Cecma Draft

Ecma/TC39/2012/013

3rd Draft dANGaltl ECMA-262

_ - - 6th Edition / Draft February 27 , 2012

ECMAScript Language
Specification

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2011

secmd

Contents Page
LA 0T LUT o] 10 o [P Vii
1 Yo o] oSO PP PP P PPPPPPPUTPPP 1
2 (OdaY a1 10] 1K= 1o =T ST 1
3 o] 8 g E= AV SR = L A=Y A oT 1
4 (@ V2= VAT R T 1
4.1 RTAT L= o TS 1] {1 o P PSSR 2
4.2 (= T T LU= Vo [T @ V2= VA= SR PRPRR 2
o T @ | o= o3 SRR 3
4.2.2 The Strict Variant 0f ECMASCIIPTvviiiieeiiiiiiiiee e i sforetese s s s ee e e e s e sssveeeeeeeesesnsneshee e s e enssrneeeeessansnsnns 4
4.3 NIRRT [B0 L= AL 0 o N S 4
5 NOTAtIONAl CONVENTIONS ...ciiiteeeeeee et e e et et e e e et e e e e e d e e e bt e e e et e e eeeesae s et e st e s aae et reeesannrererans 7
5.1 Syntactic and LeXiCal GrammMarsS.........ocuiiiiiieies e ieieee e afinmieeeesiaeeeestieeessbeeeesbeeeessabeeeesneeeesnnneeas 7
LT O A O] ¢ (=) G S =TS T =10 010 = 5 7
5.1.2 The Lexical and REGEXDP GIamIMEAIScocuiiiiiiiieaiiieiaaatbeeesasteeeeaatteaeaaeteeesabeeeesanbeeesabreeeaasbeeesaneeeeannns 8
5.1.3 The NUMEIIC StriNg GramMMaAcooiimeeeiureeeaiieeeeaaiieeesabieesaiheeeestreeesastneesasreeesabeeesasreesaasreeessnsseessnnns 8
N I B L= IS YA = ol Lol €1 = 10 40 = | S USRI 8
T T I a TSI LS 1O] N] =1 0] 0= T 9
TN S =0 0= U (0) =10 o T 9
5.2 AlGOrithm CONVENTIONS ...t fe ettt e e e Tt e e e e e sttt e e e e e e bbb e e e e e e e e annbeeeeeeeeannrees 12
5.3 StALiC SEMANTIC RUIBS ..vvviiiii it s e e e fe e et ttaa s e e e s s s aseaan s e s e sseeesesess s bbb seeesesessbbabannseeesassensrens 13
6 Yo 10 L oL ST 1= A PPN 13
7 [IS) ToT= U O Y o RYZ=T 0110 o 1= 14
7.1 Unicode FOormat-Control CRHarACIEISuuuriiiii ittt e e e e s s e e e s e e eae s b seeeesesenens 14
7.2 R AT T =TS 0 T o = S SRR PEEP 15
7.3 (I TSI =T L= 0T 15
7.4 (©00] 1 01 1.8 =1 15 16
7.5 B IO 1= £ ST ST 17
7.6 Identifier NameES @nNd IH@NEITIEIS ittt et e ettt e e e et e e e e ee s e e s eaae e e s eabeeereraaes 17
A 0 R = =L T RV =To VAT 0] o = T 18
7.7 [U Lo AU = L0 =T 20
7.8 L] = 1 E TR 20
< 0 R (0 | B L =] = 1 £ o ST 20
A T = Yo Lo (== Y B IR E AT =1 T TR 20
A T T U] o Y= (o L (=T = | E TR 21
AR S T S 41 o T 1 (=T = SRR 23
7.85 Regular EXPreSSION LItEralScuiiiiiiiiiiiiiie ettt ettt sttt e st e e e st e e e sntaee e s staeeessnbeeeesnrneeeans 25
7.9 AUtOMAtiC SEMICOION INSEITION covvuiiiiii i e e e e s e e e s e e e e ea b eseeeesessesbarasaeeeaees 26
7.9.1 Rules of Automatic SEMICOION INSEITION ...uuiiii it e e e e e s e e e raa e s e e e e aeeeenns 26
7.9.2 Examples of Automatic SEMICOION INSEITIONcoeiiiiiiee e 27
8 L7 €12 PP PP PPTPTR 29
8.1 LI Lo 11 1 0= To N 114 oL SR 29
8.2 LI L 1L 14 1= SRRSO 29
8.3 LTI = e To] F=T= T o T 1Y 1= SRR 29
8.4 LIRS (T Yo TR 57 =SSR 29
8.5 RIS L0 Ta gl o=t Y7 o L= PP RPRRROPP 30
8.6 RIS O o= A 1] o L= TR UETRP 31
8.6.1 Property AL ULES ..ottt e e et e e e e e s bbb e e e e e e e e bbb e e e e e e e e e anne e 31
8.6.2 Object Internal Properties and MethOdScoiiiiiiiiii e 32

© Ecma International 2011 |

eCina

8.7 The List and Record SPeCifiCation TY P ...t 36
8.8 The Completion Record SPeCifiCation TY P ..o e e 36
8.9 The Reference SPeCIiTiCaAtION TY PO ..t e e e e e st e e e e e s s s an e e e e e e e e anneens 37
RS R A 1= Y 2= U= N Y TSR 38
e 2 w01 Y £ LU LI Y SR 38
8.10 The Property Descriptor and Property Identifier Specification TYPesccccvvvveeviiciiene e e e, 39
8.10.1 ISACCESSOIDESCIIPLON (DESC) ciiiuiiiiiiiiiie ittt ettt ettt ettt et e et b e e s bb e e e saba e e e snbbeeesnaneeas 40
8.10.2 ISDAtADESCIIPLON ([DESC) eiiiutiiteiitttiee ittt ettt ettt ettt et ettt e e sabe e e s abb e e e s bbb e e e sbbe e e e nanneas 40
8.10.3 ISGENEIICDESCIIPLON ([DESC) .eeiiiiutiiieiiiiie ittt ettt ettt ettt et e rabb et e sbb e e s anbe e e e abbe e e s nanneas 40
8.10.4 FromPropertyDeSCIIPIOr (DESC) ..uiiiiuieieiiiiiieitiie ettt ettt a e st e s e e e snbr e e e s nnnneas 40
8.10.5 TOPropertyDeSCriptor (OD]) ... ittt ife e s ettt 41
8.11 The Lexical Environment and Environment Record Specification TYPEeScccccevvvveeeriieeenninnen. 41
8.12 Algorithms for Object Internal MethodsS.........cooii i 41
8.12.1 [[GEetOWNPIOPEITY]] (P) «ooieteeeieaeiiiieiiee ettt et e e e e et e fe e e e e s amb s s e b e e e e s ebbbe e e e e e e e annbeeeeeeeeeannnees 42
8.12.2 [[GEtPIOPEILY]] (P) -eeeeeeeeeeiiiieiieeeeiiieiiee e e ettt e e e e sitbeeee e e s e e ifone e e e e e et kme e e e B bbbt e e e e e e aannbeeeeeeeeannnnees 42
S G T (1= | (2 T T ST RO OURPUPPTRRPR 42
8.12.4 [[CANPULI] (P).:reeireeiteeirie ittt e sieestee et snse e e an it e et e sen e s s e nma S et e e neneennneenanee s 42
8.12.5 [[PUL]] (P, V, TRFOW) oeieiiiiiieiiieiee e iiammt s et ae s Bb e e e e e nnne e 43
0 I G | 5 =] o o L= VA P S 43
o 2 | L= 1=t A= I] o L) T P SO 43
8.12.8 [[DefaultValue]] (NINL) ..ooueiiieee e Sttt e ettt et e et e e s e e s nneeas 44
8.12.9 [[DefineOwnProperty]] (P, DESC, TRIOW)coiiiiiiiiiii ittt 44
8.12.10 [[Enumerate]] (includePrototype, onlyEnumerable) ..t 45
o 10T = L= | () O PO PSP PF PR PUPPPT 46
N o1 = To O] o1 =T = A o o T P PSPPSR PUPRPT 46
9.1 Type ConVersion and TESTINGeeio i it eereieeeeseeae s s b e sttt e e s stbeeeesabeeeesabbeeesssbeeeesanneeeeas 46
1S 0 I A oY = T a1 A= o TP 46
L O 0] = Yo Yo 1 =T o H O o T TSP PO PSR PUPPTPP 47
L 0C T 0]\ U 011 =) T ST PT PP 48
LS T O S o [1 =0 = PSSP PPPPTR 50
9.1.5 TolInt32: (SIgNed 32 Bl INTEYEL) c...uuvviieiie et iiree et e e et e e e s e e e e e e s et e e e e e e e s stabe e e e e e e s ansstaseeeeeeennnrens 51
9.1.6 ToUint32: (UNSIgNEed 32 Bit INTEOEI) ..eevieeiiiiiieeie e e e s iiieii e et e e e ettt e e e e e s s stnte e e e e e s e s sntaeeeaaessentnseeeeessannnnes 51
9.1.7 ToUintl6: (UNSIgNed 16 Bit INTEOET) ..eevieeiiiiieeeeie e s iiiieie e e e e e s ettt e e e e e s s stntee e e e e s e s sntaeeeeaesssntnneeeeessannnnes 51
LS 0 S 10 1 1 o o e SRR 52
LS 0 1o T o = o] R 53
9.2 Testing and CompariSioN OPEratioNS ... it e e s rbb e e e s sbe e e e sbaeee e 53
9.2.1 CheCKODJECICOEICIDIE c.uii ittt 53
1S I 1] G- | = o] = PR 53
9.2.3 . The SameValue AlGOTiTNm i ettt e e b e e e b e e e s nnnneas 54
9.3 Property ACCESS OP EIatIONS .uuiiti uiiieiiiiteiittt ettt ettt e e e et e s s et e e et b e e e s st e e e anbeeesannreeeeanes 54
1S RS T A [11V 0] = T TP 54
10 Executable Code and EXeCULiON CONTEXEScccuuiiiiiiiiiiiiiieie ettt 55
10.1 TypesS Of EXECULADIECOUE......coi ittt ettt e e e e e e e e e e e e s e bbb e e e e e e e e ennnees 55
20 I A o Yo T [O T PP PSS PUPPR PP 55
10.2 LeXiCal ENVIFONMIENTSoiiiiieiiie ittt ettt ettt ekt sb et e s be e e sbn e e sn b e e s nbe e e sbneennneesnneens 55
10.2.1 ENVIFONMENE RECOTUS ...ociiiiiiieiiie ittt ettt et et sn e e nne e snneennneennne e 56
10.2.2 Lexical ENVIroNMENt OPEIAtiONSuuiiiiiiiiiiiiiie e e e e ettt ee e e e e s sttt e e e e e s e st e e e e e e s e sntaaeeeaeesssnntaeeaeeessnnnnens 60
10.2.3 The Global ENVIFONMENT ..ottt rn e e s e ssn e snr e e nnn e e nnneennneennneens 61
10.3 EXECULION CONTEXES .oiiieeieiirieiiiieritie ittt ettt ss et e e e s e s n et e nn et e nmn e e nmn e e sn e e e nne e e nneeennneennneens 61
020 200 R o 1= a1 A3 =T 0= Y=Y 1 U 0 o S 62
10.4 Establishing an EXECULION CONTEXLiiiiiiiiiiiiiii ittt sttt ee e st e et e e e sbnee e 62
10.4.1 ENtering GlODAl COUEcoiiiiiiiiiiiie ettt e bt e e e st e e e s rbbe e e e sabeeeesbneeeeas 62
10.4.2 ENLEriNg EVAI COU@ ... ittt ettt ekt e sttt e e e bt e e e st e e e e s abbe e e e sabe e e e sbneeeea 62
10.4.3 ENtering FUNCLION COOE ..ottt et e et e e e st et e e et be e e e sabaeeesanneeeea 63
10.5 Declaration Binding INSTANtiationcoouiiiiiiiiiiiiiee e snnee e 63
10.5.1 Top-Level Declaration INStANTIAtiONeeiiiiiiiiei et e e e e e e sneeeee s 63
10.5.2 Module Declaration INSTANTIALIONcciiiiiiiiiiiie e e e 64
10.5.3 Function Declaration INSTANTIATIONooviiiiiiiiee et 64
Il © Ecma International 2011

»ecma

10.5.4 Block Declaration INSTANTIALIONeeiiiiiiiiiiiiee et e e e s e e e s e e e e 65
O ST N o 10 T=T] 3@ o] =Y o SR 66
11 (o] =3 o] 4 1P 69
O R o T o 4 =T YA T o] =] [0 1SS 69
O 0t O I g oI ot = (=) VAT o T o S 69
11.1.2 1dentifier REFEIENCEvii ettt e s r e e s rn e s e snr e e snne e 69
11.1.3 Literal REFEIENCEoi ittt e e r e e n e s e e enare e 69
O O N = NV [T 1= 1 == S 69
N I @ o T = To Al [11 A=Y= TP PP P PRPTPRR 72
11.1.6 FUNCLION EXPIrESSIONS ...iiiiiiiii ittt iiete ettt ettt e e sttt e e sttt e s stee e e snbeee s sbeee e s dae b ettt e e et e e e s st e e e sabaeeeeneee 77
11.1.7 Generator COMPIrENENSIONS .ooiiii ittt ettt s b e e ab b e e et e e st e e e e nab e e s sbaeeeeneee 77
11.1.8 The GroUPING OPEIALOTuuiieiitiie ettt ettt e ettt sbe e e e s sabe e e adbae e s e ettt e e e asbe e e e abbeeeesabeeesanbneeeannne 77
11.2 Left-Hand-Side EXPreSSIONSueiiiiiiiieiiiiee ettt ee ettt e e o e st th st e ettt e et e e e sabe e e e e sineeeeanes 78
11.2.1 ProOPerty ACCESSOIS ..ooiiiiiiiiieeiitireieteessesitreeee e s s e ssrreeeeeesssenneseesdeaaaantreesaaesatine eeereeesssanrreeeeesssannrneeneas 78
11.2.2 THE NEW OPEIALON ..eeiiiiiiiiiiiieeaiitiee ettt et e et e e st eeesebeeeeses fheeaamt e eeesabeeeesabnne e b e e e e e snbeeeesbneeesanneeeeaans 79
I T e 0T g o (o] I = 11 = R R 80
11.2.4 The super KE@YWOITcoiiiiiiiiiiiiieiiiite ettt afhe e e s st e et e s st e e s abre e e s n e e e S e e e e e s ennneeeennne 80
11.2.5 ArgUMENT LISTS coiueiiiiiiiieiiiiie ettt ife s st ettt e et e e e et e e e abne e e s s beeeaanna B e e e e snbeeeeanees 81
11.3 POSHIX EXPIrESSIONS ..ttt ee e sttt e e ettt e e e e e ste et eeaeeeaannbeneeaaeee s sannnedheeeaanenneeeens 82
11.3.1 POStfiX INCrement OPEratorueiiiii e ittt fe e e bttt e e e ettt e e e e e sabe et e e e e e s s aneeneeeeas 82
11.3.2 POStfiX DECIremMENt OPEIAtOrc.ueiiiiieiiiiiiiiiieeee e itbsstbe e e et o e e aaasaateeeeeaeeesabbbeeeaeesaaaanbreeeaaeeeaannrnneeas 83
1114 UNAIY OPEIALOIS ooiiiiiiieieie et s e s ekttt ettt ettt ettt et et et eeeeaeaaaeaaaeaaaeaeaeens 83
O R I g Lo s L= =Y =N @ 01T 1 o | SRS 83
O N N Lo o e O o 1= = {0 U 84
N B I TR o <YYo} @ =T =1 o | O O PSP PP PP 84
11.4.4 PrefiX INCremMent OPEIAtOFoiueieeeiieeideiieeetaassaase oo e e eateeeeeesasaaatba e eeeaeessaanbeeeeaaeesaanbeseeeeassaannsnneeeans 85
11.4.5 Prefix DECremMeEnt OPEIAtOruueeeiiiiiaiiheeeeieeeiaaeibeeeessesEiureteeeeeaaiabteeeeeeaesaanbseeeaaeesaanbsseeeeesssaasnnneeeens 85
11.4.6 UNAIY 4 OPEIALON c.ciiiiiiiiieee ettt s e s DR ettt ettt ettt ettt ettt et et e e eeaaaeaaaaaaaaaaeeaeens 85
1147 UNAIY = OPEIALON ... eifii e i oot e e ettt sttt et e e e e et et et et et et et et et aeaeaaaaaaaaaeaaaaaaaaans 85
11.4.8 BitWiSE NOT OPEIALOT (=) - iteeiaihieeeiureteeiiteiaeaabeeesatteee st ee s st e e e s asre e e e abeeeeaabre e e s asbeeeeabreeeaanbeeesanreeeannns 86
11.4.9 LOQICaAl NOT OPEIALOT (!) .eeeeiiiiteeitreeeiitreeiaaith e e ettt e e e st et e s st e e e s asee e e e abe e e e abbe e e s asbe e e e aabreeeaanbeeeeannneeeannns 86
115 MUILIPIICAtIVE OPEIALOISeiie it etttk e bttt e ettt e e e b et e e ek b e e s anbe e e e abr e e e e anbe e e e aanneeeannee 86
11.5.1 APPIYING TN ¥ OPEIALOToideiiitiieeiiee ettt e sttt e e rb e e et b et e e st et e e ek b e e e e anbe e e e abre e e e anbeeeeaanreeeannne 86
11.5.2 APPIYING TNE / OPEIALOT . iluiieiiiiiieaitete e e st ettt e e ettt e e et e e e et be e e e abee e e aabbe e e e anbe e e e abr e e e s aabeeesannneeeannes 87
11.5.3 APPIYING TNE 5 OPBIALOL c..eii ettt ettt e e b et e e et bt e e aabe e e e ebb e e e e aabe e e e anbeeeeennee 87
LT o Lo 3 V= @ 0= = 1] TR PSRRI 88
11.6.1 The AdditiON OPEIEALOT (4) ciieeiiureieeitiee ettt ettt ettt e et bt e e e et et e e et b e e e e aabe e e e anbr e e e e aabe e e e annneeeannee 88
11.6.2 < The SUDTractionN OPEIATOr (=) iueeeeiiieeeeiiiiee ettt ettt e et e e e st e e e e aab e e e s enbreeeenees 88
11.6.3 Applying the Additive Operators to NUMDEISooiiiiiiiii e 89
11,7 BiItWiSE SHift OPEIATOIS.eiiiiiiiiiei ittt et et et e e e bt e s sa b e e e e ebbe e e s aabe e e s anbaeeeeneee 89
11.7.1 The Left SNift OPEratOr (€<) coiieiiiiiiee et e ettt ettt e e e r bt e e et b e e s aabe e e e abb e e e e aabeeeesnnreeeeanes 89
11.7.2 The Signed Right Shift OPerator (3>)..ccuuiiiiiiii i 20
11.7.3 The Unsigned Right Shift Operator (>>>) ..o 20
IR T = L= = L oY g oL@ o 1= = Lo 1 = S 91
11.8.1 RUNEIME SEMIANTICStiiiiiiiiee ittt ettt ettt e e e sttt e e ettt e e e sk bt e e e aabe e e e anbbe e e e s beeeeebbeeeeanbeeesanbaeeeannee 91
e T Yo (U 11 VA O o 1= =1 o] = PSRRI 93
12.9.1 RUNEIME SEMANTICS oottt ettt e e et bt e e e sk b e e e s a b e e e e et bt e e e bbb e e e e bbe e e e aabeeeeanbaeeeennee 94
11.10 BiNAry BitWiSE OPEIALOIS ...uiiiiiiiieiiiite e ittt ettt ettt et et e e et b e e e et et e e et bt e e e anbe e e e anbb e e e e anbeeesanbneeeannee 96
1111 BiNAry LOGICAl OPEIALOIS ...uiiiiiiiiiieiiiee ettt ettt e et e e et et e e ekt e e e aabe e e e abr e e e e anbe e e e annneeeaneee 97
11.12 CoNditioNal OPEIALOT (| 2 1) toieteiiititeeiiiee e e it e et e et e e st e e e e e st b e e e e et et e e ek be e e e anbe e e e abr e e e e anbeeesannreeeannes 98
11.13 ASSIGNMENT OPEIAIOIS ..eciiutiieeiittiee e it e e ettt et e e et b e e e e ekt e e e e e be e e e e aabe e e e aabe e e e ek be e e e anbe e e e anbbeeeaaabeeesanneeeeannes 98
Y = L oRR ST =T 1 =T Ao SRR 99
RUNTIME SEMANTICS ...eiiiiiiiiiei ittt e e et e e et et e e e ek b e e e e aa b et e e e b b e e e e anbe e e e anbr e e e e s beeesannreeeennes 99
11.13.1 DeStruCtUriNG ASSIGNIMENT ..ottt ettt ettt e e e e e e e bbbt e e e e e e s b bbbt eeaaeaeaanbbeeeeaeesanbereeeaaesaannnenees 100
O oY ¢ [F- N O o1 =1 (o] G (R PP PRR P 103
12 Statements and DECIATAtIONSuiii it e e e e et e e e e e e sbb e e e e e e e e e e aaneeees 104
STALIC SEMANTICSeiiiitiiie ittt e e et e ook e e e e st e e e b et e e s et e e e b b e e e e s e e e e e s e e e e nnes 104

© Ecma International 2011 1

ecma

RUNTIME SEMANTICS ...ttt ettt e e oo ettt e e e e oot b b et e e e e e e s hbb bt et e e e e e aanbeeeeeaeesannnbneeeas 105
2t R =1 o Y] G PSPPSR 106
12.2 Declarations and the Variable StatemMent...........cooiiiiiiiiiiiii e 108
12.2.1 Let and CONSt DECIATALIONS ...coiiiiiiiiiiiie ettt ettt e e s bt e e st e e e nbee e s enbeeeeaneeas 108
12.2.2 Variable STAEMENT ... ettt et e e bt e e b e e nab e e nnnaeas 111
12.2.4 Destructuring Binding PattINSciiiiiiiiiiiiiiie et e e s s e e e e e s s st e e e e e s s snrnreeeeeeennnnes 114
12,3 EMPLY STALEMENT ..ottt e e e s e e e e e e e e e s b e e e e e e e s b e e e e e e e s s e nnreeeee e s e annrees 120
12,4 EXPreSSIiON STALEMENTooi ittt bt et bt e s bbbt e e aabe e e e sbb e e e e sabb e e e sbbeeesnnneeas 120
D2 T I g Lo] = 10T 1 4= o | S 121
2 I 1 0= = L o] TS5 = L= 0 =T 122
12.6.1 The do-Wwhile StaleMENT.....coiii it rerr e e e e sreere e e e e e snee e adheaaaatenteeeeaeessanneneeeeeeesaannnes 122
12.6.2 The while STateMENTuiiiiiii i e e e e s e e e e e s e s anaa e s e s e teteeeeeessannntaneeeeeeennnnnes 123
2 T T I g =T o < = L= 0= L 123
12.6.4 The for-in and £or-0f StAEMENTS ..o e e ee e e s seeeeas 125
12.7 The continue StateMENT.......cooiiiiiiiiiii e dfrre s e ra s as b e et e e e ebae e e snbeeeesneeas 129
12.8 Thebreak StatemMENtcoiiiii i@t e e e e naeee e e s aea e s bt e e e s nseeeesnneeeesnneeeas 129
12,9 The return STAtEMENTot a et e ettt e e s nebeeeesaaeeesannaeth s eeteeesnnbeeesnneeeas 130
12.10 The with STAtEMENT ..o fe e et ettt e e e e et e e e e e e sabeeeeeaaasaaheeeeeeeeeenneees 130
12,11 The switch StA@MENTuiiiiii ittt e e e et e sbe e e e e e e e aabeeeeeeeessannna bR e e e e e e neneees 131
12.12 Labelled StatemMENtSc.uuiiiiieiiiiiiee e fe et e e et sfe s e s s Bttt e e e e e e et e e e e e e e e ntbee e e e e e e e nneees 135
12.13 The throw STAtEMENTk b e e et e e e e ettt e e e e e et ebe e e e e e e aansbeeeeeeeeannrees 136
12.14 The try STAEMENT ..cooiiiiiiiiiie e e ettt e e et e st e et e s e s s 137
12.15 The debugger STAIEMIENTottt sk e et e st e e et e e s s e e s aabr e e e e nbee e e enbeeeeanneas 139
13 FUNCLIONS AN GENEIALOIS .. .eiiiiiie s ittt i eieee e e e e eteeeeee s s e s aa b e e e e e e ennbeaeeeeeeeantseeeaaeeseannreneeaeaenn 139
13.1 FUNCLION DEFINITIONS oot ie sttt e e i e e e e e e e eeeee et e e e Sttt e e e e e smbnbeeeeeessannbeeeeeeeeannnrees 139
13.1.1 Creating FUNCLION ODJECES ..ciiiiiiiiiiiiiie et iiieee e s easss B i e teeee et e s e aa et eeeae e e e ensbeeeeaaeesannbbneeeaaeeaannes 144
13.2 Generator DefinitiONS ...ttt at e e e e Rt e e e ettt e e e e e e et be e e e e e e e e nnbeeeeeeeeenneees 146
14 o o0 =1 o RO ST S PP T PP TP PP TP T PP P TP 146
14.1 Directive Prologues.and the USe Strict DIFECLIVE..........ccoiiiiiiiiiie e e e e e 147
15 Standard Built-iIn'ECMASCIIPt ODJECESuuiiiieiie it s s e e s s rre e e e e e e naneees 147
L 70 R I o T= I] T o = T @ o = ol S SO OTPR 148
15.1.1 Value Properties of the Global ObJECL...........cceiriiieee e 149
15.1.2 Function Properties of the Global OBjJECT ... i 149
15.1.3 URIHandling FUNCION PrOPEITIES ...ccvieeii ettt e et e e e s st e e e e e s e st e e e e e e s nnntnnneeaeeennnnnes 151
15.1.4 Constructor Properties of the Global ODJeCT ... 155
15.1.5 Other Properties of the Global ODJECT ... 156
T @ o) [=Toa A O o] =1 £ S TSRO U PR TUPPPO 156
15.2.1 The Object Constructor Called @s a FUNCLIONcueiiiiiiiiiii e 156
15.2.2 The ODJECT CONSIIUCTOLeeiiiiiiiiie ittt sttt e e e e s st e et e e e et r e e e anbe e e e aneeas 157
15.2.3 Properties of the ODJECT CONSTIUCTONouuiiiiiiiiie it 157
15.2.4 Properties of the Object Prototype ODJECT.........ooi i 160
15.2.5 Properties Of ODJECE INSTANCEScoiuiiiiiiiii ittt 162
TG B o U1 T3 (o] o @ o [T o £ T PP P TP PPTPPP 162
15.3.1 The Function Constructor Called as a FUNCLIONcoiiiiiiiiie e 162
15.3.2 The FUNCHION CONSIIUCTON ...uiiiiiiiiiiiiiiie ettt ettt sttt e s e e e s st e e snbbe e e e nbe e e e snsbeeeeanteas 162
15.3.3 Properties of the FUNCLION CONSIIUCTONuuiiiii ittt e e e e e s s e e e e e e e e nnneees 163
15.3.4 Properties of the FUNCtion Prototype ODJECE.......ccuiiiiiii e 163
15.3.5 Properties 0f FUNCLION INSTANCESiiiii i e s st e e e e e e s st ae e e e e e s nnrnaeeeeeeeennnes 166
R N - | A ©] o] =T o £ SRRSO 167
15.4.1 The Array Constructor Called as a FUNCLIONooiiiiiiiiiieie e 167
15.4.2 THE AITAY CONSIIUCTON .uiiiiiiiiiiiiitiie ettt ettt ettt ettt e e s bt e e e s bb et e e sabe e e e s asb e e e e sabbeeesanbeeesannneas 167
15.4.3 Properties Of the Array CONSTIUCTONooiiiiiiiiiiiie it 168
15.4.4 Properties of the Array Prototype ODJECTcoueiii i 168
15.4.5 Properties Of Array INSTANCESooiiiiiiiiiii e s b e e e e 186
T T 1Yo [@ o] =T o £ PR PT TR URRPT 188
15.5.1 The String Constructor Called as a FUNCLIONuuiiiiiiiiie e 188
15.5.2 The STrHNQG CONSTIUCTOTuiiiiiiiiiiitiiii ettt ettt e e e e e et e e e e e e e e s bbbt e e e e e e e aasbeeeeaeeeeanbbbeeeaeeeaannes 188

© Ecma International 2011

»ecma

15.5.3 Properties of the String CONSIIUCTONuuiiiii i 188
15.5.4 Properties of the String Prototype ODJECT ... e 189
15.5.5 Properties Of SIriNG INSTANCESuuiiii i e e e e e e s e e e e e s st re e e e e e e s e nnnneees 198
T ST = Yo Yo 1= T= U I @ o] =T o PSSR 198
15.6.1 The Boolean Constructor Called as @ FUNCLIONcoouiiiiiiiiie e 198
15.6.2 The BOOIEAN CONSIIUCTON .uviiiiiiiiie ittt ettt sttt e reb e e st e e s bt e e e snbb e e e s anbeeeesnneeeas 198
15.6.3 Properties of the Boolean CONSIIUCTONcciiiiiiiiiiiie it 199
15.6.4 Properties of the Boolean Prototype ODJECTcuuiiiiiiiiiiiie e 199
15.6.5 Properties 0f BOOIEAN INSTANCESooiiiiiiiiiiiiie ettt 200
T A V(01401 o= G @ o] [T o £ PP O PP PTPPPPI 200
15.7.1 The Number Constructor Called as @ FUNCHIONcoooiiiiiiiiiiieei e 200
15.7.2 The NUMDBEr CONSIIUCTON ..ciiiiiiiiiiiiiie ettt ettt e e e e e e sfaaa s e s et te e e e e s snbenaeeeeeesannneeees 200
15.7.3 Properties of the NUMDer CONSTIUCTONoiiiiiiiiiiiiiiee ettt 200
15.7.4 Properties of the Number Prototype ODjJecCt..........uuiiiiiiiii i e 201
15.7.5 Properties of NUMDEr INSTANCEScccoiiiiiiiiii e et Bh e 205
TR T I o L=\ = 1 1@ o] =3 USSR 205
15.8.1 Value Properties of the Math ODBJECTveeviiiii i e e et o e e 205
15.8.2 Function Properties of the Math ODBJECT ... e e e e et 206
TR N T = @ o =T o S SR 211
15.9.1 Overview of Date Objects and Definitions of Abstract Operatorscccccveeveeeeviciineesteeeiesnenen, 211
15.9.2 The Date Constructor Called as a FUNCHION ... i it 216
15.9.3 The Date CONSIIUCTON ...uuuiiiiieeeiiiiieete e e iesitieireee s s s nnneaieeseneedanaaaasansnteeeeeesssasssaneeeeeesannsnnnneeeessansnsnnes 216
15.9.4 Properties Of the Date CONSTIUCTONoiuiiiiiiiiii it ide sttt e e e e e e sneeees 217
15.9.5 Properties of the Date Prototype ODJECT.......c..eii i 218
15.9.6 Properties Of Date INSTANCESodhuiiine e iiiiee e iase b sttt et e e st et e s sane e e e sab b e e e snneeeesnneeas 225
15.10 RegExp (Regular EXpression) ODJECES ... it ieeeieiiieeeiiiaree st et e ettt e e e e ssreeesanneeeesneeees 225
15.10.1 PAITEIMNS ..ooieiiiiiiiiiiieie ettt SRttt s e am s e s e B e et ettt et et e e e aaeaeaaaaaaeaaaaaaaaeaeanaaans 226
15.20.2 PAtIerN SEMANTICS .ooeiiiiiiiiiiieie ettt eee st aaaheeeeeeeesesaebsseaaee e Eoaa e eeee e s abeeeeeaaeeaaaasbbeeeeaeeeaannbbneeaaeeaannenees 228
15.10.3 The RegExp Constructor Called as a FUNCLION .ai..uii i e 239
ST KO I g TN == To | =t o B O 0] g 3 1 U o3] o e RS 239
15.10.5 Properties of the REGEXP CONSIIUCTOTuuiiiieei i ettt e e e e e e e e e e e s s e e e e e e s e nnnnnees 240
15.10.6 Properties of the RegEXp Prototype ODJeCTvviiiiie e 241
15.10.7 Properties 0f REGEXP INSTANCEScccoiiiiiiis et e e s e e e e e e st e e e e e s aneaaa e e e e e e snnnnneees 242
T80 I R e oY GO o] =T o] PR 243
15.11.1 The Error Constructor Called @s @ FUNCLIONcc.iuuiiiiiiiiiiiiiee e 243
700 I 7 I o Lo 1 o T @] 1S3 1 0o o) SR 243
15.11.3 Properties Of the Error CONSTIUCTONouiiiiiiiiiiiiieii ettt 244
15.11.4 Properties of the Error Prototype ODJECT..........oi it 244
15.11.5 Properties Of ErTOF INSTANCEScciiuuiiiiiiiiie ittt ettt st et e sab e e e snne e e e snneees 244
15.11.6 Native Error Types Used in This Standardcccccoiiiiiiiiiieiiie et 244
15.20.7 NatiVEEITOr ODJECT STIUCTUIE Loii ittt ettt et et et e e sbn e e e snneeas 245
LT I o LT IS 1@ NV @] o] =T o] A SRS 247
15.12.1 TRE JSON GFAMIMAL i iiiiietiiieieeiiitieie e e ettt e e e e s e et ee et e ae e s s abbeeeeeaeesaaabeeeeaeeaaaanbbeeeeaeessansbbneeaeesaannnenees 247
15.12.2 PArSE (LEXE [, TEVIVEE |) eeiiiiiiiiiiiiie ettt ettt sttt e st s et e ettt e e st e e e ssbe e e e snsb e e e anteeeeansbeeesansaeeesnnneeen 249
15.12.3 stringify (value [, replacer [, SPACE]]) vttt ettt e et e e e s 250
16 T 0 T PP UPPPPPPPPPPPP 254
Annex A (informative) Grammar SUMIMATYoeeeoiiiiiiiieeeeeeiiiiieeeeeessaisreeeeessasssaeesaessssasrsseesesssnsssseeeees 256
A.l [o= U €1 =T 011 = | O RPRTSR 256
A.2 N TU]] oX=T g @] 1Y T =T Yo o KT SR 262
A.3 o d o1 =TS 1=T o] 1 PR 263
A4 Y 1= L] 1 1=] KPP 267
A.5 FUNCHIONS AN PrOQIAIMS ..ottt ettt ettt e e st e e e abb e e e ekt e e e s anbe e e e e nbeeeenees 269
A.6 Universal Resource Identifier Character ClasSSeSocuuuiiiiiiiiiiiiiieie e 270
A7 NCTo T = T =] =T (0] L T OO P PP PP U P PP 270
A.8 Y11 SO R SO R 272
A.B.1L JSON LEXICAI GIaMIMA .oiiiiiiiiiieia ettt e e e e e ettt e e e e e et et e e e e e e aasbeteeeae e s e aanebeeeaaeeeannbeeeaaaeesannrnneaaaeas 272
A.B.2 JSON SYNTACTIC GIAIMMIATiiiiiiiiieiiiiiie it e ettt e e e e et et e e e e e e s bbb et eeae e s e aabbbeeaeaesesnbbeeeaaeeeaannbeneeaaeas 273
Annex B (normative) Additional ECMAScript Features for Web Browserscccccovviiiiiiieiniiiiieeeenn. 276

© Ecma International 2011 V

secmd

B.1 Yo [TR o = TSV 1> PP 276
= 0 R 10 [T ol L =T = 1O R P TP PP PP 276
2 0 A g Vo = = | SRR 276
B.2 Yo o L1 Ko Yo =1 =d o] o= 4= S SSUPPSRR 277
2 et R =YY o= 1o L= (53 {1 o) RS 277
2 2 V1 1YY oF= T =N 3 o | S 278
B.2.3 String.prototype.substr (Start, I€NGL) ... 279
S O - (N o] (o) (o] YA e T= e [A T | G () TR ST OU PP RP PPN 279
B.2.5 Date.protOtyPe.SELYEAN (YEAI) ...ueiiiiiiieiiiiiee ittt ettt ettt ettt et bt ettt e e sbb e e s abbe e e e sabb e e e snb e e e e nnnreee s 279
B.2.6 Date.prototyPe.tOGMTSIIING () .eeeeiiureieiiiiieeiiieie ettt e sttt ettt et e st e e s ae e e s asee e e e sann e e e snne e e e annreee s 279
B.3 Other AdditioNal FEATUIES ...oocoiieiiiiie ettt e e et iie s e e s e e e e e e e sennbaeeeeeeeeaannes 280
B.3.1 The __proto__ PSEUAO PrOPEITY...coceeiiiiiiieeiiiiee ettt ettt et e e ife e s sttt e et et e e e e sneeee s 280
Annex C (informative) The Strict Mode Of ECMASCIIPT....cciiiiiiiiiiiiee st 282
Annex D (informative) Corrections and Clarifications in the 5" Edition with Possible 3" Edition

CompatibDility IMPACTeieiiiiee et er e e e e et e e e e s s aae b e e e e e e aenbeeeeeeeeeaannees 284
Annex E (informative) Additions and Changes in the 5" Edition that Introduce Incompatibilities

WIth The 3T EItiON ... sttt 286
Annex F (informative) Technically Significant Corrections and Clarifications in the 5.1 Edition 290

VI © Ecma International 2011

© Ecma International 2011

VI

»ecma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption<under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has.achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of. ECMAScript. Although that work was not
completed and not published! as the fourth edition of ECMASecript, it-informs continuing evolution of the
language. The fifth edition of ECMAScript (published as ECMA-262 5 edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective’ creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC 16262:2011.

This present sixth edition of the Standard.........

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4” as an Ecma International publication does not
exist.

VIII © Ecma International 2011

»ecma

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references .to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2011 IX

secma

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support<all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 3.0 or later and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted encoding
form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is presumed
to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified,.it presumed to
be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to-support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the “future reserved words” listed in 7.6.1.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2

ISO/IEC10646-1:1993, Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific host objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the

© Ecma International 2011 1

secma

capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Java™, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java™ Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.
4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host environment for.server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that.supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be used—for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

2 © Ecma International 2011

»ecma

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a property named “prototype” that is used to implement prototype-based inheritance and shared
properties. Objects are created by using constructors in new expressions; for example, new
Date (2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date () produces a‘string representation of the current date and
time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value of
its constructor’'s “prototype” property. Furthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property
of that name. In other words, first the objectmentioned directly is examined for such a property; if that object
contains the named property, that is the property to which. the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on:

CF i implicit prototype link

prototype CFp
Pl

explicit prototype property

P2 CERI!

cfy cfz cfs cfa cfs
ql gl ql gl ql
g2 a2 qz q2 q?2

Figure 1 — Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

© Ecma International 2011 3

secma

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfy, cfa,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs’s prototype is CF,. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFy, cfy, cfy, cfs, cfs, or cfs. The property named CFP1 in CFp
is shared by cfy, cf,, cfs, cfs, and cfs (but not by CF), as are any properties found in CFy’s implicit prototype
chain that are not named g1, g2, or CFP1. Notice that there is no implicit prototype link between CF and CF,.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or any of the constructed object’s
properties. In the above diagram, one could add a new shared property for cfi, cf,, cfs, cfs, and cfs by
assigning a new value to the property in CFp.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features: The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax.and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to’this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an .implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

43.1

type

set of data values as defined.in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2011

»ecma

4.3.4
constructor
function object that creates and initialises objects

NOTE The value of a constructor's “prototype” property is a prototype object that is used to implement inheritance
and shared properties.

4.35
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’s “prototype” property
for the purpose of resolving property references. The constructor's “prototype” property can be referenced by the
program expression constructor.prototype, and properties added to an object’s. prototype are shared, through
inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object. create built-in function.

4.3.6

native object

object in an ECMAScript implementation whose semantics are fully defined by this specification rather than by
the host environment

NOTE Standard native objects are defined in this specification. Some native objects are built-in; others may be
constructed during the course of execution of an ECMAScript program.

4.3.7

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. Every built-in object is a native object. A built-in constructor is a built-in object that is also a constructor.

4.3.8
host object
object supplied by the host environment to complete the execution environment of ECMAScript

NOTE Any-object that is not native is a host object.

4.3.9
undefined value
primitive value used when a variable has not been assigned a value

4.3.10
Undefined type
type whose sole value is the undefined value

43.11
null value
primitive value that represents the intentional absence of any object value

4.3.12

Null type

type whose sole value is the null value
4.3.13

Boolean value

member of the Boolean type

NOTE There are only two Boolean values, true and false.

© Ecma International 2011 5

secma

4.3.14
Boolean type
type consisting of the primitive values true and false

4.3.15
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal property whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.3.16
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.17
String type
set of all possible String values

4.3.18
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as
an argument. The resulting object has an.internal property whose value is the String value. A String object can be coerced
to a String value by calling the String constructor as a function (15.5.1).

4.3.19
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.20

Number type

set of all possible Number values including the special “Not-a-Number” (NaN) values, positive infinity, and
negative infinity

4.3.21
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal property whose value is the Number value. A Number object can be
coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.22
Infinity
number value that is the positive infinite Number value

4.3.23

NaN
number value that is a IEEE 754 “Not-a-Number” value

6 © Ecma International 2011

»ecma

4.3.24

function

member of the Object type that is an instance of the standard built-in Function constructor and that may be
invoked as a subroutine

NOTE In addition to its named properties, a function contains executable code and state that determine how it
behaves when invoked. A function’s code may or may not be written in ECMAScript.

4.3.25
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.26

property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value.-may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a-pair of accessor functions.

4.3.27
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.28
built-in method
method that is a built-in function

NOTE Standard built-in‘methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods:

4.3.29
attribute
internal value that defines some characteristic of a property

4.3.30

own.property

property that is directly contained by its object
4.3.31

inherited property

property of an object thatis not an own property but is a property (either own or inherited) of the object’s
prototype

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a

nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

© Ecma International 2011 7

secma

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharacter defined in Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDiv or InputElementRegExp, that describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).
Simple white space and single-line comments are discarded and do not appear in the stream of input
elements for the syntactic grammar. A MultiLineComment (that is; a comment of the form “/*...*/” regardless
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineComment contains one or more line terminators, then it is replaced by a single line terminator, which
becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern,
that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having<to do with numeric literals and has as its terminal symbols SourceCharacter. This
grammar appears in 9:3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.
5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Program, that describe how sequences of tokens can form syntactically correct
ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript program, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by
a single application of the syntactic grammar. The program is syntactically in error if the tokens in the stream
of input elements cannot be parsed as a single instance of the goal nonterminal Program, with no tokens left
over.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
“awkward” places.

8 © Ecma International 2011

»ecma

In certain cases in order to avoid ambiguities the syntactic grammar uses productions that permit token
sequences that are not valid ECMAScript programs. In such cases a more restrictive supplemental grammar
is provided that further restricts the acceptable token sequences. In such situations, when explicitly specific,
the input elements corresponding to such a production is parsed again using a goal symbol of a supplemental
grammar. The program is syntactically in error if the tokens in the stream of input elements cannot be parsed
as a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON' syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical grammar are distinguished by having two colons “:” as separating
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical. grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions of the JSON

e n

syntactic grammar are distinguished by using one colon “” as separatingpunctuation.
5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and‘numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers:to such a terminal symbol. These are to appear
in a program exactly as written. All terminal symbol characters specified in this way are to be understood as
the appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from
other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar
the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on
succeeding lines. For example, the syntactic definition:

WhileStatement .
while (Expression’) Statement

states that the nonterminal WhileStatement.represents the token while, followed by a left parenthesis token,
followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of
Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by
a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined
in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of
nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol.
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initialiserqpt

© Ecma International 2011 9

secma

is a convenient abbreviation for:
VariableDeclaration :
Identifier
Identifier Initialiser

and that:

IterationStatement :
for (ExpressionNolng: ; Expressioney: ; Expressiongy) Statement

is a convenient abbreviation for:
IterationStatement :
for (; Expressiong: ; Expressionoy:) Statement
for (ExpressionNoln ; Expressiong,: ; Expressiongy) Statement
which in turn is an abbreviation for:
IterationStatement :
for (; ; Expressioney) Statement
for (; Expression ; Expressiongp) Statement
for (ExpressionNoln ; ; Expressioney) Statement
for (ExpressionNoln ; Expression ; Expressiong:) Statement

which in turn is an abbreviation for:

IterationStatement :

for
for

ExpressionNoln ; Expression ;) Statement
ExpressionNoln ; Expression ; Expression) Statement

for (; ;) Statement

for (; ; Expression) Statement

for (; Expression ;) Statement

for (; Expression ; Expression) Statement

for (ExpressionNoln ; ;') Statement

for (ExpressionNoln ;< ; Expression) Statement
(
(

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit ::

wCoJdJoUulbdWDNR

10 © Ecma International 2011

»ecma

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-
hand side contains no terminals or nonterminals.

If the phrase “[lookahead ¢ set]” appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is a member of the given set. The set can be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

matches either the letter n followed by one or more decimal digits. the first of which is even, or a decimal digit
not followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used.if a LineTerminator occurs in the
input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression 8

indicates that the production may not be used if a LineTerminator occurs in the program between the throw
token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator _may-appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the program.

When-an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal ldentifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode code unit

© Ecma International 2011 11

secma

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available to implement a given feature.

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations,
are named and written in parameterised functional form so that they may be referenced by name from within
other algorithms.

When an algorithm is to produce a value as a result, the directive “return x” is used to indicate that the result of
the algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is used as
shorthand for “the result of step n”.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline humbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.
b. Substep
i Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep
A step or substep may be written as an “if” predicate that'conditions its substeps. In this case, the substeps
are only applied if the predicate is'true: If a step or substep begins with the word “else”, it is a predicate that is
the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its-algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements _and-hence need not be checked by an implementation. They are used simply to clarify
algorithms,

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions . defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or —0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is —x if x is negative (less than zero) and
otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and —1 if x is negative. The sign function is not used in
this standard for cases when x is zero.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero)
such that abs(k) < abs(y) and x—k = g x y for some integer g.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.

12 © Ecma International 2011

»ecma

NOTE floor(x) = x—(x modulo 1).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as “If an exception was thrown...”. Once such an algorithm step
has been encountered the exception is no longer considered to have occurred.

5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript program that may be evaluated. In some situations additional
rules are needed that may be expressed using either ECMAScript algorithm conventions or prose
requirements. Such rules are always associated with a production of a grammar and are called the static
semantics of the production.

An implementation must validate all of the static semantic rules used to parse a Program prior to the first
evaluation of that Program. If any of the static semantic rules are violated the Program is invalid and can not be
evaluated. Static semantic rule violations are early errors (see clause 16) and reported in the same manner
as syntax errors.

6 Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding,
version 3.0 or later. The text is expected to_have been normalised to Unicode Normalization Form C
(canonical composition), as described in Unicode Technical Report #15. Conforming ECMAScript
implementations are not required to perform any normalisation of text, or behave as though they were
performing normalisation of text, themselves. ECMAScript source text is assumed to be a sequence of 16-bit
code units for the purposes of this specification. Such a source text. may include sequences of 16-bit code
units that are not valid UTF-16 character encodings. If an actual source text is encoded in a form other than
16-bit code units it must be processed as if it was first converted to UTF-16.

Syntax

SourceCharacter«:
any Unicode code unit

Throughout the rest of this document, the phrase “code unit” and the word “character” will be used to refer to a
16-bit unsigned value used to represent a single 16-bit unit of text. The phrase “Unicode character” will be
used to refer to the abstract linguistic or typographical unit represented by a single Unicode scalar value
(which-may be longer than 16 bits and thus may be represented by more than one code unit). The phrase
“code point” refers to such a Unicode scalar value. “Unicode character” only refers to entities represented by
single Unicode scalar values: the components of a combining character sequence are still individual “Unicode
characters,” even though a user might think of the whole sequence as a single character.

In string literals, regular expression literals, and identifiers, any character (code unit) may also be expressed
as a Unicode escape sequence consisting of six characters, namely \u plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or
regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE Although this document sometimes refers to a “transformation” between a “character” within a “string” and the
16-bit unsigned integer that is the code unit of that character, there is actually no transformation because a “character”
within a “string” is actually represented using that 16-bit unsigned value.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \u000a, for example, occurs within a single-line comment, it
is interpreted as a line terminator (Unicode character 0004 is line feed) and therefore the next character is not
part of the comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java
program, it is likewise interpreted as a line terminator, which is not allowed within a string literal—one must

© Ecma International 2011 13

secma

write \n instead of \uOO0OA to cause a line feed to be part of the string value of a string literal. In an
ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contributes a character to the String value of the literal
and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. The InputElementDiv_symbol is used in those syntactic
grammar contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExp symbol is used in other syntactic grammar contexts:

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the
following:

a=>b
/hi/g.exec(c) .map(d) ;

where the first non-whitespace, non-comment character after a LineTerminator is slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator. That is, the above example is interpreted in
the same way as:

a=Db / hi / g.exec(c).map(d) ;
Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegEXxp ::
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

7.1 Unicode Format-Control Characters
The Unicode format-control characters (i.e., the characters in category “Cf’ in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the

formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals and regular expression literals.

<ZWNJ> and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ> and <ZWJ> may also be used in
an identifier after the first character.

<BOM?> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes

14 © Ecma International 2011

secmd

also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 1 — Format-Control Character Usage

Code Unit Value Name Formal Name Usage
\u200C Zero width non-joiner <ZWNJ> IdentifierPart
\u200D Zero width joiner <ZWJ> IdentifierPart
\uFEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability.and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may also occur within a StringLiteral or a
RegularExpressionLiteral (where they are considered significant characters forming part of the literal value) or
within a Comment, but cannot appear within any other kind-of token.

The ECMAScript white space characters are listed in Table 2.
Table 2 — Whitespace Characters

ECMAScriptdimplementations must recognise all of the white space characters defined in Unicode 3.0. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may

Code Unit Value Name Formal Name

\u0009 Tab <TAB>

\u000B Vertical Tab <VT>

\u000C Form Feed <FF>

\u0020 Space <SpP>

\u00A0 No-break space <NBSP>

\uFEFF Byte Order Mark <BOM>

Other category “Zs” Any other Unicode <USP>
“space separator”

recognise white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator

© Ecma International 2011 15

secma

cannot occur within any token except a StringLiteral. Line terminators may only occur within a StringLiteral
token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (7.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space characters that are matched by the \s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.

Table 3 — Line Terminator Characters

Code Unit Value Name Formal Name
\u000A Line Feed <LF>
\u000D Carriage Return <CR>
\u2028 Line separator <LS>
\u2029 Paragraph separator <PS>

Only the characters in Table 3 are treated as line terminators: Other new line or line breaking characters are
treated as white space but not as line terminators. The character sequence <CR><LF> is commonly used as
a line terminator. It should be considered a single character for the purpose of reporting line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead ¢ <LF>]
<LS>
<PS>
<CR> <LF>

7.4 Comments
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminator character, and because of
the general rule that a token is always as long as possible, a single-line comment always consists of all
characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is not
considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing by
the syntactic grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsgp: */

16 © Ecma International 2011

»ecma

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharspt
* PostAsteriskCommentCharsept

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsept
* PostAsteriskCommentCharsept

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingleLineComment ::
// SingleLineCommentCharsgpt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

7.5 Tokens

Syntax

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral

NOTE The DivPunctuator and RegularExpressionLiteral productions define tokens, but are not included in the Token
production.

7.6 ldentifier Names and ldentifiers

Identifier Names are tokens that are interpreted according to the grammar given in the “Identifiers” section of
chapter.5 of the Unicode standard, with-.some small modifications. An Identifier is an IdentifierName that is not
a ReservedWord (see 7.6.1). The Unicode. identifier grammar is based on both normative and informative
character categories specified by the Unicode Standard. The characters in the specified categories in version
3.0 of the Unicode standard must be treated as in those categories by all conforming ECMAScript
implementations.

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted
anywhere in an IldentifierName.

Unicode escape sequences are also permitted in an IdentifierName, where they contribute a single character to
the IdentifierName, as computed by the CV of the UnicodeEscapeSequence (see 7.8.4). The \ preceding the
UnicodeEscapeSequence does not contribute a character to the IdentifierName. A UnicodeEscapeSequence cannot
be used to put a character into an IdentifierName that would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequence sequence were replaced by its UnicodeEscapeSequence's CV, the result must still be
a valid ldentifierName that has the exact same sequence of characters as the original ldentifierName. All
interpretations of identifiers within this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two ldentifierName that are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code units (in other words, conforming ECMAScript

© Ecma International 2011 17

secma

implementations are only required to do bitwise comparison on IdentifierName values). The intent is that the
incoming source text has been converted to normalised form C before it reaches the compiler.

ECMAScript implementations may recognise identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in Unicode
3.0.

Syntax

Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodeLetter
$

\ UnicodeEscapeSequence

IdentifierPart ::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
<ZWNJ>
<ZWJ>

UnicodeLetter ::
any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter (LI)
(Lt)”, “Modifier letter(Lm)”, “Other letter (Lo)", or “Letter number (NI)".

"«

, “Titlecase letter
UnicodeCombiningMark ::
any character in the Unicode categories “Non=spacing mark (Mn)” or “Combining spacing mark (Mc)”

UnicodeDigit ::
any character in the Unicode category “Decimal number (Nd)’

UnicodeConnectorPunctuation ::
any character in the Unicode category “Connector punctuation (Pc)”

The definitions of the nonterminal UnicodeEscapeSequence is given in 7.8.4
Static Semantics: String Value
Identifier :: ldentifierName but not ReservedWord
1. Return the String Value of IdentifierName.
IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart
1. Return the String value consisting of the sequence of characters corresponding to IdentifierName.

7.6.1 Reserved Words

A reserved word is an ldentifierName that cannot be used as an Identifier.

18 © Ecma International 2011

»ecma

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as ldentifiers in ECMAScript programs.

Syntax

Keyword :: one of
break do instanceof typeof
case else new var
catch finally return void
continue for switch while
debugger function this with
default if throw
delete in try

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

Syntax

FutureReservedWord :: one.of
class enum extends super
const export import

The following tokens are also considered to be FutureReservedWords when they occur within strict mode code
(see 1041.1). The occurrence of any of these tokens within strict mode code in any context where the
occurrence of a FutureReservedWord would produce an error must also produce an equivalent error:

implements let private public yield

interface package protected static

© Ecma International 2011 19

secma

7.7 Punctuators

Syntax
Punctuator :: one of
{ } () [1
; ' < > <=
>= == '= === l==
+ - * % ++ --
<< >> >>> & | A
! ~ && I d
= += -= *= %= <<=
>>= >>>= &= |= - <|
DivPunctuator :: one of
/ /=
7.8 Literals
Syntax
Literal ::
NullLiteral
ValueLiteral
ValueLiteral ::

BooleanLiteral
NumericLiteral
StringLiteral
RegularExpressionLiteral

7.8.1 Null Literals

Syntax

NullLiteral ::
null

Semantics

The value of the null literal null is the sole value of the Null type, namely null.
7.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

Semantics
The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal £alse is a value of the Boolean type, namely false.

20 © Ecma International 2011

»ecma

7.8.3 Numeric Literals

Syntax

NumericLiteral ::
DecimalLiteral
HexlIntegerLiteral

DecimalLiteral ::
DecimalintegerLiteral . DecimalDigitSop: ExponentPartop
. DecimalDigits ExponentPartop
DecimallntegerLiteral ExponentPartop:

DecimallntegerLiteral ::
0

NonZeroDigit DecimalDigitSopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
Exponentindicator Signedinteger

Exponentindicator :: one of
e E

Signedinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral ::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::'one of
0 1.2 3 4 5.6 7 8 9 a b c d e £ A B C D E F

The source character immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.

NOTE For example:
3in

is an error and not the two input elements 3 and in.

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as described
below.

e The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.
e The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

© Ecma International 2011 21

secma

e The MV of DecimalLiteral :: DecimalintegerLiteral . is the MV of DecimalintegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral plus
(the MV of DecimalDigits times 10™"), where n is the number of characters in DecimalDigits.

e The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of DecimalintegerLiteral times
10°, where e is the MV of ExponentPart.

e The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of

DecimallntegerLiteral plus (the MV of DecimalDigits times 10™")) times 10°, where n is the number of
characters in DecimalDigits and e is the MV of ExponentPart.

e The MV of DecimalLiteral :: . DecimalDigits is the MV of DecimalDigits times 10", where n is the number of
characters in DecimalDigits.

e The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10°", where n is
the number of characters in DecimalDigits and e is the MV of ExponentPart.

e The MV of DecimalLiteral :: DecimalintegerLiteral is the MV of DecimalintegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimallntegerLiteral times 10°,
where e is the MV of ExponentPart.

e The MV of DecimalintegerLiteral :: 0 is O.
e The MV of DecimallntegerLiteral :: NonZeroDigit is the MV.-of NonZeroDigit.

e The MV of DecimalintegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10") plus
the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

e The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit:

e The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

e The MV of ExponentPart :: Exponentindicator Signedinteger is the MV of Signedinteger.
e The MV of Signedinteger :: DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger :: + DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger :: - DecimalDigits is the negative of the MV .of DecimalDigits.
e The MV of DecimalDigit :: 0-or of HexDigit :: 0'is 0.

e The MV of DecimalDigit.:: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 is 1.
e The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 is 2.
e The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3'or of HexDigit :: 3 is 3.
e The MV of DecimalDigit:: 4 or of NonZeroDigit:: 4 or of HexDigit :: 4 is 4.
. The MV of DecimalDigit :: 5 or of NonZeroDigit:: 5 or of HexDigit :: 5 is 5.
e The MV._of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 is 6.
e The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 is 7.
e The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.
. The MV of DecimalDigit:: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.
e The MV of HexDigit :: a or of HexDigit :: A is 10.

e The MV of HexDigit :: b or of HexDigit :: Bis 11.

e The MV of HexDigit :: cor of HexDigit :: C is 12.

e The MV of HexDigit ::'d or of HexDigit :: D is 13.

e The MV of HexDigit :: e or of HexDigit :: E is 14.

e The MV of HexDigit :: £ or of HexDigit :: Fis 15.

e The MV of HexIntegerLiteral :: 0x HexDigit is the MV of HexDigit.

e The MV of HexIntegerLiteral :: 0X HexDigit is the MV of HexDigit.

e The MV of HexIntegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by

22 © Ecma International 2011

»ecma

replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentPart and

. it is not 0; or
e there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
NumericLiteral to include OctallntegerLiteral as described in B.1.1.

7.8.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence. All characters may appear literally in a string literal except for the closing
quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character
may appear in the form of an escape sequence.

Syntax

StringLiteral ::
" DoubleStringCharactersgp: "
' SingleStringCharactersqpt '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersqpt

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersgp:

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of ! or \.or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b £f n r t v

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

© Ecma International 2011 23

secma

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacter is defined in clause 6.

Semantics

A string literal stands for a value of the String type. The String value (SV) of the literal is. described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some
characters within the string literal are interpreted as having a mathematical value (MV), as described below or
in7.8.3.

e The SV of StringLiteral :: "" is the empty character sequence.

e The SV of StringLiteral :: ' ' is the empty character sequence.

e The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.
° The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

e The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV of
DoubleStringCharacter.

e The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of the CV
of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order.

e The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one character, the CV of
SingleStringCharacter.

e The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of the CV of
SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order.

e The SV of LineContinuation :: \ LineTerminatorSequence is the empty character sequence.

e The CV of DoubleStringCharacter :: SourceCharacter but not one of "™ or \ or LineTerminator is the
SourceCharacter.character itself.

e The CV of DoubleStringCharacter:: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of DoubleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the
SourceCharacter character itself.

e The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of SingleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

° The CV of EscapeSequence :: 0 [lookahead ¢ DecimalDigit] is @ <NUL> character (Unicode value 0000).

e The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

e The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

e The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is
determined by the SingleEscapeCharacter according to Table 4:

Table 4 — String Single Character Escape Sequences

24 © Ecma International 2011

»ecma

Escape Sequence Code Unit Value Name Symbol

\b \u0008 backspace <BS>
\t \u0009 horizontal tab <HT>
\n \u000A line feed (new line) <LF>
\v \u000B vertical tab <VT>
\f \u000C form feed <FF>
\r \u000D carriage return <CR>
\" \u0022 double quote "

\' \u0027 single quote !

\\ \u005C backslash \

e The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
SourceCharacter character itself.

. The CV of HexEscapeSequence :: x HexDigit HexDigit is.the character whose code unit value is (16 times
the MV of the first HexDigit) plus the MV of the second HexDigit.

e The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit‘HexDigit is the character whose code
unit value is (4096 times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus
(16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

A conforming implementation, when processing strict:mode code (see 10.1.1), may not extend the syntax of
EscapeSequence to include OctalEscapeSequence as described:in B.1.2.

NOTE A line terminator character cannot appear in a string literal, exceptas part of a LineContinuation to produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \n or \uOOOA.

7.8.5 Regular Expression Literals

A regular expression literal is an inputelement that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a-program evaluate to regular expression objects that
never compare as === to each other even if the two literals' contents are identical. A RegExp object may also
be created at runtime by new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The Strings of characters comprising the
RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular expression
constructor, which interprets them according to its own, more stringent grammar. An implementation may
extend the regular expression constructor's grammar, but it must not extend the RegularExpressionBody and
RegularExpressionFlags productions or the productions used by these productions.

Syntax
RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::

[empty]
RegularExpressionChars RegularExpressionChar

© Ecma International 2011 25

secma

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars 1]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not.one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: / (?:)/.

Semantics

A regular expression literal evaluates to a value of the Object type that is an instance of the standard built-in
constructor RegExp. This value is determined in two steps: first, the characters comprising the regular
expression's: RegularExpressionBody. and RegularExpressionFlags production expansions are collected
uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a hew
object.is created as if by the expression new RegExp (Pattern, Flags) where RegExp is the standard
built<in constructor with that name. The newly constructed object becomes the value of the
RegularExpressionLiteral. If the call to new RegExp would generate an error as specified in 15.10.4.1, the error
must be treated as an early error (Clause 16).

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion

There are three basic rules of semicolon insertion:

26 © Ecma International 2011

»ecma

1. When, as the program is parsed from left to right, a token (called the offending token) is encountered that
is not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

e The offending token is separated from the previous token by at least one LineTerminator.
e The offending token is }.

2. When, as the program is parsed from left to right, the end of the input stream of tokens is encountered
and the parser is unable to parse the input token stream as a single complete ECMAScript Program, then
a semicolon is automatically inserted at the end of the input stream.

3. When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production.and the token would be the first
token for a terminal or nonterminal immediately following the annotation “[no LineTerminator here]” within the
restricted production (and therefore such a token is called a restricted token), and the restricted token is
separated from the previous token by at least one LineTerminator, then a semicolon is automatically
inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression :
LeftHandSideExpression [no LineTerminator here]. ++
LeftHandSideExpression [no LineTerminator here] ——

ContinueStatement :
continue [no LineTerminator here] Identifier';

BreakStatement :
break [no LineTerminator here] ldentifier ;

ReturnStatement :
return [no LineTerminator here] Expression ;

ThrowStatement :
throw [no LineTerminator here] Expression ;

The practical effect of these restricted productions is as follows:
When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is automatically

inserted before the ++ or -- token.

When a continue, break, return, or throw token is encountered and a LineTerminator is encountered before
the next token, a semicolon is automatically inserted after the continue, break, return, or throw token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.

An Expression in a return or throw statement should start on the same line as the return or throw token.

An ldentifier in a break or continue statement should be on the same line as the break or continue token.
7.9.2 Examples of Automatic Semicolon Insertion

The source
{121} 3

© Ecma International 2011 27

secma

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2} 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

72 7} 35
which is a valid ECMAScript sentence.

The source

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a + b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminator separates it from the token return.

The source
a=>
++c
is transformed by automatic semicolon-insertion into the following:
a = b;
++c;
NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs

betweenb and ++.

The source
if (a > b)
else c =d
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,

even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=>b+c

(d + e) .print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=>b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the

programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

28 © Ecma International 2011

»ecma

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Object.

A specification type corresponds to meta-values that are used within algorithms to‘describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Property Identifier, Lexical Environment, and Environment Record.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be.used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of X" where “type” refers to the
ECMAScript language and specification types defined in this clause.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.2 The Null Type

The Null type has exactly one value, called null.

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.
8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript program, in
which case each element in the String is treated as a code unit value (see Clause 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers.
The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The length of a
String is the. number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore
contains no elements.

When a String contains actual textual data, each element is considered to be a single UTF-16 code unit.
Whether or not this is the actual storage format of a String, the characters within a String are numbered by
their initial code unit element position as though they were represented using UTF-16. All operations on
Strings (except as otherwise stated) treat them as sequences of undifferentiated 16-bit unsigned integers;
they do not ensure the resulting String is in normalised form, nor do they ensure language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. The intent is that textual data coming into the execution environment from outside (e.g., user input, text read
from a file or received over the network, etc.) be converted to Unicode Normalised Form C before the running program
sees it. Usually this would occur at the same time incoming text is converted from its original character encoding to
Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in
Normalised Form C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long
as they do not contain any Unicode escape sequences.

© Ecma International 2011 29

secma

8.5 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2%-2%+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 9007199254740990 (that is, 2%3-2) distinct “Not-a-Number” values of the IEEE Standard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN.) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +oo and —oo, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity.)

The other 18437736874454810624 (that is, 2%4-2%%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0).and -0.)

The 18437736874454810622 (that is, 264-25%-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 254-254) of them are normalised, having the form

s xmx 2°

where s is +1 or —1, m is a positive integer less than 2% but not less than 2%, and e is an integer ranging from
—1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2%-2) values are denormalised, having the form

sxmx 2°

where s is +1 or—1, mis a positive integer less than 2%, and e is —1074.

Note that all the positive and. negative integers whose magnitude is no greater than 2% are representable in
the Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as ©) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with —0 removed and with two
additional values added to it that are not representable in the Number type, namely 2% (which is +1 x 2% x
29 and —2%9%* (which is —1 x 2% x 2°1). Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 21%?* and -2%%* are considered to have even significands. Finally, if 21* was chosen, replace it
with +oo; if —21%%* was chosen, replace it with —eo; if +0 was chosen, replace it with =0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range —23! through 23!-1, inclusive, or in the range
0 through 2%%-1, inclusive. These operators accept any value of the Number type but first convert each such

30 © Ecma International 2011

secmd

value to one of 2% integer values. See the descriptions of the Tolnt32 and ToUint32 operators in 9.5 and 9.6,

respectively.

8.6 The Object Type

An Object is a collection of properties. Each property is either a named data property, a named accessor
property, or an internal property:

e A named data property associates a name with an ECMAScript language value and a set of Boolean

attributes.

e A named accessor property associates a name with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

e An internal property has no name and is not directly accessible via ECMAScript language operators.
Internal properties exist purely for specification purposes.

There are two kinds of access for named (non-internal) properties: get and put, corresponding to retrieval and

assignment, respectively.

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of named properties. A named data
property associates a name with the attributes listed.in Table 5

Table 5 — Attributes of a Named.Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript The value retrieved by reading the property.
language type

[[Writable]] Boolean If false, attempts by ECMAScript code to change the
property’s [[Value]] attribute using [[Put]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be an accessor property, or change its
attributes (other than [[Value]]) will fail.

A named accessor property associates a hame with the attributes listed in Table 6.

© Ecma International 2011

31

secma

Table 6 — Attributes of a Named Accessor Property

Attribute Name

Value Domain

Description

[[Get]]

Object or
Undefined

If the value is an Object it must be a function Object. The
function’s [[Call]] internal method (8.6.2) is called with an
empty arguments list to return the property value each time
a get access of the property is performed.

[[Set]]

Object or
Undefined

If the value is an Object it must be a function Object. The
function’s [[Call]] internal method (8.6.2) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]]

Boolean

If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]]

Boolean

If false, attempts to delete the property, change the
property to'be a data property, or change its attributes will
fail.

If the value of an attribute is not explicitly specified by this specification for a named property, the default value
defined in Table 7 is used.

Table 7 — Default Attribute Values

Attribute Name Default Value
[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.6.2 Object Internal Properties and Methods

This specification uses various internal properties to define the semantics of object values. These internal
properties are not part of the ECMAScript language. They are defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
internal properties in the manner described here. The names of internal properties are enclosed in double
square brackets [[]]. When an algorithm uses an internal property of an object and the object does not
implement the indicated internal property, a TypeError exception is thrown.

The Table 8 summarises the internal properties used by this specification that are applicable to all
ECMAScript objects. The Table 9 summarises the internal properties used by this specification that are only
applicable to some ECMAScript objects. The descriptions in these tables indicate their behaviour for native
ECMAScript objects, unless stated otherwise in this document for particular kinds of native ECMAScript
objects. Host objects may support these internal properties with any implementation-dependent behaviour as
long as it is consistent with the specific host object restrictions stated in this document.

The “Value Type Domain” columns of the following tables define the types of values associated with internal
properties. The type names refer to the types defined in Clause 8 augmented by the following additional
names. “any” means the value may be any ECMAScript language type. “primitive” means Undefined, Null,
Boolean, String, or Number. “SpecOp” means the internal property is an internal method, an implementation
provided procedure defined by an abstract operation specification. “SpecOp” is followed by a list of descriptive
parameter names. If a parameter name is the same as a type name then the name describes the type of the

32 © Ecma International 2011

=z

oechna

parameter. If a “SpecOp” returns a value, its parameter list is followed by the symbol “—” and the type of the

returned value.

Table 8 — Internal Properties Common to All Objects

Internal Property Value Type Domain Description
[[Prototype]] Object or Null The prototype of this object.
[[Extensible]] Boolean If true, own properties may be added to the
object.
[[Get]] SpecOp(propertyName) — | Returns the value of the named property.
any
[[GetOwnProperty]] SpecOp (propertyName) — | Returns the Property Descriptor of the named
Undefined or Property own property of this object, or undefined if
Descriptor absent.
[[GetProperty]] SpecOp (propertyName) — | Returns the fully populated Property Descriptor
Undefined or Property of the ‘named property of this object, or
Descriptor undefined if absent.
[[Put]] SpecOp (propertyName, Sets the specified named property to the value
any, Boolean) of the second parameter. The flag controls
failure handling.
[[CanPut]] SpecOp (propertyName) = | Returns a Boolean value indicating whether a
Boolean [[Put]] operation with PropertyName can be
performed.
[[HasProperty]] SpecOp (propertyName) — | Returns a Boolean value indicating whether the
Boolean object already has a property with the given
name.
[[Delete]] SpecOp (propertyName, Removes the specified named own property
Boolean) — Boolean from ~the object. The flag controls failure
handling.
[[DefaultValue]] SpecOp:(Hint) — primitive Hint is a String. Returns a default value for the
object.
[[DefineOwnProperty]]’ | SpecOp (propertyName, Creates or alters the named own property to
PropertyDescriptor, have the state described by a Property
Boolean) — Boolean Descriptor. The flag controls failure handling.
[[Enumerate]] SpecOp()—Object Returns an object that can enumerate the string
values of the keys of the enumerable properties
of the object. The returned object is an Iterator
object.
[[iterate]] SpecOp()—Object Returns an object that can enumate the logical
component values of the object. The returned
object is an Iterator object.

Every object (including host objects) must implement all of the internal properties listed in Table 8. However,
the [[DefaultValue]] internal method may, for some objects, simply throw a TypeError exception.

All objects have an internal property called [[Prototype]]. The value of this property is either null or an object
and is used for implementing inheritance. Whether or not a native object can have a host object as its
[[Prototype]] depends on the implementation. Every [[Prototype]] chain must have finite length (that is, starting
from any object, recursively accessing the [[Prototype]] internal property must eventually lead to a null value).
Named data properties of the [[Prototype]] object are inherited (are visible as properties of the child object) for
the purposes of get access, but not for put access. Named accessor properties are inherited for both get
access and put access.

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls whether or not
named properties may be added to the object. If the value of the [[Extensible]] internal property is false then
additional named properties may not be added to the object. In addition, if [[Extensible]] is false the value of
[[Prototype]] internal properties of the object may not be modified. Once the value of an [[Extensible]] internal
property has been set to false it may not be subsequently changed to true.

© Ecma International 2011 33

secma

NOTE This specification defines no ECMAScript language operators or built-in functions that permit a program to
modify an object's [[Prototype]] internal properties or to change the value of [[Extensible]] from false to true.
Implementation specific extensions that modify [[Prototype]] or [[Extensible]] must not violate the invariants defined in the
preceding paragraph.

Unless otherwise specified, the common internal methods of native ECMAScript objects behave as described
in 8.12. Array objects have a slightly different implementation of the [[DefineOwnProperty]] internal method
(see 15.4.5.1) and String objects have a slightly different implementation of the [[GetOwnProperty]] internal
method (see 15.5.5.2). Arguments objects (10.6) have different implementations of [[Get]], [[GetOwnProperty]],
[[DefineOwnProperty]], and [[Delete]]. Function objects (15.3) have a different implementation of [[Get]].

Host objects may implement these internal methods in any manner unless specified otherwise; for example,
one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store property values but
[[HasProperty]] always generates false. However, if any specified manipulation of a host object's internal
properties is not supported by an implementation, that manipulation must throw a TypeError exception when
attempted.

The [[GetOwnProperty]] internal method of a host object must.conform to the following invariants for each
property of the host object:

e |f a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true.even if no mechanism to change the
value is exposed via the other internal methods.

o |If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must'be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

o If the attributes other than [[Writable]] may change over time or-if the property might disappear, then the
[[Configurable]] attribute must be true.

o If the [[Writable]] attribute'may change from false to true, then the [[Configurable]] attribute must be true.

o |f the value of the host object’s [[Extensible]] internal property has been observed by ECMAScript code to
be false, then if a call.to [[GetOwnProperty]] describes a property as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of a host object must not permit the addition of a new property to a

host object if the [[Extensible]] internal property of that host object has been observed by ECMAScript code to

be false.

If the [[Extensible]] internal property of that host object has been observed by ECMAScript code to be false
then it must not subsequently become true.

34 © Ecma International 2011

secma

Table 9 — Internal Properties Only Defined for Some Objects

Internal Property Value Type Description
Domain

[[NativeBrand]] Members of the A tag value used by this specification to categorize various
NativeBrand kinds of native ECMAScript objects defined in this
enumeration. specification. Host objects do not have this internal property.

[[PrimitiveValue]] primitive Internal state information associated with this object. Of the

standard built-in ECMAScript objects, only Boolean, Date,
Number, and String objects implement [[PrimitiveValue]].

[[Construct]]

SpecOp(a List of
any) — Object

Creates an object. Invoked via‘the new operator. The
arguments to the SpecOp are the arguments passed to the
new operator. Objects that implement this internal method
are called constructors.

[[Call]]

SpecOp(any, a List
of any) — any or
Reference

Executes code associated with the object. Invoked via a
function call expression. The arguments to the SpecOp are
this object and a list containing the arguments passed to the
function call expression. Objects that implement this internal
method are callable. Only callable objects that are host
objects may return Reference values.

[[HasInstance]]

SpecOp(any) —
Boolean

Returns‘a Boolean value'indicating whether the argument is
likely an Object that was constructed by this object. Of the
standard built-in ECMAScript objects, only Function objects
implement [[Haslnstance]].

[[Scopel]]

Lexical Environment

A lexical environment. that is the environment in which a
Function object is executed. Of the standard built-in
ECMAScript.. objects, “only. Function objects implement
[[Scope]].

[[FormalParameters]]

Parse Tree

A parse’ tree for ~ECMAScript code parsed with
FormalParameterList as the goal symbol. Of the standard
built-in ECMAScript objects, only Function objects
implement [[FormalParameters]].

[[Code]]

Parse Tree

A parse tree for ECMAScript code parsed with FunctionBody
as the goal symbol. Of the standard built-in ECMAScript
objects, only Function objects implement [[Code]].

[[Strict]]

Boolean

True if a Function object is a strict mode function. Of the
standard built-in ECMAScript objects, only Function objects
implement [[Strict]].

[[TargetFunction]]

Object

The target function of a function object created using the
standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[TargetFunction]] internal property.

[[BoundThis]]

any

The pre-bound this value of a function Object created using
the standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[BoundThis]] internal property.

[[BoundArguments]]

List of any

The pre-bound argument values of a function Object created
by the standard built-in Function.prototype.bind method.
Only objects created by Function.prototype.bind have a
[[BoundArguments]] internal property.

[[Match]]

SpecOp(String,
index) —
MatchResult

Tests for a regular expression match and returns a
MatchResult value (see 15.10.2.1). Of the standard built-in
ECMAScript objects, only RegExp objects implement
[[Match]].

[[ParameterMap]]

Object

Provides a mapping between the properties of an arguments
object (see 10.6) and the formal parameters of the
associated function. Only objects that are arguments objects
have a [[ParameterMap]] internal property.

© Ecma International 2011

35

oechna

The [[NativeBrand]] internal property is used to identify native ECMASCiript objects as objects that conform to
specific parts of this specification. The value of a [[NativeBrand]] property is a single member of this set of
enumerated values: NativeFunction, NativeArray, StringWrapper, BooleanWrapper, NumberWrapper,
NativeMath, NativeDate, NativeRegExp, NativeError, NativeJSON, NativeArguments. The actual value of the
[[NativeBrand]] internal property is only used to identify specific kinds of native ECMAScript objects. Host
objects do not have this internal property,

Table 10 — Values of the [[NativeBrand]] Internal Property

Internal Property

Category

Description

NativeFunction Function objects
NativeArray Array objects
StringWrapper String objects
BooleanWrapper Boolean objects
NumberWrapper Number objects
NativeMath The Math object
NativeDate Date objects
NativeRegExp RegExp objects
NativeError Error objects
NativeJSON The JSON object
NativeArguments Arguments objects

8.7 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is.needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

The Record type is used to describe data aggrations within the algorithms of this specifation. A Record type
value consists of one or more named fields. The value of each field is either the ECMAScript type value or a
an abstract value represented by a name assocatiated with the Record type. Field names are always
enclosed in double brackets. For example, [[value]]

For notational convenience within_this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that has
fields three fields each.of why is initialized to a specific value. Field name order is not significant. Any fields
that are not explicitly listed.are considered to be absent.

In specification text and algarithms, dot notation may be used to refer to a specific field of a Record value. For
example, if D is the record shown in the previous paragraph then D.[[field2]] is shorthand for “the field of D
named [[Field2]]".

Schema for commonly used Record field combination may be named and that name may be used as a prefix
to a literal Record value to identify the specific kind of aggrations that is being described. For example:
Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}

8.8 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as
the behaviour of statements (break, continue, return and throw) that perform nonlocal transfers of

control.

Values of the Completion type are Record value whole fileds are defined as by Table xxx.

36 © Ecma International 2011

»ecma

Table xxx — Completion Record Fields

Field Name | Value Meaning
[[typell One of normal, break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript identifier or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[type]] value other than normal.

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.
Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

1. Return the String "Infinity".

mean the same things as:

1. Return Completion {[[type]]: normal, [[value]]: String "Infinity" [[target]]:empty}.

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.

The abstraction operation NormalValue with a single argument.is a short hand that is defined as follows:

1. Ifargument is not a Completion Record, return argument.

2. Ifargument is an abrupt completion, return argument.

3. Return argument.[[value]].

The abstraction operation NormalCompletion with a single argument is a short hand that is defined as follows:
1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty}.

Algorithms steps that-say to throw an exception, such as

1. Throw a TypeError exception.

mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object, [[target]]:empty}.
Algorithms steps that say ReturnifAbrupt(argument), mean the same things as:

1. Ifargument is anabrupt completion, return argument..

8.9 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof, and the
assignment operators. For example, the left-hand operand of an assignment is expected to produce a reference. The
behaviour of assignment could, instead, be explained entirely in terms of a case analysis on the syntactic form of the left-
hand operand of an assignment operator, but for one difficulty: function calls are permitted to return references. This
possibility is admitted purely for the sake of host objects. No built-in ECMAScript function defined by this specification

returns a reference and there is no provision for a user-defined function to return a reference. (Another reason not to use a
syntactic case analysis is that it would be lengthy and awkward, affecting many parts of the specification.)

© Ecma International 2011 37

secma

A Reference is a resolved name binding. A Reference consists of three components, the base value, the
referenced name and the Boolean valued strict reference flag. The base value is either undefined, an Object, a
Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined indicates that the
Reference could not be resolved to a binding. The referenced name is a String.

A Super Reference is a Reference that is used to represents a nhame binding that was expressed using the
super keyword. A Super Reference has an additional thisValue component and its base value will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

o GetBase(V). Returns the base value component of the reference V.

o GetReferencedName(V). Returns the referenced name component of the reference V.
IsStrictReference(V). Returns the strict reference component of the reference V.
HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.

o IsPropertyReference(V). Returns true if either the base value is.an object or HasPrimitiveBase(V) is true;
otherwise returns false.

e |sUnresolvableReference(V). Returns true if the base value‘is undefined and false otherwise.

o IsSuperReference(V). Returns true if this reference hasa thisValue component.

The following abstract operations are used in this specification to operate on references:
8.9.1 GetValue (V)

ReturnlfAbrupt(V).
Let V be NormalValue(V).
If Type(V) is not Reference, return V.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is false; then let get be the [[Get]] internal method of base, otherwise let get
be the special [[Get]] internal method defined below.
b. Return the result of calling get as an internal method of base passing GetReferencedName(V) for the
argument.
7. Else, base must be an environment record.
a. Return the result of calling the GetBindingValue (see 10.2.1) concrete method of base passing
GetReferencedName(V).and IsStrictReference(V) as arguments.

ourwhE

The following [[Get]] internal method is used by GetValue when V is a property reference with a primitive base
value. base is the value the internal method is called upon with property name P as its argument. The following
steps are taken:

1. Let O be ToObject(base).

2. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

3. Ifdesc is undefined, return undefined.

4. If IsDataDescriptor(desc) is true, return desc.[[Value]].

5. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]] (see 8.10).

6. |If getter is undefined, return undefined.

7. Return the result of calling the [[Call]] internal method of getter providing base as the this value and
providing no arguments.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation

might choose to avoid the actual creation of the object. The only situation where such an actual property access that uses
this internal method can have visible effect is when it invokes an accessor function.

8.9.2 PutValue (V, W)
1. ReturnlfAbrupt(V).

2. ReturnlfAbrupt(W).
3. LetV be NormalValue(V).

38 © Ecma International 2011

»ecma

Let W be NormalValue(W).
If Type(V) is not Reference, throw a ReferenceError exception.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), then
a. If IsStrictReference(V) is true, then
i Throw ReferenceError exception.
b. Return the result of calling the [[Put]] internal method of the global object, passing
GetReferencedName(V) for the property name, W for the value, and false for the Throw flag.
8. Else if IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is false, then let put be the [[Put]] internal method of base, otherwise let put
be the special [[Put]] internal method defined below.
b. Return the result of calling put as an internal method of base passing GetReferencedName(V) for the
property name, W for the value, and IsStrictReference(V) for the Throw flag.
9. Else base must be a reference whose base is an environment record. So,
a. Return the result of calling the SetMutableBinding (10.2.1) concrete method of base, passing
GetReferencedName(V), W, and IsStrictReference(V) as arguments.
10. Return undefined.

No ok~

The following [[Put]] internal method is used by PutValue whenV is a property reference with a primitive base
value. base is the value the internal method is called upon with property name P, value W, and Boolean flag
Throw as arguments. The following steps are taken:

1. Let O be ToObject(base).
If the result of calling the [[CanPut]] internal method of O with argument P is false, then
a. |If Throw is true, then throw a TypeError exception.
b. Else return undefined.
3. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
4. If IsDataDescriptor(ownDesc) is true, then
a. If Throw is true, then throw a TypeError exception.
b. Else return undefined.
5. Let desc be the result of calling the [[GetProperty]] internal method of O with argument P. This may be
either an own or inherited-accessor property descriptor or an inherited data property descriptor.
6. If IsAccessorDescriptor(desc) is true, then
a. Let setter be'desc.[[Set]] (see 8.10) which cannot be undefined.
b. Return theresult of calling.the [[Call]] internal method of setter providing base as the this value
and an argument list containing only W.
7. Else, this is a request to createcan own property on the transient object O
a. If Throwis true, then throw a TypeError exception.
8. Return.undefined.

N

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of that transient object. The only situations where such an actual property
assignment that uses this internal method can have visible effect are when it either invokes an accessor function or is in
violation of a Throw predicated error check. When Throw is true any property assignment that would create a new property
on the transient object throws an error.

8.10 The Property Descriptor and Property Identifier Specification Types

The Property Descriptor type is used to explain the manipulation and reification of named property attributes.
Values of the Property Descriptor type are records composed of hamed fields where each field’s name is an
attribute name and its value is a corresponding attribute value as specified in 8.6.1. In addition, any field may
be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property

© Ecma International 2011 39

secma

descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.6.1 Table 5 or Table 6.

For notational convenience within this specification, an object literal-like syntax can be used to define a
property descriptor value. For example, Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]:
true} defines a data property descriptor. Field name order is not significant. Any fields that are not explicitly
listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property
Descriptor. For example, if D is a property descriptor then D.[[Value]] is shorthand for “the field of D named
[[Valuel]".

The Property Identifier type is used to associate a property name with a Property Descriptor. Values of the
Property Identifier type are pairs of the form (name, descriptor), where name is a String and descriptor is a
Property Descriptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor values:
8.10.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desc, the following steps
are taken:

2. If Desc is undefined, then return false.
3. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.
4, Return true.

8.10.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desc, the following steps are
taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.
8.

10.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps
are taken:

1. If Desc is undefined, then return false.

2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
3. Return false.
8.

10.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following
steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1. If Desc is undefined, then return undefined.
2. Let obj be the result of creating a new object as if by the expression new Object() where Object is the standard
built-in constructor with that name.
3. If IsDataDescriptor(Desc) is true, then
a. Call the [[DefineOwnProperty]] internal method of obj with arguments "value", Property Descriptor
{[[value]l: Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
b. Call the [[DefineOwnProperty]] internal method of obj with arguments "writable", Property Descriptor
{[[Vvalue]l: Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

40 © Ecma International 2011

»ecma

4. Else, IsAccessorDescriptor(Desc) must be true, so
a. Call the [[DefineOwnProperty]] internal method of obj with arguments "get", Property Descriptor
{[[\value]]: Desc.[[Get]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
b. Call the [[DefineOwnProperty]] internal method of obj with arguments "set", Property Descriptor
{[[Value]]: Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
5. Call the [[DefineOwnProperty]] internal method of obj with arguments "enumerable", Property Descriptor
{[[\Value]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
6. Call the [[DefineOwnProperty]] internal method of obj with arguments "configurable", Property Descriptor
{[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
7. Return obj.

8.10.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. ReturnlfAbrupt(Obj).
2. If Type(Obj) is not Object throw a TypeError exception.
3. Let desc be the result of creating a new Property Descriptor that'initially has no fields.
4. If the result of calling the [[HasProperty]] internal method of ‘Obj with argument "enumerable" is true,
then
a. Letenum be the result of calling the [[Get]] internal method of Obj with "enumerable".
b. ReturnlfAbrupt(enum).
c. Setthe [[Enumerable]] field of desc to ToBoolean(enum).
5. If the result of calling the [[HasProperty]] internal method of Obj with argument "configurable" is true,
then
a. Letconf be the result of calling the [[Get]].internal method of Obj with argument
"configurable".
b. ReturnlfAbrupt(cong).
c. Setthe [[Configurable]] field of desc to ToBoolean(conf).
6. If the result of calling the [[HasProperty]] internal method of Obj with argument "value" is true, then
a. Letvalue be the result of calling the [[Get]] internal method of Obj with argument “value”.
b. ReturnlfAbrupt(value).
c. Setthe [[Value]] field of desc to value.
7. If the result of calling the [[HasProperty]] internal method of Obj with argument "writable" is true, then
a. Let writable be the result of calling the [[Get]] internal method of Obj with argument "writable".
b. ReturnlfAbrupt(writable).
c. Setthe [[Writable]] field of desc to ToBoolean(writable).
8. If the result of calling the [[HasProperty]] internal method of Obj with argument "get" is true, then
a: Let getter be the result of calling the [[Get]] internal method of Obj with argument "get".
b. ReturnlfAbrupt(getter).
c. If IsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
d. - Set the [[Get]] field of desc to getter.
9. |If theresult of calling the [[HasProperty]] internal method of Obj with argument "set" is true, then
a. Let setter be the result of calling the [[Get]] internal method of Obj with argument "set".
b. ReturnifAbrupt(setter).
c. If IsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.
d. Setthe [[Set]] field of desc to setter.
10. If either desc.[[Get]] or desc.[[Set]] are present, then
a. If either desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.
11. Return desc.

8.11 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.12 Algorithms for Object Internal Methods
In the following algorithm descriptions, assume O is a native ECMAScript object, P is a String, Desc is a

Property Description record, and Throw is a Boolean flag.

© Ecma International 2011 41

secma

8.12.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property name P, the following steps are
taken:

ReturnlfAbrupt(O).
If O doesn’t have an own property with name P, return undefined.
Let D be a newly created Property Descriptor with no fields.
Let X be O’s own property named P.
If X is a data property, then
a. Set D.[[Value]] to the value of X’s [[Value]] attribute.
b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
6. Else X is an accessor property, so
a. Set D.[[Get]] to the value of X’s [[Get]] attribute.
b. Set D.[[Set]] to the value of X’s [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
9. Return D.

agppwbdPE

However, if O is a String object it has a more elaborate [[GetOwnProperty]] internal method defined in 15.5.5.2.
8.12.2 [[GetProperty]] (P)
When the [[GetProperty]] internal method of O is called with property name P, the following steps are taken:

ReturnlfAbrupt(O).

Let prop be the result of calling the [[GetOwnProperty]].internal method of O with property name P.
If prop is not undefined, return prop.

Let proto be the value of the [[Prototype]] internal property of O.

If proto is null, return undefined.

Return the result of calling the [[GetProperty]] internal method of proto with argument P.

ourwbhE

8.12.3 [[Get]] (P)
When the [[Get]] internal method of O.is called.with property name P, the following steps are taken:

ReturnlfAbrupt(O).

Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

If descis undefined, return undefined.

If IsDataDescriptor(desc) is true, return desc.[[Value]].

Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

If getter is undefined, return undefined.

Return the result calling the [[Call]] internal method of getter providing O as the this value and providing no
arguments.

8.12.4 [[CanPut]] (P)

NookwhE

When the [[CanPut]] internal method of O is called with property name P, the following steps are taken:

1. ReturnlfAbrupt(O).
2. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. Ifdesc is not undefined, then
a. If IsAccessorDescriptor(desc) is true, then
i If desc.[[Set]] is undefined, then return false.
ii. Else return true.
b. Else, desc must be a DataDescriptor so return the value of desc.[[WTritable]].
Let proto be the [[Prototype]] internal property of O.
If proto is null, then return the value of the [[Extensible]] internal property of O.
Let inherited be the result of calling the [[GetProperty]] internal method of proto with property name P.
If inherited is undefined, return the value of the [[Extensible]] internal property of O.

No ok~

42 © Ecma International 2011

»ecma

8. If IsAccessorDescriptor(inherited) is true, then
a. If inherited.[[Set]] is undefined, then return false.
b. Else return true.
9. Else, inherited must be a DataDescriptor
a. If the [[Extensible]] internal property of O is false, return false.
b. Else return the value of inherited.[[Writable]].

Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should not
allow [[Put]] operations in situations where this definition of [[CanPut]] returns false.

8.12.5 [[Put]] (P, V, Throw)

When the [[Put]] internal method of O is called with property P, value V, and Boolean flag Throw, the following
steps are taken:

1. ReturnlfAbrupt(O).
2. If the result of calling the [[CanPut]] internal method of O with argument P is false, then
a. |If Throw is true, then throw a TypeError exception.
b. Else return undefined.
Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
4. If IsDataDescriptor(ownDesc) is true, then
a. LetvalueDesc be the Property Descriptor {[[Value]]: V}.
b. Return the result of calling the [[DefineOwnProperty]]. internal method of O passing P, valueDesc,
and Throw as arguments.
c. Return.
5. Let desc be the result of calling the [[GetProperty]] internal method of O with argument P. This may be
either an own or inherited accessor property descriptor-or an inherited data property descriptor.
6. If IsAccessorDescriptor(desc) is true, then
a. Let setter be desc.[[Set]] which cannot be undefined.
b. Return the result of calling the [[Call]] internal' method of setter providing O as the this value and
providing V as the sole argument.
7. Else, create a named dataproperty named P on object O as follows
a. Let newDesc be the Property Descriptor
{[[Valuel]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
b. Return the result of calling.the [[DefineOwnProperty]] internal method of O passing P, newDesc,
and Throw as arguments:

w

8.12.6 [[HasProperty]] (P)
When the [[HasProperty]] internal method of O is called with property name P, the following steps are taken:

1. ReturnlfAbrupt(O).

2. Letdesc be the result of calling the [[GetProperty]] internal method of O with property name P.
3. If descis undefined, then return false.

4. Else return true.

8.

12.7 [[Delete]] (P, Throw)

When the [[Delete]] internal method of O is called with property name P and the Boolean flag Throw, the
following steps are taken:

ReturnlfAbrupt(O).
Let desc be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
If desc is undefined, then return true.
If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.
Else if Throw, then throw a TypeError exception.
6. Return false.

PR

o

© Ecma International 2011 43

secma

8.12.8 [[DefaultValue]] (hint)
When the [[DefaultValue]] internal method of O is called with hint String, the following steps are taken:

ReturnlfAbrupt(O).
Let toString be the result of calling the [[Get]] internal method of object O with argument "toString".
ReturnlfAbrupt(toString).
If IsCallable(toString) is true then,
a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this value and
an empty argument list.
b. ReturnlfAbrupt(str).
c. Ifstrisa primitive value, return str.
5. Let valueOf be the result of calling the [[Get]] internal method of object O.with argument "valueOf".
ReturnlfAbrupt(valueOf).
7. If IsCallable(valueOf) is true then,
a. Letval be the result of calling the [[Call]] internal method of valueOf, with O as the this value and
an empty argument list.
b. ReturnlfAbrupt(val).
c. Ifvalisa primitive value, return val.
8. Throw a TypeError exception.

S\

o

When the [[DefaultValue]] internal method of O is called with hint Number, the following steps are taken:

ReturnlfAbrupt(O).
Let valueOf be the result of calling the [[Get]].internal method of object O with argument "valueOf".
ReturnlfAbrupt(valueOf).
If IsCallable(valueOf) is true then,
a. Letval be the result of calling the [[Call]] internal method of valueOf, with O as the this value and
an empty argument list.
b. ReturnlfAbrupt(val).
c. Ifvalis a primitivevalue, return val.
5. Let toString be the result-of calling the [[Get]] internal method of object O with argument "toString".
ReturnlfAbrupt(toString).
7. If IsCallable(toString) is true then,
a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this value and
an empty argument.list.
b. ReturnlfAbrupt(str).
c. Ifstris a primitive value, return str.
8. Throwa TypeError exception.

PR

e

When the [[DefaultValue]] internal method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9.6), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a host object
implements its own [[DefaultValue]] internal method, it must ensure that its [[DefaultValue]] internal method
can return only primitive values.

8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithm, the term “Reject” means “If Throw is true, then throw a TypeError exception,
otherwise return false”. The algorithm contains steps that test various fields of the Property Descriptor Desc for
specific values. The fields that are tested in this manner need not actually exist in Desc. If a field is absent
then its value is considered to be false.

When the [[DefineOwnProperty]] internal method of O is called with property name P, property descriptor Desc,
and Boolean flag Throw, the following steps are taken:

1. ReturnlfAbrupt(O).
2. Let current be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
3. Let extensible be the value of the [[Extensible]] internal property of O.

44 © Ecma International 2011

eCina

4. If current is undefined and extensible is false, then Reject.
5. [Ifcurrent is undefined and extensible is true, then
a. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then

i Create an own data property named P of object O whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of
an attribute field of Desc is absent, the attribute of the newly created property is set to its
default value.

b. Else, Desc must be an accessor Property Descriptor so,

i Create an own accessor property named P of object O whose [[Get]], [[Set]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of
an attribute field of Desc is absent, the attribute of the newly created property is set to its
default value.

c. Return true.
Return true, if every field in Desc is absent.
7. Return true, if every field in Desc also occurs in current and the value'of every field in Desc is the same
value as the corresponding field in current when compared using the SameValue algorithm (9.12).
8. If the [[Configurable]] field of current is false then
a. Reject, if the [[Configurable]] field of Desc is true.
b. Reject, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current and
Desc are the Boolean negation of each other.
9. |If IsGenericDescriptor(Desc) is true, then no further validation is required.
10. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Reject, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then
i. Convert the property named P.of object O from a data property to an accessor property.
Preserve the existing values of the converted property’s [[Configurable]] and
[[Enumerable]] attributes and set the rest.of the property’s attributes to their default values.

S

c. Else,
i. Convert the property named P of object-O from an accessor property to a data property.
Preserve the existing values of the converted property’s [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property’s attributes to their default values.
11. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. If the [[Configurable]] field of current is false, then
i Reject, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true.
ii. If the [[Writable]] field of current is false, then
1. Rejectyif the [[Value]] field of Desc is present and SameValue(Desc.[[Value]],
current.[[Value]]) is false.
b. else, the [[Configurable]] field of current is true, so any change is acceptable.
12. Else, IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true so,
a. If the [[Configurable]] field of current is false, then
i. Reject, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is
false.
ii. Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]])
is false.
13. For each attribute field of‘Desc that is present, set the correspondingly named attribute of the property
named P of object O to'the value of the field.
14. Return true.

However, if O has an [[NativeBrand]] internal property whose value is NativeArray O also has a more
elaborate [[DefineOwnProperty]] internal method defined in 15.4.5.1.

NOTE Step 10.b allows any field of Desc to be different from the corresponding field of current if current’s
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false.
This is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is
first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

8.12.10 [[Enumerate]] (includePrototype, onlyEnumerable)

When the [[Enumerate]] internal method of O is called with Boolean arguments includePrototype and
onlyEnumerable, the following steps are taken:

© Ecma International 2011 45

secma

1. Return an Iterator object (reference xxxx) whose next method iterates over all the keys of enumerable
property keys of O. If includePrototype is false, then only own properties of O are included. If
onlyEnumerable is false, then all properties that do not have private name keys are included. The mechanics
and order of enumerating the properties is not specified but must conform to the rules specified below.

Enumerated properties do not include properties whose property key is a private name. Properties of the
object being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to the object being enumerated
during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A
property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of itsprototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed”
because some previous object in the prototype chain has a property with the same name. The values of
[[Enumerable]] attributes are not considered when determining if a property of a prototype object is shadowed
by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these‘rules

1. LetobjbeO.
2. Let proto be the value of the [[Prototype]] internal property of O.
3. IfincludePrototype is false or proto is the value null, then
a. LetpropList be a new empty List.
4. Else
a. LetpropList be the result of calling the [[Enumerate]] internal. method of proto with arguments true
and onlyEnumerable.
5. For each string name that is the property key of an own propoperty of O
a. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument name.
b. If name is an element of propList, then remove name as an element of propList.
c. IfonlyEnumerable is false or desc.[[Enumerable]] is true, then add name as an element of propList.
6. Order the elements of propList in an implementation defined order.
7. Return proplList.

8.12.11 [[lterate]] ()
When the [[Iterate]] internal method of O is called the following steps are taken:

1. Let itr be the result of performing. Invoke with arguments %iterator%, O and an empty argument List.
2. Return itr.

9 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics‘of the ECMAScript Language.

9.1 Type Conversion and Testing

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics
of certain constructs it is useful to define a set of conversion abstract operations.. The conversion abstract
operations are polymorphic; that is, they can accept a value of any ECMAScript language type, but not of
specification types.

9.1.1 ToPrimitive
The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of

converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to Table 11:

46 © Ecma International 2011

secmd

Table 11 — ToPrimitive Conversions

Input Type

Result

Completion Record

If argument is an abrupt completion, return argument. Otherwise return
ToPrimitive(argument.[[value]])

Undefined Return argument t (no conversion).
Null Return argument (no conversion).
Boolean Return argument (no conversion).
Number Return argument (no conversion).
String Return argument (no conversion).
Object Perform the following steps:

1. Let default be the result of calling the [[DefaultValue]] internal method of
argument, passing the optional hint PreferredType.

2. Return ToPrimitive(default).

The behaviour of the [[DefaultValue]] internal method is defined by this
specification for all native ECMAScript objects in 8.12.8.

9.1.2 ToBoolean

The abstract operation ToBoolean converts itsiargument to a value of type Boolean according to Table 12:

Table 12 — ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0, -0, or NaN; otherwise return true.

String Return false if the argument is the empty String (its length is zero);
otherwise return true.

Object Return true

© Ecma International 2011

a7

ecind

9.1.3 ToNumber
The abstract operation ToNumber converts its argument to a value of type Number according to Table 13:

Table 13 — To Number Conversions

Argument Type Result
Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])
Undefined Return NaN
Null Return +0
Boolean Return 1 if argument is true. Return +0 if argument is false.
Number Return argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Let primValue be ToPrimitive(argument, hint Number).
2. Return ToNumber(primValue):

9.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret
the String as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

Syntax

StringNumericLiteral :::
StrWhiteSpaceopt
StrWhiteSpaceop: StrNumericLiteral Str\WhiteSpaceopt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpacegpt

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigitsopt ExponentPartopt
. DecimalDigits ExponentPartopt
DecimalDigits ExponentPartopt

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9

48 © Ecma International 2011

ecind

ExponentPart :::

Exponentindicator Signedinteger

Exponentindicator ::: one of

e E

Signedinteger :::

DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::

0x HexDigit
0x HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of

0 1 2 3 4 5 6 7 8 9 a b ¢c d e £ A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see
7.8.3):

A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.
A StringNumericLiteral that is decimal may have any number of leading 0 digits.

A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

A StringNumericLiteral that is empty or contains only white space is converted to +0.

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

The MV of StringNumericLiteral ::: fempty].is O.

The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

The MV of StringNumericLiteral ::: StrWhiteSpaceo,: StrNumericLiteral StrWhiteSpaceo, is the MV of
StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The'MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The “MV. of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral./(Note that if the MV of StrUnsignedDecimalLiteral is O, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or —0‘as appropriate.)

The MV of StrUnsignedDecimalLiteral::: Infinity is 10%°% (a value so large that it will round to +o).

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits
plus (the MV of the second DecimalDigits times 10™), where n is the number of characters in the second
DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™")) times 10°, where n is the number of characters
in the second DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 10™", where n is the
number of characters in DecimalDigits.

© Ecma International 2011 49

ecind

The MV of StrUnsignedDecimalLiteral:::.

DecimalDigits ExponentPart is the MV of DecimalDigits times 10°™",

where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral:::
The MV of StrUnsignedDecimalLiteral:::

DecimalDigits is the MV of DecimalDigits.
DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,

where e is the MV of ExponentPart.

The MV of DecimalDigits :::
The MV of DecimalDigits :::

DecimalDigit.

The MV of ExponentPart :::
The MV of Signedinteger :::
The MV of Signedinteger :::
The MV of Signedinteger :::

DecimalDigit is the MV of DecimalDigit.
DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of

Exponentindicator Signedinteger is the MV of Signedinteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.

e The MV of DecimalDigit ::: 0 or of HexDigit ::: 0 is 0.
e The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.
e The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.
e The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.
e The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.
e The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.
e The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.
e The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.
e The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.
e The MV of DecimalDigit ::: 9 or of HexDigit ::: 9is.9.
e The MV of HexDigit ::: a or of HexDigit ::: Ais 10.
e The MV of HexDigit ::: b or of HexDigit ::: B is 11.
e The MV of HexDigit ::: ¢ or of HexDigit ::: Cis'12.
e The MV of HexDigit ::: d or of HexDigit ::: D is 13.
e The MV of HexDigit ::: e.or of HexDigit ::: E is 14.
e The MV of HexDigit ::: £ or of HexDigit ::: F is 15.

e The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.
e The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

e The MV of HexintegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MV of HexDigit:

Once the‘exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
String numeric literal is ‘-’, in which case the rounded value is —0. Otherwise, the rounded value must be the
Number value for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimalLiteral
and the literal. has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

e jtisnotO; or

e there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

9.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

1. Let number be the result of calling ToNumber on the input argument.
2. ReturnlfAbrupt(number).

3. If number is NaN, return +0.

4. If number is +0, -0, +o0, or —oco, return number.

50

© Ecma International 2011

»ecma

5. Return the result of computing sign(number) x floor(abs(number)).
9.1.5 TolInt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its argument to one of 2% integer values in the range -2 through
2311, inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

ReturnIfAbrupt(number).

If number is NaN, +0, -0, +e, or —oo, return +0.

Let posint be sign(number) * floor(abs(numbery)).

Let int32bit be posint modulo 2%; that is, a finite integer value k of Number type with positive sign and less
than 232 in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 2%2,

6. If int32bit is greater than or equal to 23, return int32bit — 232, otherwise return int32bit.

abwdE

NOTE Given the above definition of TolInt32:

e The Tolnt32 abstract operation is idempotent: if applied to a resultthat it produced, the second application leaves that
value unchanged.

e ToInt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x./(lt is to preserve this latter property that +co and — are
mapped to +0.)

e ToInt32 maps -0 to +0.

9.1.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2%2 integer values in the range 0 through 2%2-1,
inclusive. This abstraction operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

ReturnlfAbrupt(number).

If number is NaN, +0, -0, +, or —oo, return +0.

Let posint be sign(number) x floor(abs(humber)).

Let int32bit be posint'modulo 2%2; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 2%2,

6. Return int32bit.

abwnE

NOTE Given the above definition of ToUInt32:

e Step5is the only difference between ToUint32 and Tolnt32.

e The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

e ToUint32(TolInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +eo and —w are
mapped to +0.)

e ToUint32 maps -0 to +0.

9.1.7 ToUintl6: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 2! integer values in the range 0 through 2%6-1,
inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

ReturnlfAbrupt(number).

If number is NaN, +0, -0, +w, or —oo, return +0.

Let posiInt be sign(number) x floor(abs(humber)).

Let int16bit be posint modulo 21; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 216,

6. Return intl6bit.

ok wnhE

© Ecma International 2011 51

secma

NOTE Given the above definition of ToUint16:

e The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.
e ToUintl6 maps -0 to +0.

9.1.8 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 14:

Table 14 — ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToString(argument.[[value]])

Undefined "undefined"

Null "null"

Boolean If argument is true, then return "true".
If argument is false, then return "false".

Number See 9.8.1.

String Return argument (no conversion)

Object Apply the following steps:
1. Let primValue be ToPrimitive(argument, hint String).
2. Return ToString(primValue).

9.1.8.1 ToString Applied to the Number Type
The abstract operation ToString converts a Number m to String format as follows:

If m is NaN, return the String "NaN".

If m is +0 or -0, return the String "0".

If m is less than zero, return the String concatenation of the String "-" and ToString(—m).

If m is infinity, return the String "Infinity".

Otherwise, let n, k, and's be integers such that k > 1, 10! <'s < 10%, the Number value for s x 10"* is m, and

k is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not

divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these

criteria.

7. Ifk <n< 21, return the String consisting of the k digits of the decimal representation of s (in order, with no
leading zeroes), followed by n—K occurrences of the character <0°.

8. 1f0 <n <21, return the String consisting of the most significant n digits of the decimal representation of s,
followed by a decimal point °.’, followed by the remaining k—n digits of the decimal representation of s.

9. If-6<n<0, return the String consisting of the character ‘0’, followed by a decimal point ‘. ’, followed by
—n occurrences of the character ‘0°, followed by the k digits of the decimal representation of s.

10. Otherwise, if k= 1, return the String consisting of the single digit of s, followed by lowercase character ‘e’,
followed by a plus sign ‘4’ or minus sign ‘=’ according to whether n—1 is positive or negative, followed by
the decimal representation of the integer abs(n—1) (with no leading zeroes).

11. Return the String consisting of the most significant digit of the decimal representation of s, followed by a

decimal point ‘.’, followed by the remaining k—1 digits of the decimal representation of s, followed by the

lowercase character ‘e’, followed by a plus sign ‘+’ or minus sign ‘-’ according to whether n—1 is positive
or negative, followed by the decimal representation of the integer abs(n—1) (with no leading zeroes).

ok wn

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

e If x is any Number value other than —0, then ToNumber(ToString(x)) is exactly the same Number value as x.
e The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

52 © Ecma International 2011

»ecma

Otherwise, let n, k, and s be integers such that k > 1, 1041 < s < 10K, the Number value for s x 10™* is m, and k is as small as
possible. If there are multiple possibilities for s, choose the value of s for which s x 10" is closest in value to m. If there are
two such possible values of s, choose the one that is even. Note that k is the number of digits in the decimal representation of
s and that s is not divisible by 10.

NOTE 3

conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as

http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib mirror sites.

9.1.9

ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 15:

Table 15 — ToObject

Argument Type

Result

Completion Record

If argument is an abrupt completion, return.argument. Otherwise return
ToObject(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[PrimitiveValue]] internal property is
set to the value of argument. See 15.6 for a description of Boolean objects.

Number Return a new Number object whose [[PrimitiveValue]] internal property is
set to the value of argument. See 15.7 for.a description of Number objects.

String Return-a.new String object.whose [[PrimitiveValue]] internal property is set
tothe value of argument. See 15.5 for a description of String objects.

Object Return argument (no conversion).

9.2

Testing and Camparision Operations

9.2.1 CheckObjectCoercible

Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal

The abstract operation. CheckObjectCoercible throws an error if its argument is a value that cannot be
convertedto an Object using ToObject. It is defined by Table 16:

Table 16 — CheckObjectCoercible Results

Argument Type

Result

Completion Record

If ‘argument is an abrupt completion, return argument. Otherwise return
CheckObjectCoercible(argument.[[value]])

9.2.2

Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument
Number Return argument
String Return argument
Object Return argument

IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language value,
is a callable function Object according to Table 17:

© Ecma International 2011

53

secma

Table 17 — IsCallable Results

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
IsCallable(argument.[[value]])

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Object If argument has a [[Call]] internal method, then return true, otherwise
return false.

9.2.3 The SameValue Algorithm

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

ReturnlfAbrupt(x).
ReturnlfAbrupt(y).
If x is an Completion Record, let x be x.[[value]].
Ify is an Completion Record, let y be y.[[value]].
If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then.
a. IfxisNaN andy is NaN, return true.
b. Ifxis+0andy is -0, return false.
c. Ifxis-0andy is +0;return false.
d. [Ifxisthe same Number value as y, return true.
e. Return false.
9. If Type(x) is String,then return true if X and y are exactly the same sequence of characters (same length and
same characters in corresponding positions); otherwise, return false.
10. If Type(x) is Boolean, return true if x and y are both.true or both false; otherwise, return false.
11. Return true if x and y are the same Object value. Otherwise, return false.

N~ E

9.3 Property Access Operations
9.3.1 <Invoke

The Invoke abstraction abstract operation is used to call a method property of an object. The operation is
called with arguments P, O, and args where P is the property key, O serves as both the lookup point for the
property and the this value of the call, and args is the list of arguments values passed to the method. This
abstract operation perform, the following steps:

Let obj be ToObject(O).

ReturnlfAbrupt(obj).

Let func be the result of calling the [[Get]] internal method of obj passing P as the argument.
ReturnlfAbrupt(func).

If IsCallable(func) is false, throw a TypeError exception.

Return the result of calling the [[Call]] internal method of func passing O as the this value and argument list
args.

oukwhE

54 © Ecma International 2011

»ecma

10 Executable Code and Execution Contexts
10.1 Types of Executable Code
There are three types of ECMAScript executable code:

e Global code is source text that is treated as an ECMAScript Program. The global code of a
particular Program does not include any source text that is parsed as part of a FunctionBody.

e Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a String, it is treated as an ECMAScript Program. The eval code for a
particular invocation of eval is the global code portion of that Program.

e Function code is source text that is parsed as part of a FunctionBody. The function code of a
particular FunctionBody does not include any source text that is parsed. as part of a nested
FunctionBody. Function code also denotes the source text supplied when using the built-in
Function object as a constructor. More precisely, the last parameter provided to the Function
constructor is converted to a String and treated as the<FunctionBody. If more than one parameter is
provided to the Function constructor, all parameters except the last one are converted to Strings
and concatenated together, separated by commas. The resulting String is interpreted as the
FormalParameterList for the FunctionBody defined by the last parameter. The function code for a
particular instantiation of a Function does not include any source text that is parsed as part of a
nested FunctionBody.

10.1.1 Strict Mode Code

An ECMAScript Program syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict
global code, strict eval code, and strict function code. Code is interpreted as strict mode code in the following
situations:

e Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.1).

e Eval code is strict eval code if«it begins with a Directive Prologue that contains a Use Strict Directive or if
the call to eval.is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

e Function code that'is part of a FunctionDeclaration, FunctionExpression, or accessor PropertyAssignment is
strict function code if its FunctionDeclaration, FunctionExpression, or PropertyAssignment is contained in strict
mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

¢ Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBody begins with a Directive
Prologue that contains a'Use Strict Directive.

e Unless specified otherwise, extended code (10.1.2) is also strict mode code.

The term “base code” is used to designate code that is not strict code.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a

FunctionDeclaration, a WithStatement, or a Catch clause of a TryStatement and a new Lexical Environment is
created each time such code is evaluated.

© Ecma International 2011 55

secmd

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current execution of the surrounding function.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

10.2.1 Environment Records

There are two kinds of Environment Record values used in this.specification: declarative environment records
and object environment records. Declarative environment records are used to define the effect.of ECMAScript
language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly
associate identifier bindings with ECMAScript language values. Object environment records are used to define
the effect of ECMAScript elements such as Program and WithStatement that associate identifier bindings with
the properties of some object.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with two concrete subclasses, declarative
environment record and object environment record. The abstract class includes the abstract specification
methods defined in Table 18. These abstract' methods have distinct concrete algorithms for each of the
concrete subclasses.

Table 18 — Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine if an environment record has a binding for an
identifier.. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D) Create a new mutable binding in an environment record. The
String value N is the text of the bound name. If the optional
Boolean argument D is true the binding is may be subsequently
deleted.

SetMutableBinding(N,V, S) Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. S is a Boolean flag. If S is true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S) Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. S is used to identify strict mode references. If S is true
and the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N) Delete a binding from an environment record. The String value N
is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

ImplicitThisValue() Returns the value to use as the this value on calls to function
objects that are obtained as binding values from this

56 © Ecma International 2011

secmd

| environment record.

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable,
constant, and/or function declarations. A declarative environment record binds the set of identifiers defined by
the declarations contained within its scope.

In addition to the mutable bindings supported by all Environment Records, declarative environment records
also provide for immutable bindings. An immutable binding is one where the association between an identifier
and a value may not be modified once it has been established. Creation and initialisation of declarative
binding are distinct steps so it is possible for such bindings to exist in either an initialised or uninitialised state.
Declarative environment records support the methods listed in Table 19 in.addition to the Environment Record
abstract specification methods:

Table 19 — Additional Methods of Declarative Environment Records

Method Purpose

CreatelmmutableBinding(N) Create a new but uninitialised immutable binding. in an
environment record. The String value N is the text of the bound
name.

InitializeBinding(N,V) Set the value of an already existing but uninitialised binding in
an environment record. The String value N is the text of the
boundname. V is the value for.the binding and is a value of any
ECMAScript language type.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

10.2.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the'identifiers bound by the record:

1. Let envRec-be the declarative environment record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.
3. If it does not have such a binding, return false.

10.2.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is initialised to the value undefined. A binding must not already
exist in this Environment Record for N. If Boolean argument D is provided and has the value true the new
binding is marked as being subject to deletion.

1. LetenvRec be the declarative environment record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create a mutable binding in envRec for N and and record that it is uninitialised. If D is true record that the
newly created binding may be deleted by a subsequent DeleteBinding call.

10.2.1.1.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeError is thrown if S is true.

1. Let envRec be the declarative environment record for which the method was invoked.

© Ecma International 2011 57

secma

Assert: envRec must have a binding for N.

Assert: The binding for N in envRec has already been initialised.

If the binding for N in envRec is a mutable binding, change its bound value to V.

Else if binding for N in envRec has not yet been initialized throw a ReferenceError exception.

Else this must be an attempt to change the value of an immutable binding so if S is true throw a TypeError
exception.

10.2.1.1.4 GetBindingValue(N,S)

ok wn

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N.The binding must already
exist. If S is true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If the binding for N in envRec is an uninitialised binding, then
a. IfSis false, return the value undefined, otherwise throw.a ReferenceError exception.
4. Else, return the value currently bound to N in envRec.

10.2.1.1.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative-environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

Let envRec be the declarative environment record for which the method was invoked.
If envRec does not have a binding for the name that is the value of N, return true.

If the binding for N in envRec is cannot be deleted, return false.

Remove the binding for N from envRec.

Return true.

10.2.1.1.6 ImplicitThisValue()

bR

Declarative Environment Records always return undefined as their ImplicitThisValue.

1. Return undefined.
10.2.1.1.7 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is initialised to the value undefined. A binding must not
already exist in this environment record for N.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that it is uninitialised.

10.2.1.1.8 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for declarative environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the value
of argument V. An uninitialised binding for N must already exist.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec must have an uninitialised binding for N.

3. Set the bound value for N in envRec to V.

4. Record that the binding for N in envRec has been initialised.

10.2.1.2 Object Environment Records
Each object environment record is associated with an object called its binding object. An object environment

record binds the set of identifier names that directly correspond to the property names of its binding object.
Property names that are not an IdentifierName are not included in the set of bound identifiers. Both own and

58 © Ecma International 2011

»ecma

inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because
properties can be dynamically added and deleted from objects, the set of identifiers bound by an object
environment record may potentially change as a side-effect of any operation that adds or deletes properties.
Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if
the Writable attribute of the corresponding property has the value false. Immutable bindings do not exist for
object environment records.

Object environment records can be configured to provide their binding object as an implicit this value for use
in function calls. This capability is used to specify the behaviour of With Statement (12.10) induced bindings.
The capability is controlled by a provideThis Boolean value that is associated with each object environment
record. By default, the value of provideThis is false for any object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. LetenvRec be the object environment record for which the method was‘invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[HasProperty]] internal method of bindings, passing N as the property name.

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates in
an environment record’s associated binding object a property whose name is the String value and initialises it
to the value undefined. A property named N must not already exist in.the binding object. If Boolean argument
D is provided and has the value true the new property’s [[Configurable]] attribute is set to true, otherwise it is
set to false.

1. LetenvRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Assert: The result of calling the [[HasProperty]] internal method of bindings, passing N as the property
name, is false.

4. If D is true then let configValue be true otherwise let configValue be false.

5. Call the [[DefineOwnProperty]] internal method of bindings, passing N, Property Descriptor
{[[Value]]:undefined, [[Writable]]: true, [[Enumerable]]: true , [[Configurable]]: configValue}, and true as
arguments.

10.2.1.2.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to set
the value of the environment/record’s associated binding object’s property whose name is the value of the
argument N to the value of argument V. A property named N should already exist but if it does not or is not
currently writable, error handling is determined by the value of the Boolean argument S.

1. LetenvRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Call the [[Put]] internal method of bindings with arguments N, V, and S.

10.2.1.2.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value
of its associated binding object’s property whose name is the String value of the argument identifier N. The
property should already exist but if it does not the result depends upon the value of the S argument:

1. LetenvRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.

© Ecma International 2011 59

secma

3. Let value be the result of calling the [[HasProperty]] internal method of bindings, passing N as the property
name.
4. Ifvalue is false, then
a. If Sis false, return the value undefined, otherwise throw a ReferenceError exception.
5. Return the result of calling the [[Get]] internal method of bindings, passing N for the argument.

10.2.1.2.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

1. LetenvRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[Delete]] internal method of bindings, passing N and false as arguments.

10.2.1.2.6 ImplicitThisValue()
Object Environment Records return undefined as their ImplicitThisValue unless their provideThis flag is true.

1. LetenvRec be the object environment record for which the method was invoked.
2. If the provideThis flag of envRec is true, return the binding object for envRec.
3. Otherwise, return undefined.

10.2.2 Lexical Environment Operations
The following abstract operations are used in'this specification to operate upon lexical environments:
10.2.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and a
Boolean flag strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null; then
a. Return a value of type Reference whose base value is undefined, whose referenced name is name,
and whose strict. mode flag is strict:
2. LetenvRec be lex’s environment record.
3. Let exists be the result of calling the HasBinding(N) concrete method of envRec passing name as the
argument-N.
4. Ifexists is true, then
a. Return a value of type Reference whose base value is envRec, whose referenced name is name, and
whose strict mode flag is strict.
5. Else
a. Let outer be the value of /ex’s outer environment reference.
b. “Return the result of calling GetldentifierReference passing outer, name, and strict as arguments.

10.2.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null
as argument E the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new declarative environment record containing no bindings.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

10.2.2.3 NewObjectEnvironment (O, E)

agpwbPE

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E
(or null) as arguments, the following steps are performed:

60 © Ecma International 2011

»ecma

Let env be a new Lexical Environment.

Let envRec be a new object environment record containing O as the binding object.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

10.2.3 The Global Environment

g E

The global environment is a unique Lexical Environment which is created before any ECMAScript code is
executed. The global environment’s Environment Record is an object environment record whose binding
object is the global object (15.1). The global environment’s outer environment reference is null.

As ECMAScript code is executed, additional properties may be added to the global object and the initial
properties may be modified.

10.3 Execution Contexts

When control is transferred to ECMAScript executable code, control is entering an execution context. Active
execution contexts logically form a stack. The top execution context on this logical stack is the running
execution context. A new execution context is created whenever control is transferred from the executable
code associated with the currently running execution context to executable code that is not associated with
that execution context. The newly created execution context is pushed onto the stack and becomes the
running execution context.

An execution context contains whatever state<is _necessary to track the execution progress of its associated
code. In addition, each execution context has the state components listed.in Table 20.

Table 20 —Execution Context State Components

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within'this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds

bindings created by VariableStatements and FunctionDeclarations within
this execution context.

ThisBinding The value associated with the this keyword within ECMAScript code
associated with this execution context.

The ‘LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment
components initially have the same value. The value of the VariableEnvironment component never changes
while the value of the LexicalEnvironment component may change during execution of code within an
execution context.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment’,
“VariableEnvironment” and “ThisBinding” are used without qualification they are in reference to those
components of the running execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact

of an ECMAScript implementation. It is impossible for an ECMAScript program to access an execution
context.

© Ecma International 2011 61

secma

10.3.1 Identifier Resolution

Identifier resolution is the process of determining the binding of an IdentifierName using the
LexicalEnvironment of the running execution context. During execution of ECMAScript code, Identifier
Resolution is performed using the following algorithm:

1. Letenv be the running execution context’s LexicalEnvironment.

2. If the syntactic production that is being evaluated is contained in a strict mode code, then let strict be true,
else let strict be false.

3. Return the result of calling GetldentifierReference abstract operation passing env, the String value
containing the same sequence of characters as IdentifierName, and strict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component
equal to the Identifier String.

10.4 Establishing an Execution Context

Evaluation of global code or code using the eval function (15.1.2.1) establishes and enters a new execution
context. Every invocation of an ECMAScript code function<(13.2.1) also establishes and enters a new
execution context, even if a function is calling itself recursively. Every return exits an execution context. A
thrown exception may also exit one or more execution contexts.

When control enters an execution context, the execution context’'s ThisBinding is set, its VariableEnvironment
and initial LexicalEnvironment are defined, and declaration binding instantiation (10.5) is performed. The exact
manner in which these actions occur depend on the type of code being entered.

10.4.1 Entering Global Code
The following steps are performed when control enters the execution context for global code:

1. Initialise the execution context using the global code as described in 10.4.1.1.
2. Perform Declaration Binding Instantiation as described in 10.5 using the global code.

10.4.1.1 Initial Global'Execution Context
The following steps are performed to'initialise a global.execution context for ECMAScript code C:

1. Set the VariableEnvironment to the Global Environment.
2. Set theLexicalEnvironment to the Global Environment.
3. Set the ThisBinding to the global object.

10.42 Entering Eval Code
The following steps are performed when control enters the execution context for eval code:

1. If there is no calling context or if the eval code is not being evaluated by a direct call (15.1.2.1.1) to the eval
function then,
a. Initialise the execution context as if it was a global execution context using the eval code as C as
described in 10.4.1.1.
2. Else,
a. Setthe ThisBinding to the same value as the ThisBinding of the calling execution context.
b. Setthe LexicalEnvironment to the same value as the LexicalEnvironment of the calling execution
context.
c. Setthe VariableEnvironment to the same value as the VariableEnvironment of the calling execution
context.
3. If the eval code is strict code, then
a. LetstrictvarEnv be the result of calling NewDeclarativeEnvironment passing the
LexicalEnvironment as the argument.
b. Setthe LexicalEnvironment to strictVarEnv.
c. Setthe VariableEnvironment to strictVarEnv.
4. Perform Declaration Binding Instantiation as described in 10.5 using the eval code.

62 © Ecma International 2011

»ecma

NOTE The eval code cannot instantiate variable or function bindings in the variable environment of the calling context
that invoked the eval if either the code of the calling context or the eval code is strict code. Instead such bindings are
instantiated in a new VariableEnvironment that is only accessible to the eval code.

10.4.3 Entering Function Code

The following steps are performed when control enters the execution context for function code contained in
function object F, a caller provided argumentsList, and a caller provided thisArg:

Let strict be the value of F’s [[Strict]] internal property.

If strict is true, set the ThisBinding to thisArg.

Else if thisArg is null or undefined, set the ThisBinding to the global object.

Else if Type(thisArg) is not Object, set the ThisBinding to ToObject(thisArg).

Else set the ThisBinding to thisArg.

Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the [[Scope]] internal
property of F as the argument.

Set the LexicalEnvironment to localEnv.

Set the VariableEnvironment to localEnv.

9. Return the result of performing Function Declaration Binding Instantiation using the function. F,
argumentsList , and localEnv as described in 10.5.3.

ourwhE

© N

10.5 Declaration Binding Instantiation
10.5.1 Top-Level Declaration Instantiation

NOTE When an execution context is established for evaluating non-function cede declarations are instantiated in the
current VariableEnvironment. Each top-level level variable, constant, or. function declarated in the code is instantiated.

Top-level Declaration Instantiation for base code is performed as follows:

Let env be the environment record component of the running execution context’s VariableEnvironment.
If code is eval code, then let configurableBindings be true else let configurableBindings be false.
If code is strict codesthen let strict be true else let strict be false.
For each FunctionDeclaration f in code, in source text order do
a. Letfn be the ldentifier in‘FunctionDeclaration f.
b. Let fo be the result of instantiating FunctionDeclaration f as described in Clause 13.
c. LetfuncAlreadyDeclared be the result of calling env’s HasBinding concrete method passing fn as
the argument.
d. If funcAlreadyDeclared is false, then
i. Call env’s CreateMutableBinding concrete method passing fn and configurableBindings as
the arguments.
ii. Call env’s InitializeBinding concrete method passing fn, and undefined as the arguments.
e.. Else if env is the environment record component of the global environment then
i Let go be the global object.
ii. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of go with
argument fn.
iii. If existingProp is undefined or existingProp.[[Configurable]] is true, then
1. Call the [[DefineOwnProperty]] internal method of go, passing fn, Property
Descriptor {[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true ,
[[Configurable]]: configurableBindings }, and true as arguments.
iv. Else if IsAccessorDescriptor(existingProp) or existingProp does not have attribute values
{[[Writable]]: true, [[Enumerable]]: true}, then
1. Throw a TypeError exception.
f. Call env’s SetMutableBinding concrete method passing fn, fo, and strict as the arguments.
5. For each VariableDeclaration and VariableDeclarationNoln d in code, in source text order do
a. Letdn be the Identifier in d.
b. LetvarAlreadyDeclared be the result of calling env’s HasBinding concrete method passing dn as the
argument.
c. IfvarAlreadyDeclared is false, then

O E

© Ecma International 2011 63

secma

i Call env’s CreateMutableBinding concrete method passing dn and configurableBindings as
the arguments.
il Call env’s InitializeBinding concrete method passing dn, and undefined as the arguments.
iii. Call env’s SetMutableBinding concrete method passing dn, undefined, and strict as the
arguments.
d. elseif env is the environment record component of the global environment then
i Let go be the global object.
il Let existingProp be the result of calling the [[GetOwnProperty]] internal method of go with
argument dn.
iii. If existingProp is undefined, then
1. Call the [[DefineOwnProperty]] internal method of go, passing dn, Property
Descriptor {[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true ,
[[Configurable]]: configurableBindings }, and true as arguments.

10.5.2 Module Declaration Instantiation
10.5.3 Function Declaration Instantiation

NOTE When an execution context is established for evaluating function code a new Declarative Environment Record is
created and bindings for each formal parameter, and each function level variable, constant, or function declarated in the
function are instantiated in the environment record. Formal parameters and functions are initialized as part of this process.
All other bindings are initialized during execution of the function code.

Function Declaration Instantiation is performed as follows using arguments func, argumentsList, and env. func
is the function object that for which the execution context is being established. env is the declarative
environment record in which bindings are to be created.

Let code be the value of the [[Code]] internal property of func.
Let strict be be the value of the [[Strict]] internal property of func.
Let formals be the value of the [[FormalParameterList]] internal property of func.
Let parameterNames be the'BoundNames of FormalParameterList.
For each String argName in parameterNames, in list order do
a. LetalreadyDeclared be the result of calling env’s HasBinding concrete method passing argName as
the argument.
b. NOTE Duplicate parameter names can.only occur in non-strict code.
c. IfalreadyDeclared is false, then
i Call env’s CreateMutableBinding concrete method passing argName as the argument.
d. fstrict is false, then
i Call env’s InitializeBinding concrete method passing argName, and undefined as the
arguments.
6. Let declarations be the LexicalDeclarations of code.
7. Ifstrictis true, then
a. Let ao be the result of CreateStrictArgumentsObject. with argument argumentsList.
b. “Let formalStatus be the result of performing Binding Initialisation for formals with ao and env as

grwNbPE

arguments.
8. Else,
a. Let names be BoundNames of formals.
b. NOTE Because F is a none strict function it is not extended code. Hence formals does not

contain the names of any destructuring BindingProperties, rest parameters, or parameters with default
value initialisers.

c. Letao be the result of performing the abstract operation CreateMappedArgumentsObject with
arguments names, env, and argumentsList.

d. Let formalStatus be the result of performing Binding Initialisation for formals with ao and
undefined as arguments.

9. NOTE Binding Initialisation for formals is perform prior to to instantiating any non-parameter declarations in
order to ensure that any such local declarations are not visible to any parameter Initialisation code that may
be evaluated.

10. ReturnlfAbrupt(formalStatus).

11. For each element d in declarations do

a. For each element dn of the BoundNames of d do

64 © Ecma International 2011

eCina

i. Let alreadyDeclared be the result of calling env’s HasBinding concrete method passing dn
as the argument.
ii. If alreadyDeclared is false, then
1. If IsConstantDeclaration of d is true, then
a Call env’s CreatelmmutableBinding concrete method passing dn as the
argument.
2. Else,
a Call env’s CreateMutableBinding concrete method passing dn and false as
the arguments.

12. Let argumentsAlreadyDeclared be the result of calling env’s HasBinding concrete method passing
"arguments" as the argument.

13. NOTE If argumentsAlreadyDeclared is true then the value of ao is not directly.observable to ECMAScript
code and need not actually exist. In that case, its use in the above steps is_strictly as a device for specifying
formal parameter initialisation semantics.

14. If argumentsAlreadyDeclared is false, then

a. |Ifstrictis true, then

i Call env’s CreatelmmutableBinding concrete method passing the String "arguments" as
the argument.

b. Else,

i Call env’s CreateMutableBinding concrete method passing the String "arguments" as the
argument.

c. Call env’s InitializeBinding concrete method passing "arguments" and ao as arguments.

15. Let varNames be the VarDeclaredNames of code.

16. For each String varName in varNames, in list order do

a. LetalreadyDeclared be the result of calling env’s HasBinding concrete method passing varName as
the argument.

b. NOTE A VarDeclaredNames is only instantiated and initialied here if it is not also the name of a
formal parameter or a FunctionDeclarations. Such duplicate declarations may only occur in non-
extended code.

c. IfalreadyDeclared is false, then

i Call env’s CreateMutableBinding concrete method passing varName as the argument.
ii. Call env’s InitializeBinding concrete method passing fn, and undefined as the arguments.

17. Let initializedFunctions be an emptyList.

18. For each FunctionDeclaration f in declarations, in reverse list order do

a. NOTE If there are multiple FunctionDeclarations for the same name, the last declaration is used.
Multiple FunctionDeclarations for the same name is only valid in non-extended code.

b. Letfn be the sole element of the BoundNames of f.

c. Iffnis notan element of initializedFunctions, then

I Append fn to initializedFunctions.
ii. Let fo be the result of instantiating FunctionDeclaration f as described in Clause 13.
iii. Call env’s InitializeBinding concrete method passing fn, and fo as the arguments.
19. Return NormalCompletion(empty)..

10.5.4 Block Declaration Instantiation

NOTE When a Block or CaseBlock production is evaluated a new Declarative Environment Record is created and
bindings for each block scoped variable, constant, or function declarated in the block are instantiated in the environment
record.

Block Declaration Instantiation is performed as follows using arguments code and env. code is the grammar
production corresponding to the body of the block. env is the declarative environment record in which
bindings are to be.

1. Let declarations be the LexicalDeclarations of code.
2. For each element d in declarations do
a. For each element dn of the BoundNames of d do
i. If IsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,
1. Call env’s CreateMutableBinding concrete method passing dn and false as the arguments.

© Ecma International 2011 65

3.

ecimnd

For each FunctionDeclaration f in declarations, in list order do

a. Letfn be the sole element of the BoundNames of f.

b. Let fo be the result of instantiating FunctionDeclaration f as described in Clause 13.
c. Call env’s InitializeBinding concrete method passing fn, and fo as the arguments.

10.6 Arguments Object

When control enters an execution context for function code, an arguments object is created unless (as
specified in 10.5) the identifier arguments occurs as an lIdentifier in the function’s FormalParameterList or
occurs as the Bindingldentifier of a Declaration contained in the function code.

The abstract operation CreateStrictArgumentsObject called with argument list args performs the following

steps:

1. Letlen be the number of elements in args.

2. Letobj be the result of the abstraction operation InstantiateArgumentsObject with argument len.
3. Letindx=1len - 1.

4. Repeat while indx >= 0,

7.

8.

a. Letval be the element of args at 0-origined list position indx.

b. Call the [[DefineOwnProperty]] internal method on-obj passing ToString(indx), the property descriptor
{[[\Value]l]: val, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false as
arguments.

c. Letindx=indx-1

Let thrower be the [[ThrowTypeError]] function Object (13.2.3).

Call the [[DefineOwnProperty]] internal method.of obj with arguments "caller", PropertyDescriptor

{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.

Call the [[DefineOwnProperty]] internal method of obj with-arguments "callee", PropertyDescriptor

{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.

Return obj

The abstract operation CreateMappedArgumentsObject called with List names, environment record env, and
argument list args performs the following steps:

NogkkwbpE

66

Let len be the number of elements in‘args.

Let obj be the result of the abstraction operation InstantiateArgumentsObject with argument len.
Let map be the result of creating'a new ECMAScript object.

Set all the internal methods of map as specified in 8.12.

Let mappedNames be an empty List.

Letindx=1len - 1.

Repeat while indx >=0,

a. Letval be the element of args at 0-origined list position indx.

b. . Call the [[DefineOwnProperty]] internal method on obj passing ToString(indx), the property
descriptor {[[Value]]: val, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and
false as arguments.

c. Ifindx.is less than the number of elements in names, then

i Let name be the element of names at 0-origined list position indx.
ii. If name is not an element of mappedNames, then
1. Add name as an element of the list mappedNames.
2. Let g be the result of calling the MakeArgGetter abstract operation with arguments
name and env.
3. Let p be the result of calling the MakeArgSetter abstract operation with arguments
name and env.
4. Call the [[DefineOwnProperty]] internal method of map passing ToString(indx), the
Property Descriptor {[[Set]]: p, [[Get]]: g, [[Configurable]]: true}, and false as
arguments.
d. Letindx=indx-1
If mappedNames is not empty, then

a. Setthe [[ParameterMap]] internal property of obj to map.

b. Setthe [[Get]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]] internal methods of obj
to the definitions provided below.

© Ecma International 2011

»ecma

9. Call the [[DefineOwnProperty]] internal method on obj passing "callee", the property descriptor
{[[Value]]: func, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}, and false as arguments.
10. Return obj

The abstract operation InstantiateArgumentsObject called with an argument len performs the following steps:

Let obj be the result of creating a new ECMAScript object.

Set all the internal methods of obj as specified in 8.12.

Add the [[NativeBrand]] internal propert to obj with value NativeArguments.

Set the [[Prototype]] internal property of obj to the standard built-in Object prototype object (15.2.4).

Call the [[DefineOwnProperty]] internal method on obj passing ""length", the Property Descriptor
{[[Value]]: len, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}, and false as arguments.
6. Return obj

agrwnE

The abstract operation MakeArgGetter called with String name and environment record env creates a function
object that when executed returns the value bound for name in env. It performs the following steps:

Let bodyText be the result of concatenating the Strings "return ", name, and ";".

Let body be the result of parsing bodyText using FunctionBody as the goal symbol.

Let parameters be a FormalParameterList : [empty] production.

Return the result of creating a function object as described in 13.2 using parameters as
FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

PonNE

The abstract operation MakeArgSetter called with String name and environment record env creates a function
object that when executed sets the value bound for name in env. It performs the following steps:

1. Let paramText be the String name concatenated with the String " arg".

2. Let parameters be the result of parsing paramText using FormalParameterList as the goal symbol.

3. Let bodyText be the String ""<name> = <param> ;" with <name> replaced by the value of name and
<param> replaced by the value of paramText.

4. Let body be the result of parsing-bodyText using FunctionBody as the goal symbol.

5. Return the result of creating a function object as described in 13.2 using parameters as
FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when
called with a property name P performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.
2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
3. If the value of isMapped is undefined; then
a. Letv be the result of calling the default [[Get]] internal method (8.12.3) on the arguments object
passing P as the argument.
b. IfPis "caller" andv is a strict mode Function object, throw a TypeError exception.
c. Returnv.
4. Else, map contains a formal parameter mapping for P so,
a. Return the result of calling the [[Get]] internal method of map passing P as the argument.

The [[GetOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P performs the following steps:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on the arguments
object passing P as the argument.

2. Ifdesc is undefined then return desc.

3. Let map be the value of the [[ParameterMap]] internal property of the arguments object.

4. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.

5. If the value of isMapped is not undefined, then

a. Set desc.[[Value]] to the result of calling the [[Get]] internal method of map passing P as the
argument.
6. Return desc.

© Ecma International 2011 67

secma

The [[DefineOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P, Property Descriptor Desc, and Boolean flag Throw performs
the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.
2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
3. Let allowed be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on the
arguments object passing P, Desc, and false as the arguments.
4. If allowed is false, then
a. If Throw is true then throw a TypeError exception, otherwise return false.
5. If the value of isMapped is not undefined, then
a. If IsAccessorDescriptor(Desc) is true, then
i Call the [[Delete]] internal method of map passing P, and false as the arguments.
b. Else
i If Desc.[[Value]] is present, then
1. Call the [[Put]] internal method of map-passing P, Desc.[[Value]], and Throw as the
arguments.
ii. If Desc.[[Writable]] is present and its value is false, then
1. Call the [[Delete]] internal method of map passing P and false as arguments.
6. Return true.

The [[Delete]] internal method of an arguments object for a non-strict mode function with formal parameters
when called with a property nhame P and Boolean flag Throw performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the.arguments object.

2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.

3. Let result be the result of calling the default [[Delete]] internal method (8.12.7) on the arguments object
passing P and Throw as the arguments.

4. Ifresultis true and the value of isMapped is not undefined, then

a. Call the [[Delete]] internal method of map passing P, and false as the arguments.
5. Return result.

NOTE 1 For non-strict mode functions the array index (defined in 15.4) named data properties of an arguments object
whose numeric name values are less than the number of formal parameters of the corresponding function object initially
share their values with the corresponding argument bindings in-the function’s execution context. This means that changing
the property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if
such a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode
functions, the values of the arguments object’s properties are simply a copy of the arguments passed to the function and
there is no dynamic linkage between the property values and the formal parameter values.

NOTE 2 . The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller" and
"callee" which throw a TypeError exception on access. The "callee" property has a more specific meaning for non-
strict mode functions and a "caller" property has historically been provided as an implementation-defined extension by
some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is
defined in any other manner by conforming ECMAScript implementations.

68 © Ecma International 2011

»ecma

11 Expressions
11.1 Primary Expressions

Syntax

PrimaryExpression :
this
Identifier
Literal
SealedArrayLiteral
SealedObjectLiteral
FunctionExpression
GeneratorExpression
GeneratorComprehension
(Expression)

11.1.1 The this Keyword

Runtime Semantics: Evaluation

PrimaryExpression : this

1. Return the value of the ThisBinding of the current execution context.

11.1.2 Identifier Reference

1. Let ref be the result of performing Identifier Resolution as specified in 10.3.1 using the IdentifierName
corresponding to Identifier.

2. Return ref.

NOTE: The result of evaluating an Identifier is always a value of type Reference.

11.1.3 Literal Reference

A Literal is evaluated as describedqin 7.8.

11.1.4 Array Initialiser

Syntax

SealedArrayInitialiser :
Arraylnitialiser
Arraylnitialiser

Arraylnitialiser :
ArrayLiteral
ArrayComprehension

11.1.4.1 Array Literal

NOTE An ArrayLiteral is an expression describing the initialisation of an Array object, using a list, of zero or more
expressions each of which represents an array element, enclosed in square brackets. The elements need not be literals;
they are evaluated each time the array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list is
not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the missing array
element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are
not defined. If an element is elided at the end of an array, that element does not contribute to the length of the Array.

© Ecma International 2011 69

secma

Syntax

ArrayLiteral :
[Elisionep 1]
[ElementList]
[ElementList , Elisiongg 1
ElementList :
Elisiongp: AssignmentExpression
Elisiongpt ... AssignmentExpression
ElementList , Elisiongp: AssignmentExpression
ElementList , Elisiong: SpreadElement

Elision :
r
Elision ,

SpreadElement :
... AssignmentExpression

ArrayComprehension :

Expression ComprehensionForList

Expression ComprehensionForList if (Expression)
ComprehensionForList :

ComprehensionFor

ComprehensionForList ComprehensionFor

ComprehensionFor :
for (LeftHandSideExpression..of Expression)

Static Semantics

Static Semantics: Elision Width
Elision : [empty]

1. Return the numeric value 0.
Elision: ,

2. Return the numeric value 1.
Elision : Elision,

3. Let preceding be the Elision Width of Elision.
4. Return preceding+1.

Runtime Semantics
Runtime Semantics: Array Accumulation
With parameters array and nextindex.
ElementList : Elisiones: AssignmentExpression
Let padding be the Elision Width of Elisionp:.
Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).
If initValue is an abrupt completion, return initValue.

PR

70 © Ecma International 2011

»ecma

5. Call the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32(nextIndex+padding)), the Property Descriptor { [[Value]]: initValue, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}, and false.

6. Return nextindex+padding+1.

ElementList : Elisioney: SpreadElement

1. Let padding be the Elision Width of Elisiongp.
2. Return the result of performing Array Accumulation for SpreadElement with arguments array and
nextindex+padding.

ElementList : ElementList , Elisiongy AssignmentExpression

1. Let postindex be the result of performing Array Accumulation for ElementList with arguments array and
nextindex.

If postindex is an abrupt completion, return postindex.

Let padding be the Elision Width of Elisiongp.

Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

If initValue is an abrupt completion, return initValue.

Call the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32((postindex+padding)) and the Property Descriptor { [[Value]]: initValue, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

8. Return postindex+padding+1.

Nooakwn

ElementList : ElementList , Elisiongy: SpreadElement

1. Let postindex be the result of performing Array Accumulationfor ElementList with arguments array and
nextindex.

2. If postindex is an abrupt completion, return postindex .

3. Let pad be the result of evaluating Elisiono; if not present, use the numeric value zero.

4. Return the result of performing Array Accumulation for SpreadElement with arguments array and
postindex+padding.

SpreadElement : ... AssignmentExpression

Let spreadRef be the result of evaluating AssignmentExpression.

Let spreadValue be GetValue(spreadRef).

Let spreadObj be ToObject(spreadValue).

If spreadObj is an abrupt completion, return spreadObj.

LLet lenVal be the result of calling the [[Get]] internal method of spreadObj with argument “length” .
Let spreadLen be ToUint32(lenVal).

Let n=0;

Repeat, while n < spreadLen

a. Let exists be the result of calling the [[HasProperty]] internal method of spreadObj with ToString(n).
b. [Ifexists is true then,

i. Letv be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the
argument.

ii. Call the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32(nextIndex)), Property Descriptor {[[Value]]: v, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}, and false.

c. Letn=n+l.
d. Let nextindex = nextindex +1.
9. Return nextindex.

N~ ONE

NOTE [[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the standard
built-in Array prototype object has been modified in a manner that would preclude the creation of new own properties
using [[Put]].

© Ecma International 2011 71

secma

Runtime Semantics: Evaluation
ArrayLiteral : [Elisiongg 1

1. Letarray be the result of creating a new object as if by the expression new Array () where Array is
the standard built-in constructor with that name.

2. Let pad be the Elision Width of Elisiongp:.

3. Call the [[Put]] internal method of array with arguments "length", pad, and false.

4. Return array.

ArrayLiteral : [ElementList]

1. Letarray be the result of creating a new object as if by the expression new Array () where Array is
the standard built-in constructor with that name.

Let len be result of performing Array Accumulation for ElementList with arguments array and 0.

If len is an abrupt completion, return len.

Call the [[Put]] internal method of array with arguments "length", len, and false.

Return array.

abrwn

ArrayLiteral : [ElementList , Elisione 1]

1. Letarray be the result of creating a new object as if by the expression new Array () where Array is
the standard built-in constructor with that name.

Let len be result of performing Array Accumulation for ElementList with arguments array and 0.

If len is an abrupt completion, return len.

Let pad be the Elision Width of Elisiongp:.

Call the [[Put]] internal method of array with arguments "length", ToUint32(pad+len), and false.
Return array.

S

11.1.4.2 Array Comprehension

Syntax

ArrayComprehension :
[Expression ComprehensionForList]
[Expression ComprehensionForList if (Expression) 1]

ComprehensionForList :
ComprehensionFor
ComprehensionForList ComprehensionFor

ComprehensionFor :
for (LeftHandSideExpression of Expression)

11.1.5 Object Initialiser

NOTE An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a
literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The values need
not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

SealedObjectLiteral :
ObjectLiteral
ObjectLiteral

ObjectLiteral :
{1}
{ PropertyNameAndValueList }
{ PropertyNameAndValueList , }

72 © Ecma International 2011

»ecma

PropertyNameAndValueList :
PropertyAssignment
PropertyNameAndValueList , PropertyAssignment

PropertyAssignment :
IdentifierName
PropertyName : AssignmentExpression
PropertyName (FormalParameterList) { FunctionBody }
* PropertyName (FormalParameterList) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

PropertyName :
IdentifierName
StringLiteral
NumericLiteral

PropertySetParameterList :
Bindingldentifier
BindingPattern

11.1.5.1 Static Semantics
Early Errors
PropertyNameAndValueList : PropertyNameAndValueList , PropertyAssignment

e It is a Syntax Error if this production is contained in strict code, PropertyAssignment is the production
PropertyAssignment : PropertyName : AssignmentExpression, and-PropertyDefinitionList(PropName of
PropertyAssignment) of PropertyNameAndValueList is not the empty List.

e It is a Syntax Errorif PropertyAssignment is the production PropertyAssignment : IdentifierName and
PropertyDefinitionList(PropName of PropertyAssignment) of PropertyNameAndValueList is not the empty
List.

e It is a Syntax Error if PropertyAssignment is the production PropertyAssignment : PropertyName
(FormalParameterkist) { FunctionBody } and PropertyDefinitionList(PropName of
PropertyAssignment) of PropertyNameAndValueList is not the empty List.

e It is.a Syntax Error if PropertyAssignment is the production PropertyAssignment : * PropertyName
(<~ FormalParameterList =) { FunctionBody } and PropertyDefinitionList(PropName of
PropertyAssignment) of PropertyNameAndValueList is not the empty List.

e |tis a Syntax Error if PropertyAssignment is the production

PropertyAssignment : get PropertyName () { FunctionBody }
and PropertyDefinitionList (PropName of PropertyAssignment) of PropertyNameAndValueList includes a
production of the form PropertyAssignment : PropertyName : AssignmentExpression.

e |tis a Syntax Error if PropertyAssignment is the production

PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody }
and PropertyDefinitionList (PropName of PropertyAssignment) of PropertyNameAndValueList includes a
production of the form PropertyAssignment : PropertyName : AssignmentExpression.

e ltis a Syntax Error if PropertyAssignment is the production

PropertyAssignment : get PropertyName () { FunctionBody }
and PropertyDefinitionList (PropName of PropertyAssignment) of PropertyNameAndValueList includes a
production of the form PropertyAssignment : get PropertyName () { FunctionBody }.

e |tis a Syntax Error if PropertyAssignment is the production

PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody }
and PropertyDefinitionList (PropName of PropertyAssignment) of PropertyNameAndValueList includes a
production of the form

PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody }.

PropertyAssignment : PropertyName (FormalParameterList) { FunctionBody }

© Ecma International 2011 73

secma

and
* PropertyAssignment : PropertyName (FormalParameterList) { FunctionBody }

e |t is a Syntax Error if the PropName of PropertyName also occurs in the VarDeclaredNames of
FunctionBody.

e |t is a Syntax Error if the PropName of PropertyName also occurs in the LexicallyDeclaredNames of
FunctionBody.

e |tis a Syntax Error if any element of the LexicallyDeclaredNames of FormalParameterList also occurs
in the VarDeclaredNames of FunctionBody.

e It is a Syntax Error if any element of the BoundNames of FormalParameterList also occurs in the
LexicallyDeclaredNames of FunctionBody.

PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody }

e It is a Syntax Error if any element of the BoundNames of PropertySetParameterList also occurs in the
LexicallyDeclaredNames of FunctionBody.

PropertySetParameterList : BindingPattern

e |tis a Syntax Error if BoundNames of BindingPattern contains any duplicate elements.
Static Semantics: BoundNames
PropertySetParameterList : Bindingldentifier
1. Return BoundNames of Bindingldentifier.
PropertySetParameterList: BindingPattern
1. Return BoundNames of BindingPattern.
Static Semantics: ExpectedArgumentCount
PropertySetParameterList : Bindingldentifier
1. Returnl.
PropertySetParameterList : BindingPattern
1. Return 1.
Static Semantics: Haslnitialiser
PropertySetParameterList : Bindingldentifier
1. Return false.
PropertySetParameterList : BindingPattern
1. Return false.
Static Semantics: PropertyDefinitionList(name)
PropertyNameAndValueList : PropertyAssignment

1. If PropName of PropertyAssignment is not name return the empty List.
2. Return a List containing PropertyAssignment.

PropertyNameAndValueList : PropertyNameAndValueList , PropertyAssignment

74 © Ecma International 2011

»ecma

1. Let previous be PropertyDefinitionList(name) of PropertyNameAndValueList.
2. If PropName of PropertyAssignment is name then,
a. Append PropertyAssignment to the end of previous.
3. Return previous.
Static Semantics: PropName
PropertyAssignment : IdentifierName
1. Return String Value of IdentifierName.
PropertyAssignment : PropertyName : AssignmentExpression
1. Return PropName of PropertyName.
PropertyAssignment : PropertyName (FormalParameterList) { FunctionBody 1}
1. Return PropName of PropertyName.
PropertyAssignment : * PropertyName (FormalParameterList) { FunctionBody }
1. Return PropName of PropertyName.
PropertyAssignment : get PropertyName () { FunctionBody }
1. Return PropName of PropertyName.
PropertyAssignment : set PropertyName (PropertySetParameterList). { FunctionBody }
1. Return PropName of PropertyName:
PropertyName : IdentifierName
1. Return PropName of IdentifierName.
PropertyName : StringLiteral
1. Return_the SV of the StringLiteral.

PropertyName : NumericLiteral

1. Letnbrbe the result of forming the value of the NumericLiteral.
2. Return ToString(nbr).

11.1.5.2 Runtime Semantics
Runtime Semantics: Evaluation
ObijectLiteral : { }

1. Return a new object created as if by the expression new Object () where Object is the standard built-
in constructor with that name.

ObjectLiteral :
{ PropertyNameAndValueList }
{ PropertyNameAndValueList , }

1. Let obj be the result of creating a new object as if by the expression new Object () where Object is the
standard built-in constructor with that name.

© Ecma International 2011 75

secma

2. Let success be the result of performing Property Definition Evaluation of PropertyNameAndValueList with
argument obj.

3. Ifsuccess is an abrupt completion, return success.

4. Return obj.

Runtime Semantics: Property Definition Evaluation
With parameter object.

PropertyNameAndValueList : PropertyAssignment

1. Return the result of Perform Property Definition Evaluation of PropertyAssignment with argument object.

PropertyNameAndValueList : PropertyNameAndValueList , PropertyAssignment

1. Let success be the result of performing Property Definition Evaluation of PropertyNameAndValueList with
argument object.

2. If success is an abrupt completion, return success.

3. Return the result of performing Property Definition Evaluation of PropertyAssignment with argument object.

PropertyAssignment : IdentifierName

1. Let propName be PropName(ldentifierName).

2. LetexprValue be the result of performing Identifier Resolution as specified in 10.3.1 using IdentifierName.

3. Let propValue be GetValue(exprValue).

4. If propValue is an abrupt completion, return propValue.

5. Let desc be the Property Descriptor{[[Value]]: propValue; [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

6. Return the result of calling the [[DefineOwnProperty]] internal method. of object with arguments propName,

desc, and false.

PropertyAssignment : PropertyName : AssignmentExpression

1. Let propName be PropName(PropertyName).

2. LetexprValue be the result of evaluating AssignmentExpression.

3. Let propValue be GetValue(exprValue).

4. If propValue.is.an abrupt completion, return propValue.

5. Let desc'be the Property Descriptor{[[Value]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

6. Return the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,

desc, and false.
PropertyAssignment : PropertyName (FormalParameterList) { FunctionBody }

1. Let propName be PropName of PropertyName.

2. Letclosure be the result of creating a new Function object as specified in 13.1.1 using a
FormalParameterList : [empty] production as the parameter list and body specified by FunctionBody. Pass in
the LexicalEnvironment of the running execution context as the Scope. Pass in true as the Strict flag. Pass
object as the optional homeObject argument and propName as the optional methodName argument.

3. Let desc be the Property Descriptor{[[Get]]: closure, [[Enumerable]]: true, [[Configurable]]: true}

4. Return the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.

PropertyAssignment : * PropertyName (FormalParameterList) { FunctionBody }

1. Let propName be PropName of PropertyName.
2. Letclosure be the result of creating a new Generator object as specified in 13.2.xxx using a
FormalParameterList : [empty] production as the parameter list and body specified by FunctionBody. Pass in

76 © Ecma International 2011

ecind

the LexicalEnvironment of the running execution context as the Scope. Pass in true as the Strict flag. Pass
object as the optional homeObject argument and propName as the optional methodName argument.

Let desc be the Property Descriptor{[[Get]]: closure, [[Enumerable]]: true, [[Configurable]]: true}

Return the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.

PropertyAssignment : get PropertyName () { FunctionBody }

5.
6.

Let propName be PropName(PropertyName).

Let closure be the result of creating a new Function object as specified in 13.2 using a FormalParameterList
: [empty] production as the formal parameter list and body specified by FunctionBody. Pass in the
LexicalEnvironment of the running execution context as the Scope. Pass in true as the Strict flag if the
PropertyAssignment is contained in strict code or if its FunctionBody is strict code. Pass object as the
optional homeObject argument and propName as the optional methodName argument.

Let desc be the Property Descriptor{[[Get]]: closure, [[Enumerable]]:true, [[Configurable]]: true}

Return the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.

PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody }

Let propName be PropName(PropertyName).

Let closure be the result of creating a new Function object as specified in 13.2 with parameters specified by
PropertySetParameterList and body specified by FunctionBody. Pass in the LexicalEnvironment of the
running execution context as the Scope. Pass in true as the Strict flag if the PropertyAssignment is contained
in strict code or if its FunctionBody is strict code. Pass object as the optional homeObject argument and
propName as the optional methodName argument.

Let desc be the Property Descriptor{[[Set]]: closure, [[Enumerable]]: true; [[Configurable]]: true}

Return the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName,
desc, and false.

11.1.6 Function Expressions

Runtime Semantics: Evaluation

PrimaryExpression : FunctionExpression

1.

Return the result of evaluating FunctionExpression.

11.1.7 Generator Comprehensions

Syntax

GeneratorComprehension :

(Expression ComprehensionForList)
(Expression ComprehensionForList if (Expression))

ComprehensionForList :

ComprehensionFor
ComprehensionForList ComprehensionFor

ComprehensionFor :

for (LeftHandSideExpression of Expression)

11.1.8 The Grouping Operator

Runtime Semantics: Evaluation

PrimaryExpression : (Expression)

1.

Return the result of evaluating Expression. This may be of type Reference.

© Ecma International 2011 77

secma

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this

is so that operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression :
PrimaryExpression
MemberExpression [Expression]
MemberExpression . IdentifierName
MemberExpression <| TriangleLiteral
super [Expression]
super . ldentifierName
new MemberExpression Arguments

NewExpression :
MemberExpression
new NewExpression

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . ldentifierName
CallExpression <| TriangleLiteral

Arguments :
()
(ArgumentList)

ArgumentList :
AssignmentExpression
. AssignmentExpression
ArgumentList , AssignmentExpression
ArgumentList ;.. . . AssignmentExpression

TriangleLiteral :
SealedArrayLiteral
SealedObjectLiteral
FunctionExpression
ValueLiteral

LeftHandSideExpression :
NewExpression
CallExpression

11.2.1 Property Accessors
Properties are accessed by name, using either the dot notation:

MemberExpression . IdentifierName
CallExpression . IdentifierName
or the bracket notation:

MemberExpression [Expression]
CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:

78

© Ecma International 2011

»ecma

MemberExpression . IdentifierName
is identical in its behaviour to

MemberExpression [<identifier-name-string>]
and similarly

CallExpression . IdentifierName
is identical in its behaviour to

CallExpression [<identifier-name-string>]

where <identifier-name-string> is a string literal containing the same sequence of characters after processing
of Unicode escape sequences as the IdentifierName.

Runtime Semantics: Evaluation
MemberExpression : MemberExpression [Expression]

Let baseReference be the result of evaluating MemberExpression.
Let baseValue be GetValue(baseReference).
If baseValue is an abrupt completion, return baseValue.
Let propertyNameReference be the result of evaluating Expression.
Let propertyNameValue be GetValue(propertyNameReference).
If propertyNameValue is an abrupt completion, return propertyNameValue.
If the result of CheckObjectCoercible(baseValue) is an abrupt completion, return that result.
Let propertyNameString be ToString(propertyNameValue).
If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.
. Return a value of type Reference whose base value is baseValue and whose referenced name is
propertyNameString, and whose strict mode flag is strict.

CoNooo~EWNE

[y
o

CallExpression : CallExpression [Expression]

Is evaluated in exactly the same manner as MemberExpression : MemberExpression [Expression] except that
the contained CallExpression is evaluated in step 1:

11.2.2 The new Operator
Runtime'Semantics: Evaluation
NewExpression : new NewEXxpression

Let ref be the result of evaluating NewExpression.

Let constructor be GetValue(ref).

If constructor is.an abrupt completion, return constructor.

If Type(constructor) is not Object, throw a TypeError exception.

If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.
Return the result of calling the [[Construct]] internal method on constructor, providing no arguments (that
is, an empty list of arguments).

ook wnE

MemberExpression : new MemberExpression Arguments

Let ref be the result of evaluating MemberExpression.

Let constructor be GetValue(ref).

If constructor is an abrupt completion, return constructor.

Let argList be the result of evaluating Arguments, producing an internal list of argument values (11.2.4).
If argList is an abrupt completion, return argList.

If Type(constructor) is not Object, throw a TypeError exception.

If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.

NogakrwbE

© Ecma International 2011 79

secma

8. Return the result of calling the [[Construct]] internal method on constructor, providing the list argList as the
argument values.

11.2.3 Function Calls
Runtime Semantics: Evaluation
CallExpression : MemberExpression Arguments

Let ref be the result of evaluating MemberExpression.
Let func be GetValue(ref).
If func is an abrupt completion, return func.
Let argList be the result of evaluating Arguments, producing an internal list'of argument values (see 11.2.4).
If argList is an abrupt completion, return argList.
If Type(func) is not Object, throw a TypeError exception.
If IsCallable(func) is false, throw a TypeError exception.
If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then
i Let thisValue be GetBase(ref).
b. Else, the base of ref is an Environment Record
i Let thisValue be the result of calling the ImplicitThis\VValue concrete method of
GetBase(ref).
9. Else, Type(ref) is not Reference.
a. Let thisValue be undefined.
10. Return the result of calling the [[Call]] internal.method on func, providing thisValue as the this value and
providing the list argList as the argument values.

PN E

CallExpression : CallExpression Arguments

This is evaluated in exactly the same manner as CallExpression : MemberExpression Arguments except that the
contained CallExpression is evaluated in step 1.

NOTE The returned result will never be of type Reference if func is a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementation-dependent. If a value of type Reference is returned, it
must be a non-strict Property Reference.

11.2.4 The super Keyword
Static Semantics

Static Semantics: Early Errors
MemberExpression :

super [Expression]
super . ldentifierName

e ltis a Syntax Error if the source code parsed with this production is global code that is not eval code.
e |tis a Syntax Error if the source code parsed with this production is eval code and the source code is
not being processed by a direct call to eval that is contained in function code.

CallExpression : super Arguments
e ltis a Syntax Error if the source code parsed with this production is global code that is not eval code.

e ltis a Syntax Error if the source code parsed with this production is eval code and the source code is
not being processed by a direct call to eval that is contained in function code.

Runtime Semantics: Evaluation

MemberExpression : super [Expression]

80 © Ecma International 2011

»ecma

Let baseReference be the result of evaluating MemberExpression.

Let baseValue be GetValue(baseReference).

Let propertyNameReference be the result of evaluating Expression.

Let propertyNameValue be GetValue(propertyNameReference).

Call CheckObjectCoercible(baseValue).

Let propertyNameString be ToString(propertyNameValue).

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.

8. Return a value of type Reference whose base value is baseValue and whose referenced name is
propertyNameString, and whose strict mode flag is strict.

NogokrwhE

11.2.5 Argument Lists

The evaluation of an argument list produces a List of values (see 8.7).
Runtime Semantics

Runtime Semantics: Evaluation

Arguments : ()

1. Return an empty List.

Arguments : (ArgumentList)

1. Return the result of evaluating ArgumentList.
ArgumentList : AssignmentExpression

Let ref be the result of evaluating AssignmentExpression.
Let arg be GetValue(ref).

If arg is an abrupt completion, return arg.
Return a List whose sole item is arg.

PoobPE

ArgumentList : ... AssignmentExpression

Let list be an-empty List.

Let spreadRef be the result of evaluating AssignmentExpression.

Let spreadValue be GetValue(spreadRef).

Let spreadObj be ToObject(spreadValue).

If spreadObj is an abrupt completion, return spreadObj.

Let lenVal be the result of calling the [[Get]] internal method of spreadObj with argument “length” .

Let spreadLen be ToUint32(lenVal).

Letn=0.

Repeat, while n.< spreadLen

a. Let nextArg be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the
argument.

b. Append nextArg as the last element of list.

c. Letn=n+l.

10. Return list.

COoNORWNE

ArgumentList : ArgumentList , AssignmentExpression

Let precedingArgs be the result of evaluating ArgumentList.

If precedingArgs is an abrupt completion, return precedingArgs.
Let ref be the result of evaluating AssignmentExpression.

Let arg be GetValue(ref).

If arg is an abrupt completion, return arg.

agbrwdE

© Ecma International 2011 81

secma

6. Return a List whose length is one greater than the length of precedingArgs and whose items are the items of
precedingArgs, in order, followed at the end by arg which is the last item of the new list.

ArgumentList : ArgumentList , .. AssignmentExpression

Let precedingArgs be an empty List.

Let spreadRef be the result of evaluating AssignmentExpression.

Let spreadValue be GetValue(spreadRef).

Let spreadObj be ToObject(spreadValue).

If spreadObj is an abrupt completion, return spreadObj.

Let lenVal be the result of calling the [[Get]] internal method of spreadObj with.argument “length” .

Let spreadLen be ToUint32(lenVal).

Letn=0.

Repeat, while n < spreadLen

d. Let nextArg be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the
argument.

e. Append nextArg as the last element of precedingArgs.

f. Letn=n+l.

10. Return precedingArgs.

CEeNoOR~WNE

11.3 Postfix Expressions

Syntax

PostfixExpression :
LeftHandSideExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] — -

Static Semantics
Static Semantics: Early Errors

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

e |t is-a Syntax Error if the PostfixExpression is contained in strict code and LeftHandSideExpression is the
Identifier eval or the Identifier arguments.

e |tis a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression
derived a production that if used in place of LeftHandSideExpression would produce a Syntax Error
according to these rules. This rule is recursively applied.

11.3.1 Postfix Increment Operator
Runtime Semantics: Evaluation
PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++

Let lhs be the result of evaluating LeftHandSideExpression.

Let oldValue be ToNumber(GetValue(lhs)).

If oldValue is an abrupt completion, return oldValue.

Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
11.6.3).

If PutValue(lhs, newValue) is an abrupt completion, return that Completion Record.

Return oldValue.

PR

o v

82 © Ecma International 2011

»ecma

11.3.2 Postfix Decrement Operator
Runtime Semantics: Evaluation
PostfixExpression : LeftHandSideExpression [no LineTerminator here] —-

1. Let Ihs be the result of evaluating LeftHandSideExpression.

2. LetoldValue be ToNumber(GetValue(lhs)).

3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -
operator (11.6.3).

4. If Call PutVvalue(lhs, newValue)) is an abrupt completion, return that Completion Record.

5. Return oldValue.

11.4 Unary Operators

Syntax

UnaryExpression :
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

Static Semantics
Static Semantics: Early Errors
UnaryExpression :
delete UnaryExpression
++ UnaryExpression
-- UnaryExpression

e _tis a Syntax Error if the UnaryExpression is contained in strict code and the derived UnaryExpression is
the Identifier eval or the Identifier arguments.

e ltis a Syntax Error if the derived UnaryExpression is PrimaryExpression : (Expression) and Expression
derived a production that if used in place of LeftHandSideExpression would produce a Syntax Error
according to these rules. This rule is recursively applied.

11.4.1 The delete Operator
Static Semantics: Early Errors

UnaryExpression : delete UnaryExpression

e |t is a Syntax Error if the UnaryExpression is contained in strict code and the UnaryExpression derives
an ldentifier that statically resolves to a environment record.

Runtime Semantics: Evaluation
UnaryExpression : delete UnaryExpression

1. Let ref be the result of evaluating UnaryExpression.

© Ecma International 2011 83

secma

2. Ifrefis an abrupt completion, return ref.
If Type(ref) is not Reference, return true.
4. If IsUnresolvableReference(ref) is true, then,
a. If IsStrictReference(ref) is true, throw a SyntaxError exception.
b. Else, return true.
5. If IsPropertyReference(ref) is true, then
a. Return the result of calling the [[Delete]] internal method on ToObject(GetBase(ref)) providing
GetReferencedName(ref) and IsStrictReference(ref) as the arguments.
6. Else, ref is a Reference to an Environment Record binding, so
a. Letbindings be GetBase(ref).
b. Return the result of calling the DeleteBinding concrete method of bindings, providing
GetReferencedName(ref) as the argument.

w

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its
UnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if a delete operator
occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError
exception is thrown.

11.4.2 The void Operator

Runtime Semantics: Evaluation

UnaryExpression : void UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.

2. Call GetValue(expr).

3. Ifrefis an abrupt completion, return ref.

4. Return undefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

11.4.3 The typeof Operator
Runtime Semantics: Evaluation
UnaryExpression : typeof UnaryExpression

1. Letval be the result of evaluating UnaryExpression.

2. If Type(val) is Reference, then
a. If IsUnresolvableReference(val) is true, return "undefined".
b. Letval be GetValue(val).

3. Ifvalis an abrupt completion, return val.

4. Return a String determined by Type(val) according to Table 21.

Table 21 — typeof Operator Results

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean"
Number "number"
String "string"
Object (native and does "object"

not implement [[Call]])

Object (native or host and | "function"
does implement [[Call]])

84 © Ecma International 2011

»ecma

Object (host and does not | Implementation-defined except may
implement [[Call]]) not be "undefined", "boolean",
"number", Or "string".

11.4.4 Prefix Increment Operator
Runtime Semantics: Evaluation
UnaryExpression : ++ UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ToNumber(GetValue(expr)).

If oldValue is an abrupt completion, return oldValue.

Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
11.6.3).

If PutValue(expr, newValue) is an abrupt completion, return that Completion Record:

6. Return newValue.

PobE

o

11.4.5 Prefix Decrement Operator

Runtime Semantics: Evaluation

UnaryExpression : —— UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.

2. LetoldValue be ToNumber(GetValue(expr)).

3. If oldVvalue is an abrupt completion, return oldValue.

4. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -

operator (see 11.6.3).
5. If PutValue(expr, newValue) is anabrupt completion; return that Completion Record.
6. Return newValue.
11.4.6 Unary + Operator
NOTE The unary + operator convertsqits operand to Number type.
Runtime Semantics: Evaluation

UnaryExpression : + UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Return ToNumber(GetValue(expr)).

11.4.7 Unary - Operator

NOTE The unary - operator converts its operand to Number type and then negates it. Negating +0 produces -0, and
negating —0 produces +0.

Runtime Semantics: Evaluation
UnaryExpression : - UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldVvalue be ToNumber(GetValue(expr)).

If oldValue is an abrupt completion, return oldValue.

If oldValue is NaN, return NaN.

Return the result of negating oldValue; that is, compute a Number with the same magnitude but opposite
sign.

agrwnE

© Ecma International 2011 85

secma

11.4.8 Bitwise NOT Operator (~)

Runtime Semantics: Evaluation

UnaryExpression : ~ UnaryExpression

Let expr be the result of evaluating UnaryExpression.
Let oldValue be Tolnt32(GetValue(expr)).

If oldValue is an abrupt completion, return oldValue.
Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

el A

11.4.9 Logical NOT Operator (!)
Runtime Semantics: Evaluation
UnaryExpression : ! UnaryExpression

Let expr be the result of evaluating UnaryExpression.
Let oldValue be ToBoolean(GetValue(expr)).

If oldValue is an abrupt completion, return oldValue.
If oldValue is true, return false.

Return true.

Al

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression :
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Runtime Semantics: Evaluation

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands for one
of the operators.in.the above definitions, is evaluated as follows:

Let left be the result of evaluating MultiplicativeExpression.
Let leftValue be GetValue(left).

If leftValue is an abrupt completion, return leftValue.

Let right be the result of evaluating UnaryExpression.

Let rightValue be GetValue(right).

Let leftNum be ToNumber(leftValue).

If leftNum is an.abrupt completion, return leftNum.

Let rightNum be ToNumber(rightValue).

If rightNum is an abrupt completion, return rightNum.

0. Return the result of applying the specified operation (*, /, or %) to leftNum and rightNum. See the Notes
below 11.5.1, 11.5.2, 11.5.3.

Hoo~NokwnPE

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.
Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision
arithmetic:

o |If either operand is NaN, the result is NaN.

86 © Ecma International 2011

»ecma

e The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

e Multiplication of an infinity by a zero results in NaN.

e Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the
rule already stated above.

e Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is
determined by the rule already stated above.

¢ In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the result is then an infinity. of appropriate sign. If
the magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

o |If either operand is NaN, the result is NaN.

e The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

¢ Division of an infinity by an infinity results in NaN.

e Division of an infinity by a zero results.in an infinity. The sign is determined by the rule
already stated above.

e Division of an infinity by a nonzero finite value results in a signed infinity. The sign is
determined by the rule already stated above:

¢ Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.

o Division of a zero by a zero results in NaN; division of zero by any other finite value results
in zero, with the sign determined by the rule already stated above.

e Division of ‘@ nonzero finite value. by a zero results in a signed infinity. The sign is
determined by the rule‘already stated above.

e In the .remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
guotient is computed and rounded to the nearest representable value using IEEE 754 round-
to-nearest mode. If the magnitude is too large to represent, the operation overflows; the
result is then an infinity of appropriate sign. If the magnitude is too small to represent, the
operation underflows and the result is a zero of the appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

11.5.3 Applying the % Operator

The % operator yields the remainder of its operands from an implied division; the left operand is the dividend
and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-
point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
‘remainder” operation defined by IEEE 754. The IEEE 754 “remainder” operation computes the remainder
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual
integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to
behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the
C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
o |If either operand is NaN, the result is NaN.

© Ecma International 2011 87

secma

e The sign of the result equals the sign of the dividend.
¢ |If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
e |If the dividend is finite and the divisor is an infinity, the result equals the dividend.

e |f the dividend is a zero and the divisor is nonzero and finite, the result is the same as the
dividend.

e In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r = n — (d x) where q is an integer that is negative only if n/d is negative and
positive only if n/d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d. r is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

11.6 Additive Operators

Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

11.6.1 The Addition operator (+)

NOTE The addition operator either performs string.concatenation or numeric addition.
Runtime Semantics: Evaluation

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

Let Iref be the result of evaluating AdditiveExpression.
Let Ival be GetValue(lref).
If lval is an abrupt completion, return lval.
Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).
If rval is an abrupt completion, return rval.
Let Iprim be ToPrimitive(lval).
If Iprim_is'an abrupt.completion, return Iprim.
Let rprim be ToPrimitive(rval).
0. If rprim is an abrupt completion, return rprim.
1. If Type(lprim) is String or Type(rprim) is String, then
a.. Return the String that is the result of concatenating ToString(lprim) followed by ToString(rprim)
12. Return the result of applying the addition operation to ToNumber(lprim) and ToNumber(rprim). See the
Note below 11.6.3.

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the
hint String were given. Host objects may handle the absence of a hint in some other manner.

hRowxo~NooOkwbE

NOTE 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.1), by using the
logical-or operation instead of the logical-and operation.

11.6.2 The Subtraction Operator (-)
Runtime Semantics: Evaluation
AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Let Iref be the result of evaluating AdditiveExpression.
2. Let Ival be GetValue(lref).

88 © Ecma International 2011

»ecma

N A~W

If lval is an abrupt completion, return lval.

Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).

If rval is an abrupt completion, return rval.

Let Inum be ToNumber(lval).

If Inum is an abrupt completion, return Inum.

9. Let rnum be ToNumber(rval).
10. If rnum is an abrupt completion, return rnum.
11. Return the result of applying the subtraction operation to Inum and rnum. See the note below 11.6.3.

11.6.3 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric‘type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is‘NaN.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equalto the infinite operand.

The sum of two negative zeroes is —0. The sum of two positive zeroes, or of two zeroes of
opposite sign, is +0.

The sum of a zero and a nonzero finite value.is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the_same sign or have different magnitudes, the sum is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
maghnitude is too large to represent, the operation overflows and the result is then an infinity
of appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by<«EEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the difference
of its operands;-the. left operand is the minuend and the right operand is the subtrahend. Given numeric
operands a.and b, it is always the case that a-b produces the same resultasa + (-b).

11.7 Bitwise Shift Operators

Syntax

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)

NOTE

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

Runtime Semantics: Evaluation

ShiftExpression : ShiftExpression << AdditiveExpression

1. Let Iref be the result of evaluating ShiftExpression.
2. Let Ival be GetValue(lref).

© Ecma International 2011 89

secma

If lval is an abrupt completion, return lval.

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

If rval is an abrupt completion, return rval.

Let Inum be Tolnt32(lval).

If Inum is an abrupt completion, return Inum.

. Let rnum be ToUint32(rval).

0. If rnum is an abrupt completion, return rnum.

1. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.

12. Return the result of left shifting Inum by shiftCount bits. The result is a signed 32-bit integer.

RO NOO AW

11.7.2 The Signed Right Shift Operator (>>)

NOTE Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

If lval is an abrupt completion, return lval.

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

If rval is an abrupt completion, return rval.

Let Inum be Tolnt32(lval).

If Inum is an abrupt completion, return Inum.

Let rnum be ToUint32(rval).

If rnum is an abrupt completion, return.rnum.

Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.

Return the result of performing a sign-extending right shift of Inum by shiftCount bits. The most significant
bit is propagated. The result is a signed 32-bit integer.

PP OO~NOOOTA, WNE

-
™~

11.7.3 The Unsigned Right Shift Operator (>>>)

NOTE _Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >>> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.
Let lval be GetValue(lref).
If lval is an abrupt completion, return lval.
Let rref be the result of evaluating AdditiveExpression.
Let rval be GetValue(rref).
If rval is an abrupt completion, return rval.
Let Inum be ToUint32(lval).
If Inum is an abrupt completion, return Inum.
Let rnum be ToUint32(rval).
. If rnum is an abrupt completion, return rnum.
. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.
. Return the result of performing a zero-filling right shift of Inum by shiftCount bits. Vacated bits are filled
with zero. The result is an unsigned 32-bit integer.

PP O0O~NOOOTA,WNE

-
N

90 © Ecma International 2011

»ecma

11.8 Relational Operators

NOTE The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

Syntax

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceo£ ShiftExpression
RelationalExpression in ShiftExpression

RelationalExpressionNoln :
ShiftExpression
RelationalExpressionNoln < ShiftExpression
RelationalExpressionNoln > ShiftExpression
RelationalExpressionNoln <= ShiftExpression
RelationalExpressionNoln >= ShiftExpression
RelationalExpressionNoln instanceof ShiftExpression

The semantics of the RelationalExpressionNoln productions are the same as the RelationalExpression
productions except that the contained RelationalExpressionNoln is used in place of the contained
RelationalExpression.

NOTE The “Noln” variants are needed to avoid confusing the in operator in a relational expression with the in
operator in a for statement.

11.8.1 Runtime Semantics
Runtime Semantics: The Abstract Relational Comparison Algorithm

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand-is.-NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter.-.The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is. necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the left of the y parameter’s corresponding expression. If LeftFirst is false, the reverse is the case
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. If x is anabrupt completion, return x.
2. Ifyisan abrupt completion, returny.
3. If the LeftFirst flag.is‘true, then
a. Let px bethe result of calling ToPrimitive(x, hint Number).
b. Ifpxis an abrupt completion, return px.
c. Let py be the result of calling ToPrimitive(y, hint Number).
d. If py is an abrupt completion, return py.
4. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Let py be the result of calling ToPrimitive(y, hint Number).
b. Ifpy is an abrupt completion, return py.
c. Let px be the result of calling ToPrimitive(x, hint Number).
d. Ifpxisan abrupt completion, return px.
5. Ifitis not the case that both Type(px) is String and Type(py) is String, then
a. Let nx be the result of calling ToNumber(px). Because px and py are primitive values evaluation
order is not important.
b. Let ny be the result of calling ToNumber(py).

© Ecma International 2011 91

secma

If nx is NaN, return undefined.

If ny is NaN, return undefined.

If nx and ny are the same Number value, return false.

If nx is +0 and ny is =0, return false.

If nx is —0 and ny is +0, return false.

If nx is +oo, return false.

If ny is +oo, return true.

If ny is —oo, return false.

If nx is —oo, return true.

If the mathematical value of nx is less than the mathematical value of ny —note that these
mathematical values are both finite and not both zero—return true. Otherwise, return false.
6. Else, both px and py are Strings

a. |Ifpy isa prefix of px, return false. (A String value p is a prefix of String value q if q can be the
result of concatenating p and some other String r. Note that any String is a prefix of itself, because r
may be the empty String.)

b. If px is a prefix of py, return true.

c. Letk be the smallest nonnegative integer such that the character at position k within px is different
from the character at position k within py. (There must be such a k, for neither String is a prefix of
the other.)

d. Letm be the integer that is the code unit value for the character at position k within px.

Let n be the integer that is the code unit value for the character at position k within py.
f. I1fm <n, return true. Otherwise, return false.

— xS oQ Hhfo a0

@

NOTE 1 Step 3 differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

Runtime Semantics: Evaluation
RelationalExpression : RelationalExpression < ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

If lvaliis an abrupt completion, return lval.

Let'rref be the result of evaluating ShiftExpression.

LLet rval be GetValue(rref).

Let r be the result of performing abstract relational comparison Ival < rval. (see 11.8.5)
If r is undefined, return false. Otherwise, return r.

NogakkwbE

RelationalExpression : RelationalExpression > ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let lval be GetValue(lIref).

If lval is an abrupt completion, return Ival.

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison rval < lval with LeftFirst equal to false..
If r is undefined, return false. Otherwise, return r.

NookrwbhpE

RelationalExpression : RelationalExpression <= ShiftExpression
1. Let Iref be the result of evaluating RelationalExpression.

2. Let Ival be GetValue(lref).
3. If lval is an abrupt completion, return lval.

92 © Ecma International 2011

No ok~

ecind

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison rval < lval with LeftFirst equal to false..
If r is true or undefined, return false. Otherwise, return true.

RelationalExpression : RelationalExpression >= ShiftExpression

NogkrwbhE

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

If lval is an abrupt completion, return lval.

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison Ival < rval.
If r is true or undefined, return false. Otherwise, return true.

RelationalExpression: RelationalExpression instanceof ShiftExpression

OCOoNooO~WNE

Let Iref be the result of evaluating RelationalExpression.

Let lval be GetValue(lref).

If lval is an abrupt completion, return Ival.

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

If rval is an abrupt completion, return rval.

If Type(rval) is not Object, throw a TypeError exception.

If rval does not have a [[HasInstance]] internal method, throw a TypeError exception.
Return the result of calling the [[HasInstance]] internal method of rval with argument Ival.

RelationalExpression : RelationalExpression in ShiftExpression

N~ E

Let Iref be the result of evaluating Relational Expression.

Let Ival be GetValue(lref):

If lval is an abrupt completion, return lval.

Let rref be the result.of evaluating ShiftExpression.

Let rval be GetValue(rref).

If rval is an abrupt completion, return rval.

If Type(rval) is not Object, throw a TypeError exception.

Return the result.of calling the [[HasProperty]] internal method of rval with argument ToString(Ival).

11.9 Equality Operators

NOTE The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

Syntax

EqualityExpression :

RelationalExpression

EqualityExpression == RelationalExpression
EqualityExpression !'= RelationalExpression
EqualityExpression === RelationalExpression

EqualityExpression !== RelationalExpression
EqualityExpression [no LineTerminator here] is RelationalExpression
EqualityExpression [no LineTerminator here] isnt RelationalExpression

© Ecma International 2011 93

eCina

EqualityExpressionNoln :
RelationalExpressionNoln

EqualityExpressionNoln == RelationalExpressionNoln
EqualityExpressionNoln !'= RelationalExpressionNoln
EqualityExpressionNoln === RelationalExpressionNoln
EqualityExpressionNoln !'== RelationalExpressionNoln

EqualityExpression [no LineTerminator here] is RelationalExpression
EqualityExpression [no LineTerminator here] isnt RelationalExpression

The semantics of the EqualityExpressionNoln productions are the same as the EqualityExpression productions
except that the contained EqualityExpressionNoln and RelationalExpressionNoln<are used in place of the
contained EqualityExpression and RelationalExpression, respectively.

11.9.1 Runtime Semantics
Runtime Semantics: The Abstract Equality Comparison Algorithm

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If xis an abrupt completion, return x.
2. Ifyisan abrupt completion, returny.
3. If Type(x) is the same as Type(y), then
a. If Type(x) is Undefined, return true.
b. If Type(x) is Null, return true.
c. If Type(x) is Number, then
i If x is NaN, return false.
ii. Ify is NaN, return false.
iii. If x is the same Number valueas y, return true.

iv. If x is +0 and y is -0, return true.
V. If x is—0andy is +0, return true.
Vi. Return false.

d. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same
length and same characters<in corresponding positions). Otherwise, return false.
e. If Type(x) is Boolean, return true if x and y-are both true or both false. Otherwise, return false.
f. Return true if x and y-are the same Object value. Otherwise, return false.
If x is null-and yis.undefined, return true.
If x is_ undefined and y.is null, return true.
If Type(x) is Numberand Type(y) is String,
return the result of the comparison x == ToNumber(y).
7. If Type(x) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) ==y.
8. If Type(x) is Boolean, return the result of the comparison ToNumber(x) ==
9. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
10. If Type(x) is either String or Number and Type(y) is Object,
return the result of the comparison x == ToPrimitive(y).
11. If Type(x) is Object and Type(y) is either String or Number,
return the result of the comparison ToPrimitive(x) ==
12. Return false.

ook~

NOTE 1 Given the above definition of equality:

e String comparison can be forced by: "" + a == "" + b.
e Numeric comparison can be forced by: +a == +b.
e Boolean comparison can be forced by: 'a == !b.

NOTE 2 The equality operators maintain the following invariants:
e A !=Bis equivalentto ! (A ==B).
e A ==Bis equivalent to B == A, except in the order of evaluation of A and B.

94 © Ecma International 2011

»ecma

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each
representing the same String value; each String object would be considered equal to the String value by the == operator,
but the two String objects would not be equal to each other. For Example:

e new String("a") =="a" and "a" == new String("a")are both true.
e new String("a") ==new String("a") is false.

NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to
use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalised form.

Runtime Semantics: The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

If x is an abrupt completion, return x.
Ify is an abrupt completion, return y.
If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
If x is NaN, return false.
Ify is NaN, return false.
If x is the same Number value as y,return true.
If x is +0 and y is -0, return true.
If x is —0 and y is +0, return true.
f. Return false.
7. 1f Type(x) is String, then return true if X and y are exactly the same sequence of characters (same length and
same characters in corresponding-positions); otherwise, return false.
8. If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.
9. Return true if x and y are the same Object value. Otherwise, return false.

ourwhPE

®PoooTw

NOTE This algorithm differs from the SameValue Algorithm (9.12) in its treatment of signed zeroes and NaNs.
Runtime Semantics: Evaluation
EqualityExpression : EqualityExpression == RelationalExpression

Let Iref be the result of evaluating EqualityExpression.

Let Ival be GetValue(lref).

If lval.is an abrupt completion, return lval.

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

Return the result of performing abstract equality comparison algorithm rval == Ival.

ourwhE

EqualityExpression : EqualityExpression != RelationalExpression

Let Iref be the result of evaluating EqualityExpression.

Let Ival be GetValue(lref).

If lval is an abrupt completion, return lval.

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

If rval is an abrupt completion, return rval.

Let r be the result of performing abstract equality comparison algorithm rval == lval.
If r is true, return false. Otherwise, return true.

N~ E

EqualityExpression : EqualityExpression === RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

© Ecma International 2011 95

secma

Let Ival be GetValue(lref).

If lval is an abrupt completion, return lval.

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

Return the result of performing the strict equality comparison algorithm rval ===

ok wn

EqualityExpression : EqualityExpression !== RelationalExpression

Let Iref be the result of evaluating EqualityExpression.
Let Ival be GetValue(lref).

If lval is an abrupt completion, return lIval.

Let rref be the result of evaluating RelationalExpression.
Let rval be GetValue(rref).

NogakrwbpE

If r is true, return false. Otherwise, return true.
EqualityExpression : EqualityExpression [no LineTerminator here] is RelationalExpression

Let Iref be the result of evaluating EqualityExpression.
Let Ival be GetValue(lref).

If lval is an abrupt completion, return lval.

Let rref be the result of evaluating RelationalExpression.
Let rval be GetValue(rref).

If rval is an abrupt completion, return rval.

Return the result of performing SameValue(rval, Ival).

NogkwbhE

EqualityExpression : EqualityExpression [no LineTerminator here] isnt RelationalExpression

Let Iref be the result of evaluating EqualityExpression.
Let lval be GetValue(lref).

If lval is an abrupt completion, return lIval.

Let rref be the result of evaluating RelationalExpression.
Let rval be GetValue(rref).

Let r be the result of performing SameValue(rval, lval).
If r is true, return false. Otherwise, return true:

NookwbpE

11.10 Binary Bitwise Operators

Syntax

BitwiseANDEXxpression :
EqualityExpression
BitwiseANDEXxpression & EqualityExpression

BitwiseANDEXxpressionNoln :
EqualityExpressionNoln
BitwiseANDEXxpressionNoln & EqualityExpressionNoln

BitwiseXORExpression :
BitwiseANDEXxpression
BitwiseXORExpression ~ BitwiseANDExpression

BitwiseXORExpressionNoln :
BitwiseANDExpressionNoln
BitwiseXORExpressionNoln ~ BitwiseANDExpressionNoln

BitwiseORExpression :

BitwiseXORExpression
BitwiseOREXxpression | BitwiseXORExpression

96

Ival.

Let r be the result of performing strict equality comparison algorithm rval === lval.

© Ecma International 2011

»ecma

BitwiseORExpressionNoln :
BitwiseXORExpressionNoln
BitwiseORExpressionNoln | BitwiseXORExpressionNoln

Runtime Semantics: Evaluation

The production A : A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

Let Iref be the result of evaluating A.

Let lval be GetValue(lref).

If lval is an abrupt completion, return Ival.
Let rref be the result of evaluating B.

Let rval be GetValue(rref).

If rval is an abrupt completion, return rval.
Let Inum be Tolnt32(lval).

If Inum is an abrupt completion, return Inum.
9. Let rnum be Tolnt32(rval).

10. If rnum is an abrupt completion, return rnum.
11. Return the result of applying the bitwise operator @ to Inum and rnum. The result is a signed 32 bit integer.

NN E

11.11 Binary Logical Operators

Syntax

LogicalANDEXxpression :
BitwiseOREXxpression
LogicalANDEXxpression && BitwiseORExpression

Logical ANDExpressionNoln :
BitwiseORExpressionNoln
LogicalANDExpressionNoln && BitwiseORExpressionNoln

LogicalORExpression :
Logical ANDExpression
LogicalORExpression | | LogicalANDExpression

Logical ORExpressionNoin :
Logical ANDExpressionNoln
LogicalORExpressionNoin | | LogicalANDExpressionNoln

The semantics of the LogicalANDExpressionNoln and LogicalORExpressionNoln productions are the same
manner as the LogicalANDEXxpression and LogicalORExpression productions except that the contained
LogicalANDEXxpressionNoln, BitwiseORExpressionNoln and LogicalORExpressionNoln are used in place of the
contained Logical ANDExpression, BitwiseORExpression and LogicalORExpression, respectively.

NOTE The value produced by a && or | | operator is not necessarily of type Boolean. The value produced will always
be the value of one of the two operand expressions.

Runtime Semantics: Evaluation
Logical ANDExpression : LogicalANDExpression && BitwiseORExpression

Let Iref be the result of evaluating Logical ANDExpression.
Let Ival be ToBoolean(GetValue(lref)).

If lval is an abrupt completion, return Ival.

If lval is false, return lIval.

Let rref be the result of evaluating BitwiseORExpression.
Return GetValue(rref).

R o

© Ecma International 2011 97

secma

LogicalORExpression : LogicalORExpression | | LogicalANDExpression

Let Iref be the result of evaluating Logical ORExpression.
Let Ival be ToBoolean(GetValue(lref)).

If lval is an abrupt completion, return lval.

If lval is true, return lval.

Let rref be the result of evaluating Logical ANDEXxpression.
Return GetValue(rref).

ouhkhwhE

11.12 Conditional Operator (? :)

Syntax

ConditionalExpression :
Logical ORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

ConditionalExpressionNoln :
Logical ORExpressionNoln
LogicalORExpressionNoln ? AssignmentExpression : AssignmentExpressionNoln

The semantics of the ConditionalExpressionNoln production'is the same as the ConditionalExpression production
except that the contained LogicalORExpressionNoln, AssignmentExpression and AssignmentExpressionNoln are
used in place of the contained Logical ORExpression, first AssignmentExpression and second AssignmentExpression,
respectively.

NOTE The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java, which
each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression.
The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a
conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

Runtime Semantics: Evaluation
ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression

Let Iref be the result of evaluating LogicalORExpression.
Let Ival be ToBoolean(GetValue(lref)).
If lval is an‘abrupt.completion, return lIval.
If lvalis true, then
a. Let trueRef be the result of evaluating the first AssignmentExpression.
b. Return GetValue(trueRef).
5. Else
a. Let falseRef be the result of evaluating the second AssignmentExpression.
b." Return GetValue(falseRef).

i A

11.13 Assignment Operators

Syntax

AssignmentExpression :
ConditionalExpression
YieldExpression
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln :
ConditionalExpressionNoln
LeftHandSideExpression = AssignmentExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

98 © Ecma International 2011

»ecma

AssignmentOperator : one of
*= /= %= += -—= <<= >>= SO>= &= A= |=

The semantics of the AssignmentExpressionNoln productions are the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoln and AssignmentExpressionNoln are used in
place of the contained ConditionalExpression and AssignmentExpression, respectively.

Static Semantics
Static Semantics: Early Errors

AssignmentExpression :
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

e lItis a Syntax Error if the AssignmentExpression is contained in strict code and LeftHandSideExpression is
the Identifier eval or the ldentifier arguments.

e |t is a Syntax Error if the LeftHandSideExpression is an_ddentifier that statically resolves to a declarative
environment record binding and the resolved binding is an immutable binding.

e |t is a Syntax Error if the LeftHandSideExpression isPrimaryExpression : (Expression) and Expression
derived a production that would produce a Syntax Error according to these rules. This rule is
recursively applied.

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

e It is a Syntax Error if the LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral and the source
code corresponding to LeftHandSideExpression cannot be parsed using AssignmentPattern as the goal
symbol.

Runtime Semantics
Runtime Semantics: Evaluation
AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression.is-neither an ObjectLiteral nor an ArrayLiteral then
Let Iref be the result of evaluating LeftHandSideExpression.
If Iref is an abrupt completion, return Iref.
Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).
If the result of PutValue(Iref, rval) is an abrupt completion, return that result.
f. . Return rval.
2. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression using
AssignmentPattern as the goal symbol.
Let rref be the result of evaluating AssignmentExpression.
Let rval be ToObject(GetValue(rref)).
If rval is an abrupt completion, return rval.
Let status be the result of performing Destructuring Assignment Evaluation of AssignmentPattern using rval
as the argument.
If status is an abrupt completion, return rval.
8. Return rval.

Poo o

oukw

~

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

Let Iref be the result of evaluating LeftHandSideExpression.
Let Ival be GetValue(lref).

If lval is an abrupt completion, return lval.

Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).

agrwnE

© Ecma International 2011 99

secma

6. Ifrval is an abrupt completion, return rval.

7. Let operator be the @ where AssignmentOperator is @=

8. Let r be the result of applying operator @ to lval and rval.

9. If the result of PutValue(Iref, r) is an abrupt completion, return that result.
10. Returnr.

NOTE When an assignment occurs within strict mode code, it is an runtime error if Iref in step 1.e of the first
algorithm or step 9 of the second algorithm it is an unresolvable reference. If it is, a ReferenceError exception is thrown.
The LeftHandSide also may not be a reference to a data property with the attribute value {[[Writable]]:false}, to an accessor
property with the attribute value {[[Set]]:undefined}, nor to a non-existent property of an object whose [[Extensible]] internal
property has the value false. In these cases a TypeError exception is thrown.

11.13.1 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing the production AssignmentExpression : LeftHandSideExpression =
AssignmentExpression the following grammar is used to refine the interpretation of LeftHandSideExpression.

AssignmentPattern :
ObjectAssignmentPattern
ArrayAssignmentPattern

ObjectAssignmentPattern :
{1}
{ AssignmentPropertyList }
{ AssignmentPropertyList , }

ArrayAssignmentPattern :
[Elisiones: AssignmentRestElementqp: 1

[AssignmentElementList]
[AssignmentElementList , Elisiongp: AssignmentRestElementoy:]

AssignmentPropertyList :

AssignmentProperty

AssignmentPropertyList , AssignmentProperty
AssignmentElementList::

Elisionep: AssignmentElement

AssignmentElementList , Elisiongp: AssignmentElement
AssignmentProperty :

Identifier

PropertyName : LeftHandSideExpression

AssignmentElement :
LeftHandSideExpression

AssignmentRestElement :
... LeftHandSideExpression

Static Semantics

Static Semantics: Early Errors

AssignmentProperty : PropertyName : LeftHandSideExpression
AssignmentElement : LeftHandSideExpression

e |tis a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments.

100 © Ecma International 2011

eCina

It is a Syntax Error if LeftHandSideExpression is the Identifier this or the Identifier super.

It is a Syntax Error if the LeftHandSideExpression is a Literal, a FunctionExpression or a ClassExpression.

It is a Syntax Error if the LeftHandSideExpression is an Identifier that does not statically resolve to a
declarative environment record binding or if the resolved binding is an immutable binding.

It is a Syntax Error if the LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral and the source
code corresponding to LeftHandSideExpression cannot be parsed using AssignmentPattern as the goal
symbol.

It is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression
derived a production that would produce a Syntax Error according to these rules. This rule is
recursively applied.

AssignmentRestElement : ... LeftHandSideExpression

It is a Syntax Error if LeftHandSideExpression is the Identifier eval.or the Identifier arguments.

It is a Syntax Error if LeftHandSideExpression is the Identifier this or the Identifier super.

It is a Syntax Error if the LeftHandSideExpression is a Literal, an ObjectLiteral, an ArrayLiteral, a
FunctionExpression, or a ClassExpression.

It is a Syntax Error if the LeftHandSideExpression is an Identifier that does not statically resolve to a
declarative environment record binding or if the resolved binding an immutable binding.

It is a Syntax Error if the LeftHandSideExpression<is PrimaryExpression : (Expression) ‘and Expression
derived a production that would produce a Syntax Error according to these rules. This rule is
recursively applied.

Runtime Semantics

Runtime Semantics: Destructuring Assignment Evaluation

with parameter obj

AssignmentPattern : ObjectAssignmentPattern

1.

Return the result of performing Destructuring Assignment Evaluation of ObjectAssignmentPattern with obj
as the argument.

AssignmentPattern : ArrayAssignmentPattern

1.

Return the result of performing Destructuring Assignment Evaluation of ArrayAssignmentPattern with obj as
the argument.

ObjectAssignmentPattern : { }

and

ArrayAssignmentPattern :

1.

[]
[Elision]

Return.

ObjectAssignmentPattern :

1.

{ AssignmentPropertyList }
{ AssignmentPropertyList , }

Return the result of performing Destructuring Assignment Evaluation of AssignmentPropertyList with obj
as the argument.

AssignmentPropertyList : AssignmentProperty

1.

Return the result of performing Destructuring Assignment Evaluation of AssignmentProperty with obj as the
argument.

© Ecma International 2011 101

secma

AssignmentPropertyList : AssignmentPropertyList , AssignmentProperty

1. Let status be the result of performing Destructuring Assignment Evaluation of AssignmentPropertyList with
obj as the argument.

2. If status is an abrupt completion, return status.

3. Return the result of performing Destructuring Assignment Evaluation of AssignmentProperty with obj as the
argument.

AssignmentProperty : ldentifier

1. Letv be the result of calling the [[Get]] internal method of obj with the Identifier string as the argument.

2. Let Iref be the result of performing Identifier Resolution(10.3.1) with the IdentifierName corresponding to
Identifier.

3. Return PutValue(lref,v).

AssignmentProperty : PropertyName : LeftHandSideExpression

Let name be the result of evaluating PropertyName.
Let v be the result of calling the [[Get]] internal method of-0bj with name as the argument.
If v is an abrupt completion, return v.
If LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral then

a. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression

using AssignmentPattern as the goal symbol

b. Let vObj be ToObject(v).

c. IfvObj is an abrupt completion, return-vObj.

d. Return the result of evaluating AssignmentPattern using vObj as the obj parameter..
5. Let Iref be the result of evaluating LeftHandSideExpression.
6. Call PutValue(lref,v).

PonbE

ArrayAssignmentPattern : [Elisionep: AssignmentRestElement]

1. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.
2. Return the result of performing Indexed Destructuring Assignment Evaluation of AssignmentRestElement
with and skip as the arguments.

ArrayAssignmentPattern : [AssighmentElementList]

1. Return.the result of performing Indexed Destructuring Assignment Evaluation of AssignmentElementList
using obj and 0 as the arguments.

ArrayAssignmentPattern : [AssignmentElementList , Elisionop: AssignmentRestElementop:]

1. Let lastindex be the result of performing Indexed Destructuring Assignment Evaluation of
AssignmentElementList using obj and 0 as the arguments.

2. If lastindex'is an.abrupt'completion, return lastindex.

If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

4. If AssignmentRestElement is present, then return the result of performing Indexed Destructuring Assignment
Evaluation of AssignmentRestElement with obj and lastindex+skip as the arguments.

5. Return lastindex.

w

Runtime Semantics: Indexed Destructuring Assignment Evaluation
with parameters obj and index
AssignmentElementList : Elisiongp: AssignmentElement
1. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

2. Let status be the result of performing Indexed Destructuring Assignment Evaluation of AssignmentElement
with obj and index+skip as the arguments.

102 © Ecma International 2011

»ecma

3. If status is an abrupt completion, return status.
4. Return index+skip+1.

AssignmentElementList : AssignmentElementList , Elisionop: AssignmentElement

1. Let listNext be the result of performing Indexed Destructuring Assignment Evaluation of
AssignmentElementList using obj as the obj parameter and index as the index parameter

2. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

3. If listNext is an abrupt completion, return listNext.

4. Let status be the result of performing Indexed Destructuring Assignment Evaluation of AssignmentElement
with obj and listNext+skip as the arguments.

5. If status is an abrupt completion, return status.

6. Return listNext+skip+1.

AssignmentElement : LeftHandSideExpression

1. Let name be ToString(index).
2. Letv be the result of calling the [[Get]] internal method of obj with name as the argument.
3. Ifvisan abrupt completion, return v.
4. If LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral then
a. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression
using AssignmentPattern as the goal symbol
b. LetvObj be ToObject(v).
c. IfvObj is an abrupt completion, return vObj.
d. Return the result of evaluating Destructuring Assignment Evaluation of AssignmentPattern with
vObj as the argument..
5. Let Iref be the result of evaluating LeftHandSideExpression.
6. Return PutValue(lref,v).

AssignmentRestElement : ... LeftHandSideExpression

1. Let Iref be the result of evaluating LeftHandSideExpression.

2. |If Iref is an abrupt completion, return Iref.

3. Let lenVal be the result of calling the [[Get]] internal method of obj with argument “1length” .

4. Letlen be ToUint32(lenVal).

5. If lenis an abrupt completion, return len.

6. Let A be a newarray object created as if by the expression new Array () where Array is the standard
built-in-constructor with that name.

7. Let n=0;

8. Repeat, while index < len

a. Let P be ToString(index).
b. Let exists be the result of calling the [[HasProperty]] internal method of obj with argument P.
c.. Ifexists is true, then
i. Letv be the result of calling the [[Get]] internal method of obj passing ToString(index) as the
argument.

ii. Ifvisan abrupt completion, return v.

iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and
false.

d. Letn=n+l.
e. Letindex = index+1.
9. Return PutValue(lref,A).

11.14 Comma Operator (,)

Syntax

Expression :
AssignmentExpression
Expression , AssignmentExpression

© Ecma International 2011 103

secma

ExpressionNoln :
AssignmentExpressionNoln
ExpressionNoln , AssignmentExpressionNoln

The semantics of the ExpressionNoln production is the same manner as the Expression production except that
the contained ExpressionNoln and AssignmentExpressionNoln are used in place of the contained Expression and
AssignmentExpression, respectively.

Runtime Semantics: Evaluation

Expression : Expression , AssignmentExpression

1. Let Iref be the result of evaluating Expression.

2. If the result of GetValue(lref) is an abrupt completion, return that result

3. Let rref be the result of evaluating AssignmentExpression.

4. Return GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

12 Statements and Declarations

Syntax

Statement :
BlockStatement
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
BreakableStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
ThrowStatement
TryStatement
DebuggerStatement

Declaration :
FunctionDeclaration
LexicalDeclaration
BreakableStatement :
IterationStatement
SwitchStatement
Static Semantics
Static Semantics: BoundNames
The BoundNames of the Declaration productions are determined as follows:

1. Return the BoundNames of the single non-terminal symbol that is the right hand side of the production.

Static Semantics: VarDeclaredNames

104 © Ecma International 2011

secma

Statement :

EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return a new empty List.

Statement :
BlockStatement
VariableStatement
IterationStatement
WithStatement
LabelledStatement
SwitchStatement
TryStatement

1. Return the VarDeclaredNames of the single non-terminal symbol that isthe right hand side of the
production.

Statement : VariableStatement
1. Return the BoundNames of VariableStatement.
Runtime Semantics
Runtime Semantics: Labelled Evaluation
With argument labelSet.
BreakableStatement : IterationStatement
1. Let stmtResult be the result performing Labelled Evaluation of IterationStatement wth argument labelSet.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then
a. et stmtResult be NormalCompletion(stmtResult.[[value]])
3. Return stmtResult.
BreakableStatement : SwitchStatement
1. Let stmtResult be the result of evaluating SwitchStatement.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then

a. Let stmtResult be’'NormalCompletion(stmtResult.[[value]])
3. Return stmtResult.

NOTE A BreakableStatement is one that can be existed via an unlabelled BreakStatement.

Runtime Semantics: Evaluation

The Statement productions are all evaluated as follows

1. Return the result of evaluating the single non-terminal symbol that is the right hand side of the production.
The Declaration productions are all evaluated as follows

1. Return the result of evaluating the single non-terminal symbol that is the right hand side of the production.

NOTE The result of evaluating a Statement or Declaration is always a Completion value.

© Ecma International 2011 105

secma

BreakableStatement :
IterationStatement
SwitchStatement

1. Let newLabelSet be a new empty List.

2. Return the result of performing Labelled Evaluation of this BreakableStatement wth argument newLabelSet.

12.1 Block

Syntax

BlockStatement :
Block

Block :
{ StatementListopt }

StatementList :
StatementListltem
StatementList StatementListltem
StatementListltem :
Statement
Declaration
Static Semantics

Static Semantics: Early Errors

Block : { StatementList }

e ltis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entiries.
e It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the

VarDeclaredNames of StatementList.

Static Semantics: LexicalDeclarations

StatementList :-StatementListltem

1. Return the LexicalDeclarations of StatementListltem.

StatementList : StatementList StatementListltem

1. Let declarations be LexicalDeclarations of StatementList.

2. Append to names the elements of the LexicalDeclarations of StatementListltem.

3. Return declarations.

StatementListltem : Statement

1. Return a new empty List.

StatementListitem : Declaration

1. Return return a new List containing Declaration.
Static Semantics: LexicallyDeclaredNames
Block : { }

1. Return a new empty List.

106

© Ecma International 2011

secma

Block : { StatementList }

1. Return the LexicallyDeclaredNames of StatementList.
StatementList : StatementListitem

1. Return the LexicallyDeclaredNames of StatementListltem.
StatementList : StatementList StatementListltem

1. Let names be LexicallyDeclaredNames of StatementList.
2. Append to names the elements of the LexicallyDeclaredNames of StatementListltem.
3. Return names.

StatementListltem : Statement

1. Return a new empty List.

StatementListltem : Declaration

1. Return the BoundNames of Declaration.

Static Semantics: VarDeclaredNames

BlockStatement : Block

1. Return the VarDeclaredNames of Block.

Block: { }

1. Return a new empty List.

Block : { StatementList }

1. Return the VarDeclaredNames of StatementList:
StatementList : StatementListltem

1. Return the VarDeclaredNames of StatementListltem.
StatementList : StatementList StatementListltem

1. Let names be VarDeclaredNames of StatementList.

2. Append to names the elements of the VarDeclaredNames of StatementListltem.
3. Return names.

StatementListltem : Statement

1. Return the VarDeclaredNames of Statement.
StatementL.istltem : Declaration

1. Return a new empty List.

Runtime Semantics

Runtime Semantics: Evaluation

BlockStatement : Block

© Ecma International 2011 107

secma

1. Return the result of evaluating Block.

Block : { }

1. Return NormalCompletion (empty).

Block : { StatementList }

Let oldEnv be the running execution context’s LexicalEnvironment.

Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Perform Block Declaration Instantiation using StatementList and blockEnv.

Set the running execution context’s LexicalEnvironment to blockEnv.

Let blockValue be the result of evaluating StatementL.ist.

Set the running execution context’s LexicalEnvironment to oldEnv.

Return blockValue.

NogkkwbE

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
StatementList : StatementListltem

1. Lets be the result of evaluating StatementListltem.
2. Returns.

StatementList : StatementList StatementListltem

Let sl be the result of evaluating StatementList.

If sl is an abrupt completion, return sl.

Let s be the result of evaluating Statement.

If s.[[type]] is throw, return s.

If s.[[value]] is empty, let V =sl:[[value]], otherwisedet V = s.[[value]].
Return Completion {[[typel]: s.[[typell, [[value]]: V, [[target]]: s.[[target]]}.

eokwnE

NOTE Steps 4 and 5 of the above algoritm ensure that the value of a StatementList is the value of the last value
producing Statement in the StatementList. For example, the following calls to the ewval function all return the value 1:

eval ("1;;;;;")
eval ("1;{}")
eval ("l;var a;")
StatementListltem : Statement
1. Return the result of evaluating Statement.
StatementListltem : Declaration
1. Return the result of evaluating Declaration.
12.2 Declarations and the Variable Statement
12.2.1 Let and Const Declarations
NOTE A 1let and const declarations define variables that are scoped to the current execution context’'s
LexicalEnvironment. The variables are created when their containing Lexical Environment is instantiated but may not be
accssed in any way until the variable’s LexicalBinding is evaluated. A variable defined by a LexicalBinding with an Initialiser

is assigned the value of its Initialiser’s AssignmentExpression when the LetBinding is evaluated, not when the variable is
created. If a LexicalBinding in a let declaration does not have an an Initialiser the variable is assigned the value

undefined when the LetBinding is executed.

108 © Ecma International 2011

»ecma

Syntax
LexicalDeclaration :
LetOrConst BindingList ;

LexicalDeclarationNoln :
LetOrConst BindingListNoln

LetOrConst :

let
const

BindingList :

LexicalBinding

BindingList , LexicalBinding
BindingListNoln :

LexicalBindingNoln

BindingListNoln , LexicalBindingNoln
LexicalBinding :

Bindingldentifier Initialiserqp:

BindingPattern Initialiser
LexicalBindingNoln :

Bindingldentifier InitialiserNolnept

BindingPattern InitialiserNoln

Bindingldentifier :
Identifier

Initialiser :
= AssignmentExpression

InitialiserNoln :
= AssignmentExpressionNoln

The semantics of. the LexicalDeclarationNoln, BindingListNoln, LexicalBindingNoln and InitialiserNoln
productions are the same as the LexicalDeclaration, BindingList, LexicalBinding and Initialiser productions
except that the contained BindingListNoln, LexicalBindingNoln, InitialiserNoln and AssignmentExpressionNoln are
used in place of the contained BindingList, LexicalBinding, Initialiser and AssignmentExpression, respectively.
Static Semantics

Static Semantics: Early Errors

LexicalBinding : Bindingldentifier

e |t is a Syntax Error if the Bindingldentifier if IsConstantDeclaration of the LexicalDeclaration containing
this production is true.

Bindingldentifier : ldentifier

e |t is a Syntax Error if the Bindingldentifier is contained in strict code and if the Identifier is eval or
arguments.

Static Semantics: Bound Names

LexicalDeclaration : LetOrConst BindingList ;

© Ecma International 2011 109

secma

1. Return the Bound Names of BindingList.
BindingList : LexialBinding
1. Return the Bound Names of LexicalBinding.
BindingList : BindingList , LexicalBinding
1. Let names be the Bound ames of BindingList.
2. Append to names the elements of the Bound Names of LexialBinding.
3. Return names.
LexicalBinding : Bindingldentifier Initialiserop
1. Return the Bound Names of Bindingldentifier.
LexicalBinding: BindingPattern Initialiser
1. Return the Bound Names of BindingPattern.
Bindingldentifier : Identifier
1. Return a new List containing the String Value of Identifier.
Static Semantics: IsConstantDeclaration
LexicalDeclaration : LetOrConst BindingList ;
1. Return IsConstantDeclaration of LetOrConst.
LetOrConst BindingList : let
1. Return false.
LetOrConst BindingList : const
1. Return false:
Static Semantics: String Value
Bindingldentifier : ldentifier
1. Return the String Value of Identifier.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialized prior to evaluation of its initializer.
Bindingldentifier : Identifier
1. Return the result of performing Binding Initialisation for Identifier passing value and env as the arguments.

Token ldentifier

110 © Ecma International 2011

»ecma

1. If environment is not undefined, then
a. Return the result of calling the InitializeBinding concrete method of environment passing Identifier
and value as the arguments.
2. Else
a. Let lhs be the result of evaluating Identifier as described in 11.1.2.
b. Return PutValue(lhs, value).

Runtime Semantics: Evaluation

LexicalDeclaration : LetOrConst BindingList ;

1. Let next be the result of evaluating BindingList.

2. If nextis an abrupt completion, return next.

3. Return NormalCompletion(empty).

BindingList : LexicalBinding

1. Return the result of evaluating LexicalBinding.

BindingList : BindingList , LexicalBinding

1. Let next be the result of evaluating BindingList.

2. If nextis an abrupt completion, return next.

3. Return the result of evaluating LexialBinding.

LexicalBinding : Bindingldentifier

1. Letenv be the running execution context’s LexicalEnvironment.

2. Return the result of performing Binding Initialisation for Bindingldentifier passing undefined and env as the
arguments.

NOTE A static sementic rule ensures that this form of LexicalBinding never occurs in a const declaration.

LexicalBinding : Bindingldentifier Initialiser

Let rhs be the result of evaluating Initialiser.

Let value be GetValue(rhs).

If value-is an abrupt completion, return rval.

Let env be the running execution context’s LexicalEnvironment.

Return the result of performing Binding Initialisation for Bindingldentifier passing value and env as the
arguments.

ok wn

LexicalBinding: BindingPattern Initialiser

Let rhs be the result of evaluating Initialiser.

Let rval be GetValue(rhs).

If rval is an abrupt completion, return rval.

Let env be the running execution context’s LexicalEnvironment.

Return the result of performing Binding Initialisation for BindingPattern using rval as the obj parameter and
env as the environment parameter.

abwbhE

Initialiser : = AssignmentExpression

1. Return the result of evaluating AssignmentExpression.
12.2.2 Variable Statement

NOTE A var statement declares variables that are scoped to the current execution context’'s VariableEnvironment. Var
variables are created when their containing Lexical Environment is instantiated and are initialised to undefined when

© Ecma International 2011 111

secma

created. Within the scope of any VariableEnvironemnt a common Identifier may appear in more than one
VariableDeclaration but those declarations collective define only one variable. A variable defined by a VariableDeclaration
with an Initialiser is assigned the value of its Initialiser’s AssignmentExpression when the VariableDeclaration is executed, not
when the variable is created.

Syntax

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration
VariableDeclarationListNoln :
VariableDeclarationNoln
VariableDeclarationListNoln , VariableDeclarationNoln
VariableDeclaration :
Bindingldentifier Initialiserqpt
BindingPattern Initialiser
VariableDeclarationNoln :
Bindingldentifier InitialiserNolnep:
BindingPattern InitialiserNoln
The semantics of the VariableDeclarationListNoln, VariableDeclarationNoln and InitialiserNoln productions are
the same as the VariableDeclarationList, VariableDeclaration..and Initialiser productions except that the
contained VariableDeclarationListNoln, VariableDeclarationNoln, InitialiserNoln and AssignmentExpressionNoln
are used in of the contained VariableDeclarationList, VariableDeclaration, Initialiser and AssignmentExpression,
respectively.
Static Semantics
Static Semantics: BoundNames
VariableStatement : var VariableDeclarationList ;
1. Return'BoundNames of VariableDeclarationList.
VariableDeclarationList :VariableDeclaration
1. Return BoundNames of VariableDeclaration.
VariableDeclarationList : VariableDeclarationList , VariableDeclaration
1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of BoundNames of VariableDeclaration.
3. Return names.
VariableDeclaration : Bindingldentifier Initialiserqp
1. Return the BoundNames of Bindingldentifier.

VariableDeclaration : BindingPattern Initialiser

1. Return the BoundNames of BindingPattern.

112 © Ecma International 2011

»ecma

Runtime Semantics
Runtime Semantics: Binding Initialisation

With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialized prior to evaluation of its initializer.

VariableDeclaration : Bindingldentifier

1. Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

VariableDeclaration : Bindingldentifier Initialiser

1. Return the result of performing Binding Initialisation for Bindingldentifier passing value.and undefined as
the arguments.

VariableDeclaration : BindingPattern Initialiser

1. Return the result of performing Binding Initialisation for BindingPattern passing value and undefined as the
arguments.

Runtime Semantics: Evaluation

VariableStatement : var VariableDeclarationList ;

1. Let next be the result of evaluating VariableDeclarationList.
2. If nextis an abrupt completion, return next.

3. Return NormalCompletion(empty).

VariableDeclarationList': VariableDeclaration

1. Return the result of evaluating VariableDeclaration.
VariableDeclarationList : VariableDeclarationList , VariableDeclaration
1. Let next be the result of evaluating VariableDeclarationList.
2. If next is an abrupt completion, return next.

3. Return the result of evaluating VariableDeclaration.
VariableDeclaration : Bindingldentifier

1. Return NormalCompletion(empty).

VariableDeclaration : Bindingldentifier Initialiser

Let rhs be the result of evaluating Initialiser.

Let value be GetValue(rhs).

If value is an abrupt completion, return value.

Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

el o\

NOTE If a VariableDeclaration is nested within a with statement and the Identifier in the VariableDeclaration is the
same as a property name of the binding object of the with statement’s object environment record, then step 3 will assign
value to the property instead of to the VariableEnvironment binding of the Identifier.

VariableDeclaration : BindingPattern Initialiser

© Ecma International 2011 113

secma

Let rhs be the result of evaluating Initialiser.

Let rval be GetValue(rhs).

If rval is an abrupt completion, return rval.

Return the result of performing Binding Initialisation for BindingPattern passing rval and undefined as
arguments.

arwn

12.2.4 Destructuring Binding Patterns

Syntax

BindingPattern :
ObjectBindingPattern
ArrayBindingPattern

ObjectBindingPattern :
{1}
{ BindingPropertyList }
{ BindingPropertyList , }

ArrayBindingPattern :
[Elisionop: BindingRestElementop:]
[BindingElementList]
[BindingElementList , Elisiongy BindingRestElementopt]

BindingPropertyList :

BindingProperty

BindingPropertyList , BindingProperty
BindingElementList :

Elisiongp: BindingElement

BindingElementList , Elisiongp: BindingElement
BindingProperty :

SingleNameBinding

PropertyName : BindingElement
BindingElement :

SingleNameBinding

BindingPattern Initialiseropt

SingleNameBinding :
Bindingldentifier Initialiserop

BindingRestElement :
... Bindingldentifier

Static Semantics
Static Semantics: Early Errors
BindingPattern : ObjectBindingPattern

e ltis a Syntax Error if the Bound Names of ObjectBindingPattern contains the string “eval” or the string
“arguments”.

BindingPattern : ObjectBindingPattern

e |tis a Syntax Error if the Bound Names of ArrayBindingPattern contains the string “eval” or the string
“arguments”.

114 © Ecma International 2011

secma

Static Semantics: Bound Names
BindingPattern : ObjectBindingPattern
1. Return the Bound Names of ObjectBindingPattern.
BindingPattern : ArrayBindingPattern
1. Return BoundNames of ArrayBindingPattern.
ObjectBindingPattern: { }
1. Return an empty List.
ObjectBindingPattern :

{ BindingPropertyList }

{ BindingPropertyList , }
1. Return the BoundNames of BindingPropertyList.
ArrayBindingPattern : [Elisionept]
1. Return an empty List.
ArrayBindingPattern : [Elisionep: BindingRestElement]
1. Return the BoundNames of BindingElementList.
ArrayBindingPattern : [BindingElementList]
1. Return the BoundNames of BindingElementList.
ArrayBindingPattern : [BindingElementList , Elisiongp:]
2. Return the BoundNames of BindingElementList.
ArrayBindingPattern [BindingElementList , Elisionoy: BindingRestElement 1]
1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingRestElement.
3. Return names.
BindingPropertyList : BindingProperty
1. Return BoundNames of BindingProperty.
BindingPropertyList : BindingPropertyList , BindingProperty
1. Let names be BoundNames of BindingPropertyList.
2. Append to names the elements of BoundNames of BindingProperty.
3. Return names.
BindingElementList : Elisiong,: BindingElement
1. Return BoundNames of BindingElement.

BindingElementList : BindingElementList , Elisionep: BindingElement

1. Let names be BoundNames of BindingElementList.

© Ecma International 2011 115

secma

2. Append to names the elements of BoundNames of BindingElement.
3. Return names.

BindingProperty : SingleNameBinding
1. Return the BoundNames of SingleNameBinding .
BindingProperty : PropertyName : BindingElement
1. Return the BoundNames of BindingElement.
SingleNameBinding : Bindingldentifier Initialiserqp
1. Return the BoundNames of Bindingldentifier.
BindingElement : SingleNameBinding
1. Return the BoundNames of SingleNameBinding .
BindingElement : BindingPattern Initialiserop
1. Return the BoundNames of BindingPattern.
BindingRestElement : ... Bindingldentifier
1. Return the BoundNames of Bindingldentifier.
Static Semantics: Haslnitialiser
BindingElement : SingleNameBinding
1. Return Haslnitializer of SingleNameBinding .
BindingElement : BindingPattern
1. Return false.
BindingElement : BindingPattern Initialiser
1. Returntrue.
SingleNameBinding : Bindingldentifier
1. Return false.
SingleNameBinding : Bindingldentifier Initialiser
1. Return true.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With parameters value and environment.
NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the

initialisation value. This is the the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

116 © Ecma International 2011

»ecma

BindingPattern : ObjectBindingPattern

1. If value is neither of null or undefined, then
a. Letobjbe ToObject(value).
2. Else, let obj be undefined.
3. Return the result of performing Binding Initialisation for ObjectBindingPattern using obj and environment
as arguments.

BindingPattern : ArrayBindingPattern
1. If value is neither of null or undefined, then
a. Letarray be ToObject(value).
2. Else,
a. Letarray be undefined.
3. Return the result of performing Indexed Binding Initialisation for ArrayBindingPattern using array, 0, and
environment as arguments.
ObjectBindingPattern: { }

1. Return.
ObjectBindingPattern :

{ BindingPropertyList }

{ BindingPropertyList , }

1. Return the result of performing Binding Initialisation.for BindingPropertyList using value and environment
as arguments.

BindingPropertyList : BindingProperty

1. Return the result of performing Binding Initialisation for BindingProperty using value and environment as
arguments.

BindingPropertyList : BindingPropertyList/, BindingProperty

1. Let next be the result of performing Binding Initialisation for BindingPropertyList using value and
environment-as-arguments.

2. If next is an abrupt completion, return next.

3. Return the result of performing Binding Initialisation for BindingProperty using value and environment as
arguments.

BindingProperty : SingleNameBinding

1. Let name be the string that is the only element of BoundNames of SingleNameBinding.

2. Return the result of performing Keyed Binding Initialisation for SingleNameBinding using value,
environment, and name as the arguments.

BindingProperty : PropertyName : BindingElement

1. Let P be the PropName of PropertyName

2. Return the result of performing Keyed Binding Initialisation for BindingElement using value, envirnment,
and P as arguments.

Runtime Semantics: Indexed Binding Initialisation

With parameters array, nextindex, and environment.

© Ecma International 2011 117

secma

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.
ArrayBindingPattern : [Elisiongp]

1. Return.

ArrayBindingPattern: [Elisiong, BindingRestElement 1]

1. If Elision is present, then let nextindex be the result of evaluating Elision, otherwise let nextindex be 0.

2. Return the result of performing Indexed Binding Initialisation for BindingRestElement using array,

nextlndex, and environment as arguments.

ArrayBindingPattern: [BindingElementList]

1. Return the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextlndex, and environment as arguments.

ArrayBindingPattern: [BindingElementList , Elisionop]

1. Return the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextindex, and environment as arguments.

ArrayBindingPattern: [BindingElementList , Elisiongy:. BindingRestElement.]

1. Let index be the result of performing Indexed Binding Initialisation for BindingElementList using array, ,
nextindex, and environment as arguments.

2. If index is an abrupt completion, return index.

3. If Elision is present, then let-skip be the result of evaluating Elision, otherwise let skip be 0.

4. Return the result of performing Indexed Binding Initialisation for BindingRestElement using array,
index+skip , and environment as arguments.

BindingElementList : Elisiongp: BindingElement

=

If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

2. Let next bethe result of performing Indexed Binding Initialisation for BindingElement using array,
nextindex +skip , and environment.as arguments.

If next is an abrupt completion, return next.

4. Return index+skip+1.

w

BindingElementList : BindingElementList , Elisionep: BindingElement

1. Let listNext be the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextindex, and environment as arguments.

If next is an abrupt completion, return next.

If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.

4. Let next be the result of performing Indexed Binding Initialisation for BindingElement using array,
listNext+skip , and environment as arguments.

If listNext is an abrupt completion, return listNext.

6. Return listNext+skip+1.

wmn

o

BindingElement: SingleNameBinding

1. Return the result of performing Keyed Binding Initialisation for SingleNameBinding using array,
environment, and ToString(nextIndex) as the arguments.

BindingElement: BindingPattern Initialiserop:

118 © Ecma International 2011

»ecma

1. Let P be ToString(nextindex).
Let exists be the result of calling the [[HasProperty]] internal method of array with argument P.
3. [Ifexists is true, then
a. Letv be the result of calling the [[Get]] internal method of array with argument P.
4. Else
a. |If Initialiserop is present, then
i. Letv be the result of evaluating Initialiser.
b. Else,
i. Letv be undefined.
If v is an abrupt completion, return v.
6. Return the result of performing Binding Initialisation for BindingPattern passing v and environment as
arguments.

N

o

BindingRestElement : ... Bindingldentifier

1. Let Abeanew array object created as if by the expression new Array () where Array is the standard
built-in constructor with that name.
Let lenVal be the result of calling the [[Get]] internal method of array with argument “length” .
Let arrayLength be ToUint32(lenVal).
If arrayLength is an abrupt completion, return arraylLength.
Let n=0.
Let index = nextIndex.
Repeat, while index < arrayLength
a. Let P be ToString(index).
b. Let exists be the result of calling the [[HasProperty]] internal method of array with argument P.
c. |Ifexists is true, then
i. Letv be the result of calling the [[Get]] internal method of array passing P as the argument.

ii. Ifvisanabrupt completion, return v.

iii. Call the [[DefineOwnProperty]] internal method.of A with arguments ToString(n), Property
Descriptor {[[Value]]: v:[[value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true},
and false.

d. Letn=n+l.

e. Letindex = index+1.

8. Return the result of performing Binding Initialisation for Bindingldentifer using array and environment as
arguments.

Nookwbd

Runtime Semantics: Keyed Binding Initialisation
With parameters obj, environment, and propertyName.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingElement: SingleNameBinding

1. Return the result of performing Keyed Binding Initialisation for SingleNameBinding using obj, environment,
and propertyName as the arguments.

BindingElement: BindingPattern Initialiserop

1. Let exists be the result of calling the [[HasProperty]] internal method of obj with argument propertyName.
2. [Ifexists is true, then
a. Letv be the result of calling the [[Get]] internal method of obj with argument propertyName.
3. Else
a. If Initialiserop is present, then
i. Letv be the result of evaluating Initialiser.
b. Else,
i. Letv be undefined.

© Ecma International 2011 119

secma

4. Ifvisan abrupt completion, return v.
5. Return the result of performing Binding Initialisation for BindingPattern passing v and environment as
arguments.

SingleNameBinding : Bindingldentifier Initialiserqp

1. Letexists be the result of calling the [[HasProperty]] internal method of obj with argument propertyName.
2. Ifexists is true, then

a. Letv be the result of calling the [[Get]] internal method of obj passing propertyName as the argument.
3. Else
a. If Initialiserop is present, then

i. Letv be the result of evaluating Initialiser.
b. Else,

i. Letv be undefined.
If v is an abrupt completion, return v.
Return the result of performing Binding Initialisation for Bindingldentifer passing v and environment as
arguments.

ok

12.3 Empty Statement

Syntax
EmptyStatement :

Runtime Semantics

Runtime Semantics: Evaluation
EmptyStatement : ;

1. Return NormalCompletion(empty).
12.4 Expression Statement

Syntax
ExpressionStatement::
[lookahead ¢ {{, function}] EXpression ;

NOTE An ExpressionStatement cannot start with an opening curly brace because that might make it ambiguous with a
Block. Also, an ExpressionStatement cannot start with the function keyword because that might make it ambiguous with a
FunctionDeclaration.

Runtime Semantics

Runtime Semantics: Evaluation

ExpressionStatement : [lookahead ¢ {{, function}] EXpression;
Let exprRef be the result of evaluating Expression.
Let value be GetValue(exprRef).

If value is an abrupt completion, return value.
Return NormalCompletion(value).

PR

120 © Ecma International 2011

secma

12.5 The if Statement

Syntax

IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible

if that would otherwise have no corresponding else.
Static Semantics: VarDeclaredNames
IfStatement : 1 £ (Expression) Statement else Statement

1. Let names be VarDeclaredNames of the first Statement.

2. Append to names the elements of the VarDeclaredNames of the second Statement.

3. Return names.

IfStatement : i £ (Expression) Statement

1. Return the VarDeclaredNames of Statement.
Runtime Semantics

Runtime Semantics: Evaluation

IfStatement : i £ (Expression) Statement else Statement

Let exprRef be the result of evaluating Expression.
Let exprValue be ToBoolean(GetValue(exprRef)).
If exprValue is an abrupt completion, return exprValue.
If exprValue is true, then
a. Return the‘result of evaluating the first Statement.
5. Else,
a. Return the result of evaluating the second Statement.

PobPE

IfStatement : £ (Expression) Statement

Let exprRef be the result of evaluating Expression.

Let exprValue be ToBoolean(GetValue(exprRef)).

If exprValue is an abrupt completion, return exprValue.

If exprValue is false, return NormalCompletion(undefined).
Return the result of evaluating Statement.

gL E

© Ecma International 2011

121

secma

12.6 lteration Statements

Syntax

IterationStatement :
do Statement while (Expression)
while (Expression) Statement
for (ExpressionNolngp:; Expressionep: ; Expressiones) Statement
for (var VariableDeclarationListNoln; Expressionop: ; Expressiong,) Statement
for (LexicalDeclarationNoln; Expressionep: ; Expressiongs) Statement
for (LeftHandSideExpression in Expression) Statement
for (var Bindingldentifer in Expression) Statement
for (ForDeclaration in Expression) Statement
for (LeftHandSideExpression of Expression) Statement
for (var ForVarDeclaration of Expression) Statement
for (ForDeclaration of Expression) Statement

ForVarDeclaration :
BindingPattern
VariableDeclarationNoln

ForDeclaration :
LetOrConst ForBinding

ForBinding :
Bindingldentifier
BindingPattern

NOTE A semicolon is not required after a do-while Statement.

The abstract operation loopContinues with. arguments completion and labelSet is defined by the following step:

If completion.[[type]] is normal, then return true.

If completion.[[type]] is not continug, then return false.

If completion.[[target]] is.empty,then return true.

If completion.[[target]] is an element of labelSet, then return true.
Return false:

oOpRpwbE

12.6.1 The do-while Statement
Static Semantics: VarDeclaredNames
IterationStatement : do Statement while (Expression) ;
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Labelled Evaluation

With argument labelSet.
IterationStatement : do Statement while (Expression) ;
1. LetV = undefined.
2. Repeat

a. Letstmt be the result of evaluating Statement.
b. If stmt.[[value]] is not empty, let V = stmt.[[value]].

c. If stmtis an abrupt completion and loopContinues (stmt,labelSet) is false, return stmt.

122

© Ecma International 2011

»ecma

Let exprRef be the result of evaluating Expression.
Let exprValue be ToBoolean(GetValue(exprRef)).
If exprValue is false, Return NormalCompletion(V).
Else if exprValue is a Completion Record, then
i Assert: exprValue is an abrupt completion.
ii. If loopContinues (exprValue,labelSet) is false, return exprValue.

Q =0 a

12.6.2 The while Statement

Static Semantics: VarDeclaredNames

IterationStatement : while (Expression)

1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Labelled Evaluation
With argument labelSet.

IterationStatement : while (Expression) Statement

1. LetV = undefined.
2. Repeat
a. Let exprRef be the result of evaluating Expression.
b. LetexprValue be ToBoolean(GetValue(exprRef)).
c. IfexprValue is false, return NormalCompletion(V).
d. Else if exprValue is a Completion Record, then
i. Assert: exprValue is an-abrupt completion.
ii. If loopContinues (exprValue,labelSet) is false, return exprValue.
Let stmt be theresult of evaluating Statement.
If stmt.[[value]] is not empty, let V = stmt.[[value]].
g. If loopContinues (stmt,labelSet) is false, return stmt.

~h @

12.6.3 The for Statement

Static Semantics: VarDeclaredNames

for (ExpressionNolngpy: ; EXpressiongs: ; EXpressiongp) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement: for (var VariableDeclarationListNoln ; Expressiong ; Expressiong:) Statement
1. Let names be BoundNames of VariableDeclarationListNoln.

2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

for (LexicalDeclarationNoln; Expressionep: ; Expressione) Statement

1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Labelled Evaluation

With argument labelSet.

© Ecma International 2011 123

secma

IterationStatement : for (ExpressionNolngp: ; Expressiong: ; Expressiongp) Statement

1. If ExpressionNoln is present, then.
a. Let exprRef be the result of evaluating ExpressionNoln.
b. LetexprValue be GetValue(exprRef). (This value is not used but the call may have side-effects.)
c. If loopContinues(exprValue,labelSet) is false, return exprValue.
2. Return the result of performing For Body Evaluation with the first Expression as the incrementExpr
argument, the second Expression as the testExpr argument and with labelSet.

The abstraction operation For Body Evaluation with arguments testExpr, incrementExpr, and labelSet is
performed as follows:

1. LetV = undefined,.
2. Repeat
a. If testExpr is not [empty], then
i Let testExprRef be the result of evaluating testExpr.
ii. Let testExprValue be ToBoolean(GetValue(testExprRef))
iii. If testExprValue is false, return NormalCompletion(V).
iv. Else loopContinues (testExprValue,labelSet) is false, return testExprValue.
Let stmt be the result of evaluating Statement.
If stmt.[[value]] is not empty, let V = stmt.[[value]].
If stmt loopContinues (stmt,labelSet) is false, return stmt.
If incrementExpr is not [empty], then
i Let incExprRef be the result of evaluating incrementExpr.
il Let incExprValue be GetValue(incExprRef).
iii. If loopContinues(incExprValue,labelSet) is false, return.incExprValue.

®© 00 o

IterationStatement : for (var VariableDeclarationListNoln ; Expressiones: ; Expressiong:) Statement

=

Let varDcl be the result of evaluating VariableDeclarationListNoln.

If loopContinues(varDcl,labelSet) is false, return varDcl.

3. Return the result of performing For Body Evaluation with the first Expression as the incrementExpr
argument, the second Expression as the testExpr argument and with labelSet.

N>

IterationStatement : for (LexicalDeclarationNoln ; Expressiong: ; Expressiong:) Statement

Let oldEnv be the running execution context’s LexicalEnvironment.
Let loopEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Let isConst be the the result of performing IsConstantDeclaration of d.
For each element dn of the BoundNames of LexicalDeclarationNoln do
a. IfisConst is true, then
i Call loopEnv’s CreateImmutableBinding concrete method passing dn as the argument.
b." Else,
i Call loopEnv’s CreateMutableBinding concrete method passing dn and false as the
arguments.
Set the running execution context’s LexicalEnvironment to loopEnv.
Let forDcl be the result of evaluating LexicalDeclarationNoln.
7. If loopContinues(varDcl,labelSet) is false, then
a. Set the running execution context’s LexicalEnvironment to oldEnv.
b. Return varDcl.
8. Let bodyResult be the result of performing For Body Evaluation with the first Expression as the
incrementExpr argument, the second Expression as the testExpr argument and with labelSet.
9. Set the running execution context’s LexicalEnvironment to oldEnv.
10. Return bodyResult.

bl NS S

oo

124 © Ecma International 2011

»ecma

12.6.4 The for-in and for-of Statements
Static Semantics

Static Semantics: Early Errors
IterationStatement :

for (LeftHandSideExpression in Expression) Statement
for (LeftHandSideExpression of Expression) Statement

e ltis a Syntax Error if the IterationStatement is contained in strict code and LeftHandSideExpression is the
Identifier eval or the Identifier arguments.

e It is a Syntax Error if the LeftHandSideExpression is an Identifier that statically resolves to a declarative
environment record binding and the resolved binding is an immutable binding.

e It is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression
derived a production that would produce a Syntax Error. according to these rules. This rule is
recursively applied.

e It is a Syntax Error if the LeftHandSideExpression is an‘ObjectLiteral or an ArrayLiteral and the source
code corresponding to LeftHandSideExpression cannot be parsed using AssignmentPattern as the goal
symbol.

IterationStatement :

for (ForDeclaration in Expression) Statement

for (ForDeclaration of Expression) Statement

e Itis a Syntax Error if any element of the Lexically Declared Names of ForDeclaration also occurs in the
Var Declared Names of Statement.

Static Semantics: Bound Names

ForVarDeclaration : BindingPattern

1. Return the Bound Names of BindingPattern.

ForVarDeclaration : VariableDeclarationNoln

1. Return the Bound Names of VariableDeclarationNoin.
ForDeclaration : LetOrConst ForBinding

1. Return the Bound Names of ForBinding.

ForBinding : Bindingldentifier

1. Return the Bound Names of Bindingldentifier.

ForDeclaration : BindingPattern

1. Return the Bound Names of BindingPattern.

Static Semantics: Var Declared Names

IterationStatement : for (LeftHandSideExpression in Expression) Statement
1. Return the Var Declared Names of Statement.

IterationStatement : for (var Bindingldentifier in Expression) Statement

1. Let names be the Bound Names of Bindingldentifier.

© Ecma International 2011 125

secma

2. Append to names the elements of the Var Declared Names of Statement.
3. Return names

IterationStatement ; for (ForDeclaration in Expression) Statement
1. Return the Var Declared Names of Statement.
IterationStatement : for (LeftHandSideExpression of Expression) Statement
1. Return the Var Declared Names of Statement.
IterationStatement : for (var ForVarDeclaration of Expression) Statement
1. Let names be the Bound Names of ForVarDeclaration.
2. Append to names the elements of the Var Declared Names of Statement.
3. Return names
IterationStatement : for (ForDeclaration of Expression) Statement
1. Return the Var Declared Names of Statement.
Runtime Semantics
Runtime Semantics: Binding Instantiation

With arguments value and environment.
ForDeclaration : LetOrConst ForBinding
1. For each element name of the:‘Bound.Names of ForBinding do

a. |If IsConstantDeclaration of LetOrConst is false, then
i Call environment’s CreateMutableBinding concrete method with argument name.
> Elsie.}, Call environment’sCreatelmmutableBinding concrete method with argument name.

2. Perform Binding Initialisation for'ForBinding passing value and environment as the arguments.
Runtime Semantics: Binding Initialisation

With-arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is.hosted and preinitialized prior to evaluation of its initializer.
ForVarDeclaration : BindingPattern
1. Perform Binding Initialisation for BindingPattern passing value and env as the arguments.
ForVarDeclaration : VariableDeclarationNoln
1. Perform Binding Initialisation for VariableDeclarationNoln passing value and env as the arguments.
ForBinding : Bindingldentifier
1. Perform Binding Initialisation for Bindingldentifier passing value and env as the arguments.

ForBinding: BindingPattern

1. Perform Binding Initialisation for BindingPattern passing value and env as the arguments.

126 © Ecma International 2011

»ecma

Runtime Semantics: Labelled Evaluation
With argument labelSet.
IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evalation with Statement, enumerate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evalation with LeftHandSideExpression, Statement,
keyResult.[[value]], assignment, and labelSet.

IterationStatement : for (var Bindingldentifier in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evalation with Statement, enumerate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evalation with Bindingldentifier, Statement,
keyResult.[[value]], varBinding, and labelSet.

IterationStatement : for (ForDeclaration in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evalation with Statement, enumerate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evalation with ForDeclaration, Statement,
keyResult.[[value]], ForDeclaration, and labelSet.

IterationStatement : for (LeftHandSideExpression of Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evalation with Statement, iterate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For<In/Of Body Evalation with LeftHandSideExpression, Statement,
keyResult.[[value]], assignment, and labelSet.

IterationStatement : £or. (var Bindingldentifier of Expression) Statement

1. LetkeyResult be the result of performing For In/Of Expression Evalation with Statement, iterate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evalation with Bindingldentifier, Statement,
keyResult.[[value]], varBinding, and labelSet.

IterationStatement : £or (ForDeclaration of Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evalation with Statement, iterate, and
labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evalation with ForDeclaration, Statement,
keyResult.[[value]], ForDeclaration, and labelSet.

The abstraction operation For In/Of Expression Evaluation with arguments expr, iterationKind, and labelSet is
performed as follows:

1. Let exprRef be the result of evaluating the production that is expr.
2. Let experValue be GetValue(exprRef).
3. If experValue is an abrupt completion, then return
a. If loopContinues(experValue,labelSet) is false, then return experValue.

© Ecma International 2011 127

9.

The

ecCmna

b. Else, return Completion{type: break, value: undefined, target: empty}.
If experValue.[value]] is null or undefined, return Completion{type: break, value: undefined, target:
empty}..
Let obj be ToObject(experValue).
If iterationKind is enumerate, then
a. Letkeys be the result of calling the [[Enumerate]] internal method of obj with arguments true and
true.
Else,
a. Assert iterationKind is iterate.
b. Let keys be the result of calling the [[Iterate]] internal method of obj.
If keys is an abrupt completion, then
a. If LoopContinues(experValue,labelSet) is false, then return experValue.
b. Asset: keys.[[type]] is continue
c. Return Completion{type: break, value: undefined, target: empty}.
Return keys.

abstraction operation For In/Of Body Evaluation with arguments Ihs, stmt, keys, IhsKind, and labelSet is

performed as follows:

1.
2.
3.

128

Let oldEnv be the running execution context’s LexicalEnvironment.
Let V = undefined).

Repeat
a. Let next be the result of performing Invoke with arguments "next", keys, and an empty arguments
List.
b. If IteratorComplete(next) is true, the return NormalCompletion(V).
c. If loopContinues(next,labelSet) is false, then.return next.
d. If nextis an abrupt completion, then let status be next.
e. Else,
i Assert next.[[type]] is normal.
ii. Let nextValue-be next.[[value]].
iii. If IhsKinds assignment, then
1. <If Ihs is neither an ObjectLiteral nor an ArrayLiteral then
a Let IhsRef be the result of evaluating the LeftHandSideExpression (it may
be evaluated repeatedly).
b Let status be the result of performing PutValue(lhsRef, nextValue).
2. Else
a Let AssignmentPattern be the parse of the source code corresponding to lhs
using AssignmentPattern as the goal symbol.
b Let rval be ToObject(nextValue).
¢ Ifrval is an abrupt completion, then let status be rval.
d Else, let status be the result of performing Destructuring Assignment
Evaluation of AssignmentPattern using rval as the argument.
iv. Else if IhsKind is varBinding, then
1. Let status be the result of performing Binding Initialisation for lhs passing
nextValue and undefined as the arguments.
V. Else,
1. Asset lhsKind is ForDeclaration.
2. Let iterationEnv be the result of calling NewDeclarativeEnvironment passing
oldEnv as the argument.
3. Perform Binding Instantiation for Ihs passing nextValue and iterationEnv as
arguments.
4. Let status be NormalCompletion(empty)
5. Set the running execution context’s LexicalEnvironment to iterationEnv.
Vi. If status.[[type]] is normal, then
1. Let status be the result of evaluating stmt.
2. |If status.[[type]] is normal and status.[[value]] not empty, then
a LetV =status.[[value]].
Vii. Set the running execution context’s LexicalEnvironment to oldEnv.
viii. If status is an abrupt completion and loopContinues(status,labelSet) is false, then return

status.

© Ecma International 2011

»ecma

12.7 The continue Statement

Syntax
ContinueStatement :

continue ;

continue [no LineTerminator here] Identifier ;
Static Semantics

Static Semantics: Early Errors

ContinueStatement : continue ;

e It is a Syntax Error if this production is not nested, directly or indirectly (but not crossing
function boundaries), within an IterationStatement.

ContinueStatement : continue [no LineTerminator here] Identifier ;

e It is a Syntax Error if Identifier does not appear in the CurrentLabelSet of an enclosing (but
not crossing function boundaries) IterationStatement.

Runtime Semantics

Runtime Semantics: Evaluation

ContinueStatement : continue ;

1. Return Completion {[[type]]:continue, [[value]]: empty, [[target]]: empty}.
ContinueStatement : continue [no LineTerminator here] Identifier ;

1. Return Completion {[[type]]: continue, [[value]]: empty, [[target]]: Identifier}.
12.8 The break Statement

Syntax
BreakStatement :

break ;

break [no LineTerminator here] Identifier ;
Static Semantics

Static Semantics: EarlyErrors

BreakStatement : break ;
e |t is a Syntax Error if this production not nested, directly or indirectly (but not crossing
function boundaries), within an IterationStatement or a SwitchStatement.
BreakStatement : break [no LineTerminator here] ldentifier ;

e It is a Syntax Error if Identifier does not appear in the CurrentLabelSet of an enclosing (but
not crossing function boundaries) Statement.

© Ecma International 2011 129

secma

Runtime Semantics

Runtime Semantics: Evaluation

BreakStatement : break ;

1. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.
BreakStatement : break [no LineTerminator here] ldentifier ;

1. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: Identifier}.
12.9 The return Statement

Syntax

ReturnStatement :
return ;
return [no LineTerminator here] Expression ;

NOTE A return statement causes a function to cease execution and return a value to the caller. If Expression is
omitted, the return value is undefined. Otherwise, the return value is the valueof Expression.

Static Semantics
Static Semantics: Early Errors
e ltis a Syntax Error if a return statement that is not within.a FunctionBody.
Runtime Semantics
Runtime Semantics: Evaluation
ReturnStatement : return ;
1. Return Completion {[[type]]: return, [[value]]: undefined, [[target]]: empty}.
ReturnStatement : return [no LineTerminator here] Expression ;
Let exprRef be the result of evaluating Expression.
Let exprValue be GetValue(exprRef).

If exprValue is an abrupt completion, return exprValue.
Return Completion {[[type]]: return, [[value]]: exprValue, [[target]]: empty}.

PR

12.10 The with Statement

Syntax

WithStatement :
with (Expression) Statement

NOTE The with statement adds an object environment record for a computed object to the lexical environment of the
current execution context. It then executes a statement using this augmented lexical environment. Finally, it restores the
original lexical environment.

Static Semantics

Static Semantics: Early Errors

130 © Ecma International 2011

secma

WithStatement : with (Expression) Statement

e Itis a Syntax Error if the code that matches this production is contained in strict code.
Static Semantics: VarDeclaredNames
WithStatement : with (Expression) Statement
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Evaluation
WithStatement : with (Expression) Statement

1. Letval be the result of evaluating Expression.

2. Letobj be ToObject(GetValue(val)).

3. If obj is an abrupt completion, return obj.

4. Let oldEnv be the running execution context’s LexicalEnvironment.

5. Let newEnv be the result of calling NewObjectEnvironment passing obj and oldEnv as the arguments.
6. Setthe provideThis flag of newEnv to true.

7. Set the running execution context’s LexicalEnvironment to newEnv.

8. Let C be the result of evaluating Statement.

9

1

. Set the running execution context’s Lexical Environment to oldEnv.
0. Return C.

NOTE No matter how control leaves the embedded Statement, whether normally or by some form of abrupt
completion or exception, the LexicalEnvironment is always restored to its former state.

12.11 The switch Statement

Syntax

SwitchStatement :
switch (Expression) CaseBlock

CaseBlock :
{ CaseClausesqpt }
{ CaseClausesq,: DefaultClause CaseClausesqp: }

CaseClauses :
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression : StatementListopt

DefaultClause :
default : StatementListop

Static Semantics
Static Semantics: Early Errors
CaseBlock : { CaseClauses }

e |tis a Syntax Error if the LexicallyDeclaredNames of CaseClauses contains any duplicate entiries.

© Ecma International 2011 131

secma

e |t is a Syntax Error if any element of the LexicallyDeclaredNames of CaseClauses also occurs in the
VarDeclaredNames of CaseClauses.

Static Semantics: LexicalDeclarations
CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses }

1. Return the LexicalDeclarations of CaseClauses.

CaseBlock : { CaseClausesop: DefaultClause CaseClausesop: }

If the first CaseClauses is present, let declarations be the LexicalDeclarations of the first CaseClauses.
Else let declarations be a new empty List.

Append to declarations the elements of the LexicallyDeclaredNames of the DefaultClause.

If the second CaseClauses is not present, return names.

Else return the result of append to names the elements of the the LexicallyDeclaredNames of the second
CaseClauses.

A

CaseClauses : CaseClause

1. Return the LexicalDeclarations of CaseClause.

CaseClauses : CaseClauses CaseClause

1. Letdeclarations be LexicalDeclarations of CaseClauses.

2. Append to names the elements of the LexicalDeclarations of CaseClause.

3. Return declarations.

CaseClause : case Expression : StatementLiStop:

1. If the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementListop:

1. If.the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

Static Semantics: LexicallyDeclaredNames

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses }

1. Return the LexicallyDeclaredNames of CaseClauses.

CaseBlock : { CaseClausesqp: DefaultClause CaseClausesopt }

If the first CaseClauses is present, let names be the LexicallyDeclaredNames of the first CaseClauses.
Else let names be a new empty List.

Append to names the elements of the LexicallyDeclaredNames of the DefaultClause.
If the second CaseClauses is not present, return names.

PR

132 © Ecma International 2011

5.

ecind

Else return the result of append to names the elements of the the LexicallyDeclaredNames of the second
CaseClauses.

CaseClauses : CaseClause

1.

Return the LexicallyDeclaredNames of CaseClause.

CaseClauses : CaseClauses CaseClause

1.
2.
3.

Let names be LexicallyDeclaredNames of CaseClauses.
Append to names the elements of the LexicallyDeclaredNames of CaseClause.
Return names.

CaseClause : case Expression : StatementListopt

1.
2.

If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
Else return a new empty List.

DefaultClause : default : StatementListopt

1.
2.

If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
Else return a new empty List.

Static Semantics: VarDeclaredNames

SwitchStatement : switch (Expression) CaseBlock

1.

Return the VarDeclaredNames of CaseBlock.

CaseBlock : { }

1.

Return a new empty List.

CaseBlock : { CaseClauses }

1.

Return the VarDeclaredNames-of CaseClauses.

CaseBlock : { CaseClausesqp: DefaultClause CaseClausesept }

agrwbdE

If-the first CaseClauses is present, let names be the VVarDeclaredNames of the first CaseClauses.
Else let names be a new empty List.

Append to names the elements of the VarDeclaredNames of the DefaultClause.

If the second CaseClauses is not present, return names.

Else return the result of append to names the elements of the the VarDeclaredNames of the second
CaseClauses.

CaseClauses : CaseClause

1.

Return the VarDeclaredNames of CaseClause.

CaseClauses : CaseClauses CaseClause

1.
2.
3.

Let names be VarDeclaredNames of CaseClauses.
Append to names the elements of the VarDeclaredNames of CaseClause.
Return names.

CaseClause : case Expression : StatementListopt

1.

If the StatementList is present, return the VarDeclaredNames of StatementList.

© Ecma International 2011

133

eCina

2. Else return a new empty List.
DefaultClause : default : StatementListop

1. If the StatementList is present, return the VarDeclaredNames of StatementList.
2. Else return a new empty List.

Runtime Semantics
Runtime Semantics: Case Evaluation
With argument input.

CaseBlock : { CaseClauseSopt }

1. LetV = undefined.
2. Let A be the list of CaseClause items in source text order.
3. Let searching be true.
4. Repeat, while searching is true
a. Let C be the next CaseClause in A. If there is no such CaseClause, return NormalCompletion(V).
b. Let clauseSelector be the result of evaluating C.
c. IfclauseSelector is an abrupt completion, return clauseSelector.
d. Ifinputis equal to clauseSelector as defined by the Strict Equality Comparision Algorithm (11.9.1), then
i Set searching to false.
ii. If C has a StatementList, then
1. Evaluate C’s StatementList and let R be the result.
2. IfRis an abrupt completion, then return R.
3. LetV=R.[value]].
5. Repeat

a. Let C be the next CaseClause.in A. If there is no'such CaseClause, return NormalCompletion(V).
b. If C has a StatementList, then
i. Evaluate C’s StatementList and let R be the result.
ii. If R.[[value]] is not empty, then let V.= R.[[value]].
iii. If R is an abrupt completion, then return Completion {[[type]]: R.[[typell, [[value]]: V, [[target]]:

R.[[target]]}.

CaseBlock : { CaseClausesqpt DefaultClause CaseClausesqpt }

Let V= undefined..
Let A be the list of CaseClause items in the first CaseClauses, in source text order.
Let B be the list of CaseClause items in the second CaseClauses, in source text order.
Let found be false.
Repeat letting C be in order each CaseClause in A
a. Iffound is false, then
i Let clauseSelector be the result of evaluating C.
il If clauseSelector is an abrupt completion, then
1. If clauseSelector.[[value]] is empty, then return Completion {[[type]]:
clauseSelector.[[type]], [[value]]: undefined, [[target]]: clauseSelector.[[target]]}.
2. Else, return clauseSelector.
iii. If input is equal to clauseSelector as defined by the Strict Equality Comparision Algorithm
(11.9.1), then set found to true.
b. Iffound is true, then
i. If C has a StatementList, then
1. Evaluate C’s StatementList and let R be the result.
2. IfR.J[value]] is not empty, then let V = R.[[value]].
3. IfRis an abrupt completion, then return Completion {[[type]]: R.[[typell, [[value]]: V,

[[target]]: R.[[target]]}.

agrwbdE

6. Let foundInB be false.
7. Iffound is false, then

134 © Ecma International 2011

»ecma

a. Repeat, while foundInB is false and all elements of B have not been processed
i. Let C be the next CaseClause in B.
ii. Let clauseSelector be the result of evaluating C.
iii. If clauseSelector is an abrupt completion, then.
1. If clauseSelector.[[value]] is empty, then return Completion {[[type]]:
clauseSelector.[[type]], [[value]]: undefined, [[target]]: clauseSelector.[[target]]}.
2. Else, return clauseSelector.
iv. If input is equal to clauseSelector as defined by the Strict Equality Comparision Algorithm
(11.9.1), then
1. SetfoundInB to true.
2. If C has a StatementList, then
a Evaluate C’s StatementList and let R be the result.
b IfR.[[value]] is not empty, then let V = R.[[value]].
¢ IfRisan abrupt completion, then return Completion {[[type]]: R.[[type]l,
[[value]]: V, [[target]]: R.[[target]]}.
8. IffoundInB is false and the DefaultClause has a StatementList, then
a. Evaluate the DefaultClause’s StatementList and let R be the result.
b. IfR.[[value]] is not empty, then let V = R.[[value]].
c. IfRisan abrupt completion, then return Completion {[[type]l]: R.[[type]l], [[value]]: V, [[target]]:
R.[[target]]}.
9. Repeat (Note that if step 7.a.i has been performed this loop does not start at the beginning of B)
a. Let C be the next CaseClause in B. If there is no such CaseClause, return NormalCompletion(V).
b. If C has a StatementList, then
i. Evaluate C’s StatementList and let R be the result.
ii. If R.[[value]] is not empty, then let V = R.[[value]].
iii. If R is an abrupt completion, then Completion {[[type]]: R:[[type]], [[value]]: V, [[target]]:
R.[[target]]}

Runtime Semantics: Evaluation
SwitchStatement : switch (Expression) CaseBlock

Let exprRef be the result of evaluating Expression.

Let switchValue be GetValue(exprRef).

If switchValue is an-abrupt completion, return switchValue.

Let oldEnv be the running execution context’s LexicalEnvironment.

Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Perform Block Declaration Instantiation using CaseBlock and blockEnv.

Let R be the result of performing Case Evaluation CaseBlock with argument switchValue.

Set the running execution context’s LexicalEnvironment to oldEnv.

Return R.

COoNooOR~WNE

NOTE No matter how control leaves the SwitchStatement the LexicalEnvironment is always restored to its former state.
CaseClause : case Expression : StatementListopt

1. Let exprRef be the result of evaluating Expression.
2. Return GetValue(exprRef).

NOTE Evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Expression and
returns the value, which the CaseBlock algorithm uses to determine which StatementList to start executing.

12.12 Labelled Statements

Syntax

LabelledStatement :
Identifier : Statement

NOTE A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled break
and continue statements. ECMAScript has no goto statement. A Statement can be part of a LabelledStatement, which

© Ecma International 2011 135

secma

itself can be part of a LabelledStatement, and so on. The labels introduced this way are collectively referred to as the
“current label set” when describing the semantics of individual statements. A LabelledStatement has no semantic meaning
other than the introduction of a label to a label set. The label set of an lterationStatement or a SwitchStatement initially
contains the single element empty. The label set of any other statement is initially empty.

Static Semantics
Static Semantics: Early Errors
e |tis a Syntax Error if a LabelledStatement is enclosed by a LabelledStatement with the same ldentifier as
label. This does not apply to labels appearing within the body of a FunctionDeclaration that is nested,
directly or indirectly, within a labelled statement.
Static Semantics: VarDeclaredNames
LabelledStatement : Identifier : Statement
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Labelled Evaluation
With argument labelSet.
LabelledStatement : Identifier : Statement
1. Let label be the StringValue of Identifier.
Let newLabelSet be a new List containing label and the elements of labelSet.
3. If Statement is either LabelledStatement or BreakableStatement, then

a. Let stmtResult be the result of performing Labelled Evaluation of Statement with argument
newLabelSet.

N

4. Else,
a. Let stmtResult be the result of evaluating Statement.

5. If stmtResult.[[type]] is break and stmtResult.[[target]] is the same value as label, then
a. < Let result be NormalCompletion(stmtResult.[[value]]).

6. Else;let result be stmtResult.

7. Return result.

Runtime Semantics: Evaluation
LabelledStatement : Identifier : Statement

3. LetnewLabelSet bea new empty List.
4. Return the result of performing Labelled Evaluation of this LabelledStatement wth argument newLabelSet.

12.13 The throw Statement

Syntax

ThrowStatement :
throw [no LineTerminator here] Expression ;

Semantics

The production ThrowStatement : throw [no LineTerminator here] Expression ; is evaluated as follows:

1. Let exprRef be the result of evaluating Expression.

136 © Ecma International 2011

»ecma

2. Return (throw, GetValue(exprRef), empty).
12.14 The try Statement

Syntax

TryStatement :
try Block Catch
try Block Finally
try Block Catch Finally

Catch :
catch (CatchParameter) Block

Finally :
finally Block

CatchParameter :
Bindingldentifier
BindingPattern

NOTE The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime
error or a throw statement. The catch clause provides the exception-handling code. When a catch clause catches an

exception, its Identifier is bound to that exception.
Static Semantics
Static Semantics: Early Errors

Catch : catch (CatchParameter)-Block

e It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the

LexicallyDeclaredNames of Block.

e It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the

VarDeclaredNames of Block.
Static Semantics: BoundNames
CatchParameter : Bindingldentifier
1. Return the BoundNames of Bindingldentifier.
CatchParameter : BindingPattern
1. Return the BoundNames-of BindingPattern.
Static Semantics: VarDeclaredNames
TryStatement : try Block Catch
1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Catch.

3. Return names.

TryStatement : try Block Finally

1. Let names be VarDeclaredNames of Block.

2. Append to names the elements of the VarDeclaredNames of Finally.

3. Return names.

© Ecma International 2011

137

secma

TryStatement : try Block Catch Finally

Let names be VarDeclaredNames of Block.

Append to names the elements of the VarDeclaredNames of Catch.
Append to names the elements of the VarDeclaredNames of Finally.
Return names.

el N

Catch : catch (CatchParameter) Block

1. Return the VarDeclaredNames of Block.

Finally : finally Block

1. Return the VarDeclaredNames of Block.

Runtime Semantics

Runtime Semantics: Binding Initialisation
With arguments value and environment.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the the case for var statements formal parameter lists of non-strict functions. In those cases a

lexical binding is hosted and preinitialized prior to evaluation of its initializer.
CatchParameter : Bindingldentifier

1. Return the result of performing Binding Initialisation for Bindingldentifier passing value and environment as
the arguments.

CatchParameter : BindingPattern

1. Let exceptionObj be ToObject(value).
2. Return the result of performing Binding Initialisation for BindingPattern passing exceptionObj and
environment as the arguments.

Runtime Semantics: Catch Clause Evaluation
withparameter thrownValue
Catch: ecatch (CatchParameter) Block

1. Let oldEnv be the running execution context’s LexicalEnvironment.

Let catchEnv be the result'of calling NewDeclarativeEnvironment passing oldEnv as the argument.
3. For each element argName of the BoundNames of CatchParameter, do

a. Call the CreateMutableBinding concrete method of catchEnv passing argName as the argument.
Let status be the result of performing Binding Initialisation for CatchParameter passing thrownValue and
catchEnv as arguments.

If status is an abrupt completion, then return status.

Set the running execution context’s LexicalEnvironment to catchEnv.

Let B be the result of evaluating Block.

Set the running execution context’s LexicalEnvironment to oldEnv.

Return B.

N

&

©CoNo G

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
Runtime Semantics: Evaluation

TryStatement : try Block Catch

138 © Ecma International 2011

»ecma

1. Let B be the result of evaluating Block.
2. If B.[[type]] is not throw, return B.
3. Return the result of performing Catch Clause Evaluation of Catch with parameter B.[[value]].

TryStatement : try Block Finally

Let B be the result of evaluating Block.
Let F be the result of evaluating Finally.
If F.[[type]] is normal, return B.

Return F.

PobPE

TryStatement : try Block Catch Finally

=

Let B be the result of evaluating Block.
2. If B.[[type]] is throw, then
a. Let C be the result of performing Catch Clause Evaluation of Catch with parameter B.value.
3. Else, B.[[type]] is not throw,
a. LetCbeB.
4. Let F be the result of evaluating Finally.
If F.[[type]] is normal, return C.
6. Return F.

o

Finally : finally Block
1. Return the result of evaluating Block.
12.15 The debugger statement

Syntax
DebuggerStatement :
debugger ;
Semantics
NOTE Evaluating the DebuggerStatement production-may allow an implementation to cause a breakpoint when run
under a debugger. If a debugger is not present or active this statement has no observable effect.
Runtime Semantics: Evaluation

The production DebuggerStatement : debugger ; is evaluated as follows:

1. Ifan implementation defined debugging facility is available and enabled, then
a. Perform an implementation defined debugging action.
b. Let result be an implementation defined Completion value.

2. Else
a. Letresult be NormalCompletion(empty).

3. Return result.

13 Functions and Generators
13.1 Function Definitions

Syntax

FunctionDeclaration :
function Bindingldentifier (FormalParameterList) { FunctionBody }

FunctionExpression :
function Bindingldentifierop: (FormalParameterList) { FunctionBody }

© Ecma International 2011 139

eCina

FormalParameterList :
[empty]
FunctionRestParameter
FormalsList
FormalsList, FunctionRestParameter

FormalsList :
FormalParameter
FormalsList , FormalParameter

FunctionRestParameter :
. . . Bindingldentifier

FormalParameter :
BindingElement

FunctionBody :
StatementListopt

Static Semantics
Static Semantics: Early Errors
FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }

and
FunctionExpression : function Bindingldentifierq: (FormalParameterList) { FunctionBody }

e It is a Syntax Error if the any element of the LexicallyDeclaredNames of FormalParameterList also
occurs in the VarDeclaredNames of FunctionBody.

e It is a Syntax Error if any element of the BoundNames of FormalParameterList also occurs in the
LexicallyDeclaredNames of FunctionBody.

FunctionBody : StatementList
e ltis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entiries.
e It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the

VarDeclaredNames of StatementList.

FormalParameterList : FormalsList, FunctionRestParameter

e ltis.a Syntax Error if BoundNames of FormalsList contains the String Value of Identifier.

FormalsList : FormalsList, FormalParameter

e It is a Syntax Error if the source code matching this production is strict code and BoundNames of
FormalsList contains an element which is also contained in BoundNames of FormalParameter.

FunctionRestParameter : ... Bindingldentifier

e |tis a Syntax Error if the source code parsed with this production is not extended code.

FormalParameter : BindingElement

e ltis a Syntax Error if the derivation of BindingElement is Bindingldentifier Initialiser and the source code
matching this production is not extended code.

e It is a Syntax Error if the derivation of BindingElement is BindingPattern Initialiserope and the source
code parsed with this production is not extended code.

e |tis a Syntax Error if BoundNames of BindingElement contains any duplicate elements.

140 © Ecma International 2011

»ecma

Static Semantics: BoundNames
FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.
FormalParameterList : [empty]
1. Return an empty List.
FormalParameterList : FunctionRestParameter
1. Return the BoundNames of FunctionRestParameter.
FormalParameterList : FormalsList
1. Return the BoundNames of FormalsList.
FormalParameterList : FormalsList , FunctionRestParameter
1. Let names be BoundNames of FormalsList.
2. Append to names the BoundNames of FunctionRestParameter.
3. Return names.
FormalsList : FormalsList , FormalParameter
1. Let names be BoundNames of FormalsList.
2. Append to names the elements of BoundNames of FormalParameter.
3. Return names.
FormalParameterList: ... Bindingldentifier
1. Return the BoundNames of Bindingldentifier.
FormalParameter : BindingElement
1. Return the BoundNames of BindingElement .
Static Semantics: ExpectedArgumentCount
FormalParameterList :

[empty]

FunctionRestParameter
1. ReturnO.
FormalParameterList ;

FormalsList

FormalsList , FunctionRestParameter

1. Return the ExpectedArgumentCount of FormalsList.

NOTE The ExpectedArgumentCount of a FormalParameterList is the number of FormalParameters to the left of either the
rest parameter or the first FormalParameter with an Initialiser.

FormalsList : FormalParameter

1. If Haslnitialiser of FormalParameter is false return O
2. Return 1.

© Ecma International 2011 141

secma

FormalsList : FormalsList, FormalParameter

1. Let count be the ExpectedArgumentCount of FormalsList.

2. If HaslInitialiser of FormalsList is true or Haslnitialiser of FormalParameter is true, then return count.
3. Return count+1.

Static Semantics: Haslnitialiser

FormalsList : FormalParameter

1. Return Haslnitialiser of FormalParameter.

FormalsList : FormalsList , FormalParameter

1. If HaslInitialiser of FormalsList is true, then return true.
2. Return Haslnitialiser of FormalParameter.

FormalParameter : BindingElement

1. Return Haslnitialiser of BindingElement.

Static Semantics: IsConstantDeclaration

FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return false.

Static Semantics: LexicallyDeclaredNames

FunctionBody : [empty]

1. Return an empty List.

FunctionBody : StatementList

1. Return the LexicllyDeclaredNames of StatementList.

Static Semantics: VarDeclaredNames

FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return an empty List.

FunctionBody: [empty]

1. Return an empty List.

FunctionBody : StatementList

1. Return the VarDeclaredNames of StatementList.

Runtime Semantics

Runtime Semantics: Binding Initialisation

With parameters value and environment and optional parameter index.

142 © Ecma International 2011

»ecma

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.
FormalParameterList : [empty]

1. Return NormalCompletion(empty).

FormalParameterList : FunctionRestParameter

1. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value,
lenValue, 0, and environment as the arguments..

FormalParameterList : FormalsList

1. Asset: value is a new created arguments object and hence it has a valid integer valued. "1ength" property.

Let lenValue be the result of calling the [[Get]] internal method. of value with argument "length".

3. Return the result of performing Indexed Binding Initialisation for FormalsList using value,
lenValue.[[value]], 0, and environment as the arguments.

N

FormalParameterList : FormalsList , FunctionRestParameter

1. Let restindex be the result of performing Indexed Binding Initialisation for FormalsList using value,
lenValue, 0, and environment as the arguments.

2. ReturnlfAbrupt(restindex).

3. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value,
lenValue, restindex.[[value]], and environment as the arguments.

Runtime Semantics: Indexed Binding Initialisation
With parameters array, arraylength, nextindex, and environment.
FormalsList : FormalParameter

1. Let status be the result of performing Binding Initialisation for FormalParameter using value, env, and
index as the arguments.

2. ReturnlfAbrupt(status).

3. Returndndex + 1.

FormalsList : FormalsList , FormalParameter

1. Letlastindex be the result of performing Indexed Binding Initialisation for FormalsList using value,
lenValue, nextindex, and environment as the arguments.

2. Let status be the result of performing Indexed Binding Initialisation for FormalParameter using value,
lenValue, lastindex, and‘environment as the arguments.

3. ReturnIfAbrupt(status).

4. Return lastindex + 1.

FunctionRestParameter : . . . Bindingldentifier

1. Let Abeanew array object created as if by the expression new Array () where Array is the standard
built-in constructor with that name.
Let n=0;
3. Repeat, while nextindex < arrayLength
a. Let P be ToString(nextindex).
b. Assert: array is a well formed arguments object, hence it must have a property P.
c. Letv be the result of calling the [[Get]] internal method of array passing P as the argument.
d. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property Descriptor
{[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

N

© Ecma International 2011 143

secma

e. Letn=n+l.
f. Let nextindex = nextindex +1.

4, Return the result of performing Binding Initialisation for Bindingldentifer using A and environment as
arguments.

FormalParameter : BindingElement

1. Return the result of performing Indexed Binding Initialisation for BindingElement using array, arraylLength,
nextindex, and environment as the arguments.

Runtime Semantics: Evaluation

FunctionDeclaration : function Bindingldentifier (FormalParameterList) { FunctionBody }
1. Return (normal, empty, empty).

FunctionExpression : function (FormalParameterList) { FunctionBody }

1. Return the result of creating a new Function object as specified in 13.2 with parameters specified by
FormalParameterList and body specified by FunctionBody. Pass in the«LexicalEnvironment of the running
execution context as the Scope. Pass in true as the Strict flag if the FunctionExpression is contained in strict code or
if its FunctionBody is strict code.

FunctionExpression : function Bindingldentifier. (FormalParameterList.) { FunctionBody }

1. Let funcEnv be the result of calling NewDeclarativeEnvironment passing the running execution context’s Lexical

Environment as the argument

Let envRec be funcEnv’s environment record.

3. Call the CreatelmmutableBinding concrete method of envRec passing the String value of Bindingldentifier as the
argument.

4. Let closure be the result of creating a new Function object as specified in 13.2 with parameters specified by
FormalParameterList and body specified by FunctionBody. Pass in funcEnv as the Scope. Pass in true as the Strict
flag if the FunctionExpression is contained in strict code or if its FunctionBody is strict code.

5. Call the InitializeBinding concrete method.of envRec passing the String value of Identifier and closure as the
arguments.

6. Return closure.

N

NOTE The Bindingldentifier in" a FunctionExpression can be referenced from inside the FunctionExpression's
FunctionBody to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Bindingldentifier in
a FunctionExpression cannot be referenced from.and does not affect the scope enclosing the FunctionExpression.

FunctionBody : StatementLiStopt

1. The code of this FunctionBody is strict mode code if it is part of a FunctionDeclaration or FunctionExpression that
is contained in strict mode code or if the Directive Prologue (14.1) of its StatementList contains a Use Strict
Directive or if any of the conditions in 10.1.1 apply. If the code of this FunctionBody is strict mode code,
StatementList is evaluated in the following steps as strict mode code. Otherwise, StatementList is evaluated in the
following steps as non-strict mode code.

2. If StatementList is present return the result of evaluating StatementList.

3. Else return NormalCompletion(undefined).

13.1.1 Creating Function Objects
A Function object is constructed as follows given an parameter list specified by FormalParameterList, a body
specified by FunctionBody, a Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an

object homeObject and a string methodName:

1. Create a new native ECMASCcript object and let F be that object.
2. Set all the internal methods, except for [[Get]], of F as described in 8.12.

144 © Ecma International 2011

»ecma

3. Add the [[NativeBrand]] internal property with value NativeFunction to F.
4. Set the [[Prototype]] internal property of F to the standard built-in Function prototype object as specified in 15.3.3.1.
5. Set the [[Get]] internal property of F as described in 15.3.5.4.
6. Setthe [[Call]] internal property of F as described in 13.2.1.
7. Set the [[Construct]] internal property of F as described in 13.2.2.
8. Set the [[HasInstance]] internal property of F as described in 15.3.5.3.
9. Set the [[Scope]] internal property of F to the value of Scope.
10. Set the [[FormalParameters]] internal property of F to FormalParameterList. .
11. Set the [[Code]] internal property of F to FunctionBody.
12. Set the [[Extensible]] internal property of F to true.
13. If the homeObject argument was provided, set the [[Home]] internal property of F to homeObiject.
14. 1f the methodNameargument was provided, set the [[MethodName]] internal property of F to methodName.
15. Let len be the ExpectedArgumentCount of FormalParameterList.
16. Call the [[DefineOwnProperty]] internal method of F with arguments "length", Property Descriptor {[[Value]]:
len, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, andfalse.
17. Let proto be the result of creating a new object as would be constructed by the expression new Object ()where
Object is the standard built-in constructor with that name.
18. Call the [[DefineOwnProperty]] internal method of proto with arguments "constructox", Property Descriptor
{[[Value]]: F, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}, and false.
19. Call the [[DefineOwnProperty]] internal method of F with arguments "prototype", Property Descriptor
{[[VValue]]: proto, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false}, and false.
20. If Strict is true, then
a. Letthrower be the [[ThrowTypeError]] function Object (13.2.3).
b. Call the [[DefineOwnProperty]] internal method of F with arguments "caller™", PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
c. Call the [[DefineOwnProperty]] internal method.of F with arguments "arguments", PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
21. Set the [[Strict]] internal property of F to Strict.
22. Return F.

NOTE A prototype property is automatically created for every function, to allow for the possibility that the function
will be used as a constructor.

13.1.1.1 [[Call]]

When the [[Call]] internal method for a Function object F is called with a this value and a list of arguments, the
following steps-are taken:

1. Let callerContext be the current execution context.
2. Let status be the result of establishing a.new execution context for function code using F, the passed
arguments List args, and the this value as described in 10.4.3.
3. If status.is an abrupt completion, then
a. Restore callerContext as the current execution context.
b. Return status.
4. If F does not have a [[Code]] internal property, then
a. Letresult be NormalCompletion(undefined).
5. Else,
a. Letresult be the result of evaluating the FunctionBody that is the value of F's [[Code]] internal
property.
6. Restore callerContext as the current execution context.
7. Return result.

13.1.1.2 [[Construct]]

When the [[Construct]] internal method for a Function object F is called with a possibly empty list of arguments,
the following steps are taken:

1. Letobj be a newly created native ECMAScript object.

2. Set all the internal methods of obj as specified in 8.12.
3. Set the [[Extensible]] internal property of obj to true.

© Ecma International 2011 145

secma

Let proto be the value of calling the [[Get]] internal property of F with argument "prototype".

ReturnlfAbrupt(proto).

If Type(proto) is Object, set the [[Prototype]] internal property of obj to proto.

If Type(proto) is not Object, set the [[Prototype]] internal property of obj to the standard built-in Object prototype

object as described in 15.2.4.

8. Let result be the result of calling the [[Call]] internal property of F, providing obj as the this value and providing the
argument list passed into [[Construct]] as args.

9. ReturnlfAbrupt(proto).

10. If Type(result.[[value]]) is Object then return result.

11. Return NormalCompletion(obj).

No ok

13.1.1.3 The [[ThrowTypeError]] Function Object

The [[ThrowTypeError]] object is a unique function object that is defined once as follows:

1. Create a new native ECMAScript object and let F be that object.

2. Set all the internal methods of F as described in 8.12.

3. Add the [[NativeBrand]] internal property with value NativeFunction to F.

4. Set the [[Prototype]] internal property of F to the standard built<in Function prototype object as specified in 15.3.3.1.

5. Set the [[Call]] internal property of F as described in 13.2.1.

6. Set the [[Scope]] internal property of F to the Global Environment.

7. Set the [[FormalParameters]] internal property of F to the FormalParameterList : [empty] production.

8. Set the [[Code]] internal property of F to be a FunctionBody that unconditionally throws a TypeError exception and
performs no other action.

9. Call the [[DefineOwnProperty]] internal method of F with arguments "length", Property Descriptor {[[Value]]: O,

[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, and false.
10. Set the [[Extensible]] internal property of F to false.
11. Let [[ThrowTypeError]] be F.

13.2 Generator Definitions

Syntax

GeneratorDeclaration :
Function * Bindingldentifier (FormalParameterList') { FunctionBody }

GeneratorExpression :
Function * Bindingldentifiery,: (FormalParameterList) { FunctionBody }

14 Program

Syntax

Program :
ProgramBodyopt

ProgramBody :
StatementList

Semantics

The production Program : ProgramBodyop: is evaluated as follows:

1. The code of this Program is strict mode code if the Directive Prologue (14.1) of its ProgramBody contains a
Use Strict Directive or if any of the conditions of 10.1.1 apply. If the code of this Program is strict mode
code, ProgramBody is evaluated in the following steps as strict mode code. Otherwise ProgramBody is
evaluated in the following steps as non-strict mode code.

If ProgramBody is not present, return NormalCompletion(empty).

Let progCxt be a new execution context for global code as described in 10.4.1.

4. Let result be the result of evaluating ProgramBody.

wmn

146 © Ecma International 2011

»ecma

5. Exit the execution context progCxt.
6. Return result.

NOTE The processes for initiating the evaluation of a Program and for dealing with the result of such an evaluation
are defined by an ECMAScript implementation and not by this specification.

The production ProgramBody : StatementList is evaluated as follows:
1. Return the result of evaluating StatementList.
14.1 Directive Prologues and the Use Strict Directive

A Directive Prologue is the longest sequence of ExpressionStatement productions occurring as the initial
StatementListltem productions of a ProgramBody or FunctionBody and where each ExpressionStatement in the
sequence consists entirely of a StringLiteral token followed a semicolon: The semicolon may appear explicitly
or may be inserted by automatic semicolon insertion. A Directive Prologue may be an empty sequence.

A Use Strict Directive is an ExpressionStatement in a Directive Prologue whose StringLiteral is either the exact
character sequences "use strict" or 'use strict's A Use Strict Directive may not contain an
EscapeSequence or LineContinuation.

A Directive Prologue may contain more than one Use Strict Directive..However, an implementation may issue
a warning if this occurs.

NOTE The ExpressionStatement productions of a Directive Prologue are evaluated normally during evaluation of the
containing production. Implementations may define implementation specific meanings for ExpressionStatement productions
which are not a Use Strict Directive and which occur in a Directive Prologue. " If an appropriate notification mechanism
exists, an implementation should issue a warning if it encounters in a Directive Prologue an ExpressionStatement that is not
a Use Strict Directive or which does not have a meaning defined by the implementation.

15 Standard Built-in ECMAScript Objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the
global object, is part of the lexical environment of the executing program. Others are accessible as initial
properties of the global object.

Unless specified-otherwise, a built-in object has the [[NativeBrand]] internal property with value NativeFunction
if that built<in object has a [[Call]] internal property. Unless specified otherwise, the [[Extensible]] internal
property.of a built-in object initially has the value true.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with the new operator. For each built-in function, this
specification describes the arguments required by that function and properties of the Function object. For each
built-in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties<of specific object instances returned by a new expression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this clause is given fewer arguments than the function is specified to require, the function or constructor shall
behave exactly as if it had been given sufficient additional arguments, each such argument being the
undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this clause is given more arguments than the function is specified to allow, the extra arguments are evaluated
by the call and then ignored by the function. However, an implementation may define implementation specific
behaviour relating to such arguments as long as the behaviour is not the throwing of a TypeError exception
that is predicated simply on the presence of an extra argument.

© Ecma International 2011 147

secma

NOTE Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Every built-in function and every built-in constructor has the Function prototype object, which is the initial value
of the expression Function.prototype (15.3.4), as the value of its [[Prototype]] internal property.

Unless otherwise specified every built-in prototype object has the Object prototype object, which is the initial
value of the expression Object.prototype (15.2.4), as the value of its [[Prototype]] internal property,

except the Object prototype object itself.

None of the built-in functions described in this clause that are not constructors shall implement the
[[Construct]] internal method unless otherwise specified in the description of a particular function. The
behavior specified in this clause for each built-in function is the specification of the [[Call]] internal method
behavior for that function. None of the built-in functions described in this clause shall have a prototype
property unless otherwise specified in the description of a particular function.

This clause generally describes distinct behaviours for when a constructor is “called as a function” and for
when it is “called as part of a new expression”. The “called.as a function” behaviour corresponds to the
invocation of the constructor’s [[Call]] internal method and the “called as part of a new expression” behaviour
corresponds to the invocation of the constructor’s [[Construct]] internal method.

Every built-in Function object described in this clause—whether as-a constructor, an ordinary function, or
both—has a 1length property whose value is an integer. Unless otherwise specified, this value is equal to the
largest number of named arguments shown in the subclause headings for the function description, including
optional parameters.

NOTE For example, the Function object that is the initial value of the s1ice property of the String prototype object is

described under the subclause heading “String.prototype.slice (start, end)’. which shows the two named arguments start
and end; therefore the value of the 1ength property of that Function object is 2.

In every case, the length property of a built-in Function object described in this clause has the attributes
{ [[writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }. Every other property described in this
clause has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true } unless otherwise
specified.

15.1 The Global Object

The unique global object is created before control enters any execution context.

Unless otherwise specified, the standard built-in properties of the global object have attributes {[[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}.

The global object does not have a [[Construct]] internal property; it is not possible to use the global object as a
constructor with the new operator.

The global object does not have a [[Call]] internal property; it is not possible to invoke the global object as a
function.

The value of the [[Prototype]] internal property of the global object is implementation-dependent.
In addition to the properties defined in this specification the global object may have additional host defined

properties. This may include a property whose value is the global object itself; for example, in the HTML
document object model the window property of the global object is the global object itself.

148 © Ecma International 2011

»ecma

15.1.1 Value Properties of the Global Object
15.1.1.1 NaN

The value of NaN is NaN (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

15.1.1.2 Infinity

The value of Infinity is +w (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

15.1.1.3 undefined

The value of undefined is undefined (see 8.1). This property has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

15.1.2 Function Properties of the Global Object
15.1.2.1 eval (x)
When the eval function is called with one argument x, the following steps are taken:

1. If Type(x) is not String, return x.

Let prog be the ECMAScript code that is the result of parsing x as a Program. If the parse fails, throw a
SyntaxError exception (but see also clause 16).

Let evalCtx be the result of establishing a new execution context (10.4.2) for the eval code prog.

Let result be the result of evaluating the program prog.

Exit the running execution context evalCtx, restoring the previous execution context.

If result.type is normal and its‘completion value is a value V, then return the value V.

If result.type is normal and‘its completion value is empty, then return the value undefined.

Otherwise, result.type must be throw. Throw result.value as an exception.

N

NGk Ww

15.1.2.1.1 Direct Call to Eval

A direct call to the eval function is one that is expressed as a CallExpression that meets the following two
conditions:

The Reference that is the result of evaluating the MemberExpression in the CallExpression has an environment
record as its base value and its reference name is "eval".

The result of calling the abstract operation GetValue with that Reference as the argument is the standard built-
in function defined in 15.1.2.1.

15.1.2.2 parselnt (string , radix)

The parselInt function produces an integer value dictated by interpretation of the contents of the string
argument according to the specified radix. Leading white space in string is ignored. If radix is undefined or O,
it is assumed to be 10 except when the number begins with the character pairs 0x or 0%, in which case a radix
of 16 is assumed. If radix is 16, the number may also optionally begin with the character pairs 0x or 0X.

When the parseInt function is called, the following steps are taken:

1. Let inputString be ToString(string).

2. Let S be a newly created substring of inputString consisting of the first character that is not a
StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white
space.) If inputString does not contain any such characters, let S be the empty string.

3. Letsignbel.

© Ecma International 2011 149

secma

If S is not empty and the first character of S is a minus sign -, let sign be —1.

If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character

from S.

6. Let R = Tolnt32(radix).

Let stripPrefix be true.

8. IfR=0,then

a. IfR<2orR > 36, then return NaN.
b. If R= 16, let stripPrefix be false.
9. Else,R=0
a. LetR=10.
10. If stripPrefix is true, then
a. If the length of S is at least 2 and the first two characters of S are either “0Ox” or “0X”, then remove
the first two characters from S and let R = 16.

11. If S contains any character that is not a radix-R digit, then let Z be.the substring of S consisting of all
characters before the first such character; otherwise, let Z be S.

12. If Z is empty, return NaN.

13. Let mathint be the mathematical integer value that is represented by Z in radix-R notation, using the letters
A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20
significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the
implementation; and if R is not 2, 4, 8, 10, 16, or 32,.then mathint may be an implementation-dependent
approximation to the mathematical integer value that is represented by Z in'radix-R notation.)

14. Let number be the Number value for mathint.

15. Return sign x number.

ok

~

NOTE parseInt may interpret only a leading. portion of string as an integer value; it ignores any characters that
cannot be interpreted as part of the notation of{an integer, and no indication.is given that any such characters were
ignored.

15.1.2.3 parseFloat (string)

The parseFloat function produces a Number value dictated by interpretation of the contents of the string
argument as a decimal literal:

When the parseFloat function is called, the following steps are taken:

1. Let inputString be ToString(string).

2. Let trimmedString be a substring of inputString consisting of the leftmost character that is not a
StrWhiteSpaceChar-and all characters to the right of that character. (In other words, remove leading white
space.) If inputString does not contain any such characters, let trimmedString be the empty string.

3. If neither trimmedString nor any prefix of trimmedString satisfies the syntax of a StrDecimalLiteral (see
9:3.1), return NaN.

4. Let numberString be the longest prefix of trimmedString, which might be trimmedString itself, that satisfies
the syntax of a StrDecimalLiteral.

5. Returnthe Number value for the MV of numberString.

NOTE parseFloat may.interpret only a leading portion of string as a Number value; it ignores any characters that
cannot be interpreted as part of the notation of an decimal literal, and no indication is given that any such characters were
ignored.

15.1.2.4 isNaN (number)
Returns true if the argument coerces to NaN, and otherwise returns false.

1. If ToNumber(number) is NaN, return true.
2. Otherwise, return false.

NOTE A reliable way for ECMAScript code to test if a value X is a NaN is an expression of the form x !== X. The
result will be true if and only if X is a NaN.

150 © Ecma International 2011

»ecma

15.1.2.5 isFinite (number)
Returns false if the argument coerces to NaN, +e, or —e0, and otherwise returns true.

1. If ToNumber(number) is NaN, +o0, or —oo, return false.
2. Otherwise, return true.

15.1.3 URI Handling Function Properties

Uniform Resource Identifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and transport protocols
by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not provide any
support for using URIs except for functions that encode and decode URIs as described in'15.1.3.1, 15.1.3.2, 15.1.3.3 and
15.1.3.4.

NOTE Many implementations of ECMAScript provide additional functions and methods that manipulate web pages;
these functions are beyond the scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form is:

Scheme : First / Second ; Third ? Fourth

where the italicised names represent components and “:”, “/%, “;” and “?” are reserved characters used as
separators. The encodeURI and decodeURI functions are intended to work with complete URIs; they
assume that any reserved characters in the URI are intended to have special meaning and so are not
encoded. The encodeURIComponent and decodeURIComponent functions are intended to work with the
individual component parts of a URI; they assume that-any reserved characters represent text and so must be
encoded so that they are not interpreted as reserved characters when the component is part of a complete
URI.

The following lexical grammar specifies the form of encoded URIs.

Syntax
uri
uriCharactersgpt

uriCharacters :::
uriCharacter uriCharactersgpt

uriCharacter :::
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: one of
; / 2 @ & = + s ,

uriUnescaped :::
uriAlpha
DecimalDigit
uriMark

uriEscaped :::
% HexDigit HexDigit

uriAlpha ::: one of
b ¢ d f g h i
B C D F G H I

qu
® &
H -
=8
Z B
oo
I 'o
10 Q
R
non
H
ae
<<
o
i
K
N N

a e
A E

© Ecma International 2011 151

secma

uriMark ::: one of
- Lo~k ()

NOTE The above syntax is based upon RFC 2396 and does not reflect changes introduced by the more recent RFC
3986.

When a character to be included in a URI is not listed above or is not intended to have the special meaning
sometimes given to the reserved characters, that character must be encoded. The character is transformed
into its UTF-8 encoding, with surrogate pairs first converted from UTF-16 to the corresponding code point
value. (Note that for code units in the range [0,127] this results in a single octet with the same value.) The
resulting sequence of octets is then transformed into a String with each octet represented by an escape
sequence of the form “%xx”.

The encoding and escaping process is described by the abstract operation. Encode taking two String
arguments string and unescapedSet.

Let strLen be the number of characters in string.
Let R be the empty String.
Letk be 0.
Repeat
a. Ifkequals strLen, return R.
b. Let C be the character at position k within string.
c. IfCisin unescapedSet, then
i Let S be a String containing only the character C.
ii. Let R be a new String value computed by concatenating the previous value of R and S.
d. Else, Cis not in unescapedSet
i If the code unit value of C is not less than 0xDCOO and not greater than OXDFFF, throw a
URIError exception.
il If the code unit value of C is less than 0xD800 or greater than OXDBFF, then
1. Let V.bethe code unit value of C.
iii. Else,
1. Ancrease k by 1.
2. Ifk equals strLen, throw a URIError exception.
3. Let kChar be the code unit value of the character at position k within string.
4. If kChar is less-than OxDCOO or greater than OxDFFF, throw a URIError
exception.
5. Let V be (((the code unit value of C) — 0xD800) x 0x400 + (kChar — 0xDCO00) +
0x10000).
iv. Let Octets be the array of octets resulting by applying the UTF-8 transformation to V, and
let L be the array size.
" Let j be 0.
Vi, Repeat, while j < L
1. Let jOctet be the value at position j within Octets.
2. Let S be a String containing three characters “%XY” where XY are two uppercase
hexadecimal digits encoding the value of jOctet.
3.< Let R be a new String value computed by concatenating the previous value of R and
S.
4. Increase j by 1.
e. Increase k by 1.

PR

The unescaping and decoding process is described by the abstract operation Decode taking two String
arguments string and reservedSet.

Let strLen be the number of characters in string.

Let R be the empty String.

Letk be 0.

Repeat
a. Ifkequals strLen, return R.
b. Let C be the character at position k within string.
c. IfCisnot ‘%’ then

PoMpE

152 © Ecma International 2011

eCina

i. Let S be the String containing only the character C.
d. Else, Cis ‘%’
i Let start be k.
ii. If k + 2 is greater than or equal to strLen, throw a URIError exception.
iii. If the characters at position (k+1) and (k + 2) within string do not represent hexadecimal
digits, throw a URIError exception.
iv. Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k

+ 2).
V. Increment k by 2.
Vi. If the most significant bit in B is 0, then

1. Let C be the character with code unit value B.
2. If Cisnotin reservedSet, then
a LetS be the String containing only the character C.
3. Else, Cis in reservedSet
a Let S be the substring of string from-position start to position k included.
Vii. Else, the most significant bit in B is 1
Let n be the smallest non-negative number such that (B << n) & 0x80 is equal to 0.
If n equals 1 or n is greater than 4, throw a URIError exception.
Let Octets be an array of 8-bit integers of size n.
Put B into Octets at position 0.
Ifk + (3 x (n— 1)) is greater than or equal to strLen, throw a URIError exception.
Let j be 1.
Repeat, while j <n
a Incrementk by 1.
b If the character at position k is not ‘%, throw a URIError exception.
¢ If the characters-at position (kK +1).and (k + 2) within string do not
represent hexadecimal digits, throw a URIError exception.
d Let B be the 8-bit value represented by the two hexadecimal digits at
position (k +'1) and (k. + 2).
e If the two most significant bits in B are not 10, throw a URIError
exception.
f Increment k by 2.
g Put B into Octets at position j.
h Increment j by 1.

8. LetV be.the value obtained by applying the UTF-8 transformation to Octets, that is,
from an array of octets into a 21-bit value. If Octets does not contain a valid UTF-8
encoding of a Unicode code point throw an URIError exception.

9. If Viis less than 0x10000, then

a Let C be the character with code unit value V.
b I Cis notin reservedSet, then
i, Let S be the String containing only the character C.
¢ Else, Cis in reservedSet
i Let S be the substring of string from position start to position k
included.
10. Else, V is > 0x10000
a LetL be (((V-0x10000) & Ox3FF) + 0xDCO00).
b LetH be ((((V—-0x10000) >> 10) & 0x3FF) + 0xD800).
¢ Let S be the String containing the two characters with code unit values H
and L.
e. Let R bea new String value computed by concatenating the previous value of R and S.
f. Increase k by 1.

NogR~wbhE

NOTE This syntax of Uniform Resource Identifiers is based upon RFC 2396 and does not reflect the more recent
RFC 3986 which replaces RFC 2396. A formal description and implementation of UTF-8 is given in RFC 3629.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one has the higher-
order bit set to 0, the remaining 7 bits being used to encode the character value. In a sequence of n octets, n>1, the initial
octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that octet contain bits from the
value of the character to be encoded. The following octets all have the higher-order bit set to 1 and the following bit set to

© Ecma International 2011 153

secma

0, leaving 6 bits in each to contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript
characters are specified in Table 22.

Table 22 — UTF-8 Encodings

Code Unit Value Representation 15t Octet 2" Octet 39 Octet 4" Octet
0x0000 - 0xO007F 00000000 Ozzzzzzz O0zzzzzzz
0x0080 - O0x07FF 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYYY VYVZZZZZZ 1110xxxx 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110vVv VvVWWwwwxx
followed by followed by 11110uuu 10uuwwww 10xxyyyy 10zzzzzz
0xDCO0 - OxDFFF 110111yy yyzzzzzz
0xD800 - OxDBFF
not followed by causes URIError
0xDCO00 - OxDFFF
0xDCO0 - OxDFFF causes URIError
0xE000 - OxXFFFF XXXXYYYY YVZZZZZZ 1110xxxx 10yyyyyy 10zzzzzz
Where

uuuuu=vvvv +1

to account for the addition of 0x10000 as in Surrogates, section 3.7, of the Unicode Standard.

The range of code unit values 0xD800-OxDFFF is used to encode surrogate pairs; the above transformation combines a
UTF-16 surrogate pair into a UTF-32 representation and encodes the resulting 21-bit value in UTF-8. Decoding
reconstructs the surrogate pair.

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence CO 80 must not
decode into the character U+0000. Implementations of the Decode algorithm_are required to throw a URIError when
encountering such invalid sequences.

15.1.3.1 decodeURI (encodedURI)

The decodeURI function computes a/new version of a URI in which each escape sequence and UTF-8
encoding of the sort that might be introduced by the encodeURI function is replaced with the character that it
represents. Escape sequences that could not have been'introduced by encodeURI are not replaced.

When the decodeURT function is called with one argument encodedURI, the following steps are taken:

1. LeturiString be ToString(encodedURI).

2. Let reservedURISet be a String containing one instance of each character valid in uriReserved plus “#”.
3. Return the result of calling Decode(uriString, reservedURISet)

NOTE The character “#” is not decoded from escape sequences even though it is not a reserved URI character.

15.1.3.2 decodeURIComponent (encodedURIComponent)

The decodeURIComponent function computes a new version of a URI in which each escape sequence and
UTF-8 encoding of the sort that might be introduced by the encodeURIComponent function is replaced with
the character that it represents.

When the decodeURIComponent function is called with one argument encodedURIComponent, the following
steps are taken:

1. Let componentString be ToString(encodedURIComponent).

2. Let reservedURIComponentSet be the empty String.
3. Return the result of calling Decode(componentString, reservedURIComponentSet)

154 © Ecma International 2011

»ecma

15.1.3.3 encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain characters is
replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the character.

When the encodeURI function is called with one argument uri, the following steps are taken:
1. LeturiString be ToString(uri).
2. Let unescapedURISet be a String containing one instance of each character valid in uriReserved and

uriUnescaped plus “#”.
3. Return the result of calling Encode(uriString, unescapedURISet)

NOTE The character “#” is not encoded to an escape sequence even though it‘is not a reserved or unescaped URI
character.

15.1.3.4 encodeURIComponent (uriComponent)
The encodeURIComponent function computes a new version of a URI in which each instance of certain
characters is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the

character.

When the encodeURIComponent function is called with one argument uriComponent, the following steps are
taken:

1. Let componentString be ToString(uriComponent).

2. Let unescapedURIComponentSet be a String containing.one instance of each character valid in
uriUnescaped.

3. Return the result of calling Encode(componentString, unescapedURIComponentSet)

15.1.4 Constructor Properties-of the Global Object

15.1.4.1 Object(...)

See 15.2.1 and 15.2.2.

15.1.4.2 Function(...)

See 15.3.1and 15.3.2.

15.1.4.3 Array (...)

See 15.4.1 and 15.4.2.

15.1.4.4 String(...)

See 15.5.1 and 15.5.2.

15.1.45 Boolean(...)

See 15.6.1 and 15.6.2.

15.1.4.6 Number (...)

See 15.7.1 and 15.7.2.

15.1.4.7 Date(...)

See 15.9.2.

© Ecma International 2011 155

secma

15.1.4.8 RegExp (...)

See 15.10.3 and 15.10.4.

15.1.4.9 Error(...)

See 15.11.1 and 15.11.2.

15.1.4.10 EvalError (...)

See 15.11.6.1.

15.1.4.11 RangeError (...)

See 15.11.6.2.

15.1.4.12 ReferenceError (...)

See 15.11.6.3.

15.1.4.13 SyntaxError (...)

See 15.11.6.4.

15.1.4.14 TypeError (...)

See 15.11.6.5.

15.1.4.15 URIError (...)

See 15.11.6.6.

15.1.5 Other Properties of the Global Object
15.1.5.1 Math

See 15.8.

15.1.5.2° JSON

See 15.12.

15.2 Object Objects

15.2.1 The Object Constructor Called as a Function
When Object is called as a function rather than as a constructor, it performs a type conversion.
15.2.1.1 Object ([value])

When the Object function is called with no arguments or with one argument value, the following steps are
taken:

1. Ifvalue is null, undefined or not supplied, create and return a new Object object exactly as if the standard

built-in Object constructor had been called with the same arguments (15.2.2.1).
2. Return ToObject(value).

156 © Ecma International 2011

»ecma

15.2.2 The Object Constructor
When Object is called as part of a new expression, it is a constructor that may create an object.
15.2.2.1 new Object ([value])

When the object constructor is called with no arguments or with one argument value, the following steps are
taken:

1. Ifvalue is supplied, then
a. If Type(value) is Object, then
i If the value is a native ECMAScript object, do not create a new object but simply return
value.
ii. If the value is a host object, then actions are taken and a result is returned in an
implementation-dependent manner that may depend on the host object.
b. If Type(value) is String, return ToObject(value).
c. If Type(value) is Boolean, return ToObject(value).
d. If Type(value) is Number, return ToObject(value).
Assert: The argument value was not supplied or its type was Null or Undefined.
Let obj be a newly created native ECMAScript object.
Set the [[Prototype]] internal property of obj to the standard built-in Object prototype object (15.2.4).
Set the [[Extensible]] internal property of obj to true.
Set all the internal methods of obj as specified in 8.12.
Return obj.

Nookwn

15.2.3 Properties of the Object Constructor

The value of the [[Prototype]] internal property of the Object constructor is the standard built-in Function
prototype object.

Besides the internal properties and the length property (whose value is 1), the Object constructor has the
following properties:

15.2.3.1 Object.prototype

The initial value of Object.prototype is the standard built-in Object prototype object (15.2.4).
This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.2.3.2 Object.getPrototypeOf (O)

When the getPrototypeOf£ function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. Return the value of the [[Prototype]] internal property of O.

15.2.3.3 Object.getOwnPropertyDescriptor (O, P)
When the getOwnPropertyDescriptor function is called, the following steps are taken:

If Type(O) is not Object throw a TypeError exception.

Let name be ToString(P).

Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument name.
Return the result of calling FromPropertyDescriptor(desc) (8.10.4).

15.2.3.4 Object.getOwnPropertyNames (O)

el NS

When the getOwnPropertyNames function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

© Ecma International 2011 157

secma

2. Letarray be the result of creating a new object as if by the expression new Array () where Array is the
standard built-in constructor with that name.

Let n be 0.

4. For each named own property P of O

a. Let name be the String value that is the name of P.

b. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(n), the
PropertyDescriptor {[[Value]]: name, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}, and false.

c. Incrementn by 1.

5. Return array.

w

NOTE If O is a String instance, the set of own properties processed in step 4 includes the implicit properties defined
in 15.5.5.2 that correspond to character positions within the object’s [[PrimitiveValue]] String.

15.2.3.5 Object.create (O [, Properties])

The create function creates a new object with a specified prototype. When the create function is called, the
following steps are taken:

1. If Type(O) is not Object or Null throw a TypeError exception.

2. Letobj be the result of creating a new object as if by the expression new.Object() where Object is the
standard built-in constructor with that name

3. Set the [[Prototype]] internal property of obj to O.

4. If the argument Properties is present and not undefined, add own properties to obj as if by calling the
standard built-in function Object.defineProperties with arguments obj and Properties.

5. Return obj.

15.2.3.6 Object.defineProperty (O, P, Attributes)

The defineProperty function is used to add an own property and/or update the attributes of an existing own
property of an object. When the defineProperty function'is called, the following steps are taken:

If Type(O) is not Object:throw a TypeError exception.

Let name be ToString(P).

Let desc be the result of calling ToPropertyDescriptor with Attributes as the argument.

Call the [[DefineOwnProperty]] internal method.of O with arguments name, desc, and true.
Return O.

15.2.3.7 Object.defineProperties (O, Properties)

grwNE

The defineProperties function is used to add own properties and/or update the attributes of existing own
properties of an object. When the defineProperties function is called, the following steps are taken:

If Type(O) is not Object throw a TypeError exception.
Let props be ToObject(Properties).
Let names be an internal list containing the names of each enumerable own property of props.
Let descriptors be an empty internal List.
For each element P of names in list order,
a. Let descObj be the result of calling the [[Get]] internal method of props with P as the argument.
b. Let desc be the result of calling ToPropertyDescriptor with descObj as the argument.
c. Append the pair (a two element List) consisting of P and desc to the end of descriptors.
6. For each pair from descriptors in list order,
a. Let P be the first element of pair.
b. Let desc be the second element of pair.
c. Call the [[DefineOwnProperty]] internal method of O with arguments P, desc, and true.
7. Return O.

bR

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration
order must be used to order the list elements in step 3 of this algorithm.

158 © Ecma International 2011

»ecma

15.2.3.8 Object.seal (O)
When the seal function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. For each named own property name P of O,
a. Letdesc be the result of calling the [[GetOwnProperty]] internal method of O with P.
b. If desc.[[Configurable]] is true, set desc.[[Configurable]] to false.
c. Call the [[DefineOwnProperty]] internal method of O with P, desc, and true as arguments.
3. Set the [[Extensible]] internal property of O to false.
4. Return O.

15.2.3.9 Object.freeze (O)
When the freeze function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. For each named own property name P of O,

a. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with P.

b. If IsDataDescriptor(desc) is true, then

i If desc.[[Writable]] is true, set desc.[[Writable]] to false.

c. Ifdesc.[[Configurable]] is true, set desc.[[Configurable]] tofalse.

d. Call the [[DefineOwnProperty]] internal method of O with P, desc, and true as arguments.
3. Set the [[Extensible]] internal property of O to false.
4. Return O.

15.2.3.10 Object.preventExtensions (O)
When the preventExtensions function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. Set the [[Extensible]] internal property of O to false.
3. Return O.

15.2.3.11 Object.isSealed (O)
When the isSealed function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. For each named own property name P of O,
a. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with P.
b. If desc.[[Configurable]] is true, then return false.

3. If the [[Extensible]] internal property of O is false, then return true.

4. Otherwise; return false.

15.2.3.12 Object.isFrozen (O)
When the isFrozen function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. For each named own property name P of O,
a. Letdesc be the result of calling the [[GetOwnProperty]] internal method of O with P.
b. If IsDataDescriptor(desc) is true then
i. If desc.[[Writable]] is true, return false.
c. Ifdesc.[[Configurable]] is true, then return false.
3. If the [[Extensible]] internal property of O is false, then return true.
4. Otherwise, return false.

15.2.3.13 Object.isExtensible (O)

When the isExtensible function is called with argument O, the following steps are taken:

© Ecma International 2011 159

secma

1. If Type(O) is not Object throw a TypeError exception.
2. Return the Boolean value of the [[Extensible]] internal property of O.

15.2.3.14 Object.keys (0O)
When the keys function is called with argument O, the following steps are taken:

1. If the Type(O) is not Object, throw a TypeError exception.
2. Letn be the number of own enumerable properties of O
3. Letarray be the result of creating a new Object as if by the expression new Array(n) where Array is
the standard built-in constructor with that name.
4. Letindex beO.
5. For each own enumerable property of O whose name String is P
a. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(index), the
PropertyDescriptor {[[Value]]: P, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true},
and false.
b. Increment index by 1.
6. Return array.

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration
order must be used in step 5 of this algorithm.

15.2.4 Properties of the Object Prototype Object

The value of the [[Prototype]] internal property of the Object prototype object is null and the initial value of the
[[Extensible]] internal property is true.

15.2.4.1 Object.prototype.constructor
The initial value of Object.prototype.constructor is the standard built-in Object constructor.
15.2.4.2 Object.prototype.toString ()

When the toString method is called, the following steps are taken:

1. If the this value is undefined, return " [object Undefined]".

2. If the this value is null, return'" [object Null]".

3. Let O be the result-of calling ToObject passing the this value as the argument.

4. If O has a [[NativeBrand]] internal property, let tag be the corresponding value from the Table 23.

5. Else’if O is a host object, let tag be an implementation defined string value. This value may not be
"Array", "Boolean", "Date", "Exrror", "Function", "JSON", "Math", "Number",
"Object", "RegExp", Or "String".

6. Else, let tag be the string value "Object".

7. Return the String value that is the result of concatenating the three Strings " [object ", tag,and "]".

Table 23 — Tags for Classified Native Objects

[[NativeBrand]] Value tag Value
NativeFunction "Function"
NativeArray "Array"
StringWrapper "String"
BooleanWrapper "Boolean"
NumberWrapper "Number"
NativeMath "Math"
NativeDate "Date"
NativeRegEXxp "RegExp"
NativeError "Error"
NativeJSON "JSON"
NativeArguments "Arguments"

160 © Ecma International 2011

»ecma

15.2.4.3 Object.prototype.toLocaleString ()
When the toLocaleString method is called, the following steps are taken:

1. Let O be the this value.
2. Return the result of calling Invoke with arguments "toString", O, and an empty arguments List.

NOTE 1 This function is provided to give all Objects a generic toLocaleString interface, even though not all may
use it. Currently, Array, Number, and Date provide their own locale-sensitive toLocaleString methods.

NOTE 2 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

15.2.4.4 Object.prototype.valueOf ()
When the valueOf method is called, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. 1T O is the result of calling the Object constructor with.a host object (15.2.2.1), then
a. Return either O or another value such as the host object originally passed to the constructor. The
specific result that is returned is implementation-defined.
3. Return O.

15.2.4.5 Object.prototype.hasOwnProperty (V)
When the hasOwnProperty method is called with argument V; the following steps are taken:

Let P be ToString(V).

Let O be the result of calling ToObject passing the this value as the argument.

Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the argument.
If desc is undefined, return false.

Return true.

A A

NOTE 1 Unlike [[HasProperty]] (8.12:6), this method does-not consider objects in the prototype chain.

NOTE 2 The-ordering.of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

15.2.4.6 Object.prototype.isPrototypeOf (V)
When the isPrototypeOf method is called with argument V, the following steps are taken:

1. If Vis notan object, return false.
2. Let O be the result of calling ToObject passing the this value as the argument.
3. Repeat

a. LetV bethe value of the [[Prototype]] internal property of V.

b. if Vis null, return false

c. IfO and V refer to the same object, return true.

NOTE The ordering of steps 1 and 2 is chosen to preserve the behaviour specified by previous editions of this
specification for the case where V is not an object and the this value is undefined or null.

15.2.4.7 Object.prototype.propertylsEnumerable (V)
When the propertyIsEnumerable method is called with argument V, the following steps are taken:

1. Let P be ToString(V).
2. Let O be the result of calling ToObject passing the this value as the argument.

© Ecma International 2011 161

secma

3. Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the argument.
4. If desc is undefined, return false.
5. Return the value of desc.[[Enumerable]].

NOTE 1 This method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

15.2.5 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.
15.3 Function Objects

15.3.1 The Function Constructor Called as a Function

When Function is called as a function rather than as a constructor, it creates and initialises a new Function
object. Thus the function call Function(..) is equivalent to the object creation expression new
Function (..) with the same arguments.

15.3.1.1 Function (p1, p2, ..., pn, body)

When the Function function is called with some arguments pl, p2, ... , pn, body (where n might be 0, that is,

there are no “p” arguments, and where body might also not be provided), the following steps are taken:

1. Create and return a new Function object as if the standard built-in constructor Function was used in a new
expression with the same arguments (15.3.2.1).

15.3.2 The Function Constructor
When Function is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.3.2.1 new Function (p1, p2, ..., pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify formal
parameters.

When the Function constructor is called with some arguments p1, p2, ..., pn, body (where n might be 0, that
is, there are no “p” arguments, and where body might also not be provided), the following steps are taken:
Let argCount be the total number of arguments passed to this function invocation.
Let P be the empty String.
If argCount = 0, let bodyText be the empty String.
Else if argCount = 1, let bodyText be that argument.
Else, argCount > 1
a. Let firstArg be the first argument.
b. Let P be ToString(firstArg).
c. Letkbe?2.
d. Repeat, while k < argCount
i Let nextArg be the k’th argument.
il Let P be the result of concatenating the previous value of P, the String ", " (a comma), and
ToString(nextArg).
iii. Increase k by 1.
e. Let bodyText be the k’th argument.
6. Let bodyText be ToString(bodyText).
7. Let parameters be the result of parsing P using FormalParameterList as the goal symbol. Throw a
SyntaxError exception if the parse fails.

agpwbE

162 © Ecma International 2011

»ecma

8. Let body be the result of parsing bodyText using FunctionBody as the goal symbol. Throw a SyntaxError
exception if the parse fails.

9. If bodyText is strict mode code (see 10.1.1) then let strict be true, else let strict be false.

10. If strict is true, throw any exceptions specified in 13.1 that apply.

11. Return a new Function object created as specified in 13.2 passing parameters as the FormalParameterList
and body as the FunctionBody. Pass in the Global Environment as the Scope parameter and strict as the
Strict flag.

A prototype property is automatically created for every function, to provide for the possibility that the
function will be used as a constructor.

NOTE It is permissible but not necessary to have one argument for each formal parameter to be specified. For
example, all three of the following expressions produce the same result:

new Function("a", "b", "c¢", "return a+b+c")
new Function("a, b, c", "return atb+c")
new Function("a,b", "c¢", "return a+b+c")
15.3.3 Properties of the Function Constructor
The Function constructor is itself a Function object and has a [[NativeBrand]] internal property whose value is
NativeFunction. The value of the [[Prototype]] internal property of the Function constructor is the standard
built-in Function prototype object (15.3.4).
The value of the [[Extensible]] internal property of the Function constructor.is true.
The Function constructor has the following properties:
15.3.3.1 Function.prototype
The initial value of Function.prototype is the standard built-in Function prototype object (15.3.4).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.3.3.2 Function.length

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

15.3.4 Properties of the Function Prototype Object

The Function prototype object is itself a Function object and has a [[NativeBrand]] internal property whose
value is NativeFunction . When invoked, it accepts any arguments and returns undefined.

The value of the [[Prototype]] internal property of the Function prototype object is the standard built-in Object
prototype object (15.2.4). The initial value of the [[Extensible]] internal property of the Function prototype
object is true.

The Function prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the Object prototype Object.

The length property of the Function prototype object is 0.
15.3.4.1 Function.prototype.constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.

© Ecma International 2011 163

secma

15.3.4.2 Function.prototype.toString ()

An implementation-dependent representation of the function is returned. This representation has the syntax of
a FunctionDeclaration. Note in particular that the use and placement of white space, line terminators, and
semicolons within the representation String is implementation-dependent.

The toString function is not generic; it throws a TypeError exception if its this value is not a Function
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.3.4.3 Function.prototype.apply (thisArg, argArray)

When the apply method is called on an object func with arguments thisArg and argArray, the following steps
are taken:

1. If IsCallable(func) is false, then throw a TypeError exception.
2. IfargArray is null or undefined, then
a. Return the result of calling the [[Call]] internal method.of func, providing thisArg as the this value
and an empty list of arguments.
If Type(argArray) is not Object, then throw a TypeError_exception.
Let len be the result of calling the [[Get]] internal method of argArray with argument "length".
Let n be ToUint32(len).
Let argList be an empty List.
Let index be 0.
Repeat while index < n
a. LetindexName be ToString(index).
b. Let nextArg be the result of calling the [[Get]].internal method of argArray with indexName as the
argument.
c. Append nextArg as the last element of argList.
d. Setindex to index + 1.
9. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value and
argList as the list of arguments.

e R S

The length property of the apply method is 2.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

15.3.4.4 _Function.prototype.call (thisArg [, arg1[,arg2,...1])

When the call method is called on an object func with argument thisArg and optional arguments argl, arg2
etc, the following steps are taken:

1. If IsCallable(func) is false, then throw a TypeError exception.

2. LetargList be an empty List.

3. If this method was called with more than one argument then in left to right order starting with argl append
each argument as the last element of argList

4. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value and
argList as the list of arguments.

The length property of the call method is 1.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

15.3.4.5 Function.prototype.bind (thisArg [, arg1 [, arg2, ...]])

The bind method takes one or more arguments, thisArg and (optionally) argl, arg2, etc, and returns a new
function object by performing the following steps:

164 © Ecma International 2011

»ecma

Let Target be the this value.
If IsCallable(Target) is false, throw a TypeError exception.
Let A be a new (possibly empty) internal list of all of the argument values provided after thisArg (argl, arg2
etc), in order.
Let F be a new native ECMAScript object .
Set all the internal methods, except for [[Get]], of F as specified in 8.12.
Set the [[Get]] internal property of F as specified in 15.3.5.4.
Set the [[TargetFunction]] internal property of F to Target.
Set the [[BoundThis]] internal property of F to the value of thisArg.
Set the [[BoundArgs]] internal property of F to A.
Add the [[NativeBrand]] internal property with value NativeFunction to F.
Set the [[Prototype]] internal property of F to the standard built-in Function prototype object as specified in
15.3.3.1.
12. Set the [[Call]] internal property of F as described in 15.3.4.5.1.
13. Set the [[Construct]] internal property of F as described in 15.3.4.5.2.
14. Set the [[HasInstance]] internal property of F as described in 15.3.4.5.3.
15. If Target has the [[NativeBrand]] internal property with value NativeFunction, then
a. LettargetLen be the result of calling the [[Get]] internal method of Target with argument
"length".
b. Let L be the larger of 0 and the result of targetLen minus the number of element of A.
16. Else let L be 0.
17. Call the [[DefineOwnProperty]] internal method of F with arguments "length", PropertyDescriptor
{[[value]]: L, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, and false.
18. Set the [[Extensible]] internal property of F to true.
19. Let thrower be the [[ThrowTypeError]] function Object (13.2.3).
20. Call the [[DefineOwnProperty]] internal method of F with arguments "caller", PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
21. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments", PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
22. Return F.

RBO©XO~NoORAE WhE

Eo-

The length property of the bind method is 1.

NOTE Function objects created using/Function.prototype.bind do not have a prototype property or the
[[Code]], [[FormalParameters]];.and [[Scope]] internal properties.

15.3.4.5.1 [[Call]]

When the {[Call]] internal method of a function object, F, which was created using the bind function is called
with a this value and a list of arguments ExtraArgs, the following steps are taken:

Let boundArgs be the value of F’s [[BoundArgs]] internal property.

Let boundThis be the value of F’s [[BoundThis]] internal property.

Let target be the value of F’s [[TargetFunction]] internal property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Call]] internal method of target providing boundThis as the this value and
providing args as the arguments.

15.3.4.5.2 [[Construct]]

el NS S

When the [[Construct]] internal method of a function object, F that was created using the bind function is called
with a list of arguments ExtraArgs, the following steps are taken:

Let target be the value of F’s [[TargetFunction]] internal property.

If target has no [[Construct]] internal method, a TypeError exception is thrown.

Let boundArgs be the value of F’s [[BoundArgs]] internal property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Construct]] internal method of target providing args as the arguments.

PoobPE

© Ecma International 2011 165

secma

15.3.4.5.3 [[HaslInstance]] (V)

When the [[HasInstance]] internal method of a function object F, that was created using the bind function is
called with argument V, the following steps are taken:

1. Let target be the value of F’s [[TargetFunction]] internal property.
2. If target has no [[HasInstance]] internal method, a TypeError exception is thrown.
3. Return the result of calling the [[HaslInstance]] internal method of target providing V as the argument.

15.3.5 Properties of Function Instances

In addition to the required internal properties, every function instance has a [[Call]] internal property and in
most cases uses a different version of the [[Get]] internal property. Depending on how they are created (see
8.6.2, 13.2, 15, and 15.3.4.5), function instances may have a [[HaslInstance]] internal property, a [[Scope]]
internal property, a [[Construct]] internal property, a [[FormalParameters]] internal property, a [[Code]] internal
property, a [[TargetFunction]] internal property, a [[BoundThis]] internal property, and.a [[BoundArgs]] internal

property.
Every function instance has a [[NativeBrand]] internal property whose value is NativeFunction:

Function instances that correspond to strict mode functions (13.2) and function instances created using the
Function.prototype.bind method (15.3.4.5) have properties. named “caller” and “arguments” that throw a
TypeError exception. An ECMAScript implementation must not-associate any implementation specific
behaviour with accesses of these properties from strict mode function code.

15.3.5.1 length

The value of the length property is an integer that indicates the “typical” number of arguments expected by
the function. However, the language permits the function to-be invoked with some other number of arguments.
The behaviour of a function when.invoked on a number- of arguments other than the number specified by its
length property depends on the function. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false}.

15.3.5.2 prototype

The value of the prototype property is used to initialise the [[Prototype]] internal property of a newly created
object before the Function object is invoked as a constructor for that newly created object. This property has
the attribute{ [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Function objects created using Function.prototype .bind do not have a prototype property.
15.3.5.3 [[HaslInstance]] (V)

Assume F is a Function object.

When the [[HasInstance]]internal method of F is called with value V, the following steps are taken:

If V is not an object, return false.
Let O be the result of calling the [[Get]] internal method of F with property name "prototype".
If Type(O) is not Object, throw a TypeError exception.
Repeat
a. LetV be the value of the [[Prototype]] internal property of V.
b. If Vis null, return false.
c. IfO and V refer to the same object, return true.

PR

NOTE Function objects created using Function.prototype.bind have a different implementation of
[[HaslInstance]] defined in 15.3.4.5.3.

166 © Ecma International 2011

»ecma

15.3.5.4 [[Get]] (P)

Function objects use a variation of the [[Get]] internal method used for other native ECMAScript objects
(8.12.3).

Assume F is a Function object. When the [[Get]] internal method of F is called with property name P, the
following steps are taken:

1. Letv be the result of calling the default [[Get]] internal method (8.12.3) on F passing P as the property name
argument.
2. IfPis "caller" andv isastrict mode Function object, throw a TypeError exception.

3. Returnv.

NOTE Function objects created using Function.prototype .bind use the default [[Get]] internal method.
15.4 Array Objects

Array objects give special treatment to a certain class of property names. A property name P (in the form of a
String value) is an array index if and only if ToString(ToUint32(P)) is equal to P and ToUint32(P).is not equal to
2%2_1. A property whose property name is an array index.is also called an-element. Every Array object has a
length property whose value is always a nonnegative integer less than 2%2. The value of the length
property is numerically greater than the name of every property whose name is an array index; whenever a
property of an Array object is created or changed, other propertiesare adjusted as necessary to maintain this
invariant. Specifically, whenever a property is added whose name is.an array index, the length property is
changed, if necessary, to be one more than the numeric value of that array index; and whenever the 1length
property is changed, every property whose name is an array index whose value is not smaller than the new
length is automatically deleted. This constraint applies only to own properties of an Array object and is
unaffected by 1length or array index properties that may be inherited from its prototypes.

An object, O, is said to be sparse if the following algorithm returns true:
1. Let len be the result of calling the [[Get]] internal method of O with argument "length™.
2. For each integer i in‘the range 0<i<ToUint32(len)
a. Let elem be the result of calling. the [[GetOwnProperty]] internal method of O with argument
ToString(i).

b. If elem is undefined;return true.
3. Return false.

15.4.1 The Array Constructor Called as a Function

When Array is called as a function rather than as a constructor, it creates and initialises a new Array object.
Thus the function call Array(..) is equivalent to the object creation expression new Array(..) with the
same arguments.

15.4.1.1 Array ([iteml[4item2[,...11])
When the Array function is called the following steps are taken:

1. Create and return a new Array object exactly as if the standard built-in constructor Array was used in a
new expression with the same arguments (15.4.2).

15.4.2 The Array Constructor
When Array is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.4.2.1 new Array ([itemO[,item1[,...111)

This description applies if and only if the Array constructor is given no arguments or at least two arguments.

© Ecma International 2011 167

secma

The [[Prototype]] internal property of the newly constructed object is set to the original Array prototype object,
the one that is the initial value of Array.prototype (15.4.3.1).

The newly constructed object has the [[NativeBrand]] internal property with value NativeArray.
The [[Extensible]] internal property of the newly constructed object is set to true.
The 1length property of the newly constructed object is set to the number of arguments.

The 0 property of the newly constructed object is set to itemO (if supplied); the 1 property of the newly
constructed object is set to iteml (if supplied); and, in general, for as many arguments as there are, the k
property of the newly constructed object is set to argument k, where the first'argument is considered to be
argument number 0. These properties all have the attributes {[[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

15.4.2.2 new Array (len)

The [[Prototype]] internal property of the newly constructed object is set to the original Array prototype object,
the one that is the initial value of Array.prototype (15.4.3.1). The newly constructed object has the
[[NativeBrand]] internal property with value NativeArray. The [[Extensible]] internal property of the newly
constructed object is set to true.

If the argument len is a Number and ToUint32(len) is equal to len, then the length property of the newly
constructed object is set to ToUint32(len). If thecargument len is a Number and ToUint32(len) is not equal to len,
a RangeError exception is thrown.

If the argument len is not a Number, then the 1ength property of the newly constructed object is set to 1 and
the 0 property of the newly constructed object is set to len with attributes {[[Writable]]: true, [[Enumerable]]:
true, [[Configurable]]: true}.

15.4.3 Properties of the Array Constructor

The value of the [[Prototype]] internal property of the Array constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Array constructor has the
following properties:

15.4.3.4 Array.prototype

The initial value of Array . prototype is the Array prototype object (15.4.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.4.3.2 Array.isArray(arg)

The isArray function takes one argument arg, and returns the Boolean value true if the argument is an object
whose class internal property is "Array"; otherwise it returns false. The following steps are taken:

1. If Type(arg) is not Object, return false.
2. Ifarg has the [[NativeBrand]] internal property with value NativeArray, then return true.
3. Return false.

15.4.4 Properties of the Array Prototype Object

The value of the [[Prototype]] internal property of the Array prototype object is the standard built-in Object
prototype object (15.2.4).

168 © Ecma International 2011

»ecma

The Array prototype object is itself an array; it has an [[NativeBrand]] internal property with value NativeArray,
and it has a 1length property (whose initial value is +0) and the special [[DefineOwnProperty]] internal method
described in 15.4.5.1.

In following descriptions of functions that are properties of the Array prototype object, the phrase “this object”
refers to the object that is the this value for the invocation of the function. It is permitted for the this to be an
object which does not have an [[NativeBrand]] internal property with value NativeArray.

NOTE The Array prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the standard built-in Object prototype Object.

15.4.4.1 Array.prototype.constructor
The initial value of Array.prototype.constructor is the standard built-in Axray constructor.
15.4.4.2 Array.prototype.toString ()

When the toString method is called, the following steps are taken:

1. Letarray be the result of calling ToObject on the this value.

2. [Ifarray is an abrupt completion, return array.

3. Let func be the result of calling the [[Get]] internal method of array 'with argument "join".

4. If func is an abrupt completion, return func.

5. If IsCallable(func) is false, then let func be the standard built-in method Object.prototype.toString (15.2.4.2).

6. Return the result of calling the [[Call]] internal' method of func providing array as the this value and an
empty arguments list.

NOTE The toString function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the toString function can be
applied successfully to a host object.is implementation-dependent.

15.4.4.3 Array.prototype:toLocaleString ()

The elements of the array are converted to Strings using their toLocaleString methods, and these Strings
are then concatenated, separated by occurrences. of a separator String that has been derived in an
implementation-defined locale-specific way. The result of calling this function is intended to be analogous to
the result of toString, except that the result of this function is intended to be locale-specific.

The result is calculated as follows:

1. Let array be the result of calling ToObject passing the this value as the argument.

2. LetarraylLen be the result of calling the [[Get]] internal method of array with argument "length".

3. Let lenbe ToUint32(arrayLen).

4. ReturnlfAbrupt(len).

5. Let separator be the String value for the list-separator String appropriate for the host environment’s current
locale (this is derivediin an implementation-defined way).

6. Iflenis zero, return the empty String.

7. Let firstElement be the result of calling the [[Get]] internal method of array with argument "0".

8. IffirstElement is undefined or null, then
a. Let R be the empty String.
9. Else
a. Let R be the result of calling Invoke with arguments "toLocaleString", firstElement, and an
empty arguments List.
b. If Ris an abrupt completion, return R.
10. Letk be 1.
11. Repeat, while k < len
a. LetS bea String value produced by concatenating R and separator.
b. Let nextElement be the result of calling the [[Get]] internal method of array with argument
ToString(k).

© Ecma International 2011 169

secma

c. If nextElement is undefined or null, then
i Let R be the empty String.
d. Else
i Let R be the result of calling Invoke with arguments "toLocaleString", nextElement,
and an empty arguments List.
il If R is an abrupt completion, return R.
e. Let R be a String value produced by concatenating S and R.
f. Increase k by 1.
12. Return R.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleString function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the toLocaleString function can

be applied successfully to a host object is implementation-dependent.
15.4.4.4 Array.prototype.concat ([item1 [, item2[,...]11]1)

When the concat method is called with zero or more.arguments iteml, item2, etc., it returns an array
containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

1. Let O be the result of calling ToObject passing.the this value as the argument.
2. Let Abeanew array created as if by the expressionnew Array () Where Array is the standard built-in
constructor with that name.
Let n be 0.
4. Letitems be an internal List whose first element is O and whose subsequent elements are, in left to right
order, the arguments that were passed to this function<nvocation.
5. Repeat, while items is not empty
a. Remove the first element from items and let E be the value of the element.
b. If E has the [[NativeBrand]] internal property with value NativeArray, then
i. Let k be 0.
ii. Let len be the result of calling:-the [[Get]] internal method of E with argument "length".
iii. Repeat, while k < len
1. Let P be ToString(k).
2. Letexists be the result of calling the [[HasProperty]] internal method of E with P.
3. If exists is true, then
a Let subElement be the result of calling the [[Get]] internal method of E
with argument P.
b Call the [[DefineOwnProperty]] internal method of A with arguments
ToString(n), Property Descriptor {[[\Value]]: subElement, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
4. Ancrease n by 1.
5 Increase k by 1.
c. Else, Eiis not an Array
i Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property
Descriptor {[[Value]]: E, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true},
and false.
ii. Increase n by 1.
6. Let putStatus be the result of calling the [[Put]] internal method of A with arguments "length", n, and

w

true.
7. If putStatus is an abrupt completion, return putStatus.
8. Return A.

The length property of the concat method is 1.

170 © Ecma International 2011

eCina

NOTE The concat function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the concat function can be applied
successfully to a host object is implementation-dependent.

15.4.4.5 Array.prototype.join (separator)

The elements of the array are converted to Strings, and these Strings are then concatenated, separated by
occurrences of the separator. If no separator is provided, a single comma is used as the separator.

The join method takes one argument, separator, and performs the following steps:

Let O be the result of calling ToObject passing the this value as the argument.
Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
Let len be ToUint32(lenVal).
ReturnlfAbrupt(len).
If separator is undefined, let separator be the single-character String ™, .
Let sep be ToString(separator).
If len is zero, return the empty String.
Let elementO be the result of calling the [[Get]] internal method of O with argument "0".
9. IfelementO is undefined or null, let R be the empty String; otherwise, Let R be ToString(element0).
10. If R is an abrupt completion, return R.
11. Letk be 1.
12. Repeat, while k < len
a. LetS be the String value produced by concatenating R and sep.
b. Letelement be the result of calling the [[Get]] internal method of O with argument ToString(k).
c. Ifelement is undefined or null, Let next be the empty String; otherwise, let next be
ToString(element).
d. If nextis an abrupt completion, return next.
e. LetR bea String value produced by concatenating S and next.
f. Increase k by 1.
13. Return R.

N~ WDE

The length property of the join method is 1.

NOTE The join function is. intentionally generic; it does not require that its this value be an Array object. Therefore,
it can be transferred to other kinds of objects for use as a method. Whether the join function can be applied successfully
to a host object is.implementation-dependent.

15.4.4.6 < Array.prototype.pop ()

The last element of the array is removed from the array and returned.

1. Let O be the result of calling ToObject passing the this value as the argument.
2. Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
3. Let len be ToUint32(lenVal).
4. ReturnlfAbrupt(len).
5. Iflenis zero,
a. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length", 0,
and true.

b. If putStatus is an abrupt completion, return putStatus.
c. Return undefined.
6. Else,len>0
a. LetnewLen be len-1.
b. Letindx be ToString(newLen).
c. Letelement be the result of calling the [[Get]] internal method of O with argument indx.
d. Ifelement is an abrupt completion, return element.
e. Let deleteStatus be the result of calling the [[Delete]] internal method of O with arguments indx and
true.
f. If deleteStatus is an abrupt completion, return deleteStatus.

© Ecma International 2011 171

secma

g. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length",
newlLen, and true.

h. If putStatus is an abrupt completion, return putStatus.

i. Return element.

NOTE The pop function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method. Whether the pop function can be applied successfully to
a host object is implementation-dependent.

15.4.4.7 Array.prototype.push ([item1 [, item2[,...1]11)

The arguments are appended to the end of the array, in the order in which they appear. The new length of the
array is returned as the result of the call.

When the push method is called with zero or more arguments item1, item2, etc., the following steps are taken:

Let O be the result of calling ToObject passing the this value as.the argument.
Let lenVal be the result of calling the [[Get]] internal method.of O with argument "length".
Let n be ToUint32(lenVal).
ReturnlfAbrupt(len).
Let items be an internal List whose elements are, in left to right order, the arguments that were passed to this
function invocation.
6. Repeat, while items is not empty
a. Remove the first element from items and let E be the value of the element.
b. Let putStatus be the result of calling the [[Put]] internal method of O with arguments ToString(n), E,
and true.
c. If putStatus is an abrupt completion, return putStatus.
d. Increasen by 1.
7. Let putStatus be the result of calling the [[Put]] internal.method of O with arguments "length", n, and

gRrwbdE

true.
8. If putStatus is an abrupt completion, return putStatus.
9. Returnn.

The length property of the push method is 1.

NOTE The push function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred.to other kinds of objects for use as a method. Whether the push function can be applied successfully
to a host object is implementation-dependent.

15.4.4.8 Array.prototype.reverse ()

The elements of the array are rearranged so as to reverse their order. The object is returned as the result of
the call.

Let O be the result of calling ToObject passing the this value as the argument.

Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".

Let len be ToUint32(lenVal).

ReturnlfAbrupt(len).

Let middle be floor(len/2).

Let lower be 0.

Repeat, while lower = middle

Let upper be len— lower -1.

Let upperP be ToString(upper).

Let lowerP be ToString(lower).

Let lowerValue be the result of calling the [[Get]] internal method of O with argument lowerP.
If lowerValue is an abrupt completion, return lowerValue.

Let upperValue be the result of calling the [[Get]] internal method of O with argument upperP .
If upperValue is an abrupt completion, return upperValue.

NouprwbE

@mPoo0oTw

172 © Ecma International 2011

eCina

h. Let lowerExists be the result of calling the [[HasProperty]] internal method of O with argument
lowerP.
i. Let upperExists be the result of calling the [[HasProperty]] internal method of O with argument
upperP.
j. If lowerExists is true and upperExists is true, then
i Let putStatus be the result of calling the [[Put]] internal method of O with arguments
lowerP, upperValue, and true .
ii. If putStatus is an abrupt completion, return putStatus.
iii. Let putStatus be the result of calling the [[Put]] internal method of O with arguments
upperP, lowerValue, and true .
iv. If putStatus is an abrupt completion, return putStatus.
k. Else if lowerExists is false and upperExists is true, then
i. Let putStatus be the result of calling the [[Put]] internal method of O with arguments
lowerP, upperValue, and true .
ii. If putStatus is an abrupt completion, return putStatus.
i Let deleteStatus be the result of calling the [[Delete]] internal method of O, with arguments
upperP and true.
iv. If deleteStatus is an abrupt completion, return‘deleteStatus.
. Else if lowerExists is true and upperExists is false, then
i Let deleteStatus be the result of calling the [[Delete]] internal method of O, with arguments
lowerP and true .
ii. If deleteStatus is an abrupt completion, return deleteStatus.
iii. Let putStatus be the result of calling the [[Put]] internal method of O with arguments
upperP, lowerValue, and true .
iv. If putStatus is an abrupt completion, return putStatus.
m. Else, both lowerExists and upperExists are false
i. No action is required.
n. Increase lower by 1.
8. ReturnO.

NOTE The reverse function is intentionally generic; it does not require that its this value be an Array object.
Therefore, it can be transferred to other kinds of objects for use as a method. Whether the reverse function can be
applied successfully to a host object is implementation-dependent.

15.4.4.9 Array.prototype:shift ()

The first element of the array is removed from the array and returned.

1. Let O.be the result of calling ToObject passing the this value as the argument.
2. LetdenVal be the result of calling the [[Get]] internal method of O with argument "length".
3. let len be ToUint32(lenVal).
4. ReturnlfAbrupt(len).
5. If lenis zero, then
a. LetputStatus be the result of calling the [[Put]] internal method of O with arguments "length", 0,
and true.
b. If putStatus is-an abrupt completion, return putStatus.
c. Return undefined.
6. Let first be the result of calling the [[Get]] internal method of O with argument "0".
7. Iffirstis an abrupt completion, return first.
8. Letkbel.
9. Repeat, while k < len

a. Letfrom be ToString(k).
b. Letto be ToString(k-1).
c. LetfromPresent be the result of calling the [[HasProperty]] internal method of O with argument
from.
d. If fromPresent is true, then
i Let fromVal be the result of calling the [[Get]] internal method of O with argument from.
ii. If fromVal is an abrupt completion, return fromVal.
iii. Let putStatus be the result of calling the [[Put]] internal method of O with arguments to,
fromVal, and true.

© Ecma International 2011 173

eCina

iv. If putStatus is an abrupt completion, return putStatus.
e. Else, fromPresent is false
i Let deleteStatus be the result of calling the [[Delete]] internal method of O with arguments
to and true.
ii. If deleteStatus is an abrupt completion, return deleteStatus.
f. Increase k by 1.
10. Let deleteStatus be the result of calling the [[Delete]] internal method of O with arguments ToString(len-1)
and true.
11. If deleteStatus is an abrupt completion, return deleteStatus.
12. Call the [[Put]] internal method of O with arguments "length", (len-1), and true.
13. If putStatus is an abrupt completion, return putStatus.
14. Return first.

NOTE The shift function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the shift function can be applied
successfully to a host object is implementation-dependent.

15.4.4.10 Array.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns an array containing the elements of the
array from element start up to, but not including, element end (or through the end of the array if end is
undefined). If start is negative, it is treated as length+start where length is the length of the array. If end is
negative, it is treated as length+end where length is the length of the array. The following steps are taken:

1. Let O be the result of calling ToObject passing.the this value as the argument.
2. Let A beanew array created as if by the expressionnew Array () Wwhere Array is the standard built-in
constructor with that name.
Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
Let len be ToUint32(lenVal).
ReturnIfAbrupt(len).
Let relativeStart be Tolnteger(start).
If relativeStart is an abrupt completion, return relativeStart.
If relativeStart is negative, let k be max((len + relativeStart),0); else let k be min(relativeStart, len).
If end is undefined, let relativeEnd be len; else let relativeEnd be Tolnteger(end).
10. If relativeEnd is an abrupt completion, return relativeEnd.
11. If relativeEnd is negative, let final be max((len + relativeEnd),0); else let final be min(relativeEnd, len).
12. Letn beO.
13. Repeat, while k < final

a: Let Pk be ToString (k).

b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.

c. IfkPresent is true, then

i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. If kValue is an abrupt completion, return kValue.
iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n), Property
Descriptor {[[Value]]: kValue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true}; and false.

d. Increasek by 1.

e. Increase n by 1.
14. Return A.

CoOoNPG Rk~ W

The length property of the slice method is 2.
NOTE The slice function is intentionally generic; it does not require that its this value be an Array object. Therefore

it can be transferred to other kinds of objects for use as a method. Whether the slice function can be applied
successfully to a host object is implementation-dependent.

174 © Ecma International 2011

»ecma

15.4.4.11 Array.prototype.sort (comparefn)

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare equal
do not necessarily remain in their original order). If comparefn is not undefined, it should be a function that
accepts two arguments x and y and returns a negative value if x <y, zero if x =y, or a positive value if x > y.

Let obj be the result of calling ToObject passing the this value as the argument.

Let len be the result of applying Uint32 to the result of calling the [[Get]] internal method of obj with argument
"length".

If comparefn is not undefined and is not a consistent comparison function for the elements of this array (see
below), the behaviour of sort is implementation-defined.

Let proto be the value of the [[Prototype]] internal property of obj. If proto is not null and there exists an integer
j such that all of the conditions below are satisfied then the behaviour of sort is implementation-defined:

e 0bjis sparse (15.4)
e O<j<len
e The result of calling the [[HasProperty]] internal method of proto with-argument ToString(j) is true.

The behaviour of sort is also implementation defined if obj is sparse and any of the following conditions are
true:

e The [[Extensible]] internal property of obj is false.
e Any array index property of obj whose name'is a nonnegative integer less than len is a data property
whose [[Configurable]] attribute is false.

The behaviour of sort is also implementation defined if any array index property of obj whose name is a
nonnegative integer less than-len is an accessor property or is a data property whose [[Writable]] attribute is
false.

Otherwise, the following steps are taken.

1. Perform an implementation-dependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]] internal
methods of obj.and to SortCompare (described below), where the first argument for each call to [[Get]],
[[Put]],.or [[Delete]] is a nonnegative integer less than len and where the arguments for calls to SortCompare
are results of previous calls to the [[Get]] internal method. The throw argument to the [[Put]] and [[Delete]]
internal methods will be the value true. If obj is not sparse then [[Delete]] must not be called.

2. Return obj.

The returned object must have the following two properties.

e There must be some‘mathematical permutation = of the nonnegative integers less than len, such that
for every nonnegative integer j less than len, if property old[j] existed, then new[r(j)] is exactly the
same value as old[j],. But if property old[j] did not exist, then new[n(j)] does not exist.

e Then for all nonnegative integers j and k, each less than len, if SortCompare(j,k) <0 (see SortCompare
below), then =(j) < w(k).

Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] internal method of obj
with argument j before this function is executed, and the notation new[j] to refer to the hypothetical result of
calling the [[Get]] internal method of obj with argument j after this function has been executed.

A function comparefn is a consistent comparison function for a set of values S if all of the requirements below

are met for all values a, b, and c (possibly the same value) in the set S: The notation a<crb means
comparefn(a,b) < 0; a =ce b means comparefn(a,b) = 0 (of either sign); and a >ce b means comparefn(a,b) > 0.

© Ecma International 2011 175

secma

e Calling comparefn(a,b) always returns the same value v when given a specific pair of values a and b as its two
arguments. Furthermore, Type(v) is Number, and v is not NaN. Note that this implies that exactly one of a <cr b,
a =cr b, and a >cr b will be true for a given pair of a and b.

Calling comparefn(a,b) does not modify the this object.

a=cea (reflexivity)

Ifa=ceb,thenb=cra (symmetry)

Ifa=cebandb=cec,thena=cec (transitivity of =c)

Ifa<cebandb <cec, thena<cec (transitivity of <ce)

Ifa>crbandb >crc, thena>crc (transitivity of >cf)

NOTE The above conditions are necessary and sufficient to ensure that comparefn divides the set S into equivalence
classes and that these equivalence classes are totally ordered.

When the SortCompare abstract operation is called with two arguments j and k, the following steps are taken:

Let jString be ToString(j).
Let kString be ToString(k).
Let hasj be the result of calling the [[HasProperty]] internal method of obj with argument jString.
Let hask be the result of calling the [[HasProperty]] internal method of obj with argument kString.
If hasj and hask are both false, then return +0.
If hasj is false, then return 1.
If hask is false, then return —1.
Let x be the result of calling the [[Get]] internal method of obj with argument jString.
Let y be the result of calling the [[Get]] internal method of obj with argument kString.
. Ifx and y are both undefined, return +0.
. If x is undefined, return 1.
. Ify is undefined, return —1.
. If the argument comparefn is not undefined, then
a. If IsCallable(comparefn) is false, throw a TypeError exception.
b. Return the result of calling the [[Call]] internal method of comparefn passing undefined as the this
value and with arguments x and y.
14. Let xString be ToString(x).
15. Let yString be ToString(y).
16. If xString < yString, return —1.
17. If xString > yString, return 1.
18. Return +0.

NOTE 1 Because non-existent property values always compare greater than undefined property values, and
undefined.always compares greater than any other value, undefined property values always sort to the end of the result,
followed by non-existent property. values.

COoNoOR~WNE

Il
WN RO

NOTE 2 The sort function is intentionally generic; it does not require that its this value be an Array object. Therefore,
it can be transferred to other kinds of objects for use as a method. Whether the sort function can be applied successfully
to a host object is implementation-dependent.

15.4.4.12 Array.prototype:splice (start, deleteCount [, item1 [, item2[,...]1]11)

When the splice method is called with two or more arguments start, deleteCount and (optionally) item1, item2,
etc., the deleteCount elements of the array starting at array index start are replaced by the arguments iteml,
item2, etc. An Array object containing the deleted elements (if any) is returned. The following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.

2. Let A beanew array created as if by the expression new Array () where Array is the standard built-in
constructor with that name.

Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".

Let len be ToUint32(lenVal).

ReturnlfAbrupt(len).

Let relativeStart be Tolnteger(start).

If relativeStart is negative, let actualStart be max((len + relativeStart),0); else let actualStart be
min(relativeStart, len).

Nookow

176 © Ecma International 2011

eCina

8. Let actualDeleteCount be min(max(Tolnteger(deleteCount),0), len — actualStart).
9. LetkbeO.

10. Repeat, while k < actualDeleteCount
a. Letfrom be ToString(actualStart+k).
b. Let fromPresent be the result of calling the [[HasProperty]] internal method of O with argument
from.
c. IffromPresent is true, then

i. Let fromValue be the result of calling the [[Get]] internal method of O with argument from.
ii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(k), Property
Descriptor {[[Value]]: fromValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}, and false.
d. Incrementk by 1.
11. Let items be an internal List whose elements are, in left to right order, the portion of the actual argument list
starting with item1. The list will be empty if no such items are present.
12. Let itemCount be the number of elements in items.
13. If itemCount < actualDeleteCount, then
a. Letk be actualStart.
b. Repeat, while k < (len — actualDeleteCount)
i Let from be ToString(k+actualDeleteCount).
ii. Let to be ToString(k+itemCount).
iii. Let fromPresent be the result of calling the [[HasProperty]] internal method of O with
argument from.
iv. If fromPresent is true, then

1. Let fromValue be the result of calling the [[Get]] internal method of O with
argument from.

2. Call the [[Put]] internal method of O with arguments to, fromValue, and true.
V. Else, fromPresent is false
1. Call the [[Delete]] internal method of O with arguments to and true.
Vi. Increase k by 1.
c. Letkbelen.
d. Repeat, while k > (len — actualDeleteCount + itemCount)
i Call the [[Delete]] internal method of O with arguments ToString(k—1) and true.
ii. Decrease k by 1.
14. Else if itemCount >‘actualDeleteCount, then
a. Letk be (len—actualDeleteCount):
b. Repeat, while k > actualStart
i. Let from be ToString(k + actualDeleteCount — 1).
ii. Let.to be ToString(k + itemCount — 1)
ii. Let fromPresent be the result of calling the [[HasProperty]] internal method of O with
argument from.
iv. If fromPresent is true, then

1. Let fromValue be the result of calling the [[Get]] internal method of O with
argument from.

2. Call the [[Put]] internal method of O with arguments to, fromValue, and true.
V. Else, fromPresent is false
1. Call the [[Delete]] internal method of O with argument to and true.
vi. Decrease k by 1.
15. Let k be actualStart.
16. Repeat, while items is not empty
a. Remove the first element from items and let E be the value of that element.
b. Call the [[Put]] internal method of O with arguments ToString(k), E, and true.
c. Increase k by 1.
17. Call the [[Put]] internal method of O with arguments "length", (len — actualDeleteCount + itemCount),
and true.
18. Return A.

The length property of the splice method is 2.

© Ecma International 2011 177

secma

NOTE The splice function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the splice function can be applied
successfully to a host object is implementation-dependent.

15.4.4.13 Array.prototype.unshift ([item1 [, item2[,...1]1])

The arguments are prepended to the start of the array, such that their order within the array is the same as the
order in which they appear in the argument list.

When the unshift method is called with zero or more arguments iteml, item2, etc., the following steps are
taken:

Let O be the result of calling ToObject passing the this value as the argument.
Let lenVal be the result of calling the [[Get]] internal method of O with.argument "length".
Let len be ToUint32(lenVal).
ReturnlfAbrupt(len).
Let argCount be the number of actual arguments.
Let k be len.
Repeat, while k > 0,
a. Letfrom be ToString(k-1).
b. Letto be ToString(k+argCount —1).
c. Let fromPresent be the result of calling the [[HasProperty]].internal method of O with argument
from.
d. If fromPresent is true, then
i Let fromValue be the result of calling the [[Get]] internal method of O with argument from.
il Call the [[Put]] internal method of O with arguments to, fromValue, and true.
e. Else, fromPresent is false
i Call the [[Delete]] internal method of O with arguments to, and true.
f. Decrease k by 1.
8. LetjbeO.
9. Letitems be an internal List whose elements are, in left to right order, the arguments that were passed to this
function invocation.
10. Repeat, while items is‘not empty
a. Remove the first element from items and let E be the value of that element.
b. Call the [[Put]] internal method of O with arguments ToString(j), E, and true.
c. Increasej by 1.
11. Call the [[Put]] internal method of O with arguments "length", len+argCount, and true.
12. Return len+argCount.

NookkwbpE

The 1length property of the unshift method is 1.

NOTE The unshift function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift function can be
applied successfully to a host object is implementation-dependent.

15.4.4.14 Array.prototype.indexOf (searchElement [, fromindex])

indexOf compares searchElement to the elements of the array, in ascending order, using the internal Strict
Equality Comparison Algorithm (11.9.1), and if found at one or more positions, returns the index of the first
such position; otherwise, -1 is returned.

The optional second argument fromindex defaults to O (i.e. the whole array is searched). If it is greater than or
equal to the length of the array, -1 is returned, i.e. the array will not be searched. If it is negative, it is used as
the offset from the end of the array to compute fromindex. If the computed index is less than 0, the whole array
will be searched.

When the indexOf method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.

178 © Ecma International 2011

»ecma

Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).
ReturnlfAbrupt(len).
If len is 0, return -1.
If argument fromIndex was passed let n be Tolnteger(fromIndex); else let n be 0.
If n is an abrupt completion, return n.
If n>len, return -1.
Ifn>0, then
a. Letkben.
10. Else, n<0
a. Letkbelen - abs(n).
b. Ifkisless than 0, then let k be 0.
11. Repeat, while k<len
a. Let kPresent be the result of calling the [[HasProperty]] internal-method of O with argument
ToString(k).
b. IfkPresent is true, then
i. Let elementK be the result of calling the [[Get]]internal method of O with the argument
ToString(k).
ii. If elementK is an abrupt completion, return‘elementK.
iii. Let same be the result of applying the Strict Equality Comparison Algorithm to
searchElement and elementK.
iv. If same is true, return k.
c. Increase k by 1.
12. Return -1.

OCOoNoOREWDN

The length property of the indexOf method is 1.

NOTE The indexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use-as a method. Whether the indexOf function can be
applied successfully to a host object is implementation-dependent.

15.4.4.15 Array.prototype.lastindexOf (searchElement [, fromiIndex])

lastIndexOf compares searchElement to the elements of the array in descending order using the internal
Strict Equality Comparison Algorithm (11.9.1), and if found at one or more positions, returns the index of the
last such position; otherwise, -1 is returned.

The optional second argument fromindex defaults to the array's length minus one (i.e. the whole array is
searched). If it is greater than or equal to the length of the array, the whole array will be searched. If it is
negative, it is used as the offset from the end of the array to compute fromindex. If the computed index is less
than 0, -1 is returned.

When the 1lastIndexOf method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).
ReturnIfAbrupt(len).
If len is O, return -1.
If argument fromIndex was passed let n be Tolnteger(fromindex); else let n be len-1.
If n is an abrupt completion, return n.
If n >0, then let k be min(n, len — 1).
Else, n<0
a. Letkbelen - abs(n).
10. Repeat, while k>0
a. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument
ToString(k).
b. IfkPresent is true, then
i. Let elementK be the result of calling the [[Get]] internal method of O with the argument
ToString(k).

CONOAWNE

© Ecma International 2011 179

secma

il If elementK is an abrupt completion, return elementK.
iii. Let same be the result of applying the Strict Equality Comparison Algorithm to
searchElement and elementK.
iv. If same is true, return k.
c. Decrease k by 1.
11. Return -1.

The length property of the LastIndexOf method is 1.

NOTE The lastIndexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the 1astIndexOf function can be
applied successfully to a host object is implementation-dependent.

15.4.4.16 Array.prototype.every (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. every calls callbackfn once for each element present inthe array, in ascending
order, until it finds one where callbackfn returns false. If such an element is found, every immediately returns
false. Otherwise, if callbackfn returned true for all elements, every will return true. callbackfn is called only for
elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

every does not directly mutate the object on which it'is called. but the object may be mutated by the calls to
callbackfn.

The range of elements processed by every is set before the first call to callbackfn. Elements which are
appended to the array after the call to every begins will not be visited by callbackfn. If existing elements of the
array are changed, their.value as passed to callbackfn will be the value at the time every visits them;
elements that are deleted after the call to every begins and before being visited are not visited. every acts
like the "for all" quantifier in mathematics. In-particular, for an empty array, it returns true.

When the every method is called with one or two arguments, the following steps are taken:

Let O-be the result of calling ToObject passing the this value as the argument.
LetdenValue be the result of calling the [[Get]] internal method of O with the argument "length".
LLet len be ToUint32(lenValue).
ReturnifAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Let k be 0.
Repeat, while k <.len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresent is true, then
i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
il If kValue is an abrupt completion, return kValue.
iii. Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as the
this value and argument list containing kValue, k, and O.
iv. If testResult is an abrupt completion, return testResult.
V. If ToBoolean(testResult) is false, return false.
d. Increase k by 1.
9. Return true.

PNoRWNE

The 1ength property of the every method is 1.

180 © Ecma International 2011

»ecma

NOTE The every function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the every function can be applied
successfully to a host object is implementation-dependent.

15.4.4.17 Array.prototype.some (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. some calls callbackfn once for each element present in the array, in ascending
order, until it finds one where callbackfn returns true. If such an element is found, some immediately returns
true. Otherwise, some returns false. callbackfn is called only for elements of the array which actually exist; it is
not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

some does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by some is set before the first call to callbackfn. Elements that are appended
to the array after the call to some begins will not be visited by callbackfn. If existing elements of the array are
changed, their value as passed to callbackfn will be the value at the time that some visits them; elements that
are deleted after the call to some begins and before being visited are not visited. some acts like the "exists"
quantifier in mathematics. In particular, for an empty array; it returns false.

When the some method is called with one or two arguments; the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn).is false, throw-a TypeError exception.
If thisArg was supplied, let T bethisArg; else let T be-undefined.
Let k be 0.
Repeat, while k < len
a.« Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresent is true, then
i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. If kValue is an abrupt completion, return kValue.
iii. Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as the
this value and argument list containing kValue, k, and O.
iv. If testResult is an abrupt completion, return testResult.
V. If ToBoolean(testResult) is true, return true.
d. Increase k by 1.
9. Return false.

N~ OME

The 1length property of the some method is 1.

NOTE The some function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the some function can be applied successfully
to a host object is implementation-dependent.

15.4.4.18 Array.prototype.forEach (callbackfn [, thisArg])
callbackfn should be a function that accepts three arguments. forEach calls callbackfn once for each element

present in the array, in ascending order. callbackfn is called only for elements of the array which actually exist;
it is not called for missing elements of the array.

© Ecma International 2011 181

secma

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by forEach is set before the first call to callbackfn. Elements which are
appended to the array after the call to forEach begins will not be visited by callbackfn. If existing elements of
the array are changed, their value as passed to callback will be the value at.the time forEach visits them;
elements that are deleted after the call to forEach begins and before beingvisited are not visited.

When the forEach method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.
Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).
ReturnlfAbrupt(len).
If IsCallable(callbackfn) is false, throw a TypeError exception.
If thisArg was supplied, let T be thisArg; else let T be undefined.
Letk be 0.
Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresent is true, then
i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
il If kValue is an abrupt completion, return kValue.
iii. Let funcResult be the result of calling [[Call]] internal method of callbackfn with T as the
this value and argument list containing kValue, k, and O.
iv. If funcResult is an abrupt completion, return funcResult.
d. Increase k by 1.
9. Return undefined.

N~ NE

The 1length property of the forEach method is 1.

NOTE The forEach function is intentionally generic; it does not require that its this value be an Array object.
Therefore it'can be transferred to other kinds of objects for use as a method. Whether the forEach function can be
applied successfully to a host object is implementation-dependent.

15.4.4.19 Array.prototype.map (callbackfn [, thisArg])
callbackfn should be a function that accepts three arguments. map calls callbackfn once for each element in the
array, in ascending order, and constructs a new Array from the results. callbackfn is called only for elements of

the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

map does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by map is set before the first call to callbackfn. Elements which are
appended to the array after the call to map begins will not be visited by callbackfn. If existing elements of the

182 © Ecma International 2011

»ecma

array are changed, their value as passed to callbackfn will be the value at the time map visits them; elements
that are deleted after the call to map begins and before being visited are not visited.

When the map method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. LetlenValue be the result of calling the [[Get]] internal method of O with the argument "length".
3. Letlen be ToUint32(lenValue).
4. ReturnifAbrupt(len).
5. If IsCallable(callbackfn) is false, throw a TypeError exception.
6. If thisArg was supplied, let T be thisArg; else let T be undefined.
7. Let A beanew array created as if by the expression new Array (len) where Array is the standard built-
in constructor with that name and len is the value of len.
8. LetkbeO.
9. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresentis true, then
i Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. ReturnlfAbrupt(kValue).
iii. Let mappedValue be the result of calling the [[Call]] internal method of callbackfn with T as
the this value and argument List containing kValue; k, and O.
iv. ReturnlfAbrupt(mappedValue).
V. Let defineResult be the result of calling the [[DefineOwnProperty]] internal method of A
with arguments Pk, Property Descriptor {[[Value]]: mappedValue, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}, and false.
Vi. ReturnlfAbrupt(defineResult).
d. Increase k by 1.
10. Return A.

The 1length property of the map method is 1.

NOTE The map function.is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to otherkinds of objects for use as a method. Whether the map function can be applied successfully to
a host object is implementation-dependent.

15.4.4.20 Array.prototype-filter (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the
Boolean«value true or false. filter calls callbackfn once for each element in the array, in ascending order,
and constructs a new array of all the values for which callbackfn returns true. callbackfn is called only for
elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

filter does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by filter is set before the first call to callbackfn. Elements which are
appended to the array after the call to £ilter begins will not be visited by callbackfn. If existing elements of
the array are changed their value as passed to callbackfn will be the value at the time f£ilter visits them;
elements that are deleted after the call to £ilter begins and before being visited are not visited.

When the £ilter method is called with one or two arguments, the following steps are taken:

© Ecma International 2011 183

secma

1. Let O be the result of calling ToObject passing the this value as the argument.

2. LetlenValue be the result of calling the [[Get]] internal method of O with the argument "length™.

3. Letlen be ToUint32(lenValue).

4. ReturnifAbrupt(len).

5. If IsCallable(callbackfn) is false, throw a TypeError exception.

6. If thisArg was supplied, let T be thisArg; else let T be undefined.

7. Let Abeanew array created as if by the expression new Array () where Array is the standard built-in
constructor with that name.

8. LetkbeO.

9. LettobeO.

10. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresent is true, then
i Let kValue be the result of calling the [[Get]] internal'method of O with argument Pk.
ii. If kValue is an abrupt completion, return kValue.
iii. Let selected be the result of calling the [[Call]].internal method of callbackfn with T as the
this value and argument list containing kValue, k, and O.
iv. If selected is an abrupt completion, return.selected.
2 If ToBoolean(selected) is true, then
1. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(to),
Property Descriptor {[[Value]]: kValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}, and false.
2. Increase to by 1.
d. Increase k by 1.
11. Return A.

The 1ength property of the £ilter method is 1.

NOTE The filter function is intentionally generic; it does not require.that its this value be an Array object.
Therefore it can be transferred to otherkinds of objects for use as a method. Whether the £ilter function can be applied
successfully to a host object is implementation-dependent.

15.4.4.21 Array.prototype.reduce (callbackfn [, initialValue])

callbackfn should be a function that takes four arguments. reduce calls the callback, as a function, once for
each element present in the array,in ascending order.

callbackfn is<called with four arguments: the previousValue (or value from the previous call to callbackfn), the
currentValue (value of the current element), the currentindex, and the object being traversed. The first time
that callback is called, the previousValue and currentValue can be one of two values. If an initialValue was
provided in the call to reduce, then previousValue will be equal to initialValue and currentValue will be equal
to the first value in the array. If no initialValue was provided, then previousValue will be equal to the first value
in the array and currentValue will be equal to the second. It is a TypeError if the array contains no elements
and initialValue is not provided.

reduce does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by reduce is set before the first call to callbackfn. Elements that are
appended to the array after the call to reduce begins will not be visited by callbackfn. If existing elements of
the array are changed, their value as passed to callbackfn will be the value at the time reduce visits them;
elements that are deleted after the call to reduce begins and before being visited are not visited.

When the reduce method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing the this value as the argument.

Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
Let len be ToUint32(lenValue).

ReturnlfAbrupt(len).

PoobE

184 © Ecma International 2011

»ecma

If IsCallable(callbackfn) is false, throw a TypeError exception.
If len is 0 and initialValue is not present, throw a TypeError exception.
Letk be 0.
If initialValue is present, then
a. Setaccumulator to initialValue.
Else, initialValue is not present
a. Let kPresent be false.
b. Repeat, while kPresent is false and k < len
i. Let Pk be ToString(k).
ii. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument
Pk.
iii. If kPresent is true, then
1. Let accumulator be the result of calling the [[Get]] internal method of O with
argument PK.
2. Ifaccumulator is an abrupt completion, return accumulator.
iv. Increase k by 1.
c. IfkPresentis false, throw a TypeError exception.
10. Repeat, while k < len
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresentis true, then
i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
ii. If kValue is an abrupt completion, return kValue.
iii. Let accumulator be the result of calling the [[Call]] internal method of callbackfn with
undefined as the this value'and argument list containing accumulator, kValue, k, and O.
iv. If accumulator is an abrupt completion, return accumulator.
d. Increase k by 1.
11. Return accumulator.

©®No o

©

The 1length property of the reduce method is 1.

NOTE The reduce function'is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred.to other kinds of objects for use as a method. Whether the reduce function can be applied
successfully to a host objectis implementation-dependent.

15.4.4.22 Array.prototype.reduceRight (callbackfn [; initialValue])

callbackfn should be a function that takes four arguments. reduceRight calls the callback, as a function,
once for each element present in the array, in descending order.

callbackfn is called with four arguments: the previousValue (or value from the previous call to callbackfn), the
currentValue (value of the current element), the currentindex, and the object being traversed. The first time the
function is called, the previousValue and currentValue can be one of two values. If an initialValue was provided
in the call to reduceRight, then previousValue will be equal to initialValue and currentValue will be equal to the
last value in the array. If no initialvValue was provided, then previousValue will be equal to the last value in the
array and currentValue will be equal to the second-to-last value. It is a TypeError if the array contains no
elements and initialValue is not provided.

reduceRight does not directly mutate the object on which it is called but the object may be mutated by the
calls to callbackfn.

The range of elements processed by reduceRight is set before the first call to callbackfn. Elements that are
appended to the array after the call to reduceRight begins will not be visited by callbackfn. If existing
elements of the array are changed by callbackfn, their value as passed to callbackfn will be the value at the
time reduceRight visits them; elements that are deleted after the call to reduceRight begins and before
being visited are not visited.

When the reduceRight method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.

© Ecma International 2011 185

secma

2. LetlenValue be the result of calling the [[Get]] internal method of O with the argument "length".
3. Letlen be ToUint32(lenValue).
4. ReturnifAbrupt(len).
5. If IsCallable(callbackfn) is false, throw a TypeError exception.
6. Iflenis 0 and initialValue is not present, throw a TypeError exception.
7. Letkbelen-1.
8. [IfinitialValue is present, then
a. Set accumulator to initialValue.
9. Else, initialValue is not present

a. Let kPresent be false.
b. Repeat, while kPresent is false and k>0
i Let Pk be ToString(k).
ii. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument
Pk.
iii. If kPresent is true, then
1. Let accumulator be the result of calling the [[Get]] internal method of O with
argument Pk.
2. If accumulator is an abrupt completion, return accumulator.
iv. Decrease k by 1.
c. IfkPresent is false, throw a TypeError exception.
10. Repeat, whilek >0
a. Let Pk be ToString(k).
b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
c. IfkPresent is true, then
i Let kValue be the result of<calling the [[Get]] internal method of O with argument Pk.
ii. If kValue is an abrupt completion, return kValue.
iii. Let accumulator be the result of calling the [[Call]] internal method of callbackfn with
undefined as the this value and argument list containing accumulator, kValue, k, and O.
iv. If accumulator is an abrupt completion, return accumulator.
d. Decrease k by 1.
11. Return accumulator.

The length property of the reduceRight method is 1.

NOTE The reduceRight function is.intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects.for use as a method. Whether the reduceRight function can be
applied successfully to a host object isimplementation-dependent.

15.4.5 Properties of Array Instances

Array .instances inherit properties from the Array prototype object and have the [[NativeBrand]] internal
property with value NativeArray. Array instances also have the following properties.

15.4.5.1 " [[DefineOwnProperty]] (P, Desc, Throw)

Array objects use a variation of the [[DefineOwnProperty]] internal method used for other native ECMAScript
objects (8.12.9).

Assume A is an Array object, Desc is a Property Descriptor, and Throw is a Boolean flag.

In the following algorithm, the term “Reject” means “If Throw is true, then throw a TypeError exception, otherwise
return false.”

When the [[DefineOwnProperty]] internal method of A is called with property P, Property Descriptor Desc, and
Boolean flag Throw, the following steps are taken:

1. ReturnlfAbrupt(A).

2. LetoldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing ""length' as
the argument. The result will never be undefined or an accessor descriptor because Array objects are
created with a length data property that cannot be deleted or reconfigured.

186 © Ecma International 2011

eCina

3. LetoldLen be oldLenDesc.[[Value]].
4. IfPis"length", then
a. If the [[Value]] field of Desc is absent, then
i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A
passing "length', Desc, and Throw as arguments.
Let newLenDesc be a copy of Desc.
Let newLen be ToUint32(Desc.[[Value]]).
If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.
Set newLenDesc.[[Value]] to newLen.
If newLen >oldLen, then
i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A
passing "length", newLenDesc, and Throw as arguments.
Reject if oldLenDesc.[[Writable]] is false.
If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
i. Else,
i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be
deleted.
ii. Let newWritable be false.
iii. Set newLenDesc.[[Writable]] to true.
J. Letsucceeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on
A passing "length', newLenDesc, and Throw as arguments,
k. If succeeded is false, return false.
I. While newLen < oldLen repeat,
i. Set oldLen to oldLen — 1.
ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing
ToString(oldLen) and false as arguments.
iii. If deleteSucceeded is false, then
1. Set newlLenDesc.[[Value]] to oldLen+1:
2. If newWritable is false, set newlLenDesc.[[Writable]] to false.
3. Call.the default [[DefineOwnProperty]] internal method (8.12.9) on A passing
"length'", newLenDesc, and false as arguments.
4. ~Reject.
m. If newWritable is false, then
i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length"’,
Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always
return true.
n. Return-true.
5. Elseif Pis anarray index (15.4), then
a. Letindex be ToUint32(P).
b. Reject if index = oldLen and oldLenDesc.[[Writable]] is false.
C. Letsucceeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on
A passing P, Desc, and false as arguments.
d." Reject if succeeded is false.
e. If index > oldLen
i Set oldLenDesc.[[Value]] to index + 1.
ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length"’,
oldLenDesc, and false as arguments. This call will always return true.
f. Return true.
6. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P,
Desc, and Throw as arguments.

15.4.5.2 length

0o o0CT

o Q

The length property of this Array object is a data property whose value is always numerically greater than
the name of every deletable property whose name is an array index.

The length property initially has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

© Ecma International 2011 187

secma

NOTE Attempting to set the length property of an Array object to a value that is numerically less than or equal to the
largest numeric property hame of an existing array indexed non-deletable property of the array will result in the length
being set to a numeric value that is one greater than that largest numeric property name. See 15.4.5.1.

15.5 String Objects

15.5.1 The String Constructor Called as a Function

When String is called as a function rather than as a constructor, it performs a type conversion.
15.5.1.1 String ([value])

Returns a String value (not a String object) computed by ToString(value). If-value is not supplied, the empty
String " " is returned.

15.5.2 The String Constructor
When String is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.5.2.1 new String ([value])

The [[Prototype]] internal property of the newly constructed object is set to the standard built-in String
prototype object that is the initial value of String.prototype (15:5.3.1).

The newly constructed object has the [[NativeBrand]].internal property with value StringWrapper.
The [[Extensible]] internal property of the newly constructed object is set to true.

The [[PrimitiveValue]] internal property of the newly constructed object is set to ToString(value), or to the empty
String if value is not supplied.

15.5.3 Properties of the String Constructor

The value of the [[Prototype]] internal property of the String constructor is the standard built-in Function
prototype object (15.3.4).

Besides the internal properties and the length property (whose value is 1), the String constructor has the
following properties:

15.5:3.1 String.prototype

The initial value of String.prototype is the standard built-in String prototype object (15.5.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.5.3.2 String.fromCharCode ([charO[,charl[,...11])

Returns a String value containing as many characters as the number of arguments. Each argument specifies
one character of the resulting String, with the first argument specifying the first character, and so on, from left
to right. An argument is converted to a character by applying the operation ToUint16 (9.7) and regarding the
resulting 16-bit integer as the code unit value of a character. If no arguments are supplied, the result is the

empty String.

The length property of the fromCharCode function is 1.

188 © Ecma International 2011

»ecma

15.5.4 Properties of the String Prototype Object

The String prototype object is itself a String object whose value is an empty String. The String prototype object
has the [[NativeBrand]] internal property with value StringWrapper.

The value of the [[Prototype]] internal property of the String prototype object is the standard built-in Object
prototype object (15.2.4).

15.5.4.1 String.prototype.constructor
The initial value of String.prototype.constructor is the built-in String constructor.
15.5.4.2 String.prototype.toString ()

Returns this String value. (Note that, for a String object, the toString method happens to return the same
thing as the valueOf method.)

The toString function is not generic; it throws a TypeError exception if its this value is not a String or a
String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.3 String.prototype.valueOf ()
Returns this String value.

The valueOf function is not generic; it throws a TypeError exception ifits this value is not a String or String
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.4 String.prototype.charAt (pos)

Returns a String containing the character at position pos in the String resulting from converting this object to a
String. If there is no character at that pasition, the result is the empty String. The result is a String value, not a
String object.

If pos is a value of Number type that is an-integer, then the result of x.charAt (pos) is equal to the result of
x.substring (pos, pos+1).

When the charAt method is called with one argument pos, the following steps are taken:

Call CheckObjectCoercible passing the. this value as its argument.

Let S be the result of calling ToString, giving it the this value as its argument.

Let position be Tolnteger(pos).

Let size be the number of characters in S.

If position <0 or position > size, return the empty String.

Return a String of length<1, containing one character from S, namely the character at position position, where
the first (leftmost).character in S is considered to be at position 0, the next one at position 1, and so on.

ourwhPE

NOTE The charat function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.5 String.prototype.charCodeAt (pos)

Returns a Number (a nonnegative integer less than 2%) representing the code unit value of the character at
position pos in the String resulting from converting this object to a String. If there is no character at that
position, the result is NaN.

When the charCodeAt method is called with one argument pos, the following steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.

© Ecma International 2011 189

secma

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. Let position be Tolnteger(pos).

4. Let size be the number of characters in S.

5. If position < 0 or position > size, return NaN.

6. Return a value of Number type, whose value is the code unit value of the character at position position in the
String S, where the first (Ileftmost) character in S is considered to be at position 0, the next one at position 1,
and so on.

NOTE The charCodeAt function is intentionally generic; it does not require that its this value be a String object.

Therefore it can be transferred to other kinds of objects for use as a method.
15.5.4.6 String.prototype.concat ([stringl [, string2[, ...111)

When the concat method is called with zero or more arguments stringl, string2, etc., it returns a String
consisting of the characters of this object (converted to a String) followed by the characters of each of stringl,
string2, etc. (where each argument is converted to a String). The result is a String value, not a String object.
The following steps are taken:

Call CheckObjectCoercible passing the this value as its argument.
Let S be the result of calling ToString, giving it the this value as its argument.
Let args be an internal list that is a copy of the argument list passed to this function.
Let R be S.
Repeat, while args is not empty
a. Remove the first element from args and let next be the value of that element.
b. Let R be the String value consisting of the characters in the previous value of R followed by the
characters of ToString(next).
6. Return R.

bR

The length property of the concat method is 1.

NOTE The concat function'is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred.to other kinds of objects for use as a method.

15.5.4.7 String.prototype.indexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a String, at one or more positions
that are greater _than or equal to position, then the index of the smallest such position is returned;
otherwise, -1 is returned. If position is undefined, 0 is assumed, so as to search all of the String.

The indexOf method takes two arguments, searchString and position, and performs the following steps:

Call CheckObjectCoercible passing the this value as its argument.

Let S be the result of calling ToString, giving it the this value as its argument.

Let searchStr be ToString(searchString).

Let pos be Tolnteger(position). (If position is undefined, this step produces the value 0).

Let len be the number-of characters in S.

Let start be min(max(pos, 0), len).

Let searchLen be the number of characters in searchStr.

Return the smallest possible integer k not smaller than start such that k+ searchLen is not greater than len,
and for all nonnegative integers j less than searchlLen, the character at position k+j of S is the same as the
character at position j of searchStr; but if there is no such integer k, then return the value -1.

PN~ E

The length property of the index0Of method is 1.

NOTE The indexOf function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

190 © Ecma International 2011

»ecma

15.5.4.8 String.prototype.lastindexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a String at one or more positions
that are smaller than or equal to position, then the index of the greatest such position is returned,;
otherwise, -1 is returned. If position is undefined, the length of the String value is assumed, so as to search
all of the String.

The 1lastIndexOf method takes two arguments, searchString and position, and performs the following steps:

Call CheckObjectCoercible passing the this value as its argument.

Let S be the result of calling ToString, giving it the this value as its argument.

Let searchStr be ToString(searchString).

Let numPos be ToNumber(position). (If position is undefined, this step produces the value NaN).

If numPos is NaN, let pos be +oo; otherwise, let pos be Tolnteger(numPos).

Let len be the number of characters in S.

Let start min(max(pos, 0), len).

Let searchLen be the number of characters in searchStr.

Return the largest possible nonnegative integer k not larger than start such that k+ searchLen is not greater
than len, and for all nonnegative integers j less than searchlLen, the character at position k+j of S is the same
as the character at position j of searchStr; but if there isino such integer k; then return the value -1.

CONOOr~WNE

The length property of the lastIndexOf method is 1.

NOTE The lastIndexOf function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.9 String.prototype.localeCompare (that)

When the 1localeCompare method is called with one argument that, it returns a Number other than NaN that
represents the result of a locale<sensitive String comparison of the this value (converted to a String) with that
(converted to a String). The two Strings are S and That. The two Strings are compared in an implementation-
defined fashion. The result'is intended to order String values in the sort order specified by the system default
locale, and will be negative, zero, or positive, depending on whether S comes before That in the sort order, the
Strings are equal, or S'’comes after That in the sort order, respectively.

Before perform the comparisons the following steps are performed to prepare the Strings:

1. Call CheckObjectCoercible passing the this value as its argument.
2. Let S bethe result of calling ToString, giving it the this value as its argument.
3. Let That be ToString(that).

The localeCompare method, if considered as a function of two arguments this and that, is a consistent
comparison function (as defined in 15.4.4.11) on the set of all Strings.

The actual return values are implementation-defined to permit implementers to encode additional information
in the value, but the function is required to define a total ordering on all Strings and to return 0 when
comparing Strings that are considered canonically equivalent by the Unicode standard.

If no language-sensitive comparison at all is available from the host environment, this function may perform a
bitwise comparison.

NOTE1l The localeCompare method itself is not directly suitable as an argument to Array.prototype.sort
because the latter requires a function of two arguments.

NOTE 2 This function is intended to rely on whatever language-sensitive comparison functionality is available to the
ECMAScript environment from the host environment, and to compare according to the rules of the host environment’s
current locale. It is strongly recommended that this function treat Strings that are canonically equivalent according to the
Unicode standard as identical (in other words, compare the Strings as if they had both been converted to Normalised
Form C or D first). It is also recommended that this function not honour Unicode compatibility equivalences or
decompositions.

© Ecma International 2011 191

ecCmna

NOTE3 The second parameter to this function is likely to be used in a future version of this standard; it is

reco

mmended that implementations do not use this parameter position for anything else.

NOTE 4 The localeCompare function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.10 String.prototype.match (regexp)

When the match method is called with argument regexp, the following steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. If Type(regexp) is Object and regexp has a [[NativeBrand]] internal property whose value is NativeRegExp,
then let rx be regexp;
4. Else, let rx be a new RegExp object created as if by the expression new RegExp(regexp) where RegExp
is the standard built-in constructor with that name.

5. Let global be the result of calling the [[Get]] internal method of rx with argument "global".
6. Let exec be the standard built-in function RegExp .prototype.exec (see 15.10.6.2)
7. If global is not true, then

a. Return the result of calling the [[Call]] internal method of exec with rx as the this value and

argument list containing S.

8. Else, global is true

a. Call the [[Put]] internal method of rx with arguments "lastIndex" and O.

b. Let Abeanew array created as if by the expression new Array () where Array is the standard

built-in constructor with that name:

c. Let previousLastindex be 0.

d. LetnbeO.

e. Let lastMatch be true.

f. Repeat, while lastMatch is true

i Let result be-the result of calling the[[Call]] internal method of exec with rx as the this
value and-argument list containing S.
ii. If result is null, then set lastMatch to false.
iii. Else;result is not null

1. Letthisindex be the result of calling the [[Get]] internal method of rx with
argument "lastIndex".

2. " If thisindex = previousLastindex then

a Call the [[Put]] internal method of rx with arguments "lastIndex" and
thisIndex+1.
b ~ SetpreviousLastindex to thisIndex+1.

3." Else, set previousLastIndex to thisindex.

4. Let matchStr be the result of calling the [[Get]] internal method of result with
argument "0".

5. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n),
the Property Descriptor {[[\Value]]: matchStr, [[Writable]]: true, [[Enumerable]]:
true, [[configurable]]: true}, and false.

6. Increment n.

g. Ifn =0, then return null.
h. Return A.
NOTE The match function is intentionally generic; it does not require that its this value be a String object. Therefore,

it can be transferred to other kinds of objects for use as a method.

15.5.4.11 String.prototype.replace (searchValue, replaceValue)

First set string according to the following steps:

1.
2.

192

Call CheckObjectCoercible passing the this value as its argument.
Let string be the result of calling ToString, giving it the this value as its argument.

© Ecma International 2011

secmd

If searchValue is a regular expression (an object that has a [[NativeBrand]] internal property whose value is
NativeRegExp), do the following: If searchValue.global is false, then search string for the first match of the
regular expression searchValue. If searchValue.global is true, then search string for all matches of the regular
expression searchValue. Do the search in the same manner as in String.prototype.match, including the
update of searchValue.lastIndex. Let m be the number of left capturing parentheses in searchValue (using
NcapturingParens as specified in 15.10.2.1).

If searchValue is not a regular expression, let searchString be ToString(searchValue) and search string for the first
occurrence of searchString. Let m be 0.

If replaceValue is a function, then for each matched substring, call the function with the following m + 3
arguments. Argument 1 is the substring that matched. If searchValue is a regular expression, the next m
arguments are all of the captures in the MatchResult (see 15.10.2.1). Argument m + 2 is the offset within string
where the match occurred, and argument m + 3 is string. The result is a String value derived from the original
input by replacing each matched substring with the corresponding return value of the function call, converted
to a String if need be.

Otherwise, let newstring denote the result of converting replaceValue to a String. The result.is a String value
derived from the original input String by replacing each matched substring with a String derived.from newstring
by replacing characters in newstring by replacement text as specified in Table 24. These $ replacements are
done left-to-right, and, once such a replacement is performed, the new replacement text is not subject to
further replacements. For example, "$1,$2".replace(/(\$(\d))/g, "$$1-$1%2") returns "$1-
$11,$1-$22". A $ in newstring that does not match any of the forms below is left as is.

Table 24 — Replacement Text Symbol Substitutions

Characters Replacement text

$$ $

$& The matched substring.

$° The portion of string that precedes the matched substring.

$’ The portion of string that follows the matched substring.

$n The n capture, where n is a single digit in the range 1 to 9 and $n is not followed

by a decimal digit. If n<m and the nth capture is undefined, use the empty String
instead. If n>m, the result is.implementation-defined.

$nn The nn capture, where nn is a two-digit decimal number in the range 01 to 99. If
nn<m and the nn™" capture is undefined, use the empty String instead. If nn>m, the
result is implementation-defined.

NOTE The replace function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.12 String.prototype.search (regexp)
When the search method is.called with argument regexp, the following steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.

2. Letstring be the result of calling ToString, giving it the this value as its argument.

3. If Type(regexp) is Object and regexp has a [[NativeBrand]] internal property whose value is NativeRegExp ,
then let rx be regexp;

4. Else, let rx be a new RegExp object created as if by the expression new RegExp (regexp) where RegExp
is the standard built-in constructor with that name.

5. Search the value string from its beginning for an occurrence of the regular expression pattern rx. Let result
be a Number indicating the offset within string where the pattern matched, or -1 if there was no match. The
lastIndex and global properties of regexp are ignored when performing the search. The 1lastIndex
property of regexp is left unchanged.

6. Return result.

NOTE The search function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

© Ecma International 2011 193

secma

15.5.4.13 String.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns a substring of the result of converting this
object to a String, starting from character position start and running to, but not including, character position end
(or through the end of the String if end is undefined). If start is negative, it is treated as sourceLength+start
where sourceLength is the length of the String. If end is negative, it is treated as sourceLength+end where
sourceLength is the length of the String. The result is a String value, not a String object. The following steps are
taken:

Call CheckObjectCoercible passing the this value as its argument.

Let S be the result of calling ToString, giving it the this value as its argument.

Let len be the number of characters in S.

Let intStart be Tolnteger(start).

If end is undefined, let intEnd be len; else let intEnd be Tolnteger(end).

If intStart is negative, let from be max(len + intStart,0); else let frombe min(intStart, len).

If intEnd is negative, let to be max(len + intEnd,0); else let to be min(intEnd, len).

Let span be max(to — from,0).

Return a String containing span consecutive characters from S'beginning with the character at position from.

CEOoNoOR~WNE

The length property of the slice method is 2.

NOTE The slice function is intentionally generic; it does not require that its this value be a String object. Therefore
it can be transferred to other kinds of objects for use as a method.

15.5.4.14 String.prototype.split (separator,limit)

Returns an Array object into which substrings of the result-of converting this object to a String have been
stored. The substrings are determined by searching from left to.right for occurrences of separator; these
occurrences are not part of any substring in the returned-array, but serve to divide up the String value. The
value of separator may be a String of any length or it may be a RegExp object (i.e., an object with a
[[NativeBrand]] internal property whose value is NativeRegEXxp ; see 15.10).

The value of separator may be an empty String, an empty regular expression, or a regular expression that can
match an empty String. In this case, separator does not match the empty substring at the beginning or end of
the input String, nor does it. match-the empty substring at the end of the previous separator match. (For
example, if separator is the empty String, the String is split up into individual characters; the length of the result
array equals the.length of the String, and each substring contains one character.) If separator is a regular
expression,only the first match at a given position of the this String is considered, even if backtracking could
yield a non-empty-substring. match at that position. (For example, "ab".split(/a*?/) evaluates to the
array ["a","b"], while "ab".split(/a*/) evaluates to the array["","b"].)

If the this object is (or converts to) the empty String, the result depends on whether separator can match the
empty String. If it can, the result array contains no elements. Otherwise, the result array contains one element,
which is the empty String.

If separator is a regular expression that contains capturing parentheses, then each time separator is matched
the results (including any undefined results) of the capturing parentheses are spliced into the output array.
For example,

"Aboldand<CODE>coded</CODE>" .split (/< (\/)? ([*<>]+)>/)
evaluates to the array

["A", undefined’ an’ nboldn’ n/n’ an’ nandn’ undefined’
"CODE" , "coded" , "/" , "CODE" , " "]

If separator is undefined, then the result array contains just one String, which is the this value (converted to a
String). If limit is not undefined, then the output array is truncated so that it contains no more than limit
elements.

When the split method is called, the following steps are taken:

194 © Ecma International 2011

»ecma

1. Call CheckObjectCoercible passing the this value as its argument.
Let S be the result of calling ToString, giving it the this value as its argument.
Let A be a new array created as if by the expression new Array () where Array is the standard built-in
constructor with that name.
Let lengthA be 0.
If limit is undefined, let lim = 232-1; else let lim = ToUint32(limit).
Let s be the number of characters in S.
Letp=0.
If separator has a [[NativeBrand]] internal property whose value is NativeRegExp , let R = separator;
otherwise let R = ToString(separator).
If lim =0, return A.
10. If separator is undefined, then
a. Call the [[DefineOwnProperty]] internal method of A with arguments "0, Property Descriptor
{[[\Value]]: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
b. Return A.
11. If s =0, then
a. Call SplitMatch(S, 0, R) and let z be its MatchResult result.
b. Ifzis not failure, return A.
c. Call the [[DefineOwnProperty]] internal method of‘A with arguments "0", Property Descriptor
{[[\Value]]: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
d. Return A.
12. Letq=p.
13. Repeat, while g #s
a. Call SplitMatch(S, g, R) and let z be its MatchResult result.
b. Ifzis failure, then let g = g+1.
c. Else, zisnot failure
i z must be a State. Let e be z's endIndex and.let cap be z's captures array.
ii. Ife = p, then let q = q+1.
iii. Else,e=p
1. Let TbeasString value equal to the substring of S consisting of the characters at
positions p (inclusive) through g (exclusive).
2. < Call the [[DefineOwnProperty]] internal method of A with arguments
ToString(lengthA), Property Descriptor {[[Value]]: T, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}, and false.

wn

N~

©

3. Increment lengthA by 1.

4. If lengthA = lim, return A.

5. Letp=e.

6. Leti=0.

7. Repeat, while i is not equal to the number of elements in cap.
a Leti=i+l.

b Callthe [[DefineOwnProperty]] internal method of A with arguments
ToString(lengthA), Property Descriptor {[[Value]]: cap[i], [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
¢ Increment lengthA by 1.
d If lengthA = lim, return A.
8. Letg=np.
14. Let T be a String value equal to the substring of S consisting of the characters at positions p (inclusive)
through s (exclusive).
15. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(lengthA), Property Descriptor
{[[Value]]: T, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
16. Return A.

The abstract operation SplitMatch takes three parameters, a String S, an integer q, and a String or RegExp R,
and performs the following in order to return a MatchResult (see 15.10.2.1):

1. If R has a [[NativeBrand]] internal property whose value is NativeRegEXxp , then
a. Call the [[Match]] internal method of R giving it the arguments S and g, and return the MatchResult
result.
2. Type(R) must be String. Let r be the number of characters in R.

© Ecma International 2011 195

secma

3. Let s be the number of characters in S.

4. If g+r > s then return the MatchResult failure.

5. If there exists an integer i between 0 (inclusive) and r (exclusive) such that the character at position g+i of S
is different from the character at position i of R, then return failure.

6. Letcap be an empty array of captures (see 15.10.2.1).

7. Return the State (g+r, cap). (see 15.10.2.1)

The length property of the split method is 2.
NOTE 1 The split method ignores the value of separator.global for separators that are RegExp objects.

NOTE 2 The split function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

15.5.4.15 String.prototype.substring (start, end)

The substring method takes two arguments, start and end, and returns a substring of the result of converting
this object to a String, starting from character position start and running to, but not including, character position
end of the String (or through the end of the String is end is undefined). The result is a String value, not a String
object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the length of the
String, it is replaced with the length of the String.

If start is larger than end, they are swapped.
The following steps are taken:

Call CheckObjectCoercible passing the this value as its-argument.

Let S be the result of calling ToString, giving it'the this value as its argument.
Let len be the number of characters in S.

Let intStart be Tolnteger(start).

If end is undefined, let intEnd be len; else let intEnd be Tolnteger(end).

Let finalStart be min(max(intStart, 0), len).

Let finalEnd be min(max(intEnd, 0), len).

Let from be min(finalStart, finalEnd).

Let to be max(finalStart, finalEnd).

0. Return a'String whose length'is to - from, containing characters from S, namely the characters with indices
from.through to —1, in ascending order.

HooNohwn P

The 1ength property of the substring method is 2.

NOTE The substring function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.16 String.prototype.toLowerCase ()
The following steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. Let L bea String where each character of L is either the Unicode lowercase equivalent of the corresponding
character of S or the actual corresponding character of S if no Unicode lowercase equivalent exists.

4. Return L.

For the purposes of this operation, the 16-bit code units of the Strings are treated as code points in the

Unicode Basic Multilingual Plane. Surrogate code points are directly transferred from S to L without any
mapping.

196 © Ecma International 2011

»ecma

The result must be derived according to the case mappings in the Unicode character database (this explicitly
includes not only the UnicodeData.txt file, but also the SpecialCasings.txt file that accompanies it in Unicode
2.1.8 and later).

NOTE 1 The case mapping of some characters may produce multiple characters. In this case the result String may not
be the same length as the source String. Because both toUpperCase and toLowerCase have context-sensitive
behaviour, the functions are not symmetrical. In other words, s.toUpperCase () .toLowerCase () iS not necessarily
equal to s. toLowerCase () .

NOTE 2 The toLowerCase function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.17 String.prototype.toLocaleLowerCase ()

This function works exactly the same as toLowerCase except that its-result is intended to yield the correct
result for the host environment’s current locale, rather than a locale-independent result. There will only be a
difference in the few cases (such as Turkish) where the rules for that language conflict with the regular
Unicode case mappings.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleLowerCase function is intentionally generic;.it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.18 String.prototype.toUpperCase ()

This function behaves in exactly the same way as String.prototype.tolLowerCase, except that
characters are mapped to their uppercase equivalents as specified in the Unicode Character Database.

NOTE The toUpperCase function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred.to other kinds of objects for use as a method.

15.5.4.19 String.prototype.toLocaleUpperCase ()

This function works exactly the same as toUpperCase except that its result is intended to yield the correct
result for the host environment’s current locale, rather than a locale-independent result. There will only be a
difference in‘the few cases (such as Turkish) where the rules for that language conflict with the regular
Unicode case mappings.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE2 The toLocaleUpperCase function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.20 String.prototype.trim ()
The following steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.

2. Let S be the result of calling ToString, giving it the this value as its argument.

3. Let T bea String value that is a copy of S with both leading and trailing white space removed. The definition
of white space is the union of WhiteSpace and LineTerminator.

4. Return T.

NOTE The trim function is intentionally generic; it does not require that its this value be a String object. Therefore, it
can be transferred to other kinds of objects for use as a method.

© Ecma International 2011 197

secma

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and have a [[NativeBrand]] internal property
with value StringWrapper. String instances also have a [[PrimitiveValue]] internal property, a 1length property,
and a set of enumerable properties with array index names.

The [[PrimitiveValue]] internal property is the String value represented by this String object. The array index
named properties correspond to the individual characters of the String value. A special [[GetOwnProperty]]
internal method is used to specify the number, values, and attributes of the array index named properties.

15.5.5.1 length
The number of characters in the String value represented by this String object.

Once a String object is created, this property is unchanging. It has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

15.5.5.2 [[GetOwnProperty]] (P)

String objects use a variation of the [[GetOwnProperty]]. internal method. used for other native ECMAScript
objects (8.12.1). This special internal method provides access to named properties corresponding to the
individual characters of String objects.

Assume S is a String object and P is a String.

When the [[GetOwnProperty]] internal method of S is called with property name P, the following steps are
taken:

1. Letdesc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on S with argument

P.

If desc is not undefined return desc.

If ToString(abs(Tolnteger(P))) is not'the same value as P, return undefined.

Let str be the String value of the [[PrimitiveValue]] internal property of S.

Let index be Tolnteger(P).

Let len be the number of characters in str.

If len < index, return undefined.

Let resultStr-bea String of length 1, containing one character from str, specifically the character at position

index, where the first (leftmost) character in str is considered to be at position 0, the next one at position 1,

and so on.

9. Return a Property Descriptor { [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false }

15.6 Boolean Objects

PN R~®N

15.6.1 The Boolean Constructor Called as a Function

When Boolean is called as a function rather than as a constructor, it performs a type conversion.
15.6.1.1 Boolean (value)

Returns a Boolean value (not a Boolean object) computed by ToBoolean(value).

15.6.2 The Boolean Constructor

When Boolean is called as part of a new expression it is a constructor: it initialises the newly created object.

198 © Ecma International 2011

»ecma

15.6.2.1 new Boolean (value)

The [[Prototype]] internal property of the newly constructed object is set to the original Boolean prototype
object, the one that is the initial value of Boolean.prototype (15.6.3.1).

The newly constructed Boolean object has a [[NativeBrand]] internal property with value BooleanWrapper.
The [[PrimitiveValue]] internal property of the newly constructed Boolean object is set to ToBoolean(value).
The [[Extensible]] internal property of the newly constructed object is set to true.

15.6.3 Properties of the Boolean Constructor

The value of the [[Prototype]] internal property of the Boolean constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Boolean constructor has the
following property:

15.6.3.1 Boolean.prototype

The initial value of Boolean.prototype is the Boolean prototype object (15.6.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.6.4 Properties of the Boolean Prototype Object

The Boolean prototype object is itself a Boolean object whose value.is false. The Boolean prototype object
has a [[NativeBrand]] internal property whose value is BooleanWrapper.

The value of the [[Prototype]] internal property of the Boolean prototype object is the standard built-in Object
prototype object (15.2.4).

15.6.4.1 Boolean.prototype.constructor

The initial value of Boolean.prototype.constructor is the built-in Boolean constructor.
15.6.4.2 <Boolean.prototype.toString ()

The following steps are taken:

1. Let B be the this value.

2. If Type(B) is Boolean, then let b be B.

3. Elseif Type(B).is Objectand B has a [[NativeWrapper]] internal property whose value is BooleanWrapper,
then let b be the value.of the [[PrimitiveValue]] internal property of B.

4. Elsethrow a TypeError exception.

5. If bis true, then return "true"; else return "false".

15.6.4.3 Boolean.prototype.valueOf ()
The following steps are taken:

1. Let B be the this value.

2. |If Type(B) is Boolean, then let b be B.

3. Elseif Type(B) is Object and B has a [[NativeWrapper]] internal property whose value is BooleanWrapper,
then let b be the value of the [[PrimitiveValue]] internal property of B.

4. Elsethrow a TypeError exception.

5. Returnb.

© Ecma International 2011 199

secma

15.6.5 Properties of Boolean Instances

Boolean instances inherit properties from the Boolean prototype object and have a [[NativeBrand]] internal
property whose value is BooleanWrapper. Boolean instances also have a [[PrimitiveValue]] internal property.

The [[PrimitiveValue]] internal property is the Boolean value represented by this Boolean object.
15.7 Number Objects

15.7.1 The Number Constructor Called as a Function

When Number is called as a function rather than as a constructor, it performs a.type conversion.
15.7.2.1 Number ([value])

Returns a Number value (not a Number object) computed by ToNumber(value) if value was supplied, else
returns +0.

15.7.2 The Number Constructor
When Number is called as part of a new expression it is a constructor: itinitialises the newly created object.
15.7.2.1 new Number ([value])

The [[Prototype]] internal property of the newly constructed object is set to the original Number prototype
object, the one that is the initial value of Number .prototype (15.7.3.1).

The newly constructed object is has a [[NativeBrand]] internal property whose value is NumberWrapper.

The [[PrimitiveValue]] internal property of the newly constructed object is set to ToNumber(value) if value was
supplied, else to +0.

The [[Extensible]] internal property of the newly constructed object is set to true.
15.7.3 Properties of the Number.Constructor

The value of the [[Prototype]] internal property of the Number constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the 1ength property (whose value is 1), the Number constructor has the
following properties:

15.7.3.1 Number.prototype

The initial value of Number . prototype is the Number prototype object (15.7.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.7.3.2 Number.MAX_ VALUE

The value of Number.MAX VALUE is the largest positive finite value of the Number type, which is
approximately 1.7976931348623157 x 103,

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

200 © Ecma International 2011

»ecma

15.7.3.3 Number.MIN_VALUE

The value of Number .MIN_ VALUE is the smallest positive value of the Number type, which is approximately
5x 10324,

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.7.3.4 Number.NaN

The value of Number .NaN is NaN.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.7.3.5 Number.NEGATIVE_INFINITY

The value of Number.NEGATIVE_INFINITY is —o.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.7.3.6 Number.POSITIVE_INFINITY

The value of Number.POSITIVE_INFINITY is +oo.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.7.4 Properties of the Number Prototype Object

The Number prototype object is itself a Number object with'a [[NativeBrand]] internal property whose value is
NumberWrapper. Its value is +0.

The value of the [[Prototype]] internal property of the Number prototype object is the standard built-in Object
prototype object (15.2.4).

Unless explicitly stated otherwise, the‘methods:-of the Number prototype object defined below are not generic
and the this value passed to them must be either a Number value or an object that has a [[NativeBrand]]
internal property whose value is NumberWrapper.

In the following descriptions of functions that are properties of the Number prototype object, the phrase “this
Number object”’ refers to either the object that is the this value for the invocation of the function or, if
Type(this value) is Number, an object that is created as if by the expression new Number (this value)
where Number is the standard built-in constructor with that name. Also, the phrase “this Number value” refers
to either the Number value represented by this Number object, that is, the value of the [[PrimitiveValue]]
internal property. of this Number object or the this value if its type is Number. A TypeError exception is
thrown if the this value is<neither an object that has a [[NativeBrand]] internal property whose value is
NumberWrapper or a value whose type is Number.

15.7.4.1 Number.prototype.constructor

The initial value of Number . prototype . constructor is the built-in Number constructor.

15.7.4.2 Number.prototype.toString ([radix])

The optional radix should be an integer value in the inclusive range 2 to 36. If radix not present or is undefined
the Number 10 is used as the value of radix. If Tolnteger(radix) is the Number 10 then this Number value is

given as an argument to the ToString abstract operation; the resulting String value is returned.

If Tolnteger(radix) is not an integer between 2 and 36 inclusive throw a RangeError exception. If
Tolnteger(radix) is an integer from 2 to 36, but not 10, the result is a String representation of this Number value

© Ecma International 2011 201

secma

using the specified radix. Letters a-z are used for digits with values 10 through 35. The precise algorithm is
implementation-dependent if the radix is not 10, however the algorithm should be a generalisation of that
specified in 9.8.1.

The toString function is not generic; it throws a TypeError exception if its this value is not a Number or a
Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.7.4.3 Number.prototype.toLocaleString()

Produces a String value that represents this Number value formatted according to the conventions of the host
environment’s current locale. This function is implementation-dependent, and it 'is permissible, but not
encouraged, for it to return the same thing as toString.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

15.7.4.4 Number.prototype.valueOf ()
Returns this Number value.

The valueOf function is not generic; it throws a TypeError exception.if its this value is not a Number or a
Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.7.4.5 Number.prototype.toFixed (fractionDigits)

Return a String containing this Number value represented in decimal fixed-point notation with fractionDigits
digits after the decimal point. If fractionDigits is undefined, 0-is assumed. Specifically, perform the following
steps:

Let f be Tolnteger(fractionDigits). (If fractionDigits<is undefined, this step produces the value 0).
Iff <0 orf> 20, throw a RangeError exception.
Let x be this Number value.
If x is NaN, return the String "NaN",
Let s be the empty String.
If x <0, then

a. Letshe™-".

b. Letx=-x
7. 1fx =107, then

a. Letm = ToString(x).

8. Else, x < 10%
a.. Let n be an integer for which the exact mathematical value of n + 107 — x is as close to zero as

possible. If there are two such n, pick the larger n.
b. “If n.=0, let m be the String "0". Otherwise, let m be the String consisting of the digits of the

decimal representation of n (in order, with no leading zeroes).
c. Iff=0,then

i Let k be the number of characters in m.
ii. Ifk <f, then
1. Let z be the String consisting of f+1-k occurrences of the character ‘0°.
2. Let m be the concatenation of Strings z and m.

enkrwnpE

3. Letk=f+1.
iii. Let a be the first k—f characters of m, and let b be the remaining f characters of m.
iv. Let m be the concatenation of the three Strings a, ".", and b.

9. Return the concatenation of the Strings s and m.

The length property of the toFixed method is 1.

If the toFixed method is called with more than one argument, then the behaviour is undefined (see
clause 15).

202 © Ecma International 2011

»ecma

An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less than O or
greater than 20. In this case toFixed would not necessarily throw RangeError for such values.

NOTE The output of toFixed may be more precise than toString for some values because toString only prints
enough significant digits to distinguish the number from adjacent number values. For example,

(1000000000000000128) . toString () returns "1000000000000000100",

while (1000000000000000128) . toFixed (0) returns "1000000000000000128".

15.7.4.6 Number.prototype.toExponential (fractionDigits)

Return a String containing this Number value represented in decimal exponential notation with one digit before
the significand's decimal point and fractionDigits digits after the significand's decimal point. If fractionDigits is
undefined, include as many significand digits as necessary to uniquely specify the Number (just like in
ToString except that in this case the Number is always output in exponential notation). Specifically, perform
the following steps:

Let x be this Number value.
Let f be Tolnteger(fractionDigits).
If x is NaN, return the String "NaN".
Let s be the empty String.
If x <0, then

a. Letsbem-r.

b. Letx=-x.
6. Ifx=+oo, then

a. Return the concatenation of the Strings's.and "Infinity".

7. If fractionDigits is not undefined and (f < 0 or f > 20), throw a RangeError exception.
8. Ifx=0,then

arwnE

a. Letf=0.
b. Let m be the String consisting of f+1 occurrences of the character ‘0°.
c. Lete=0.

9. Else,x=0

a. If fractionDigits is not undefined, then
i. Lete and n be integers such that 10 < n < 10! and for which the exact mathematical value
of n x 10°" — x is as close to zero as possible. If there are two such sets of e and n, pick the
e and n for which n x 10% is larger.
b. Else, fractionDigits is'undefined
i. Lete, n, and f be integers such that f > 0, 10" < n < 10™!, the number value for n x 10° " is x,
and f is as small as possible. Note that the decimal representation of n has f+1 digits, n is
not divisible by 10, and the least significant digit of n is not necessarily uniquely
determined by these criteria.
c... Let m be the String consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).
10. If f = 0, then
a. Leta be the first.character of m, and let b be the remaining f characters of m.

b. Letm bethe concatenation of the three Strings a, ". ", and b.
11. Ife =0, then
a. Letc="+".
b. Letd="o0".
12. Else
a. Ife>0,thenletc="4+".
b. Else,e<0
i Letc="-",
ii. Lete = —e.

c. Letd bethe String consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).
13. Let m be the concatenation of the four Strings m, "e™", ¢, and d.
14. Return the concatenation of the Strings s and m.

© Ecma International 2011 203

secma

The length property of the toExponential method is 1.

If the toExponential method is called with more than one argument, then the behaviour is undefined (see
clause 15).

An implementation is permitted to extend the behaviour of toExponential for values of fractionDigits less
than O or greater than 20. In this case toExponential would not necessarily throw RangeError for such
values.

NOTE For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 9.b.i be used as a guideline:

i Let e, n, and f be integers such that f > 0, 10" < n < 10™1, the number value for n x 10° is x, and f is as small
as possible. If there are multiple possibilities for n, choose the valueof n for which n x 10° is closest in value
to x. If there are two such possible values of n, choose the one that is even.

15.7.4.7 Number.prototype.toPrecision (precision)

Return a String containing this Number value represented either in decimal exponential notation with one digit
before the significand's decimal point and precision-1 digitsafter the significand's decimal point.or in decimal
fixed notation with precision significant digits. If precision is undefined, call ToString (9.8.1) instead.
Specifically, perform the following steps:

Let x be this Number value.

If precision is undefined, return ToString(x):

Let p be Tolnteger(precision).

If x is NaN, return the String "NaN".

Let s be the empty String.

If x <0, then
a. Letshe"-".

b. Letx=-x.

7. Ifx =+, then
a. Return the concatenation of the Strings s and "Infinity".

Ifp<1orp>21, throw a RangeError exception.

9. Ifx=0,then

a. Letm be the String consisting of p occurrences of the character <0°.
b. Lete=.0.

10. Else x #0,

a. Lete and nbe integers such that 10°-! < n < 10° and for which the exact mathematical value of n x
10%P*1 _x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for
which n x 10¢"*1 s larger.

b. Let m be the String consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).

c. Ife<-6ore>p,then

I Let a be the first character of m, and let b be the remaining p—1 characters of m.
ii. Let m be the concatenation of the three Strings a, ".", and b.
iii. Ife =0, then
1. Letc="+"andd="0".
iv. Elsee =0,
1. Ife>0, then
a Letc="+".

egrwunpE

®

2. Elsee <0,
a Letc="-",
b Lete=-e.

3. Letd be the String consisting of the digits of the decimal representation of e (in
order, with no leading zeroes).
V. Let m be the concatenation of the five Strings s, m, "e", ¢, and d.
11. If e = p-1, then return the concatenation of the Strings s and m.
12. Ife >0, then

204 © Ecm