReference(expr) is true

¶ Type(GetBase(expr)) is Environment Record

¶ GetReferencedName(expr) is either "eval" or " arguments "

3. Let oldValue be ToNumber(GetValue(expr)).

4. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -

operator (see 11.6.3).

5. Call PutValue(expr, newValue).

6. Return newValue.

11.4.6 Unary + Operator

The unary + operator converts its operand to Number type.

The production UnaryExpression : + UnaryExpression is evaluated as follows:

1. Let expr be the result of evaluating UnaryExpression.

2. Return ToNumber(GetValue(expr)).

11.4.7 Unary - Operator

The unary - operator converts its operand to Number type and then negates it. Note that negating +0

produces -0, and negating -0 produces +0.

The production UnaryExpression : - UnaryExpression is evaluated as follows:

1. Let expr be the result of evaluating UnaryExpression.

2. Let oldValue be ToNumber(GetValue(expr)).

3. If oldValue is NaN, return NaN.

4. Return the result of negating oldValue; that is, compute a Number with the same magnitude but opposite

sign.

78 © Ecma International 2011

11.4.8 Bitwise NOT Operator (~)

The production UnaryExpression : ~ UnaryExpression is evaluated as follows:

1. Let expr be the result of evaluating UnaryExpression.

2. Let oldValue be ToInt32(GetValue(expr)).

3. Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

11.4.9 Logical NOT Operator (!)

The production UnaryExpression : ! UnaryExpression is evaluated as follows:

1. Let expr be the result of evaluating UnaryExpression.

2. Let oldValue be ToBoolean(GetValue(expr)).

3. If oldValue is true , return false.

4. Return true .

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression :

UnaryExpression

MultiplicativeExpression * UnaryExpression

MultiplicativeExpression / UnaryExpression

MultiplicativeExpression % UnaryExpression

Semantics

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands for one

of the operators in the above definitions, is evaluated as follows:

1. Let left be the result of evaluating MultiplicativeExpression.

2. Let leftValue be GetValue(left).

3. Let right be the result of evaluating UnaryExpression.

4. Let rightValue be GetValue(right).

5. Let leftNum be ToNumber(leftValue).

6. Let rightNum be ToNumber(rightValue).

7. Return the result of applying the specified operation (*, /, or %) to leftNum and rightNum. See the Notes

below 11.5.1, 11.5.2, 11.5.3.

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.

Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision
arithmetic:

¶ If either operand is NaN, the result is NaN.

¶ The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

¶ Multiplication of an infinity by a zero results in NaN.

¶ Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the
rule already stated above.

¶ Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is
determined by the rule already stated above.

© Ecma International 2011 79

¶ In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and

the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

¶ If either operand is NaN, the result is NaN.

¶ The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

¶ Division of an infinity by an infinity results in NaN.

¶ Division of an infinity by a zero results in an infinity. The sign is determined by the rule
already stated above.

¶ Division of an infinity by a nonzero finite value results in a signed infinity. The sign is
determined by the rule already stated above.

¶ Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.

¶ Division of a zero by a zero results in NaN; division of zero by any other finite value results
in zero, with the sign determined by the rule already stated above.

¶ Division of a nonzero finite value by a zero results in a signed infinity. The sign is
determined by the rule already stated above.

¶ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
quotient is computed and rounded to the nearest representable value using IEEE 754 round-
to-nearest mode. If the magnitude is too large to represent, the operation overflows; the
result is then an infinity of appropriate sign. If the magnitude is too small to represent, the
operation underflows and the result is a zero of the appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

11.5.3 Applying the % Operator

The % operator yields the remainder of its operands from an implied division; the left operand is the dividend

and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-

point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the

ñremainderò operation defined by IEEE 754. The IEEE 754 ñremainderò operation computes the remainder
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual
integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to

behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the
C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:

¶ If either operand is NaN, the result is NaN.

¶ The sign of the result equals the sign of the dividend.

¶ If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

¶ If the dividend is finite and the divisor is an infinity, the result equals the dividend.

¶ If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the
dividend.

80 © Ecma International 2011

¶ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical

relation r = n - (d ³ q) where q is an integer that is negative only if n/d is negative and

positive only if n/d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d. r is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

11.6 Additive Operators

Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

11.6.1 The Addition operator (+)

The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as follows:

1. Let lref be the result of evaluating AdditiveExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating MultiplicativeExpression.

4. Let rval be GetValue(rref).

5. Let lprim be ToPrimitive(lval).

6. Let rprim be ToPrimitive(rval).

7. If Type(lprim) is String or Type(rprim) is String, then

a. Return the String that is the result of concatenating ToString(lprim) followed by ToString(rprim)

8. Return the result of applying the addition operation to ToNumber(lprim) and ToNumber(rprim). See the

Note below 11.6.3.

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the

hint String were given. Host objects may handle the absence of a hint in some other manner.

NOTE 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.5), by using the

logical-or operation instead of the logical-and operation.

11.6.2 The Subtraction Operator (-)

The production AdditiveExpression : AdditiveExpression - MultiplicativeExpression is evaluated as follows:

1. Let lref be the result of evaluating AdditiveExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating MultiplicativeExpression.

4. Let rval be GetValue(rref).

5. Let lnum be ToNumber(lval).

6. Let rnum be ToNumber(rval).

7. Return the result of applying the subtraction operation to lnum and rnum. See the note below 11.6.3.

11.6.3 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the

operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

© Ecma International 2011 81

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:

¶ If either operand is NaN, the result is NaN.

¶ The sum of two infinities of opposite sign is NaN.

¶ The sum of two infinities of the same sign is the infinity of that sign.

¶ The sum of an infinity and a finite value is equal to the infinite operand.

¶ The sum of two negative zeroes is -0. The sum of two positive zeroes, or of two zeroes of

opposite sign, is +0.

¶ The sum of a zero and a nonzero finite value is equal to the nonzero operand.

¶ The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

¶ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the same sign or have different magnitudes, the sum is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the operation overflows and the result is then an infinity
of appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the difference

of its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric
operands a and b, it is always the case that aïb produces the same result as a +(ïb) .

11.7 Bitwise Shift Operators

Syntax

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression

ShiftExpression >> AdditiveExpression

ShiftExpression >>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:

1. Let lref be the result of evaluating ShiftExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating AdditiveExpression.

4. Let rval be GetValue(rref).

5. Let lnum be ToInt32(lval).

6. Let rnum be ToUint32(rval).

7. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum

& 0x1F.

8. Return the result of left shifting lnum by shiftCount bits. The result is a signed 32-bit integer.

11.7.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows:

1. Let lref be the result of evaluating ShiftExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating AdditiveExpression.

82 © Ecma International 2011

4. Let rval be GetValue(rref).

5. Let lnum be ToInt32(lval).

6. Let rnum be ToUint32(rval).

7. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum

& 0x1F.

8. Return the result of performing a sign-extending right shift of lnum by shiftCount bits. The most significant

bit is propagated. The result is a signed 32-bit integer.

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression : ShiftExpression >>> AdditiveExpression is evaluated as follows:

1. Let lref be the result of evaluating ShiftExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating AdditiveExpression.

4. Let rval be GetValue(rref).

5. Let lnum be ToUint32(lval).

6. Let rnum be ToUint32(rval).

7. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum

& 0x1F.

8. Return the result of performing a zero-filling right shift of lnum by shiftCount bits. Vacated bits are filled

with zero. The result is an unsigned 32-bit integer.

11.8 Relational Operators

Syntax

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression

RelationalExpression > ShiftExpression

RelationalExpression <= ShiftExpression

RelationalExpression >= ShiftExpression

RelationalExpression instanceof ShiftExpression

RelationalExpression in ShiftExpression

RelationalExpressionNoIn :
ShiftExpression

RelationalExpressionNoIn < ShiftExpression

RelationalExpressionNoIn > ShiftExpression

RelationalExpressionNoIn <= ShiftExpression

RelationalExpressionNoIn >= ShiftExpression

RelationalExpressionNoIn instanceof ShiftExpression

NOTE The ñNoInò variants are needed to avoid confusing the in operator in a relational expression with the in

operator in a for statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The RelationalExpressionNoIn productions are evaluated in the same manner as the RelationalExpression
productions except that the contained RelationalExpressionNoIn is evaluated instead of the contained

RelationalExpression.

© Ecma International 2011 83

11.8.1 The Less-than Operator (<)

The production RelationalExpression : RelationalExpression < ShiftExpression is evaluated as follows:

1. Let lref be the result of evaluating RelationalExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating ShiftExpression.

4. Let rval be GetValue(rref).

5. Let r be the result of performing abstract relational comparison lval < rval. (see 11.8.5)

6. If r is undefined, return false. Otherwise, return r .

11.8.2 The Greater-than Operator (>)

The production RelationalExpression : RelationalExpression > ShiftExpression is evaluated as follows:

1. Let lref be the result of evaluating RelationalExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating ShiftExpression.

4. Let rval be GetValue(rref).

5. Let r be the result of performing abstract relational comparison rval < lval with LeftFirst equal to false. (see

11.8.5).

6. If r is undefined, return false. Otherwise, return r .

11.8.3 The Less-than-or-equal Operator (<=)

The production RelationalExpression : RelationalExpression <= ShiftExpression is evaluated as follows:

1. Let lref be the result of evaluating RelationalExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating ShiftExpression.

4. Let rval be GetValue(rref).

5. Let r be the result of performing abstract relational comparison rval < lval with LeftFirst equal to false. (see

11.8.5).

6. If r is true or undefined, return false. Otherwise, return true .

11.8.4 The Greater-than-or-equal Operator (>=)

The production RelationalExpression : RelationalExpression >= ShiftExpression is evaluated as follows:

1. Let lref be the result of evaluating RelationalExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating ShiftExpression.

4. Let rval be GetValue(rref).

5. Let r be the result of performing abstract relational comparison lval < rval. (see 11.8.5)

6. If r is true or undefined, return false. Otherwise, return true .

11.8.5 The Abstract Relational Comparison Algorithm

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that at

least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a

parameter. The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the left of the y parameterôs corresponding expression. If LeftFirst is false, the reverse is the case

and operations must be performed upon y before x. Such a comparison is performed as follows:

1. If the LeftFirst flag is true , then

a. Let px be the result of calling ToPrimitive(x, hint Number).

84 © Ecma International 2011

b. Let py be the result of calling ToPrimitive(y, hint Number).

2. Else the order of evaluation needs to be reversed to preserve left to right evaluation

a. Let py be the result of calling ToPrimitive(y, hint Number).

b. Let px be the result of calling ToPrimitive(x, hint Number).

3. If it is not the case that both Type(px) is String and Type(py) is String, then

a. Let nx be the result of calling ToNumber(px). Because px and py are primitive values evaluation

order is not important.

b. Let ny be the result of calling ToNumber(py).

c. If nx is NaN, return undefined.

d. If ny is NaN, return undefined.

e. If nx and ny are the same Number value, return false.

f. If nx is +0 and ny is -0, return false.

g. If nx is -0 and ny is +0, return false.

h. If nx is +¤, return false.

i. If ny is +¤, return true .

j. If ny is -¤, return false.

k. If nx is -¤, return true .

l. If the mathematical value of nx is less than the mathematical value of ny ðnote that these

mathematical values are both finite and not both zeroðreturn true . Otherwise, return false.

4. Else, both px and py are Strings

a. If py is a prefix of px, return false. (A String value p is a prefix of String value q if q can be the

result of concatenating p and some other String r . Note that any String is a prefix of itself, because r

may be the empty String.)

b. If px is a prefix of py, return true .

c. Let k be the smallest nonnegative integer such that the character at position k within px is different

from the character at position k within py. (There must be such a k, for neither String is a prefix of

the other.)

d. Let m be the integer that is the code unit value for the character at position k within px.

e. Let n be the integer that is the code unit value for the character at position k within py.

f. If m < n, return true . Otherwise, return false.

NOTE 1 Step 3 differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from

that on sequences of code point values.

11.8.6 The instanceof operator

The production RelationalExpression: RelationalExpression instanceof ShiftExpression is evaluated as follows:

1. Let lref be the result of evaluating RelationalExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating ShiftExpression.

4. Let rval be GetValue(rref).

5. If Type(rval) is not Object, throw a TypeError exception.

6. If rval does not have a [[HasInstance]] internal method, throw a TypeError exception.

7. Return the result of calling the [[HasInstance]] internal method of rval with argument lval.

11.8.7 The in operator

The production RelationalExpression : RelationalExpression in ShiftExpression is evaluated as follows:

1. Let lref be the result of evaluating RelationalExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating ShiftExpression.

© Ecma International 2011 85

4. Let rval be GetValue(rref).

5. If Type(rval) is not Object, throw a TypeError exception.

6. Return the result of calling the [[HasProperty]] internal method of rval with argument ToString(lval).

11.9 Equality Operators

Syntax

EqualityExpression :

RelationalExpression

EqualityExpression == RelationalExpression

EqualityExpression != RelationalExpression

EqualityExpression === RelationalExpression

EqualityExpression !== RelationalExpression

EqualityExpressionNoIn :
RelationalExpressionNoIn

EqualityExpressionNoIn == RelationalExpressionNoIn

EqualityExpressionNoIn != RelationalExpressionNoIn

EqualityExpressionNoIn === RelationalExpressionNoIn

EqualityExpressionNoIn !== RelationalExpressionNoIn

Semantics

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The EqualityExpressionNoIn productions are evaluated in the same manner as the EqualityExpression

productions except that the contained EqualityExpressionNoIn and RelationalExpressionNoIn are evaluated

instead of the contained EqualityExpression and RelationalExpression, respectively.

11.9.1 The Equals Operator (==)

The production EqualityExpression : EqualityExpression == RelationalExpression is evaluated as follows:

1. Let lref be the result of evaluating EqualityExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating RelationalExpression.

4. Let rval be GetValue(rref).

5. Return the result of performing abstract equality comparison rval == lval. (see 11.9.3).

11.9.2 The Does-not-equals Operator (!=)

The production EqualityExpression : EqualityExpression != RelationalExpression is evaluated as follows:

1. Let lref be the result of evaluating EqualityExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating RelationalExpression.

4. Let rval be GetValue(rref).

5. Let r be the result of performing abstract equality comparison rval == lval. (see 11.9.3).

6. If r is true , return false. Otherwise, return true .

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x == y, where x and y are values, produces true or false. Such a comparison is performed as

follows:

1. If Type(x) is the same as Type(y), then

86 © Ecma International 2011

a. If Type(x) is Undefined, return true .

b. If Type(x) is Null, return true .

c. If Type(x) is Number, then

i. If x is NaN, return false.

ii. If y is NaN, return false.

iii. If x is the same Number value as y, return true .

iv. If x is +0 and y is -0, return true .

v. If x is -0 and y is +0, return true .

vi. Return false.

d. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same

length and same characters in corresponding positions). Otherwise, return false.

e. If Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.

f. Return true if x and y refer to the same object. Otherwise, return false.

2. If x is null and y is undefined, return true .

3. If x is undefined and y is null , return true .

4. If Type(x) is Number and Type(y) is String,

return the result of the comparison x == ToNumber(y).

5. If Type(x) is String and Type(y) is Number,

return the result of the comparison ToNumber(x) == y.

6. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.

7. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).

8. If Type(x) is either String or Number and Type(y) is Object,

return the result of the comparison x == ToPrimitive(y).

9. If Type(x) is Object and Type(y) is either String or Number,

return the result of the comparison ToPrimitive(x) == y.

10. Return false.

NOTE 1 Given the above definition of equality:

¶ String comparison can be forced by: "" + a = = "" + b .

¶ Numeric comparison can be forced by: +a == +b .

¶ Boolean comparison can be forced by: !a == !b .

NOTE 2 The equality operators maintain the following invariants:

¶ A != B is equivalent to !(A == B) .

¶ A == B is equivalent to B == A, except in the order of evaluation of A and B.

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each
representing the same String value; each String object would be considered equal to the String value by the == operator,

but the two String objects would not be equal to each other. For Example:

¶ new String(" a") == " a" and " a" == new String(" a") are both true.

¶ new String(" a") == new String(" a") is false.

NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to
use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as

unequal. In effect this algorithm assumes that both Strings are already in normalised form.

11.9.4 The Strict Equals Operator (===)

The production EqualityExpression : EqualityExpression === RelationalExpression is evaluated as follows:

1. Let lref be the result of evaluating EqualityExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating RelationalExpression.

4. Let rval be GetValue(rref).

5. Return the result of performing the strict equality comparison rval === lval. (See 11.9.6)

© Ecma International 2011 87

11.9.5 The Strict Does-not-equal Operator (!==)

The production EqualityExpression : EqualityExpression !== RelationalExpression is evaluated as follows:

1. Let lref be the result of evaluating EqualityExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating RelationalExpression.

4. Let rval be GetValue(rref).

5. Let r be the result of performing strict equality comparison rval === lval. (See 11.9.6)

6. If r is true , return false. Otherwise, return true .

11.9.6 The Strict Equality Comparison Algorithm

The comparison x === y, where x and y are values, produces true or false. Such a comparison is performed

as follows:

1. If Type(x) is different from Type(y), return false.

2. If Type(x) is Undefined, return true .

3. If Type(x) is Null, return true .

4. If Type(x) is Number, then

a. If x is NaN, return false.

b. If y is NaN, return false.

c. If x is the same Number value as y, return true .

d. If x is +0 and y is -0, return true .

e. If x is -0 and y is +0, return true .

f. Return false.

5. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and

same characters in corresponding positions); otherwise, return false.

6. If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.

7. Return true if x and y refer to the same object. Otherwise, return false.

NOTE This algorithm differs from the SameValue Algorithm (9.12) in its treatment of signed zeroes and NaNs.

11.10 Binary Bitwise Operators

Syntax

BitwiseANDExpression :
EqualityExpression

BitwiseANDExpression & EqualityExpression

BitwiseANDExpressionNoIn :
EqualityExpressionNoIn

BitwiseANDExpressionNoIn & EqualityExpressionNoIn

BitwiseXORExpression :
BitwiseANDExpression

BitwiseXORExpression ^ BitwiseANDExpression

BitwiseXORExpressionNoIn :
BitwiseANDExpressionNoIn

BitwiseXORExpressionNoIn ^ BitwiseANDExpressionNoIn

BitwiseORExpression :
BitwiseXORExpression

BitwiseORExpression | BitwiseXORExpression

88 © Ecma International 2011

BitwiseORExpressionNoIn :

BitwiseXORExpressionNoIn

BitwiseORExpressionNoIn | BitwiseXORExpressionNoIn

Semantics

The production A : A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as

follows:

1. Let lref be the result of evaluating A.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating B.

4. Let rval be GetValue(rref).

5. Let lnum be ToInt32(lval).

6. Let rnum be ToInt32(rval).

7. Return the result of applying the bitwise operator @ to lnum and rnum. The result is a signed 32 bit integer.

11.11 Binary Logical Operators

Syntax

LogicalANDExpression :
BitwiseORExpression
LogicalANDExpression && BitwiseORExpression

LogicalANDExpressionNoIn :
BitwiseORExpressionNoIn
LogicalANDExpressionNoIn && BitwiseORExpressionNoIn

LogicalORExpression :
LogicalANDExpression
LogicalORExpression || LogicalANDExpression

LogicalORExpressionNoIn :
LogicalANDExpressionNoIn
LogicalORExpressionNoIn || LogicalANDExpressionNoIn

Semantics

The production LogicalANDExpression : LogicalANDExpression && BitwiseORExpression is evaluated as follows:

1. Let lref be the result of evaluating LogicalANDExpression.

2. Let lval be GetValue(lref).

3. If ToBoolean(lval) is false, return lval.

4. Let rref be the result of evaluating BitwiseORExpression.

5. Return GetValue(rref).

The production LogicalORExpression : LogicalORExpression || LogicalANDExpression is evaluated as follows:

1. Let lref be the result of evaluating LogicalORExpression.

2. Let lval be GetValue(lref).

3. If ToBoolean(lval) is true , return lval.

4. Let rref be the result of evaluating LogicalANDExpression.

5. Return GetValue(rref).

The LogicalANDExpressionNoIn and LogicalORExpressionNoIn productions are evaluated in the same manner
as the LogicalANDExpression and LogicalORExpression productions except that the contained
LogicalANDExpressionNoIn, BitwiseORExpressionNoIn and LogicalORExpressionNoIn are evaluated instead of the

contained LogicalANDExpression, BitwiseORExpression and LogicalORExpression, respectively.

© Ecma International 2011 89

NOTE The value produced by a && or || operator is not necessarily of type Boolean. The value produced will always

be the value of one of the two operand expressions.

11.12 Conditional Operator (? :)

Syntax

ConditionalExpression :
LogicalORExpression

LogicalORExpression ? AssignmentExpression : AssignmentExpression

ConditionalExpressionNoIn :

LogicalORExpressionNoIn

LogicalORExpressionNoIn ? AssignmentExpression : AssignmentExpressionNoIn

Semantics

The production ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression is

evaluated as follows:

1. Let lref be the result of evaluating LogicalORExpression.

2. If ToBoolean(GetValue(lref)) is true , then
a. Let trueRef be the result of evaluating the first AssignmentExpression.

b. Return GetValue(trueRef).

3. Else

a. Let falseRef be the result of evaluating the second AssignmentExpression.

b. Return GetValue(falseRef).

The ConditionalExpressionNoIn production is evaluated in the same manner as the ConditionalExpression

production except that the contained LogicalORExpressionNoIn, AssignmentExpression and
AssignmentExpressionNoIn are evaluated instead of the contained LogicalORExpression, first

AssignmentExpression and second AssignmentExpression, respectively.

NOTE The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java, which
each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression.
The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a

conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

11.13 Assignment Operators

Syntax

AssignmentExpression :
ConditionalExpression

LeftHandSideExpression = AssignmentExpression

LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoIn :
ConditionalExpressionNoIn

LeftHandSideExpression = AssignmentExpressionNoIn

LeftHandSideExpression AssignmentOperator AssignmentExpressionNoIn

AssignmentOperator : one of
*= /= %= += - = <<= >>= >>>= &= ^= |=

Supplemental Syntax

In certain circumstances when processing the production AssignmentExpression : LeftHandSideExpression =

AssignmentExpression the following grammar is used to refine the interpretation of LeftHandSideExpression.

90 © Ecma International 2011

AssignmentPattern :

ObjectAssignmentPattern

ArrayAssignmentPattern

ObjectAssignmentPattern :
{ }

{ AssignmentPropertyList }

{ AssignmentPropertyList , }

ArrayAssignmentPattern :
[Elisionopt AssignmentRestElementopt]

[AssignmentElementList , Elisionopt AssignmentRestElementopt]

AssignmentPropertyList :
AssignmentProperty

AssignmentPropertyList , AssignmentProperty

AssignmentElementList :

Elisionopt AssignmentElement

AssignmentElementList , Elisionopt AssignmentElement

AssignmentProperty :
Identifier

PropertyName : LeftHandSideExpression

AssignmentElement :
 LeftHandSideExpression

AssignmentRestElement :
 é LeftHandSideExpression

Semantics

The AssignmentExpressionNoIn productions are evaluated in the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoIn and AssignmentExpressionNoIn are evaluated

instead of the contained ConditionalExpression and AssignmentExpression, respectively.

11.13.1 Simple Assignment (=)

The static semantics of AssignmentExpression : LeftHandSideExpression = AssignmentExpression are:

¶ It is a Syntax Error if the AssignmentExpression is contained in strict code and LeftHandSideExpression is

the Identifier eval or the Identifier arguments .

¶ It is a Syntax Error if the AssignmentExpression is contained in extended code and the
LeftHandSideExpression is a Literal or a FunctionExpression.

¶ It is a Syntax Error if the AssignmentExpression is contained in extended code and the
LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record

binding or if the resolved binding an immutable binding.

¶ It is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression

derived a production that would produce a Syntax Error according to these rules. This rule is
recursively applied.

¶ It is a Syntax Error if the AssignmentExpression is contained in extended code and the
LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral and the source code corresponding to

LeftHandSideExpression cannot be parsed using AssignmentPattern as the goal symbol.

The production AssignmentExpression : LeftHandSideExpression = AssignmentExpression is evaluated as follows:

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral then

a. Let lref be the result of evaluating LeftHandSideExpression.

© Ecma International 2011 91

b. Let rref be the result of evaluating AssignmentExpression.

c. Let rval be GetValue(rref).

d. Call PutValue(lref, rval).

e. Return rval.

2. If this is not extended code, throw a ReferenceError exception.

3. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression using

AssignmentPattern as the goal symbol.

4. Let rref be the result of evaluating AssignmentExpression.

5. Let rval be ToObject(GetValue(rref)).

6. Evaluate AssignmentPattern using rval as the obj parameter.

7. Return rval.

NOTE When an assignment occurs within strict mode code, lref in step 1.d must not be an unresolvable reference. If
it is, a ReferenceError exception is thrown upon assignment. The LeftHandSide also may not be a reference to a data
property with the attribute value {[[Writable]]: false} , to an accessor property with the attribute value {[[Set]]:undefined} , nor
to a non-existent property of an object whose [[Extensible]] internal property has the value false. In these cases a

TypeError exception is thrown.

11.13.1.1 Destructuring Assignment

The supplemental production AssignmentPattern : ObjectAssignmentPattern is evaluated with the parameter obj

as follows:

1. Evaluate ObjectAssignmentPattern using obj as the obj parameter.

The supplemental production AssignmentPattern : ArrayAssignmentPattern is evaluated with the parameter obj as

follows:

1. Evaluate ArrayAssignmentPattern using obj as the obj parameter.

The supplemental production ObjectAssignmentPattern : { } ,the production ArrayAssignmentPattern : [] and

the production ArrayAssignmentPattern : [Elision] when evaluated with the parameter obj do nothing.

The supplemental productions ObjectAssignmentPattern : { AssignmentPropertyList } and

ObjectAssignmentPattern : { AssignmentPropertyList , } are evaluated with the parameter obj as follows:

1. Evaluate AssignmentPropertyList using obj as the obj parameter.

The supplemental production AssignmentPropertyList : AssignmentProperty is evaluated with the parameter obj

as follows:

1. Evaluate AssignmentProperty using obj as the obj parameter.

The supplemental production AssignmentPropertyList : AssignmentPropertyList , AssignmentProperty is evaluated

with the parameter obj as follows:

1. Evaluate AssignmentPropertyList using obj as the obj parameter.

2. Evaluate AssignmentProperty using obj as the obj parameter.

The supplemental production AssignmentProperty : Identifier is evaluated with the parameter obj as follows:

1. Let v be the result of calling the [[Get]] internal method of obj passing the Identifier string as the argument.

2. Let lref be the result of performing Identifier Resolution(10.3.1) using the IdentifierName corresponding to

Identifier.

3. Call PutValue(lref,v).

92 © Ecma International 2011

The static semantics of the supplemental production
AssignmentProperty : PropertyName : LeftHandSideExpression and the supplemental production

AssignmentElement : LeftHandSideExpression are:

¶ It is a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments .

¶ It is a Syntax Error if LeftHandSideExpression is the Identifier this or the Identifier sup er .

¶ It is a Syntax Error if the LeftHandSideExpression is a Literal, a FunctionExpression or a ClassExpression.

¶ It is a Syntax Error if the LeftHandSideExpression is an Identifier that does not statically resolve to a
declarative environment record binding or if the resolved binding an immutable binding.

¶ It is a Syntax Error if the LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral and the source
code corresponding to LeftHandSideExpression using cannot be parsed using AssignmentPattern as the

goal symbol.

¶ It is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression

derived a production that would produce a Syntax Error according to these rules. This rule is
recursively applied.

The supplemental production AssignmentProperty : PropertyName : LeftHandSideExpression is evaluated with the

parameter obj as follows:

1. Let name be the result of evaluating PropertyName.

2. Let v be the result of calling the [[Get]] internal method of obj passing name as the argument.

3. If LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral then

a. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression

using AssignmentPattern as the goal symbol

b. Let vObj be ToObject(v).

c. Evaluate AssignmentPattern using vObj as the obj parameter.

d. Return.

4. Let lref be the result of evaluating LeftHandSideExpression.

5. Call PutValue(lref,v).

The supplemental production ArrayAssignmentPattern : [Elisionopt AssignmentRestElement] is evaluated with

the parameter obj as follows:

1. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

2. Evaluate AssignmentRestElement using obj as the obj parameter and skip as the index parameter.

The supplemental production
 ArrayAssignmentPattern : [AssignmentElementList , Elisionopt AssignmentRestElementopt]

is evaluated with the parameter obj as follows:

1. Let lastIndex be the result of evaluating AssignmentElementList using obj as the obj parameter and 0 as the

index parameter.

2. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

3. If AssignmentRestElement is present, then evaluate AssignmentRestElement using obj as the obj parameter

and lastIndex+skip as the index parameter.

The supplemental production AssignmentElementList : Elisionopt AssignmentElement is evaluated with the

parameters obj and index as follows:

1. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

2. Evaluate AssignmentElement using obj as the obj parameter and index+skip as the index parameter.

3. Return index+skip+1.

© Ecma International 2011 93

The supplemental production AssignmentElementList : AssignmentElementList , Elisionopt AssignmentElement is

evaluated with the parameters obj and index as follows:

1. Let listNext be the result of evaluating AssignmentElementList using obj as the obj parameter and index as

the index parameter

2. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

3. Evaluate AssignmentElement using obj as the obj parameter and listNext+skip as the index parameter.

4. Return l istNext+skip+1.

The supplemental production AssignmentElement : LeftHandSideExpression is evaluated with the parameters obj

and index as follows:

1. Let name be ToString(index).

2. Let v be the result of calling the [[Get]] internal method of obj passing name as the argument.

3. If LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral then

a. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression

using AssignmentPattern as the goal symbol

b. Let vObj be ToObject(v).

c. Evaluate AssignmentPattern using vObj as the obj parameter.

d. Return.

4. Let lref be the result of evaluating LeftHandSideExpression.

5. Call PutValue(lref,v).

The static semantics of the supplemental production AssignmentRestElement : é LeftHandSideExpression are:

¶ It is a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments .

¶ It is a Syntax Error if LeftHandSideExpression is the Identifier this or the Identifier super .

¶ It is a Syntax Error if the LeftHandSideExpression is a Literal, an ObjectLiteral, an ArrayLiteral, a
FunctionExpression, or a ClassExpression.

¶ It is a Syntax Error if the LeftHandSideExpression is an Identifier that does not statically resolve to a

declarative environment record binding or if the resolved binding an immutable binding.

¶ It is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression

derived a production that would produce a Syntax Error according to these rules. This rule is
recursively applied.

The supplemental production AssignmentRestElement : é LeftHandSideExpression is evaluated with the

parameters obj and index as follows:

1. Let lref be the result of evaluating LeftHandSideExpression.

2. Let lenVal be the result of calling the [[Get]] internal method of obj with argument ñlength ò.

3. Let len be ToUint32(lenVal).

4. Let A be a new array object created as if by the expression new Array() where Array is the standard

built-in constructor with that name.

5. Let n=0;

6. Repeat, while index < len

a. Let P be ToString(index).

b. Let exists be the result of calling the [[HasProperty]] internal method of obj with argument P.

c. If exists is true , then

i. Let v be the result of calling the [[Get]] internal method of obj passing ToString(index) as the

argument.

ii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property

Descriptor {[[Value]]: v, [[Writable]]: true , [[Enumerable]]: true , [[Configurable]]: true }, and

false.

d. Let n = n+1.

e. Let index = index+1.

7. Call PutValue(lref,A).

94 © Ecma International 2011

11.13.2 Compound Assignment (op=)

The production AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression, where

AssignmentOperator is @= and @ represents one of the operators indicated above, is evaluated as follows:

1. Let lref be the result of evaluating LeftHandSideExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating AssignmentExpression.

4. Let rval be GetValue(rref).

5. Let r be the result of applying operator @ to lval and rval.

6. Throw a SyntaxError exception if the following conditions are all true:

¶ Type(lref) is Reference is true

¶ IsStrictReference(lref) is true

¶ Type(GetBase(lref)) is Environment Record

¶ GetReferencedName(lref) is either "eval" or " arguments "

7. Call PutValue(lref, r).

8. Return r .

NOTE See NOTE 11.13.1.

11.14 Comma Operator (,)

Syntax

Expression :
AssignmentExpression

Expression , AssignmentExpression

ExpressionNoIn :
AssignmentExpressionNoIn

ExpressionNoIn , AssignmentExpressionNoIn

Semantics

The production Expression : Expression , AssignmentExpression is evaluated as follows:

1. Let lref be the result of evaluating Expression.

2. Call GetValue(lref).

3. Let rref be the result of evaluating AssignmentExpression.

4. Return GetValue(rref).

The ExpressionNoIn production is evaluated in the same manner as the Expression production except that the
contained ExpressionNoIn and AssignmentExpressionNoIn are evaluated instead of the contained Expression and

AssignmentExpression, respectively.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

© Ecma International 2011 95

12 Statements and Declarations

Syntax

Statement :

BlockStatement

VariableStatement

EmptyStatement

ExpressionStatement

IfStatement

IterationStatement

ContinueStatement

BreakStatement

ReturnStatement

WithStatement

LabelledStatement

SwitchStatement

ThrowStatement

TryStatement

DebuggerStatement

Declaration :
FunctionDeclaration

LetDeclaration

ConstDeclaration

Semantics

A Statement can be part of a LabelledStatement, which itself can be part of a LabelledStatement, and so on. The

labels introduced this way are collectively referred to as the ñcurrent label setò when describing the semantics
of individual statements. A LabelledStatement has no semantic meaning other than the introduction of a label to
a label set. The label set of an IterationStatement or a SwitchStatement initially contains the single element

empty. The label set of any other statement is initially empty.

The VarDeclaredNames of the productions:
 Statement : EmptyStatement

 Statement : ExpressionStatement

 Statement : ContinueStatement

 Statement : BreakStatement

 Statement : ReturnStatement

 Statement : ThrowStatement

 Statement : DebuggerStatement

is determined as follows:

1. Return a new empty List.

The VarDeclaredNames of the productions:
 Statement : BlockStatement

 Statement : IfStatement

 Statement : IterationStatement

 Statement : WithStatement

 Statement : LabelledStatement

 Statement : SwitchStatement

 Statement : TryStatement

is determined as follows:

1. Return the VarDeclaredNames of the single non-terminal symbol that is the right hand side of the

production.

96 © Ecma International 2011

The VarDeclaredNames of the production Statement : VariableStatement is determined as follows:

1. Return the BoundNames of VariableStatement.

The Statement productions are all evaluated as as follows

1. Return the result of evaluating the single non-terminal symbol that is the right hand side of the production.

NOTE The result of evaluating a Statement or Declaration is always a Completion value.

The BoundNames of the Declaration productions are determined as follows:

1. Return the BoundNames of the single non-terminal symbol that is the right hand side of the production.

The Declaration productions are all evaluated as as follows

1. Return the result of evaluating the single non-terminal symbol that is the right hand side of the production.

12.1 Block

Syntax

BlockStatement :
Block

Block :

{ StatementListopt }

StatementList :
StatementListItem

StatementList StatementListItem

StatementListItem :
Statement

Declaration

Semantics

The VarDeclaredNames of the production BlockStatement : Block is determined as follows:

1. Return the VarDeclaredNames of Block.

The production BlockStatement : Block is evaluated as follows:

1. Return the result of evaluating Block.

The LexicallyDeclaredNames of the production Block : { } is determined as follows:

1. Return a new empty List.

The VarDeclaredNames of the production Block : { } is determined as follows:

1. Return a new empty List.

The production Block : { } is evaluated as follows:

1. Return (normal , empty, empty).

© Ecma International 2011 97

The static semantics of the production Block : { StatementList } are:

¶ It is a Syntax Error if StatementList includes a StatementListItem : Declaration production whose
Declaration is a Declaration : FunctionDeclaration production and the source code matching this Block

production is not contained in extended code.

¶ It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entires.

¶ It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the

VarDeclaredNames of StatementList.

The LexicallyDeclaredNames of the production Block : { StatementList } is determined as follows:

1. Return the LexicallyDeclaredNames of StatementListItem.

The VarDeclaredNames of the production Block : { StatementList } is determined as follows:

2. Return the VarDeclaredNames of StatementList.

The production Block : { StatementList } is evaluated as follows:

1. Let oldEnv be the running execution contextôs LexicalEnvironment.

2. Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.

3. Perform Block Declaration Instantiation using StatementList and blockEnv.

4. For each element param, of formals,

a. Let value be the positionally corresponding elment of arguments.

b. Call blockEnvôs InitializeBinding concrete method passing param, and value as the arguments.

5. Let blockValue be the result of evaluating StatementList.

6. Set the running execution contextôs LexicalEnvironment to oldEnv.

7. Return blockValue.

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.

The LexicallyDeclaredNames of the production StatementList : StatementListItem is determined as follows:

1. Return the LexicallyDeclaredNames of StatementListItem.

The LexicalDeclarations of the production StatementList : StatementListItem is determined as follows:

1. Return the LexicalDeclarations of StatementListItem.

The VarDeclaredNames of the production StatementList : StatementListItem is determined as follows:

1. Return the VarDeclaredNames of StatementListItem.

The production StatementList : StatementListItem is evaluated as follows:

1. Let s be the result of evaluating StatementListItem.

2. If an exception was thrown, return (throw, V, empty) where V is the exception. (Execution now proceeds as

if no exception were thrown.)

3. Return s.

The LexicallyDeclaredNames of the production StatementList : StatementList StatementListItem is determined as

follows:

1. Let names be LexicallyDeclaredNames of StatementList.

2. Append to names the elements of the LexicallyDeclaredNames of StatementListItem.

3. Return names.

The LexicalDeclarations of the production StatementList : StatementList StatementListItem is determined as

follows:

98 © Ecma International 2011

1. Let declarations be LexicalDeclarations of StatementList.

2. Append to names the elements of the LexicalDeclarations of StatementListItem.

3. Return declarations.

The VarDeclaredNames of the production StatementList : StatementList StatementListItem is determined as

follows:

1. Let names be VarDeclaredNames of StatementList.

2. Append to names the elements of the VarDeclaredNames of StatementListItem.

3. Return names.

The production StatementList : StatementList StatementListItem is evaluated as follows:

1. Let sl be the result of evaluating StatementList.

2. If sl is an abrupt completion, return sl.

3. Let s be the result of evaluating Statement.

4. If an exception was thrown, return (throw, V, empty) where V is the exception. (Execution now proceeds as

if no exception were thrown.)

5. If s.value is empty, let V = sl.value, otherwise let V = s.value.

6. Return (s.type, V, s.target).

NOTE Steps 5 and 6 of the above algoritm ensure that the value of a StatementList is the value of the last value
producing Statement in the StatementList. For example, the following calls to the eval function all return the value 1:

eval("1;;;;;")

eval("1;{}")

eval("1;var a;")

The LexicallyDeclaredNames and the LexicalDeclarations of the production StatementListItem : Statement are

determined as follows:

1. Return a new empty List.

The VarDeclaredNames of the production StatementListItem : Statement is determined as follows:

1. Return the VarDeclaredNames of Statement.

The production StatementListItem : Statement is evaluated as follows:

1. Return the result of evaluating Statement.

The LexicallyDeclaredNames of the production StatementListItem : Declaration is determined as follows:

1. Return the BoundNames of Declaration.

The LexicalDeclarations of the production StatementListItem : Declaration is determined as follows:

1. Return return a new List containing Declaration.

The VarDeclaredNames of the production StatementListItem : Declaration is determined as follows:

1. Return a new empty List.

The production StatementListItem : Declaration is evaluated as follows:

1. Return the result of evaluating Declaration.

© Ecma International 2011 99

12.2 Declarations and the Variable Statement

12.2.1 Let Declaration

Syntax

LetDeclaration :

let LetBindingList ;

LetBindingList :
LetBinding

LetBindingList , LetBinding

LetBindingListNoIn :

LetBindingNoIn

LetBindingListNoIn , LetBindingNoIn

LetBinding :
BindingIdentifier Initialiseropt

BindingPattern Initialiser

LetBindingNoIn :
BindingIdentifier InitialiserNoInopt

BindingPattern InitialiserNoIn

BindingIdentifier :
Identifier

Initialiser :
= AssignmentExpression

InitialiserNoIn :
= AssignmentExpressionNoIn

NOTE A let declaration defines variables that are scoped to the current execution contextôs LexicalEnvironment. Let

variables are created when their containing Lexical Environment is instantiated but may not be accssed in any way until

the variableôs LetBinding is executed. A variable defined by a LetBinding with an Initialiser is assigned the value of its

Initialiserôs AssignmentExpression when the LetBinding is executed, not when the variable is created. If a LetBinding does not

have an an Initialiser the variable is assigned the value undefined when the LetBinding is executed.

Semantics

The static semantics of the production LetDeclaration : let LetBindingList ; are:

¶ It is a Syntax Error if the code that matches this production is not contained in extended code.

The BoundNames of the production LetDeclaration : let LetBindingList ; is determined as follows:

1. Return BoundNames of LetBindingList.

The production LetDeclaration : let LetBindingList ; is evaluated as follows:

1. Evaluate LetBindingList.

2. Return (normal, empty, empty).

The BoundNames of the production LetBindingList : LetBinding is determined as follows:

1. Return BoundNames of LetBinding.

100 © Ecma International 2011

The production LetBindingList : LetBinding is evaluated as follows:

1. Evaluate LetBinding.

The BoundNames of the production LetBindingList : LetBindingList , LetBinding is determined as follows:

1. Let names be BoundNames of LetBindingList.

2. Append to names the elements of BoundNames of LetBinding.

3. Return names.

The production LetBindingList : LetBindingList , LetBinding is evaluated as follows:

1. Evaluate LetBindingList.

2. Evaluate LetBinding.

The BoundNames of the production LetBinding : BindingIdentifier Initialiseropt is determined as follows:

1. Return the BoundNames of BindingIdentifier.

The production LetBinding : BindingIdentifier is evaluated as follows:

1. Let env be the running execution contextôs LexicalEnvironment.

2. Perform Binding Initialization for BindingIdentifier passing undefined and env as the arguments.

The production LetBinding : BindingIdentifier Initialiser is evaluated as follows:

1. Let rhs be the result of evaluating Initialiser.

2. Let value be GetValue(rhs).

3. Let env be the running execution contextôs LexicalEnvironment.

4. Perform Binding Initialization for BindingIdentifier passing value and env as the arguments.

The BoundNames of the production LetBinding: BindingPattern Initialiser is determined as follows:

1. Return the BoundNames of BindingPattern.

The production LetBinding: BindingPattern Initialiser is evaluated as follows:

1. Let rhs be the result of evaluating Initialiser.

2. Let rval be GetValue(rhs).

3. Let env be the running execution contextôs LexicalEnvironment.

4. Evaluate BindingPattern using rval as the obj parameter and env as the environment parameter.

The BoundNames of the production BindingIdentifier : Identifier is determined as follows:

1. Return a new List containing the IdentifierName corresponding to Identifier.

The String value of the production BindingIdentifier : Identifier is determined as follows:

2. Return a String value consisting of the same sequence of characters as the IdentifierName corresponding to

Identifier.

Binding Initialization of the production BindingIdentifier : Identifier with arguments value and enviornment is

performed as follows:

1. If enviornment is not undefined, then

a. Call the InitializeBinding concrete method of enviornment passing Identifier and value as the

arguments.

2. Else

a. Let lhs be the result of evaluating Identifier as described in 11.1.2.

© Ecma International 2011 101

b. Call PutValue(lhs, value).

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the

initialization value. This is the the case for var statements and similar situations where a lexical binding is hosted and

preinitialized prior to evaluation of its initializer.

The static semantics of the production BindingIdentifier : Identifier are:

¶ It is a Syntax Error if the BindingIdentifier is contained in strict code and if the Identifier is eval or

arguments .

The production BindingIdentifier : Identifier is evaluated as follows:

1. Return the result of evaluating Identifier as described in 11.1.2.

The production Initialiser : = AssignmentExpression is evaluated as follows:

1. Return the result of evaluating AssignmentExpression.

The LetBindingListNoIn, LetBindingNoIn and InitialiserNoIn productions are evaluated in the same manner as
the LetBindingList, LetBinding and Initialiser productions except that the contained LetBindingListNoIn,
LetBindingNoIn, InitialiserNoIn and AssignmentExpressionNoIn are evaluated instead of the contained

LetBindingList, LetBinding, Initialiser and AssignmentExpression, respectively.

12.2.2 Const Declaration

Syntax

ConstDeclaration :

const ConstBindingList ;

ConstBindingList :
ConstBinding

ConstBinding List , ConstBinding

ConstBinding :
BindingIdentifier Initialiser

BindingPattern Initialiser

NOTE A const declaration defines read-only variables that are scoped to the current execution contextôs

LexicalEnvironment. Constant variables are created when their containing Lexical Environment is instantiated but may not

be accssed in any way until the variableôs ConstBinding is executed. A variable defined by a ConstBinding is assigned the

value of its Initialiserôs AssignmentExpression when the ConstBinding is executed, not when the variable is created.

Semanti cs

The static semantics of the production ConstDeclaration : const ConstBindingList ; are:

¶ It is a Syntax Error if the code that matches this production is not contained in extended code.

The BoundNames of the production ConstDeclaration : const ConstBindingList ; is determined as follows:

1. Return BoundNames of ConstBindingList.

The production ConstDeclaration : const ConstBindingList ; is evaluated as follows:

1. Evaluate ConstBindingList.

2. Return (normal, empty, empty).

102 © Ecma International 2011

The BoundNames of the production ConstBindingList: ConstBinding is determined as follows:

1. Return BoundNames of ConstBinding.

The production ConstBindingList : ConstBinding is evaluated as follows:

1. Evaluate ConstBinding.

The BoundNames of the production ConstBindingList : ConstBindingList , ConstBinding is determined as follows:

1. Let names be BoundNames of ConstBindingList.

2. Append to names the elements of BoundNames of ConstBinding.

3. Return names.

The production ConstBindingList : ConstBindingList , ConstBinding is evaluated as follows:

1. Evaluate ConstBindingList.

2. Evaluate ConstBinding.

The BoundNames of the production ConstBinding : BindingIdentifier Initialiser is determined as follows:

1. Return the BoundNames of BindingIdentifier.

The production ConstBinding : BindingIdentifier Initialiser is evaluated as follows:

1. Let rhs be the result of evaluating Initialiser.

2. Let value be GetValue(rhs).

3. Let env be the running execution contextôs LexicalEnvironment.

4. Perform Binding Initialization for BindingIdentifier passing value and env as the arguments.

The BoundNames of the production ConstBinding: BindingPattern Initialiser is determined as follows:

1. Return the BoundNames of BindingPattern.

The production ConstBinding: BindingPattern Initialiser is evaluated as follows:

1. Let rhs be the result of evaluating Initialiser.

2. Let rval be GetValue(rhs).

3. Let env be the running execution contextôs LexicalEnvironment.

4. Evaluate BindingPattern using rval as the obj parameter and env as the environment parameter.

12.2.3 Variable Statement

Syntax

VariableStatement :

var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration

VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoIn :

VariableDeclarationNoIn

VariableDeclarationListNoIn , VariableDeclarationNoIn

VariableDeclaration :
BindingIdentifier Initialiseropt

BindingPattern Initialiser

© Ecma International 2011 103

VariableDeclarationNoIn :

BindingIdentifier InitialiserNoInopt

BindingPattern InitialiserNoIn

NOTE A var statement declares variables that are scoped to the current execution contextôs VariableEnvironment. Var

variables are created when their containing Lexical Environment is instantiated and are initialised to undefined when

created. Within the scope of any VariableEnvironemnt a common Identifier may appear in more than one

VariableDeclaration but those declarations collective define only one variable. A variable defined by a VariableDeclaration

with an Initialiser is assigned the value of its Initialiserôs AssignmentExpression when the VariableDeclaration is executed, not

when the variable is created.

Semantics

The BoundNames of the production VariableStatement : var VariableDeclarationList ; is determined as follows:

1. Return BoundNames of VariableDeclarationList.

The production VariableStatement : var VariableDeclarationList ; is evaluated as follows:

1. Evaluate VariableDeclarationList.

2. Return (normal, empty, empty).

The BoundNames of the production VariableDeclarationList :VariableDeclaration is determined as follows:

1. Return BoundNames of VariableDeclaration.

The production VariableDeclarationList :VariableDeclaration is evaluated as follows:

1. Evaluate VariableDeclaration.

The BoundNames of the production VariableDeclarationList : VariableDeclarationList , VariableDeclaration is

determined as follows:

1. Let names be BoundNames of VariableDeclarationList.

2. Append to names the elements of BoundNames of VariableDeclaration.

3. Return names.

The production VariableDeclarationList : VariableDeclarationList , VariableDeclaration is evaluated as follows:

1. Evaluate VariableDeclarationList.

2. Evaluate VariableDeclaration.

The BoundNames of the production VariableDeclaration : BindingIdentifier Initialiseropt is determined as follows:

1. Return the BoundNames of BindingIdentifier.

The production VariableDeclaration : BindingIdentifier is evaluated as follows:

1. Return the String value of BindingIdentifier.

The production VariableDeclaration : BindingIdentifier Initialiser is evaluated as follows:

1. Let rhs be the result of evaluating Initialiser.

2. Let value be GetValue(rhs).

3. Perform Binding Initialization for BindingIdentifier passing value and undefined as the arguments.

NOTE 1 The String value of a VariableDeclaration is used in the evaluation of for-in statements (12.6.4).

104 © Ecma International 2011

NOTE 2 If a VariableDeclaration is nested within a with statement and the Identifier in the VariableDeclaration is the
same as a property name of the binding object of the with statementôs object environment record, then step 4 will assign
value to the property instead of to the VariableEnvironment binding of the Identifier.

The static semantics of the production VariableDeclaration : BindingPattern Initialiser are:

¶ It is a Syntax Error if the source code matching this production is not contained in extended code.

The BoundNames of the production VariableDeclaration : BindingPattern Initialiser is determined as follows:

1. Return the BoundNames of BindingPattern.

The production VariableDeclaration : BindingPattern Initialiser is evaluated as follows:

1. Let rhs be the result of evaluating Initialiser.

2. Let rval be ToObject(GetValue(rhs)).

3. Evaluate BindingPattern using rval as the obj parameter and undefined as the environment parameter.

The VariableDeclarationListNoIn, VariableDeclarationNoIn and InitialiserNoIn productions are evaluated in the
same manner as the VariableDeclarationList, VariableDeclaration and Initialiser productions except that the
contained VariableDeclarationListNoIn, VariableDeclarationNoIn, InitialiserNoIn and AssignmentExpressionNoIn
are evaluated instead of the contained VariableDeclarationList, VariableDeclaration, Initialiser and

AssignmentExpression, respectively.

12.2.4 Destructuring Binding Patterns

Syntax

BindingPattern :

ObjectBindingPattern

ArrayBindingPattern

ObjectBindingPattern :
{ }

{ BindingPropertyList }

{ BindingPropertyList , }

ArrayBindingPattern :
[Elisionopt BindingRestElementopt]

[BindingElementList , Elisionopt BindingRestElementopt]

BindingPropertyList :
BindingProperty

BindingPropertyList , BindingProperty

BindingElementList :

Elisionopt BindingElement

BindingElementList , Elisionopt BindingElement

BindingProperty :
SingleNameBinding
PropertyName : SingleNameBinding

PropertyName : BindingPattern Initialiseropt

BindingElement :
SingleNameBinding

BindingPattern Initialiseropt

© Ecma International 2011 105

SingleNameBinding :

BindingIdentifier Initialiseropt

BindingRestElement :
 é BindingIdentifier

Semantics

The BoundNames of the production BindingPattern : ObjectBindingPattern is determined as follows:

1. Return BoundNames of ObjectBindingPattern.

The production BindingPattern : ObjectBindingPattern is evaluated with parameters value and env as follows:

1. Evaluate ObjectBindingPattern using value as the obj parameter and env as the environment parameter.

The BoundNames of the production BindingPattern : ArrayBindingPattern is determined as follows:

1. Return BoundNames of ArrayBindingPattern.

The production BindingPattern : ArrayBindingPattern is evaluated with parameters value and env as follows:

1. Evaluate ArrayBindingPattern using value as the obj parameter and env as the environment parameter.

The BoundNames of the production ObjectBindingPattern: { } is determined as follows:

1. Return an empty List.

The production ObjectBindingPattern: { } is evaluated with parameters value and env as follows:

1. If value is neither of null or undefined, then perform ToObject(value) and discard the result.

The BoundNames of the productions ObjectBindingPattern: { BindingPropertyList } and ObjectBindingPattern :

{ BindingPropertyList , } is determined as follows:

1. Return the BoundNames of BindingPropertyList.

The productions ObjectBindingPattern: { BindingPropertyList } and ObjectBindingPattern :

{ BindingPropertyList , } are evaluated with parameters value and env as follows:

1. If value is neither of null or undefined, then

a. Let obj be ToObject(value).

2. Else, let obj be undefined.

3. Evaluate BindingPropertyList using obj as the obj parameter and env as the environment parameter..

The BoundNames of the production ArrayBindingPattern : [Elisionopt] is determined as follows:

1. Return an empty List.

The production ArrayBindingPattern : [Elisionopt] is evaluated with parameters value and env as follows:

1. If value is neither of null or undefined, then perform ToObject(value) and discard the result.

The BoundNames of the production ArrayBindingPattern : [Elisionopt BindingRestElement] is determined as

follows:

1. Return the BoundNames of BindingElementList.

106 © Ecma International 2011

The production ArrayBindingPattern: [Elisionopt BindingRestElement] is evaluated with parameters value and

env as follows:

1. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

2. If value is neither of null or undefined, then

a. Let obj be ToObject(value).

3. Else, let obj be undefined.

4. Evaluate BindingRestElement using obj as the obj parameter, env as the environment, and skip as the index

parameter.

The BoundNames of the production ArrayBindingPattern : [BindingElementList , Elisionopt] is determined as

follows:

1. Return the BoundNames of BindingElementList.

The production ArrayBindingPattern: [BindingElementList , Elisionopt] is evaluated with parameters value and

env as follows:

1. If value is neither of null or undefined, then

a. Let obj be ToObject(value).

2. Else, let obj be undefined.

3. Let index be the result of evaluating BindingElementList using obj as the obj parameter, env as the

environment, and 0 as the index parameter.

4. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

The BoundNames of the production ArrayBindingPattern : [BindingElementList , Elisionopt

BindingRestElement] is determined as follows:

1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingRestElement.

3. Return names.

The production ArrayBindingPattern: [BindingElementList , Elisionopt BindingRestElement] is evaluated with

parameters value and env as follows:

1. If value is neither of null or undefined, then

a. Let obj be ToObject(value).

2. Else, let obj be undefined.

3. Let index be the result of evaluating BindingElementList using obj as the obj parameter, env as the

environment, and 0 as the index parameter.

4. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

5. Evaluate BindingRestElement using obj as the obj parameter, env as the environment, and index+skip as the

index parameter.

The BoundNames of the production BindingPropertyList : BindingProperty is determined as follows:

1. Return BoundNames of BindingProperty.

The production BindingPropertyList : BindingProperty is evaluated with parameters obj and env as follows:

1. Evaluate BindingProperty using obj as the obj parameter and env as the environment parameter.

The BoundNames of the production BindingPropertyList : BindingPropertyList , BindingProperty is determined

as follows:

1. Let names be BoundNames of BindingPropertyList.

2. Append to names the elements of BoundNames of BindingProperty.

3. Return names.

© Ecma International 2011 107

The production BindingPropertyList : BindingPropertyList , BindingProperty is evaluated with parameters obj

and env as follows:

1. Evaluate BindingPropertyList using obj as the obj parameter and env as the environment parameter.

2. Evaluate BindingProperty using obj as the obj parameter and env as the environment parameter.

The BoundNames of the production BindingElementList : Elisionopt BindingElement is determined as follows:

1. Return BoundNames of BindingElement.

The production BindingElementList : Elisionopt BindingElement is evaluated with the parameters obj, env, and

index as follows:

1. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

2. Evaluate BindingElement using obj as the obj parameter, env as the env parameter, and index+skip as the

index parameter.

3. Return index+skip+1.

The BoundNames of the production BindingElementList : BindingElementList , Elisionopt BindingElement is

determined as follows:

1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingElement.

3. Return names.

The production BindingElementList : BindingElementList , Elisionopt BindingElement is evaluated with the

parameters obj, env, and index as follows:

1. Let listNext be the result of evaluating BindingElementList using obj as the obj parameter, env as the env

parameter, and index as the index parameter

2. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

3. Evaluate BindingElement using obj as the obj parameter, env as the env parameter, and listNext+skip as the

index parameter.

4. Return listNext+skip+1.

The BoundNames of the productions BindingProperty : SingleNameBinding and BindingProperty :

PropertyName : SingleNameBinding is determined as follows:

1. Return the BoundNames of SingleNameBinding .

The production BindingProperty : SingleNameBinding is evaluated with the parameters obj and env as follows:

1. Let name be the IdentifierName that is the only element of BoundNames of SingleNameBinding.

2. Let P be the PropName of name.

3. Evaluate SingleNameBinding using P, obj, and env as the arguments.

The production BindingProperty : PropertyName : SingleNameBinding is evaluated with the parameters obj and

env as follows:

1. Let P be the PropName of PropertyName

2. Evaluate SingleNameBinding using P, obj, and env as the arguments.

The BoundNames of the production BindingProperty : PropertyName : BindingPattern Initialiseropt is determined

as follows:

1. Return the BoundNames of BindingPattern.

The production BindingProperty : PropertyName : BindingPattern Initialiseropt is evaluated with the parameters

obj and env as follows:

108 © Ecma International 2011

1. Let P be the PropName of PropertyName.

2. Let exists be the result of calling the [[HasProperty]] internal method of obj with argument P.

3. If exists is true , then

a. Let v be the result of calling the [[Get]] internal method of obj passing P as the argument.

4. Else

a. If Initialiseropt is present, then

i. Let v be the result of evaluating Initialiser.

b. Else,

i. Let v be undefined.

5. Evaluate BindingPattern passing v and env as arguments.

The BoundNames of the production SingleNameBinding : BindingIdentifier Initialiseropt is determined as follows:

1. Return the BoundNames of BindingIdentifier.

The production SingleNameBinding : BindingIdentifier Initialiseropt is evaluated with the parameters propertyName,

obj, and env as follows:

1. Let exists be the result of calling the [[HasProperty]] internal method of obj with argument P.

2. If exists is true , then

a. Let v be the result of calling the [[Get]] internal method of obj passing P as the argument.

3. Else

a. If Initialiseropt is present, then

i. Let v be the result of evaluating Initialiser.

b. Else,

i. Let v be undefined.

4. Perform Binding Initialization for BindingIdentifer using A as the value and env as the enviornment.

The BoundNames of the production BindingElement : SingleNameBinding is determined as follows:

1. Return the BoundNames of SingleNameBinding .

The production BindingElement: SingleNameBinding is evaluated with the parameters obj, env and index as

follows:

1. Let P be ToString(index).

2. Evaluate SingleNameBinding using P, obj, and env as the arguments.

The BoundNames of the production BindingElement : BindingPattern Initialiseropt is determined as follows:

1. Return the BoundNames of BindingPattern.

The production BindingElement: BindingPattern Initialiseropt is evaluated with the parameters obj, env and index

as follows:

1. Let P be ToString(index).

2. Let exists be the result of calling the [[HasProperty]] internal method of obj with argument P.

3. If exists is true , then

a. Let v be the result of calling the [[Get]] internal method of obj passing P as the argument.

4. Else

a. If Initialiseropt is present, then

i. Let v be the result of evaluating Initialiser.

b. Else,

i. Let v be undefined.

5. Evaluate BindingPattern passing v and env as arguments.

The BoundNames of the production BindingRestElement : ... BindingIdentifier is determined as follows:

1. Return the BoundNames of BindingIdentifier.

© Ecma International 2011 109

The production BindingRestElement : é BindingIdentifier is evaluated with the parameters obj, env, and index as

follows:

1. Let lenVal be the result of calling the [[Get]] internal method of obj with argument ñlength ò.

2. Let len be ToUint32(lenVal).

3. Let A be a new array object created as if by the expression new Array() where Array is the standard

built-in constructor with that name.

4. Let n=0;

5. Repeat, while index < len

a. Let P be ToString(index).

b. Let exists be the result of calling the [[HasProperty]] internal method of obj with argument P.

c. If exists is true , then

i. Let v be the result of calling the [[Get]] internal method of obj passing P as the argument.

ii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property

Descriptor {[[Value]]: v, [[Writable]]: true , [[Enumerable]]: true , [[Configurable]]: true }, and false.

d. Let n = n+1.

e. Let index = index+1.

6. Perform Binding Initialization for BindingIdentifer using A as the value and env as the enviornment.

12.3 Empty Statement

Syntax

EmptyStatement :
;

Semantics

The production EmptyStatement : ; is evaluated as follows:

1. Return (normal, empty, empty).

12.4 Expression Statement

Syntax

ExpressionStatement :

[lookahead Î {{ , function }] Expression ;

NOTE An ExpressionStatement cannot start with an opening curly brace because that might make it ambiguous with a
Block. Also, an ExpressionStatement cannot start with the function keyword because that might make it ambiguous with a

FunctionDeclaration.

Semantics

The production ExpressionStatement : [lookahead Î {{ , function }] Expression; is evaluated as follows:

1. Let exprRef be the result of evaluating Expression.

2. Return (normal, GetValue(exprRef), empty).

110 © Ecma International 2011

12.5 The if Statement

Syntax

IfStatement :

if (Expression) Statement else Statement

if (Expression) Statement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible

if that would otherwise have no corresponding else .

Semantics

The VarDeclaredNames of the production IfStatement : if (Expression) Statement else Statement is

determined as follows:

1. Let names be VarDeclaredNames of the first Statement.

2. Append to names the elements of the VarDeclaredNames of the second Statement.

3. Return names.

The production IfStatement : if (Expression) Statement else Statement is evaluated as follows:

1. Let exprRef be the result of evaluating Expression.

2. If ToBoolean(GetValue(exprRef)) is true , then

a. Return the result of evaluating the first Statement.

3. Else,

a. Return the result of evaluating the second Statement.

The VarDeclaredNames of the production IfStatement : if (Expression) Statement is determined as follows:

1. Return the VarDeclaredNames of Statement.

The production IfStatement : if (Expression) Statement is evaluated as follows:

1. Let exprRef be the result of evaluating Expression.

2. If ToBoolean(GetValue(exprRef)) is false, return (normal, empty, empty).

3. Return the result of evaluating Statement.

12.6 Iteration Statements

Syntax

IterationStatement :
do Statement while (Expression);

while (Expression) Statement

for (ExpressionNoInopt; Expressionopt ; Expressionopt) Statement

for (var VariableDeclarationListNoIn; Expressionopt ; Expressionopt) Statement

for (LeftHandSideExpression in Expression) Statement

for (var VariableDeclarationNoIn in Expression) Statement

12.6.1 The do -while Statement

The VarDeclaredNames of the production do Statement while (Expression); is determined as follows:

1. Return the VarDeclaredNames of Statement.

The production do Statement while (Expression); is evaluated as follows:

1. Let V = empty.

© Ecma International 2011 111

2. Let iterating be true .

3. Repeat, while iterating is true

a. Let stmt be the result of evaluating Statement.

b. If stmt.value is not empty, let V = stmt.value.

c. If stmt.type is not continue or stmt.target is not in the current label set, then

i. If stmt.type is break and stmt.target is in the current label set, return (normal, V, empty).

ii. If stmt is an abrupt completion, return stmt.

d. Let exprRef be the result of evaluating Expression.

e. If ToBoolean(GetValue(exprRef)) is false, set iterating to false.

4. Return (normal, V, empty);

12.6.2 The while Statement

The VarDeclaredNames of the production IterationStatement : while (Expression) Statement is determined as

follows:

1. Return the VarDeclaredNames of Statement.

The production IterationStatement : while (Expression) Statement is evaluated as follows:

1. Let V = empty.

2. Repeat

a. Let exprRef be the result of evaluating Expression.

b. If ToBoolean(GetValue(exprRef)) is false, return (normal, V, empty).

c. Let stmt be the result of evaluating Statement.

d. If stmt.value is not empty, let V = stmt.value.

e. If stmt.type is not continue or stmt.target is not in the current label set, then

i. If stmt.type is break and stmt.target is in the current label set, then

1. Return (normal, V, empty).

ii. If stmt is an abrupt completion, return stmt.

12.6.3 The for Statement

The VarDeclaredNames of the production for (ExpressionNoInopt ; Expressionopt ; Expressionopt) Statement is

determined as follows:

1. Return the VarDeclaredNames of Statement.

The production
 IterationStatement : for (ExpressionNoInopt ; Expressionopt ; Expressionopt) Statement

is evaluated as follows:

1. I f ExpressionNoIn is present, then.

a. Let exprRef be the result of evaluating ExpressionNoIn.

b. Call GetValue(exprRef). (This value is not used but the call may have side-effects.)

2. Let V = empty.

3. Repeat

a. If the first Expression is present, then

i. Let testExprRef be the result of evaluating the first Expression.

ii. If ToBoolean(GetValue(testExprRef)) is false, return (normal, V, empty).

b. Let stmt be the result of evaluating Statement.

c. If stmt.value is not empty, let V = stmt.value

d. If stmt.type is break and stmt.target is in the current label set, return (normal , V, empty).

e. If stmt.type is not continue or stmt.target is not in the current label set, then

i. If stmt is an abrupt completion, return stmt.

f. If the second Expression is present, then

i. Let incExprRef be the result of evaluating the second Expression.

ii. Call GetValue(incExprRef). (This value is not used.)

