Qecma Draft

Ecma/TC39/2013/025

Gl _ECMA-262

- 6 Edition / Draft May 14, 2013

ECMAScript Language
Specification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 15, May 14, 2013 Draft

Rue du Rhone 114 CH-1204 Geneva T: +41 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2012

Contents Page

Introduction..

1
2
3

4
4.1
4.2
421
422
4.3

5

5.1
511
5.1.2
5.1.3
5.1.4
515
5.1.6
5.2

5.3 Static Semantic Rules

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.15

8.1.6 The Symbol Type

Scope..

Conformance

NOTMALIVE FEFEIENCES ...t e et o bt ettt ettt e e r e e n e 1

OV BIVIBW ...ttt ettt ettt e st e st e s bt e te e et ente e eneeaneesneesseesseensesdRnans nne et bae e eseeeseeaneesneeseeen eebeenneenseeneean
Web Scripting
Language Overview .
Objects
The Strict Variant of ECMAScript ..
Terms and definitions

Notational Conventions
Syntactic and Lexical Grammars
Context-Free Grammars

The Lexical and RegExp Grammars.
The Numeric String Grammarr
The Syntactic Grammar
The JSON Grammar
Grammar Notation
Algorithm Conventions

SOUTCE TOXE ettt ettt ettt e s bttt ettt e e e ke e s b e e 21ttt e et £ eabeeesbe e e ease e e ea bt e e he e e san £ane e e st e e e abeeesaneeennneeenbebeeenneas 14

Lexical Conventions
Unicode Format-Control Characters ...
White Space
Line Terminators
Comments.......
TOKENS oottt

Identifier Names and Identifiers..
Reserved Words
Punctuators
Literals
Null Literals.....
Boolean Literals
Numeric Literals4....
Regular Expression Literals....
Template Literal Lexical Components
String Literals
Automatic Semicolon Insertion
Rules of Automatic Semicolon Insertion...
Examples of Automatic Semicolon Insertion..

Types
ECMAScript Language Types
The Undefined Type
The Null Type............
The Boolean Type.
The String Type.
The Number Type..

© Ecma International 2012 |

oecmad

8.1.7 The Object Type
8.2 ECMAScript Specification Types..
8.2.1 Data BIOCKScccoeiviiiiiciciciie,
8.2.2 The List and Record Specification Type...
8.2.3 The Completion Record Specification Type
8.2.4 The Reference Specification Type................
8.2.5 The Property Descriptor Specification Type
8.2.6 The Lexical Environment and Environment Record Specification Types....
8.3 Ordinary Object Internal Methods and Internal Data Properties
8.3.1 [[GetInheritance]] ()

8.3.2 [[SetInheritance]] (V) ..

8.3.3 [[HasIntegrity]] (Level)

8.3.4 [[SetIntegrity]] (Level)

8.3.5 [[HasOwnProperty]] (P)

8.3.6 [[GetOwnProperty]] (P)

8.3.7 [[DefineOwnProperty]] (P, Desc)

8.3.8 [[HasProperty]](P)
8.3.9 [[Get]] (P, Receiver)....
8.3.10 [[Set]] (P, V, Receiver).
8.3.11 [[Delete]] (P) .cooeunne
8.3.12 [[Enumerate]] ()
8.3.13 [[OwnPropertyKeys]] ()
8.3.14 ObjectCreate(proto, internalDatalList) Abstract Operation ..
8.3.15 Ordinary FUNCtion ODJECTSooiiiiieiiiiiiicce e
8.4 Built-in Exotic Object Internal Methods and Data Fields ..
8.4.1 Bound Function Exotic Objects
8.4.2 Array Exotic Objects
8.4.3 String Exotic Objects
8.4.4 Exotic Arguments Objects
8.4.5 Integer Indexed Delegation 'Exotic Objects ..
8.4.6 Built-in Function Objects
8.5 Proxy Object Internal Methods and Internal Data Properties .
8.5.1 [[GetInheritance]] ()
8.5.3 [[HasIntegrity]] (Level)
8.5.4 [[SetIntegrity]] (Level)
8.5.5 [[HasOwnProperty]] (P)
8.5.6 [[GetOwnProperty]] (P)
8.5.7 [[DefineOwnProperty]] (P, Desc)
8.5.8 [[HasProperty]] (P)
8.5.9 [[Get]] (P, Receiver)
8.5.10 [[Set]] (P, V, Receiver)
8.5.11 [[Delete]] (P)ccevvvnns
8.5.12 [[Enumerate]] ()........
8.5.13 [[OwnPropertyKeys]] ()

8.5.14 [[Call]] (thisArgument, argumentsList) ..
8.5.15 [[Construct]] Internal Method

L Y o = 1ol @ o 1= =14 o) o [USRS
9.1 Type Conversion and Testing
9.1.1 ToPrimitivecceovveneninennne
9.1.2 ToBoolean ...
9.1.3 ToNumber....
9.14 Tolnteger
9.1.5 TolInt32: (Signed 32 Bit Integer)
9.1.6 ToUint32: (Unsigned 32 Bit Integer)
9.1.7 ToUint16: (Unsigned 16 Bit Integer) ...
9.1.8 TOSHING .ooveirieiieieece e s
9.1.9 ToObject......
9.1.10 ToPropertyKey
9.2 Testing and Comparison Operations

1l © Ecma International 2012

secma

9.21
9.2.2
9.2.3
9.24
9.25
9.2.6
9.2.7

101

10.1.1
10.1.2
10.2

10.2.1
10.2.2
10.3

104

104.1
10.4.2
10.4.3
10.4.4
105

105.1
10.5.2
10.5.3
10.5.4

10.5.5 Eval Declaration Instantiation...

10.6

11
111
1111
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7
11.1.8
11.1.9

11.1.10 The Grouping Operator......

11.2

11.2.1
11.2.2
11.2.3

CheckObjectCoercible
IsCallable...................
SameValue(x, y).....
SameValueZero(x, y)
IsConstructor-......
IsPropertyKey .
IsExtensible (O)
Operations on Objects
Get (O, P) .coovvreerne
Put (O, P, V, Throw).....
CreateOwnDataProperty (O, P, V).....
DefinePropertyOrThrow (O, P, desc)
DeletePropertyOrThrow (O, P)
HasProperty (O, P)
GetMethod (O, P)
Invoke(O,P, [args])
SetintegrityLevel (O, level)...
TestlIntegrityLevel (O, level)
CreateArrayFromList (elements)
OrdinaryHasInstance (C, O) ...ooeveeireireniinieniesesiinanne e siinee s
GetPrototypeFromConstructor (constructor intrinsicDefaultProto) ...
OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, |nternalDataL|st) TR 90

Executable Code and Execution Contexts
Types of Executable Code
Strict Mode Code..........co....
Non-ECMAScript Functions.....
Lexical Environments
Environment Records.....
Lexical Environment Operations
Code Realms...
Execution Contexts..
Identifier Resolution.
GetThisEnvironment
This Resolution
GetGlobalObject.............
Declaration Binding Instantiation..
Global Declaration Instantiation .
Module Declaration Instantiation...
Function Declaration Instantiation
Block Declaration Instantiation

Arguments Object

Expressions
Primary Expressions
The this Keyword ...
Identifier Reference..
Literals...........c.....
Array Initialiser
Object Initialiser
Function Defining Expressions ..
Generator Comprehensions....
Regular Expression Literals.
Template Literals................

Left-Hand-Side Expressions ...
Property Accessors
The new Operator
Function Calls

© Ecma International 2012 1l

oecmad

11.2.4 The super Keyword
11.2.5 Argument Lists
11.2.6 Tagged Templates
11.3 Postfix Expressions
11.3.1 Postfix Increment Operator .
11.3.2 Postfix Decrement Operator
11.4 Unary Operators
11.4.1 The delete Operator.
11.4.2 The void Operator......
11.4.3 The typeof Operator138
11.4.4 Prefix Increment Operator ...
11.4.5 Prefix Decrement Operator..
11.4.6 Unary + Operator
11.4.7 Unary - Operator
11.4.8 Bitwise NOT Operator (~)
11.4.9 Logical NOT Operator (!)
11.5 Multiplicative Operators....
11.5.1 Applying the * Operator
11.5.2 Applying the / Operator
11.5.3 Applying the % Operator
11.6 Additive Operators
11.6.1 The Addition operator (+)
11.6.2 The Subtraction Operator (-)
11.6.3 Applying the Additive Operators to-Numbers
11.7 Bitwise Shift Operators
11.7.1 The Left Shift Operator (<<)............
11.7.2 The Signed Right Shift Operator (>>)
11.7.3 The Unsigned Right Shift Operator (>>>)
11.8 Relational Operators
11.8.1 Runtime Semantics .«
11.9 Equality Operators...
11.9.1 Runtime Semantics
11.10 Binary Bitwise Operators
11.11 Binary Logical Operators
11.12 Conditional Operator (.2 :
11.13 Assignment.Operators...
Static Semantics ...
Runtime Semantics

11.13.4 Destructuring Assignment ..
11.14 Comma Operator (,)

12 Statements and DECIAIALIONSccveiiieiieie et ettt e et e e e e e neesreesreesteesbeesteenes e eneeenees 160
Static Semantics
Runtime Semantics .
12.1
12.2
12.2.1 Let and Const Declarations....
12.2.2 Variable Statement
12.2.4 Destructuring Binding Patterns
12.3 Empty Statement
12.4 Expression Statement
125 The if Statement
12.6 Iteration Statements
12.6.1 The do-while Statement
12.6.2 The while Statement
12.6.3 The for Statement
12.6.4 The for-in and for-of Statements
12.7 The continue Statement

v © Ecma International 2012

oeChna

12.8

12,9

12.10
12.11
12.12
12.13
12.14
12.15

13

131
13.2
133
134
135

13.6 Tail Position Calls

14

14.1 Script .

14.1.1

14.2 Modules

15
151
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.25
153
15.3.1
15.3.2
15.3.3
15.3.4
15.4
1541
15.4.2
15.4.3
15.4.4
15.4.5
155
155.1
15.5.2
1553
15.5.4
15.5.5
15.6
15.6.1
15.6.2
15.6.3
15.6.4
15.6.5
15.7
15.7.1

The break Statement
The return Statement
The with Statement....
The switch Statement
Labelled Statements ...
The throw Statement..
The try Statement......
The debugger statement

FUNCHIONS QN0 GENEIALOIS ...uiiiiiieiiiieiiii ettt ittt ettt st et e et eeesaae e e g e e e sbeeesbeeesnnbeeseeenteeeseeas 192
Function Definitions
Arrow Function Definitions ..
Method Definitions...............
Generator Function Definitions ..
Class Definitionsc.......

Scripts and Modules

Directive Prologues and the Use Strict Directive«.
Standard Built-in ECMAScript Objects
The Global Object
Value Properties of the Global Object
Function Properties of the Global Object
URI Handling Function Properties..............
Constructor Properties of the Global Object
Other Properties of the Global Object
Object ODJeCtSoocvviviiiiiiciicec e
The Object ConstructorCalled as a Function.
The Object Constructor
Properties of the Object Constructor
Properties of the Object Prototype Object
Properties of‘Object Instances
Function Objects
The Function Constructor
Properties of the Function Constructor.....
Properties of the Function Prototype Object
Function Instances...
Array Objects...........
The Array Constructor.............
Properties of the Array Constructor....
Properties of the Array Prototype Object
Properties of Array Instances..............
Array Iterator Object Structure
String OBJECES . .tuveivii e

The String Constructor Called as a Functio
The String CONStruCtor.......cocoevvvvivcienne.
Properties of the String Constructor...
Properties of the String Prototype Object
Properties of String Instances..............
Boolean Objectsccccoevieiiiiiiiinin,
The Boolean Constructor Called as a Function..
The Boolean Constructorccccoeevvvenecnes
Properties of the Boolean Constructor......
Properties of the Boolean Prototype Object ...
Properties of Boolean Instances
Number Objects........cccoccevviiiiiinnce,

The Number Constructor Called as a Function

© Ecma International 2012 \V

oecmad

15.7.2 The Number Constructor
15.7.3 Properties of the Number Constructor...
15.7.4 Properties of the Number Prototype Object
15.7.5 Properties of Number Instances
15.8 The Math Object.....cccccevveiviirnrne
15.8.1 Value Properties of the Math Object...
15.8.2 Function Properties of the Math Object
BN T b - £ O] 1=t £ SO PPRTPUR
15.9.1 Overview of Date Objects and Definitions of Abstract Operations..
15.9.2 The Date Constructor Called as a Function....
15.9.3 The Date Constructor..................
15.9.4 Properties of the Date Constructor
15.9.5 Properties of the Date Prototype Object
15.9.6 Properties of Date Instances
15.10 RegExp (Regular Expression) Objects
15.10.1 Patterns
15.10.2 Pattern Semantics
15.10.3 The RegExp Constructor Called as a Function..
15.10.4 The RegEXp CONStruCtorccoocvvvvereeneerinns
15.10.5 Properties of the RegExp Constructor......
15.10.6 Properties of the RegExp Prototype Object ...
15.10.7 Properties of RegExp Instances
15.11 Error ObJeCtS ..covoveiieieeieee e e
15.11.1 The Error Constructor Called as a Function
15.11.2 The Error CONStruCtor.....ccovveveeeepiions
15.11.3 Properties of the Error Constructor ...
15.11.4 Properties of the Error Prototype Object ..
15.11.5 Properties of Error Instances
15.11.6 Native Error Types Used in This Standard
15.11.7 NativeError Object Structure...............
15.12 The JSON Objectcuuueen.
15.12.1 The JSON Grammar.
15.12.2 JSON.parse (text [, reviver]
15.12.3 JSON.stringify (value [, replacer [, space]])..
15.13 Binary Data Objects
15.13.1 The BinaryData Module
15.13.2 The BinaryData.Type Object...
15.13.3 The BinaryData.ArrayType Object ...
15.13.4 The BinaryData.StructType Object
15.13.5 ArrayBuffer Objects
15.18.6 TypedArray Object Structures
15.13.7 DataView Objects.......cce........
15.14 Map ODBjJECtSccvvverentiinienieeenie e
15.14.1 The Map Constructor Called as a Function .
15.14.2 The M@ap CoNStruCtOr.........cccocvvrveieerieenennnn
15.14.3 Properties of the’Map Constructor
15.14.4 Properties of the Map Prototype Object
15.14.5 Properties of Map Instances.............
15.14.6 Map lterator Object Structure.
15.15 WeakMap ODjJecCtScccvevieriiiiiiiiiiies e
15.15.1 The WeakMap Constructor Called as a Function..
15.15.2 The WeakMap CONSLrUCIOrcccuveeeieeiieiieiinne
15.15.3 Properties of the WeakMap Constructor
15.15.4 Properties of the WeakMap Prototype Object
15.15.5 Properties of WeakMap Instances
15.16 Set ObJecCtSccoovvviiiiiiiiiiee e
15.16.1 The Set Constructor Called as a Function
15.16.2 The Set ConStructor.........ccocevveveennns
15.16.3 Properties of the Set Constructor

VI © Ecma International 2012

secmad

15.16.4 Properties of the Set Prototype Object
15.16.5 Properties of Set Instances..............
15.16.6 Set Iterator Object Structure
15.17 The Reflect Module ..o

15.17.1 Exported Function Properties Reflecting the Essentional Internal Methods
15.18 Proxy Objects
15.19 The "std:iteration" Module
15.19.1 Common lteration Interfaces
15.19.2 "std:iteration" Exports..........
15.19.3 GeneratorFunction Objects..
15.19. 4 Generator Objects

16 Errors ..o

Annex A (informative) Grammar Summary
Al Lexical Grammar
A.2 Number Conversions..
A3 Expressions...........
A4 Statements

A5 Functions and Scripts

A.6 Universal Resource Identifier Character Classes..
A7 Regular Expressions
A.8 JSON
A.8.1 JSON Lexical Grammar ..
A.8.2 JSON Syntactic Grammar

Annex B (normative) Additional ECMAScript Features for Web Browsers
B.1 AdAItIONAl SYNTAX ..oveeviiiieiiei st i anea i
B.1.1 Numeric Literals
B.1.2 String Literals
B.1.3 HTML-like Comments
B.2 Additional Properties
B.2.1 Additional Properties of the Global Object

B.2.2 Additional Properties of the Object.prototype Object.
B.2.3 Additional Properties of the String.prototype Object .
B.2.4 Additional Properties of the Date:prototype Object
B.2.5 Additional Properties of the RegExp.prototype Object ..
B.3 Other Additional Features
B.3.1 _ proto___ Property Names in Object Initialisers
B.3.2 Web Legacy Compatibility for Block-Level Function Declarations

Annex C (informative) The Strict MOde Of ECMASCIIPE ...c.viiiiiieiieiieiieis et e
Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact 428

Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior

Editions
In the 6" Edition.
In the 5" Edition

Annex F (informative) Static Semantic Rule Cross Reference

SCraP HEAP ..ot e 438
8.4.4 Symbol Exotic Objects .
8.3.10 [[Enumerate]] (includePrototype, onl
9.1.11 ToPositivelnteger
10.5.3 Function Declaration Instantiation
F.1.1 The_ _proto__ pseudo property.

i/.iznumerabl.é)

© Ecma International 2012 Vil

B INTERNATIONAL

Vil © Ecma International 2012

cecma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption<under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned. with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of. ECMAScript. Although that work was not
completed and not published?! as the fourth edition of ECMASeript, it-informs continuing evolution of the
language. The fifth edition of ECMAScript (published as ECMA-262 5" edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC 16262:2011.

This present sixth edition of the Standard.........

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4’ as an Ecma International publication does not
exist.

© Ecma International 2012 IX

secnd

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

X © Ecma International 2012

~2echnd

ECMAScript Language Specification

1 Scope
This Standard defines the ECMAScript scripting language.
2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646:

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScriptiis permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the “future reserved words” listed in 7.6.1.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2
ISO/IEC 10646:2003: Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda; or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.
4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2012 1

secmd

A scripting language is a programming language that is used to manipulate, customise, and automate the
faciliies of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers. ECMAScript was originally designed to be used as a scripting language, but has
become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used both as a general propose programming language and to provide core scripting
capabilities for a variety of host environments. Therefore the core language is specified in this document apart
from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other-programming languages; in particular
Java™, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java™ Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.
4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and .computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different-host environment for server-side computation including objects representing
requests, clients, and.files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be used—for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is @ member of one of the following built-in types: Undefined, Null, Symbol, Boolean, Number, and
String; an object is a member of the remaining built-in type Object; and a function is a callable object. A
function that is associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String

2 © Ecma International 2012

pecma

object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in

Formatted: French (Switzerland)

C ed [AWB101]: This description probably need to

various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a property named “prototype” that is used to implement prototype-based inheritance and shared
properties. Objects are created by using constructors in new _expressions; for example, new
Date (2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date () produces a string representation of the current date and
time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value of
its constructor’'s “prototype” property. Furthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property
of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

be tweaked in light of new features such as class declarations
and explicit exposure of the [[Prototype]] property

g e implicit prototypelink
prototype (jFp :
F1 explicit prototype property
Pz CFP1 PHEE protomype prop

e e, of o ofs
gl ol ol gl gl
a2 o2 o2 gz o2

Figure 1 — Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

© Ecma International 2012 3

secmd

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfa,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs’s prototype is CFy. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFp, cfi, cfz, cfs, cf4, or cfs. The property named CFP1 in CFp
is shared by cfi, cfy, cfs, cfs, and cfs (but not by CF), as are any properties found in CFy’s implicit prototype
chain that are not named g1, g2, or CFP1. Notice that there is no implicit prototype link between CF and CFp.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or.any of the constructed object’s
properties. In the above diagram, one could add a new shared propertyfor cfi, cfz, cfs, cfs, and cfs by
assigning a new value to the property in CFp.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicity made at the level of
individual ECMAScript code units. Because strict mode is'selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strictmode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, .an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1

type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Symbol, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2012

secma

434

constructor

function object that creates and initialises objects

NOTE The value of a constructor’'s “prototype” property is a prototype object that is used to implement inheritance
and shared properties.

435
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’'s “prototype” property
for the purpose of resolving property references. The constructor's “prototype” property can be referenced by the
program expression constructor.prototype, and properties added to an object’s prototype are shared, through
inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object. create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the internal methods that must be supported by all. ECMAScript
objects.

4.3.7

exotic object

object that has some alternative behaviour for-one or more of the internal methods that must be supported by
all ECMAScript objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification.

439

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

43.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14

Boolean value
member of the Boolean type

© Ecma International 2012 5

secmd

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal data property whose value is the Boolean value. A Boolean
object can be coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as
an argument. The resulting object has an internal data property whose value is the String value. A String object can be
coerced to a String value by calling the String constructor as a function (15.5.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.
4.3.21
Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal data property whose value is the Number value. A Number object can
be coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24

NaN
number value that is a IEEE 754 “Not-a-Number” value

6 © Ecma International 2012

secma

4.3.25
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves
when invoked. A function’s code may or may not be written in ECMAScript.

4.3.26
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.27

property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.28
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.29
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.30
attribute
internal value that defines some characteristic of a property

4.3.31

own property

property that is directly contained by its object
4.3.32

inherited property

property of an object that is‘not an own property but is a property (either own or inherited) of the object’s
prototype

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its

right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

© Ecma International 2012 7

secmd

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharacter defined in Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDiv or InputElementRegExp, that describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).
Simple white space and single-line comments are discarded and do not appear in the stream of input
elements for the syntactic grammar. A MultiLineComment (that is, a comment of the form “/*...*/” regardless
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineComment contains one or more line terminators, then it is replaced by a single line terminator, which
becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern,
that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having<to do with numeric literals and has as its terminal symbols SourceCharacter. This
grammar appears in 9:3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.
5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Script, that describe how sequences of tokens can form syntactically correct independent
components of an ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of input
elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a
single application of the syntactic grammar. The script is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal nonterminal Script, with no tokens left over.

“.n

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
“awkward” places.

8 © Ecma International 2012

pecma

In certain cases in order to avoid ambiguities the syntactic grammar uses generalize productions that permit
token sequences that are not valid ECMAScript scripts. For example, this technique is used in with object
literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided
that further restricts the acceptable token sequences. In certain contexts, when explicitly specific, the input
elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The script is syntactically in error if the tokens in the stream of input elements cannot be parsed as
a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript‘objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical grammar are distinguished by having two colons “::” as separating
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic'grammar. Productions of the JSON

.

syntactic grammar are distinguished by using one colon “:” as separating punctuation.
5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a script either exactly as written or using equalvant Unicode escape sequences (see clause 6). All terminal
symbol characters specified in this way are to be understood as the appropriate Unicode character from the
ASCII range, as opposed to any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is
introduced by the name of the nonterminal being defined followed by one or more colons. (The number of
colons indicates to which grammar the production-belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token,
followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of
Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by
a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined
in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of
nonterminals are common.

The subscripted suffix “op”, which may appear after a terminal or nonterminal, indicates an optional symbol.

The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

© Ecma International 2012 9

secmd

VariableDeclaration :
Identifier Initialiseropt

is a convenient abbreviation for:
VariableDeclaration :
Identifier
Identifier Initialiser

and that:

IterationStatement :
for (ExpressionNolnop ; Expressionop: ; Expressiong:) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expressionop ; Expressionop) Statement
for (ExpressionNoln ; Expressionoy ; Expressiong:) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ; Expressionoy) Statement
for (; Expression ; Expressionept). Statement
for (ExpressionNoln ; ; Expressiongy) Statement
for (ExpressionNoln ; Expression ; Expressiono,:) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Statement
for (; 4 Expression) /Statement
for (; Expression ;) Statement
for (; Expression ; Expression) Statement
for (ExpressionNoln ; ;) Statement
for (ExpressionNoln. ; ; Expression) Statement
for (ExpressionNoln ; Expression ;) Statement
for (ExpressionNoln ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

10 © Ecma International 2012

pecma

NonZeroDigit ::

woJdoUubd WNR

If the phrase “lempty]” appears as the right-hand side of a production, it indicates that the production's right-
hand side contains no terminals or nonterminals.

If the phrase “[lookahead ¢ set]” appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is a member of the given set. The set can be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the
input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw token
and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar context. If a phrase of the form “[Lexical goal LexicalGoalSymbol]” appears on the right-hand-
side of a syntactic production then the next token must be lexically recognised using the indicated goal symbol.
In the absence of such a phrase the default lexical goal symbol is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

© Ecma International 2012 11

secmd

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode character

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique.-In practice, there may be more efficient algorithms
available to implement a given feature.

Algorithms may be explicitly parameterised, in which case the names and usage of the parameters must be
provided as part of the algorithm’s definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are-named and written in parameterised functional form so that
they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and non-terminal symbols of the
production alternative as if they were parameters of the algorithm. When used in this manner, non-terminal
symbols refer to the actual alternative definition that is matched when parsing the script souce code.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm that is might be applied to that production’s left-hand side nonterminal. The implicit simply reapplies
the same algorithm name with the same parameters, if any, to the chain production’s sole right-hand side
nonterminal and then result. For example, assume there is a production

Block :
{ StatementList }

but there is.no evalution algorithm that is explicitly specified for that production. If in some algorithm there is a
statement of the form: “Return the result of evaluating Block” it is implicit that the algorithm has an evalution
algorithm of the form:

Runtime Semantics: Evaluation

Block : { StatementList }

1. Return the result of evaluating StatementList
For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules

repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.

12 © Ecma International 2012

pecma

b. Substep
i. Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep

A step or substep may be written as an “if’ predicate that conditions its substeps. In this case, the substeps
are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is
the negation of the preceding “if’ predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation.< They. are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if itis +0 or —0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which'is —x.if x is negative (less than zero) and
otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and -1 if x'is negative. The sign function is not used in
this standard for cases when x is-zero.

The mathematical function-min(xs, Xz, ..., Xn) yields the mathematically smallest of x1 through Xn.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero)
such that abs(k) < abs(y) and x—k = q x'y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.
NOTE floor(x) = x—(x modulo. 1).
5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript script that may be evaluated. In some situations additional rules
are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements.
Such rules are always associated with a production of a grammar and are called the static semantics of the
production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition
for a static semantic rule named Contains which takes an argument named symbol whose value is a terminal or
non-terminal of the grammar that includes the associated production. The default definition of Contains is:

1. Foreach terminal and non-terminal grammar symbol, sym, in the definition of this production do

a. Ifsym is the same grammar symbol as symbol, return true.
b. If sym is a non-terminal, then

© Ecma International 2012 13

secmd

i Let contained be the result of Contains for sym with argument symbol.
ii. If contained is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A comforming implementation must, prior to the
first evaluation of a Script, validate all of the early error rules of the productions used to parse that Script. If any
of the early error rules are violated the Script is invalid and cannot be evaluated.]

6 Source Text

Syntax

SourceCharacter ::
any Unicode character

The ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a
sequence of Unicode characters. The phrase “Unicode character” refers to the abstract linguistic or
typographical unit represented by a single Unicode scalar value. The actual encodings used to store and
interchange ECMAScript source text is not relevant to this specification. Any well-defined encoding such as
UTF-32 or UTF-16 may be used. Source text might even be externally represented using a non-Unicode
character encoding. Regardless of the external source text encoding, a conforming ECMAScript
implementation processes the source text as'if it was -an equivalent sequence of SourceCharacter values. Each
SourceCharacter being an abstract Unicode character with a corresponding Unicode scalar value. Conforming
ECMAScript implementations are not required to perform any normalisation of text, or behave as though they
were performing normalisation of text.

The phrase “code point” refers to such a Unicode scalar value. “Unicode character” only refers to entities
represented by single Unicode scalar values: the components of a combining character sequence are still
individual “Unicode characters,” even though a user might think of the whole sequence as a single character.

In string literals, regular expression literals;template literals and identifiers, any Unicode characters may also
be expressed as a Unicode escape sequence that explicitly express a code point’s numeric value. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within other contexts, such
an escape sequence contextually contributes one Unicode character.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it is interpreted
as a line terminator (Unicode character 00024 is line feed) and therefore the next Unicode character is not part of the
comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it is likewise
interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of \u000A to cause
a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape sequence
occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a
Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes a Unicode

character to the literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

ECMAScript String values (8.4) are computational sequences of 16-bit integer values called “code units”.
ECMAScript language constructs that generate string values from SourceCharacter sequences use UTF-16
encoding to generate the code unit values.

Static Semantics: UTF-16 Encoding

The UTF-16 Encoding of a numeric code point value, cp, is determined as follows:

1. Assert: 0 < cp < Ox10FFFF

2. If cp < 65535, then return cp.
3. Letcul be floor((cp — 65536) / 1024) + 55296. NOTE 55296 is 0xD800.

14 © Ecma International 2012

(Commented [AW2]: Perhaps this should be somewhere
else. Currently we don’t have a section that enumerates all
the steps in loading and evaluating a program.

secma

Let cu2 be ((cp — 65536) modulo 1024) + 56320. NOTE 56320 is 0xDCO0O0.
Return the code unit sequence consisting of cul followed by cu2.

o~

7 Lexical Conventions

The source text of an ECMAScript script is first converted into a sequence of input elements, which are tokens,
line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the
longest possible sequence of characters as the next input element.

There are several situations where the identification of lexical input elements is.sensitive to the syntactic
grammar context that is consuming the input elements. This requires multiple.goal symbols for the lexical
grammar. The InputElementDiv goal symbol is the default goal symbol and is used in those syntactic grammar
contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExp goal symbol is used in all syntactic grammar contexts where a RegularExpressionLiteral is
permitted. The InputElementTemplateTail goal is used in syntactic grammar contexts. where a TemplateLiteral
logically continues after a substitution element.

[NOTE\ There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading

RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the
following:

a=>
/hi/g.exec(c) .map(d) ;

where the first non-whitespace, non-comment character after a LineTerminator.is slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at.the LineTerminator. That is, the above example is interpreted in
the same way as:

a=b / hi / g.exec(c).map(d);
Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
RightBracePunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
Token
RightBracePunctuator:
RegularExpressionLiteral

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
TemplateSubstitutionTail

© Ecma International 2012 15

C ed [AWB93]: May need to also say something
about TemplateSubstitution tail. Also need to consider with
there are any ASl issues concerning it.

secma

7.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf’ in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals, template literals, and regular expression
literals.

<ZWNJ> and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ> and <ZWJ> may also be used in
an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it.as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 1 — Format-Control Character Usage

Code Point Name Formal Name Usage
U+200C Zero width non-joiner <ZWNJ> IdentifierPart
U+200D Zero width joiner <ZWJ> IdentifierPart
U+FEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are‘used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may occur within a StringLiteral, a
RegularExpressionLiteral, @ Template,or a TemplateSubstitutionTail where they are considered significant
characters forming part of a literal value. They may also-occur within a Comment, but cannot appear within any
other kind of token.

The ECMAScript white space characters are listed in Table 2.
Table 2 — Whitespace Characters

Code Point Name Formal Name
U+0009 Tab <TAB>
U+000B Vertical Tab <VT>
U+000C Form Feed <FF>
U+0020 Space <SP>
U+00A0 No-break space <NBSP>
U+FEFF Byte Order Mark <BOM>
Other category “Zs” Any other Unicode <USP>
“space separator”

ECMAScript implementations must recognise all of the white space characters defined in Unicode 5.1. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

16 © Ecma International 2012

secma

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<SpP>
<NBSP>
<BOM>
<Usp>

7.3 Line Terminators|

C ed [AWB94]: Need to talk about line terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic'grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic:semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral, Template, or TemplateSubstitutionTail. Line terminators may
only occur within a StringLiteral token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (7.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space characters that are matched by the \s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.

Table 3 — Line Terminator Characters

Code Point Name Formal Name
U+000A Line Feed <LF>
U+000D Carriage Return <CR>
U+2028 Line separator <LS>
U+2029 Paragraph separator <PS>

Only the Unicode characters in Table 3 are treated as line terminators. Other new line or line breaking
Unicode characters.are treated as white space but not as line terminators. The sequence <CR><LF> is
commonly used as a line terminator. It should be considered a single SourceCharacter for the purpose of
reporting/line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead ¢ <LF>]
<LS>
<PS>
<CR><LF>

7.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

© Ecma International 2012 17

in Templates

secmd

Because a single-line comment can contain any Unicode character except a LineTerminator character, and
because of the general rule that a token is always as long as possible, a single-line comment always consists
of all characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is
not considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing by
the syntactic grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsopt */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsopt

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsopt

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of /.or *

SingleLineComment ::
// SingleLineCommentCharsopt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

7.5 Tokens

Syntax

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template

NOTE The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions
define tokens, but are not included in the Token production.

18 © Ecma International 2012

secma

7.6 Identifier Names and Identifiers

IdentifierName, Identifier, and ReservedWord are tokens that are interpreted according to the Default Identifier
Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.
ReservedWord is is an enumerated subset of IdentifierName and Identifier is an IdentifierName that is not a
ReservedWord (see 7.6.1). The Unicode identifier grammar is based on character properties specified by the
Unicode Standard. The Unicode characters in the specified categories in version 5.1.0 of the Unicode
standard must be treated as in those categories by all conforming ECMAScript implementations. ECMAScript
implementations may recognise identifier characters defined in later editions of the Unicode Standard.

NOTE1 This standard specifies specific character additions: The dollar sign (U+0024)and the underscore (U+005£)« [Formatted: Note

are permitted anywhere in an IdentifierName, and the characters zero width non-joiner(U+200C) and zero width joiner
(U+200D) are permitted anywhere after the first character of an IdentifierName.

Unicode escape sequences are permitted in an ldentifierName, where they contribute a single Unicode
character to the IdentifierName. The code point of the contributed character is expressed by the HexDigits of
the UnicodeEscapeSequence (see 7.8.6). The \ preceding the UnicodeEscapeSequence and the u and { }
characters, if they appear, do not contribute characters to the ldentifierName. A UnicodeEscapeSequence cannot
be used to put a character into an IdentifierName that would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequence sequence were replaced by the Unicode character it constributes, the result must
still be a valid IdentifierName that has the exact same sequence of characters as the original IdentifierName. All
interpretations of IdentifierName within this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two IdentifierName that are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of .code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on.IdentifierName values).

NOTE 2 If maximal portability is a concern, programmers should only employ-the identifier characters that were defined Formatted: Note

in Unicode 3.0, —
Commented [AWB95]: Norbert suggests chaning this to
5.1.0. Would be really be better for “portablility”?

Syntax

Identifier ::

IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodelDStart
$

\ UnicodeEscapeSequence
IdentifierPart ::

UnicodelDContinue

\ UnicodeEscapeSequence
<ZWNJ>
<ZWJ>

UnicodelDStart ::
any Unicode character with the Unicode property “ID_Start”.

UnicodelDContinue ::
any Unicode character with the Unicode property “ID_Continue

»

© Ecma International 2012 19

secmd

The definitions of the nonterminal UnicodeEscapeSequence is given in 7.8.6
Static Semantics: StringValue

Identifier :: IdentifierName but not ReservedWord

1. Return the StringValue of IdentifierName.

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

1. Return the String value consisting of the sequence of code units corresponding to IdentifierName. In
determining the sequence any occurrences of \ UnicodeEscapeSequence are first replaced with the code
point represented by the UnicodeEscapeSequence and then the code points of the entire IdentifierName are
converted to code units by UTF-16 Encoding (clause 6) each code point.

7.6.1 Reserved Words
A reserved word is an IdentifierName that cannot be used as an Identifier.

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

The ReservedWord definitions are specified as literal sequences of Unicode characters. However, any Unicode
character in a ReservedWord can also be expressed by a \ UnicodeEscapeSequence that expresses that same
Unicode character’s code point. Use of such escape sequences does not change the meaning of the
ReservedWord.

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript programs.

Syntax

Keyword :: one of
break delete import this
case do in throw
catch else instanceof try
class export let typeof
continue finally new var
const for return void
debugger function super while
default if switch with

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

20 © Ecma International 2012

pecma

Syntax

FutureReservedWord :: one of

enum

extends

The following tokens are also considered to be FutureReservedWords when they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the
occurrence of a FutureReservedWord would produce an error must also produce an equivalent error:

implements

interface package

7.7 Punctuators

Syntax

Punctuator :: one of
{ (
>= ==
+ -
<< >>
] ~
= +=
>>= >>>=

DivPunctuator :: one of
/ /=

RightBracePunctuator ::
}

7.8 Literals

7.8.1° Null Literals

Syntax
NullLiteral ::
null
7.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

© Ecma International 2012

private

protected

public yield

static

21

Commented [AWBS86]: It isn't clear that extends actually
needs to be reserved. It's only usage is highly contextual.

Commented [AWB87]: Move to keywords

secmd

7.8.3 Numeric Literals

Syntax

NumericLiteral ::
DecimalLiteral
BinarylntegerLiteral
OctalintegerLiteral
HexIntegerLiteral

DecimalLiteral ::
DecimallntegerLiteral . DecimalDigitsop: ExponentPartop
. DecimalDigits ExponentPartopt
DecimallintegerLiteral ExponentPartop

DecimalintegerLiteral ::
0

NonZeroDigit DecimalDigitsopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
01 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
Exponentindicator Signedinteger

Exponentindicator :: one of
e E

Signedinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinarylntegerLiteral ::
0b BinaryDigit
OB BinaryDigit
BinarylntegerLiteral BinaryDigit

BinaryDigit :: one of
01

OctallntegerLiteral ::
0o OctalDigit
00 OctalDigit
OctallntegerLiteral OctalDigit

OctalDigit :: one of
0123 4 567

HexIntegerLiteral ::

0x HexDigits
0X HexDigits

22

© Ecma International 2012

Commented [AWB78]: From March 29 meeting notes: Hex
floating point literals:

Waldemar: Other languages include these things. They're
rarely used

but when you want one, you really want one. Use cases are
similar to

that of hex literals.

Will explore adding them.

MarkM: 0x3.p1 currently evaluates to undefined. This would
be a

breaking change.

Waldemar: Not clear anyone would notice. How did other
languages

deal with this?

Commented [AWB79]: The various Digit productions could
be refactored to have less redundency

pecma

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c¢c d e £ A B C D E F

The SourceCharacter immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.
NOTE For example:

3in
is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code (see 10:1.1), must not extend the syntax of

NumericLiteral to include OctallntegerLiteral as described in B.1.1.

Static Semantics: MV’s

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second; this mathematical value is rounded as described

below.

e The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

e The MV of NumericLiteral :: BinaryIntegerLiteral is the MV of BinaryIntegerLiteral.

e The MV of NumericLiteral :: OctallntegerLiteral.is the MV of OctallntegerLiteral.

e The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral . is the MV of DecimallntegerLiteral.

e The MV of DecimallLiteral :: DecimallntegerLiteral . DecimalDigits.is the MV of DecimallntegerLiteral plus

(the MV of DecimalDigits times 10 "), where n'is the number of characters in DecimalDigits.

e The MV of DecimalLiteral:: DecimalintegerLiteral . ExponentPart is the MV of DecimallntegerLiteral times

10°%, where e is the MV _of ExponentPart.

e The MV of Decimalliteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimalintegerLiteral plus (the MV of DecimalDigits times 10™) times 10°, where n is the number of

characters in DecimalDigits and e is the MV of ExponentPart.

e The MV of DecimalLiteral ::.. DecimalDigits is the MV of DecimalDigits times 10™", where n is the number of

characters:in DecimalDigits.

e The MV of DecimalLiteral :: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10°", where n is

the'number of characters in DecimalDigits and e is the MV of ExponentPart.
e _The MV of DecimalLiteral :: DecimallntegerLiteral is the MV of DecimallntegerLiteral.

e The MV of DecimalLiteral :: DecimalintegerLiteral ExponentPart is the MV of DecimalintegerLiteral times 10°,

where e is the MV of ExponentPart.
e The MV of DecimallntegerLiteral :: 0 is 0.
e The MV of DecimallntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

e The MV of DecimallntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10") plus

the MV of DecimalDigits, where n is the number of characters in DecimalDigits.
e The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

e The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of

DecimalDigit.

e The MV of ExponentPart :: Exponentindicator Signedinteger is the MV of Signedinteger.

e The MV of Signedinteger :: DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger :: + DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

e The MV of DecimalDigit :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit:: 0 is 0.

e The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 or
of BinaryDigit:: 1 is 1.

© Ecma International 2012

23

secmd

e The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit:: 2 is 2.
e The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3is 3.
e The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.
e The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit:: 5 is 5.
e The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.
e The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.
e The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

e The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit:: 9is 9.

e The MV of HexDigit :: a or of HexDigit :: Ais 10.

e The MV of HexDigit :: b or of HexDigit :: Bis 11.

e The MV of HexDigit :: ¢ or of HexDigit :: Cis 12.

e The MV of HexDigit :: d or of HexDigit :: D is 13.

e The MV of HexDigit :: e or of HexDigit :: E is 14.

e The MV of HexDigit :: £ or of HexDigit :: Fis 15.

e The MV of BinaryintegerLiteral :: 0b BinaryDigit is the MV of BinaryDigit.

e The MV of BinaryIntegerLiteral :: 0B BinaryDigit is the MV of BinaryDigit.

e The MV of BinarylntegerLiteral :: BinaryIntegerLiteral BinaryDigit is (the MV of BinaryIntegerLiteral times 2)
plus the MV of BinaryDigit.

e The MV of OctallntegerLiteral :: 0o OctalDigit is the MV of OctalDigit.
e The MV of OctallntegerLiteral :: 00 OctalDigit is the MV of OctalDigit.

e The MV of OctalintegerLiteral :: OctallntegerLiteral OctalDigit is (the MV of OctallntegerLiteral times 8) plus
the MV of OctalDigit.

e The MV of HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.

e The MV of HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.

e The MV of HexDigits :: HexDigit is the MV of HexDigit.

e The MV of HexDigits :: HexDigits HexDigit is (the MV of HexDigits times 16) plus the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.

If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentPart and

e itis not 0; or
o thereis a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.8.4 Regular Expression Literals

NOTE A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare
as === to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime by

new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The source code comprising the
RegularExpressionBody and the RegularExpressionFlags are subsequently parsed using the more stringent
ECMAScript Regular Expression grammar (15.10.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 15.10.1, but it must

not extend the RegularExpressionBody and RegularExpressionFlags productions defined below or the productions
used by these productions.

24 © Ecma International 2012

Formatted: Note

secma

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar
RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass
RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars]

RegularExpressionClassChars i
[empty]
RegularExpressionClassChars RegularExpressionClassChar
RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/.

Static Semantics: Early Errors
RegularExpressionFlags:: RegularExpressionFlags IdentifierPart
e |tis a Syntax Error if IdentifierPart contains a Unicode escape sequence.
Static Semantics: BodyText
RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags
1. Return the source code that was recognised as RegularExpressionBody.
Static Semantics: FlagText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

© Ecma International 2012 25

secmd

1.

Return the source code that was recognised as RegularExpressionFlags.

7.8.5 Template Literal Lexical Components

Syntax

Template ::

NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::

* TemplateCharactersop

TemplateHead ::

* TemplateCharactersopt $ {

TemplateSubstitutionTail ::

TemplateMiddle
TemplateTail

TemplateMiddle ::

} TemplateCharactersop: $ {

TemplateTail ::

} TemplateCharactersopt

TemplateCharacters ::

TemplateCharacter TemplateCharactersop:

TemplateCharacter ::

SourceCharacter but not one of >.or \ or |§|

C ed [AWB910]: Note that the original proposal

$ [lookahead ¢ {]
\ EscapeSequence
LineContinuation

Static Semantics: TV’s and TRV’s

A template literal component is interpreted as a sequence of Unicode characters. The Template Value (TV) of
a literal component is described in terms of code unit values (CV, 7.8.4) contributed by the various parts of the
template literal component. As part of this process, some Unicode characters within the template component
are interpreted as having a mathematical value (MV, 7.8.3). In determining a TV, escape sequences are
replaced by the code unit of the Unicode characters represented by the escape sequence. The Template
Raw Value (TRV) is similar to a Template Value with the difference that in TRVs escape sequences are
interpreted literally.

26

The TV and TRV of NoSubstitutionTemplate :: * " is the empty code unit sequence.

The TV and TRV of TemplateHead :: “${ is the empty code unit sequence.

The TV and TRV of TemplateMiddle :: }${ is the empty code unit sequence.

The TV and TRV of TemplateTail :: } * is the empty code unit sequence.

The TV of NoSubstitutionTemplate :: * TemplateCharacters * is the TV of TemplateCharacters.

The TV of TemplateHead :: * TemplateCharacters ${ is the TV of TemplateCharacters.

The TV of TemplateMiddle :: } TemplateCharacters ${ is the TV of TemplateCharacters.

The TV of TemplateTail :: } TemplateCharacters " is the TV of TemplateCharacters.

The TV of TemplateCharacters :: TemplateCharacter is the TV of TemplateCharacter.

The TV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the

code units in the TV of TemplateCharacter followed by all the code units in the TV of TemplateCharacters in
order.

© Ecma International 2012

allowed $ldentifierName to be used as a substitution without
{}around the name.

Line terminations charcters are simply handled as literal
SouceCharacters. | find this troublesome. Shouldn’'t we have
some sort of normalizations of line terminators. Otherwise,
the actual characters in a multi-line template are at the mercy
of the authors editor/OS.

secma

e The TV of TemplateCharacter :: SourceCharacter but not one of * or \ or $ is the UTF-16 Encoding (clause
6) of the code point value of SourceCharacter.

. The TV of TemplateCharacter :: $ [lookahead ¢ {] is the code unit value 0x0024.

e The TV of TemplateCharacter :: \ EscapeSequence is the CV of EscapeSequence.

e The TV of TemplateCharacter :: LineContinuation is the TV of LineContinuation.

e The TV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

e The TRV of NoSubstitutionTemplate :: ~ TemplateCharacters " is the TRV of TemplateCharacters.

e The TRV of TemplateHead :: * TemplateCharacters ${ is the TRV of TemplateCharacters.

e The TRV of TemplateMiddle :: } TemplateCharacters ${ is the TRV of TemplateCharacters.

e The TRV of TemplateTail :: } TemplateCharacters * is the TRV of TemplateCharacters.

e The TRV of TemplateCharacters :: TemplateCharacter is the TRV of TemplateCharacter.

e The TRV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the
code units in the TRV of TemplateCharacter followed by all the code units in the TRV of
TemplateCharacters, in order.

e The TRV of TemplateCharacter :: SourceCharacter but not one of * or \ or $ is the UTF-16 Encoding
(clause 6) of the code point value of SourceCharacter.

. The TRV of TemplateCharacter :: $ [lookahead ¢ {] is the.code unit value 0x0024.

e The TRV of TemplateCharacter :: \ EscapeSequence s the sequence’consisting of the code unit value
0x005C followed by the code units of TRV of EscapeSequence.

e The TRV of TemplateCharacter :: LineContinuation is the TRV of LineContinuation.

e The TRV of EscapeSequence :: CharacterEscapeSequence is the TRV of the CharacterEscapeSequence.

. The TRV of EscapeSequence :: 0 [lookahead & DecimalDigit] iS the code unit value 0x0030.

e The TRV of EscapeSequence :: HexEscapeSequence is the TRV of the HexEscapeSequence.

e The TRV of EscapeSequence :: UnicodeEscapeSequence is the TRV of the UnicodeEscapeSequence.

e The TRV of CharacterEscapeSequence :: SingleEscapeCharacter is the TRV of the SingleEscapeCharacter.

e The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The TRV of SingleEscapeCharacter ::oneof ' “" \ b £ n r t v istheCVofthe
SourceCharacter that is that single character.

e The TRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of code unit value
0x0078 followed by TRV of the first'HexDigit followed by the TRV of the second HexDigit.

e The TRV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the sequence consisting of
code unit value 0x0075 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit
followed by TRV of the third HexDigit followed by the TRV of the fourth HexDigit.

e The TRV of UnicodeEscapeSequence :: u{ HexDigits } is the sequence consisting of code unit value
0x0075 followed by code unit value 0x007B followed by TRV of HexDigits followed by code unit value
0x007D.

e The TRV of HexDigits :: HexDigit is the TRV of HexDigit.

e The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed by
TRV of HexDigit.

e The TRV of a HexDigit _is the CV of the SourceCharacter that is that HexDigit.

e The TRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit value
0x005C followed by the code units of TRV of LineTerminatorSequence.

e The TRV of LineTerminatorSequence :: <LF> is the code unit value 0x000A.

. The TRV of LineTerminatorSequence :: <CR> [lookahead ¢ <LF>] is the code unit value 0x000D.

e The TRV of LineTerminatorSequence :: <LS> is the code unit value 0x2028.

e The TRV of LineTerminatorSequence :: <PS> is the code unit value 0x2029.

e The TRV of LineTerminatorSequence :: <CR><LF> is the sequence consisting of the code unit value
0x000D followed by the code unit value 0x000A.

NOTE TV excludes the code units of LineContinuation while TRV includes them.

© Ecma International 2012 27

secmd

7.8.6 String Literals

NOTE A string literal is zero or more Unicode code points enclosed in single or double quotes. Unicode code points
may also be represented by an escape sequence. All characters may appear literally in a string literal except for the
closing quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character may
appear in the form of an escape sequence. String literals evaluate to ECAMScript String values. When generating these
string values Unicode code points are UTF-16 encoded as defined in clause 6. Code points belonging to Basic Multilingual
Plane are encoded as a single code unit element of the string. All other code points are encoded as two code unit
elements of the string.

Syntax

StringLiteral ::
" DoubleStringCharactersop "
' SingleStringCharactersop; '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of ' or \ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead.g DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
EscapeSequence to include OctalEscapeSequence as described in B.1.2.

CharacterEscapeSequence ::
SingleEscapeCharacter.
NonEscapeCharacter

SingleEscapeCharacter :: one of
''" \ b £f n r t v

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

28 © Ecma International 2012

pecma

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit
u{ HexDigits }

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacter is defined in clause 6.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to produce the
empty character sequence. The correct way to cause a line terminator character to be part'of the String value of a string
literal is to use an escape sequence such as \n or \u0O0OA.

Static Semantics
Static Semantics: Early Errors
UnicodeEscapeSequence :: u{ HexDigits }

e |tis a Syntax Error if the MV of HexDigits > 1114111.
Static Semantics: SV’s and CV’s

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
code unit values (CV) contributed by the various. parts of the string literal. As part of this process, some
Unicode characters within the string literal are interpreted as having a mathematical value (MV), as described
below orin 7.8.3.

e The SV of StringLiteral :: "" is the empty code unit sequence.

e The SV of StringLiteral :: ' is the empty code unit sequence.

e The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

e The SV of StringLiteral :: ' SingleStringCharacters ! is the SV of SingleStringCharacters.

e The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one or two code units that is
the CV of DoubleStringCharacter:

e The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of one or
two code-units. that is the CV of DoubleStringCharacter followed by all the code units in the SV of
DoubleStringCharacters in order.

e The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one or two code units that is the
CV of SingleStringCharacter.

e The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of one or
two code units that is the CV of SingleStringCharacter followed by all the code units in the SV of
SingleStringCharacters in order.

e The SV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

e The CV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the UTF-16
Encoding (clause 6) of the code point value of SourceCharacter.

e The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of DoubleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the UTF-16
Encoding (clause 6) of the code point value of SourceCharacter .

e The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of SingleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

. The CV of EscapeSequence :: 0 [lookahead ¢ DecimalDigit] IS the code unit value 0.

e The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

e The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

© Ecma International 2012 29

secma

e The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is
determined by the SingleEscapeCharacter according to ;

Table 4 — String Single Character Escape Sequences

Escape Sequence Code Unit Value Name Symbol

\b 0x0008 backspace <BS>
\t 0x0009 horizontal tab <HT>
\n 0x000A line feed (new line) <LF>
\v 0x000B vertical tab <VT>
\f 0x000C form feed <FF>
\r 0x000D carriage return <CR>
\" 0x0022 double quote "

\' 0x0027 single quote !

\\ 0x005C backslash \

e The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
UTF-16 Encoding (clause 6) of the code point value of SourceCharacter .

e The CV of HexEscapeSequence :: x HexDigit HexDigit is the code unit value that is (16 times the MV of the
first HexDigit) plus the MV of the second HexDigit.

e The CV of UnicodeEscapeSequence :: u HexDigit-HexDigit HexDigit HexDigit is the code unit value that is
(4096 times the MV of the first HexDigit) plus. (256 times.the MV of the second HexDigit) plus (16 times the
MV of the third HexDigit) plus the MV of the fourth HexDigit.

e The CV of UnicodeEscapeSequence :: u{ HexDigits } the is the UTF-16 Encoding (clause 6) of the MV of
HexDigits.

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion
There are three basic rules of semicolon insertion:

1. When, as the script is parsed from left to right, a token (called the offending token) is encountered that is
not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token'if one or more of the following conditions is true:

e The offending token is separated from the previous token by at least one LineTerminator.
e The offending token is }.

2. When, as the script is parsed from left to right, the end of the input stream of tokens is encountered and
the parser is unable to parse the input token stream as a single complete ECMAScript script, then a
semicolon is automatically inserted at the end of the input stream.

3. When, as the script is parsed from left to right, a token is encountered that is allowed by some production
of the grammar, but the production is a restricted production and the token would be the first token for a
terminal or nonterminal immediately following the annotation “[no LineTerminator here]” within the restricted
production (and therefore such a token is called a restricted token), and the restricted token is separated

30 © Ecma International 2012

(Field Code Ct

»eCima

from the previous token by at least one LineTerminator, then a semicolon is automatically inserted before
the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-—

ContinueStatement :
continue [no LineTerminator here] Identifier ;

BreakStatement :
break [no LineTerminator here] Identifier ;

ReturnStatement :
return [no LineTerminator here] Expression ;

ThrowStatement :
throw [no LineTerminator here] Expression M

The practical effect of these restricted productions is-as follows:
When a ++ or -- token is encountered where the parser would treat it as. a postfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is automatically

inserted before the ++ or -- token.

When a continue, break, return, or throw token is encountered and a LineTerminator is encountered before
the next token, a semicolon is automatically inserted after the continue, break, return, or throw token.

The resulting practical advice to ECMAScript programmers is:
A postfix ++ or -- operator should-appear on the same line as its operand.
An Expression in @ xeturn or throw statement should start on the same line as the return or throw token.
An Identifier in a break or continue statement should be on the same line as the break or continue token.
7.9.2° Examples of Automatic Semicolon Insertion

The source

{121} 3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

21} 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

72 ;} 3;
which is a valid ECMAScript sentence.

The source

© Ecma International 2012 31

secmd

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a + b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminator separates it from the token return.

The source
a=>b
++c
is transformed by automatic semicolon insertion into the following:
a =b;
++c;
NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs

between b and ++.

The source

if (a > b)

else c =d
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,
even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=b+ c

(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=>b + c(d + e) .print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the

programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of X" where “type” refers to the
ECMAScript language and specification types defined in this clause.

8.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,

32 © Ecma International 2012

pecma

String, Number, Symbol, and Object. An ECMAScript language value is a value that is characterized by an
ECMAScript language type.

8.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.1.2 The Null Type

The Null type has exactly one value, called null.

8.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.
8.1.4 The String Type

The String type is the set of all finite ordered sequences_of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in-a running ECMAScript program, in
which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index O, the next element (if any) at index 1; and so on. The length of a String is the
number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no
elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code
unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a
String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No
operations ensure that Strings are in a normalized form. Only operations that are explicitly specified to be
language or locale sensitive produce language-sensitive results

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long
as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:

e A code unit in the range 0 to OXD7FF or in the range 0XE000 to OxFFFF is interpreted as a code point
with the same value.

e A sequence of two code units, where the first code unit c1 is in the range 0xD800 to 0XDBFF and the
second code unit c2 is in the range 0xDCOO to OXDFFF, is a surrogate pair and is interpreted as a code
point with the value (cl - 0xD800) x 0x400 + (c2 — 0xDCO00) + 0x10000.

e A code unit that is in the range 0xD800 to OXDFFF, but is not part of a surrogate pair, is interpreted as
a code point with.the same value.

8.1.5 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2%-2%°+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 9007199254740990 (that is, 2%°-2) distinct “Not-a-Number” values of the IEEE Standard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN.) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +w and —w, respectively. (Note that these two

© Ecma International 2012 33

secmd

infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity.)

The other 18437736874454810624 (that is, 2%-2%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2¢4-2%-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2°*-25%) of them are normalised, having the form

sxmx 2

where s is +1 or -1, m is a positive integer less than 2% but notless than 2%, and e is an integer ranging from
—-1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°°-2) values are denormalised, having the form

sxmx 2°

where sis +1 or —1, m is a positive integer less'than 2%, and e is —~1074.

Note that all the positive and negative integers whose magnitude is no greater than 2% are representable in
the Number type (indeed, the integer 0 has two representations, +0.and -0).

A finite number has an odd significand.if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the 'Number value for x” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with —0 removed and with two
additional values added to it that-are not representable in the Number type, namely 219 (which is +1 x 2% x
2°™) and 2% (which.is —1 x 2% x 2°™%). Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 2'°* and —21%* are considered to have even significands. Finally, if 2! was chosen, replace it
with +oo; if —21°%* was chosen, replace it with —oo; if +0 was chosen, replace it with -0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range -2 through 2%'-1, inclusive, or in the range
0 through 2%-1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 2% integer values. See the descriptions of the Tolnt32 and ToUint32 operators in 9.5 and 9.6,
respectively.

8.1.6 The Symbol Type

The Symbol type is the set of all non-String values that may be used as the key of an Object property (8.1.7).

Each possible Symbol values is unique and immutable.

Symbol values have a single observable attribute called [[Private]] whose immutable value is either true or
false. A private symbol is a Symbol value whose [[Private]] attribute has the value true.

34 © Ecma International 2012

oechd

8.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

e A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

e A accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A key value is either an ECMAScript String value or a Symbol
valuel

Property keys are used to access properties and their values. There are two kinds of access for properties:
get and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get
and set access includes both own properties that are a direct part of an object and inherited properties which
are provided by another associated object via a property inheritance relationship. Inherited properties may be
either own or inherited properties of the associated object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form of
objects and have the default object semantics. An exotic object is any form of object whose property
semantics differ in any way from the default semantics.

8.1.7.1 Property Attributes

Attributes are used in this specification to define'and explain the state of Object properties. A data property
associates a key value with the attributes listed in Table'5.

Table 5 — Attributes of a Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript The value retrieved by a get access of the property.
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the
property’s [[Value]] attribute using [[Set]] will not succeed.
[[Enumerable]] Boolean If true, the property will be enumerated by a for-in

enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 6.

© Ecma International 2012 35

secmd

Table 6 — Attributes of an Accessor Property

Attribute Name

Value Domain

Description

([Get]]

Object or
Undefined

If the value is an Object it must be a function Object. The
function’s [[Call]] internal method (8.6.2) is called with an
empty arguments list to retrieve the property value each
time a get access of the property is performed.

([Set]]

Object or
Undefined

If the value is an Object it must be a function Object. The
function’s [[Call]] internal method (8.6.2) is called with an

arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Enumerable]] Boolean

If false, attempts to delete the property, change the
property to'be a data property, or change its attributes will
fail.

[[Configurable]] | Boolean

If the initial values of a property’s attributes are not explicitly specified by this specification, the default value
defined in Table 7 is used.

Table 7 — Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.1.7.2 Object Internal Methods and Internal Data Properties

The actual semantics of ECMAScript objects are specified via algorithms called internal methods. Each object
in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour.
These internal methods are not part of the ECMAScript language. They are defined by this specification purely
for expository. purposes. However, each object within an implementation of ECMAScript must behave as
specified by the internal methods associated with it. The exact manner in which this is accomplished is
determined by the implementation.

Internal methods are identified within this specification using names enclosed in double square brackets [[]].
Internal method names are polymorphic. This means that different ECMAScript object values may perform
different algorithms when a common internal method name is invoked upon them. If, at runtime, the
implementation of an algorithm attempts to use an internal method of an object that the object does not
support, a TypeError exception is thrown.

Internal data properties correspond to internal state that is associated with objects and used by various
ECMAScript specification algorithms. Depending upon the specific internal data property such state may
consist of values of any ECMAScript language type or of specific ECMA specification type values. Unless
explicitly specified otherwise, internal data properties are allocated as part of the process of creating an
ECMAScript object and may not be dynamically added to ECMAScript objects. Unless specified otherwise, the
initial value of an internal data property is the value undefined.

36 © Ecma International 2012

secma

Table 8 summarises the essential internal methods used by this specification that are applicable to all (Field Code CF d

ECMAScript objects. Every object must have algorithms for all of the essential internal methods. However, all
objects do not necessarily use the same algorithms for those methods.

The “Signature” column of Table 8 and other similar tables describes the invocation pattern for each internal
method. The invocation pattern always includes a parenthesised list of descriptive parameter names. If a
parameter name is the same as an ECMAScript type name then the name describes the required type of the
parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol
“—” and the type name of the returned value. The type names used in signatures refer to the types defined in
Clause 8 augmented by the following additional names. “any” means the value may be any ECMAScript
language type. An internal method implicitly returns a Completion Record as described in 8.8. In addition to its
parameters, an internal method always has access to the object upon which it isinvoked as a method.

© Ecma International 2012 37

sechma

Table 8 — Essential Internal Methods

Internal Method

Signature

Description

[[GetInheritance]]

()—Object or Null

Determine the object that provides inherited
properties for this object. A null value indicates
that there are no inherited properties. an object.

[[SetInheritance]]

(Object or Null)—Boolean

Associate with an object another object that
provides inherited properties. Passing null
indicates that there are no inherited properties.
Returns true indicating that the operation was
completed successfully. or false indicating that
the operation was not successful.

[[HasIntegrity]]

(String)—Boolean

Determine whether the property structure of an
object is fixed to at least the specified level. The
argument is one of the values

"nonextensible", "sealed", or "frozen".

[[SetIntegrity]]

(String)—Boolean

Restrict the mutability of an object’s properties to
that which is allowed for the specified integrity
level. The argument is one of the values
"nonextensible"”, "sealed", or "frozen'".
Returns true indicating that the operation was
completed successfully or false indicating that
the operation was not successful. The integrity
level of an object may be raised but may not be
lowered.

[[HasOwnProperty]]

(propertyKey) — Boolean

Returns a Boolean value indicating whether the
object already has an own property whose key is
propertyKey.

[[GetOwnProperty]]

(propertyKey) —
Undefined or Property
Descriptor

Returns a. Property Descriptor for the own
property of this object whose key is propertyKey,
or undefined if no such property exists.

[[HasProperty]]

(propertyKey) — Boolean

Returns a Boolean value indicating whether the
object already has either an own or inherited
property whose key is propertyKey.

[[Get]

(propertyKey, Receiver) —
any.

Retrive the value of an object’'s property using
the propertyKey parameter. If any ECMAScript
code must be executed to retrieve the property
value, Receiver is used as the this value when
evaluating the code.

[[Set]]

(propertyKey,value,
Receiver) — Boolean

Try to set the value of an object’s property
indentified by propertyKey to value. If any
ECMAScript code must be executed to set the
property value, Receiver is used as the this
value when evaluating the code. Returns true
indicating that the property value was set or
false indicating that it could not be set.

[[Delete]]

(propertyKey) — Boolean

Removes the own property indentified by the
propertyKey parameter from the object. Return
false if the property was not deleted and is still
present. Return true if the property was deleted
or was not present.

[[DefineOwnProperty]]

(propertyKey,
PropertyDescriptor) —
Boolean

Creates or alters the named own property to
have the state described by a Property
Descriptor. Returns true indicating that the
property was successfully created/updated or
false indicating that the property could not be
created or updated.

[[Enumerate]]

()—Object

Returns an iterator object over the string values
of the keys of the enumerable properties of the

38

© Ecma International 2012

pecma

object.

[[OwnPropertyKeys]] ()—Object Returns an Iterator object that produces all of the
own property keys for the object except those
that are private Symbols.

Table 9 summarises additional essential internal methods that are supported by objects that may be called as
functions.

Table 9 — Additional Essential Internal Methods of Function Objects

Internal Method Signature Description
[[Call]] (any, a List of any) | Executes code associated with the object. Invoked via a
— any function call expression. The arguments to the internal

method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable.

[[Construct]] (a List of any) — Creates an object. Invoked via the new operator. The
Object arguments to'the internal method are the arguments passed
to the new operator. Objects that implement this internal
method<are called constructors. A Function object is not
necessarily a constructor and such non-construtor Function
object do not have a [[Construct]] internal method.

8.1.7.3 Invariants of the Essential Internal Methods

Current this section is just a bunch of material merged together from the ES5
spec. and from the wiki Proxy pages. It need to be completely reworked.

The intent is that it lists all invariants of the Essential Internal Methods. This
includes both invariants that are enforced for Proxy objects and other
invariants that may not be enfored.

Definitions:
e The target of an internal method is the object the internal method is called upon.
e Asealed property is a non-configurable own property of a target.
e A frozen property is a non-configurable non-writable own property of a target.
e A new property is a property that does not exist on a non-extensible target.
L]

Two property descriptors descl and desc2 for a property key value are incompatible if:
1. Descl is produced by calling [[GetOwnPropertyDescriptor]] of target with key, and
2. Calling [[DefineOwnProperty]] of target with arguments key and desc2 would throw a TypeError exception.

Exotic objects may define additional constraints upon their [[Set]] internal method behaviour. If possible, exotic
objects should not allow [[Set]] operations in situations where this definition of [[CanPut]] returns false)

Ci ed [AWB1212]: Need to decide what replaces

[[GetInheritance]]

Every [[Prototype]] chain must have finite length (that is, starting from any object, recursively accessing the
[[Prototype]] internal data property must eventually lead to a null value).

getOwnPropertyDescriptor

© Ecma International 2012 39

this when CanPut goes away

secmd

Non-configurability invariant: cannot return incompatible descriptors for sealed properties
Non-extensibility invariant: must return undefined for new properties
Invariant checks:
if trap returns undefined, check if the property is configurable
if property exists on target, check if the returned descriptor is compatible
if returned descriptor is non-configurable, check if the property exists on the target and is also non-
configurable

defineProperty

Non-configurability invariant: cannot succeed (return true) for incompatible changes to sealed properties
Non-extensibility invariant: must reject (return false) for new properties
Invariant checks:
on success, if property exists on target, check if existing descriptor is compatible with argument
descriptor
on success, if argument descriptor is non-configurable, check if the property exists on the target and is
also non-configurable

getOwnPropertyNames
Non-configurability invariant: must report all sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:
check whether all sealed target properties are present in the trap result
If the target is non-extensible, check that no new properties are listed in the trap result
deleteProperty
Non-configurability invariant: cannot succeed (return true) for sealed properties
Invariant checks:
on success, check if the target property is configurable

getPrototypeOf

Invariant check: check whether the target’s prototype and the trap result are identical (according to the egal
operator)

freeze | seal | preventExtensions
Invariant checks:
on success, check if isFrozen(target), isSealed(target) or lisExtensible(target)
isFrozen | isSealed | isExtensible

Invariant check: check whether the boolean trap result is equal to isFrozen(target), isSealed(target) or
isExtensible(target)

hasOwn
Non-configurability invariant: cannot return false for sealed properties
Non-extensibility invariant: must return false for new properties

Invariant checks:
if false is returned, check if the target property is configurable

40 © Ecma International 2012

pecma

if false is returned, the property does not exist on target, and the target is non-extensible, throw a
TypeError

has

Non-configurability invariant: cannot return false for sealed properties
Invariant checks:
if false is returned, check if the target property is configurable

get

Non-configurability invariant: cannot return inconsistent values for frozen data properties, and must return
undefined for sealed accessors with an undefined getter

Invariant checks:

if property exists on target as a data property, check whether the target property’s value and the trap
result are identical (according to the egal operator)

if property exists on target as an accessor, and the accessor’s get attribute is undefined, check whether
the trap result is also undefined.

set

Non-configurability invariant: cannot succeed (return true) for frozen data properties or sealed accessors
with an undefined setter
Invariant checks:
on success, if property exists on target as a data property, check whether the target property’s value and
the update value are identical (according to the egal operator)
on success, if property exists on target as an accessor, check whether the accessor’s set attribute is not
undefined

keys

Non-configurability invariant: must report all enumerable sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:

Check whether all enumerable sealed target properties are listed in the trap result

If the target is non-extensible, check that no new properties are listed in the trap result

enumerate
Non-configurability invariant: must report all enumerable sealed properties

Invariant checks:
Check whether all enumerable sealed target properties are listed in the trap result|

C ed [AWB1213]: These are placeholders based

upon the proxy trap invariants. We need to provide new
versions for all the essential internal methods.

C ed [AWB1214]: No longer true because of

Unless otherwise specified, the standard ECMAScript objects are ordinary objects and behave as described in
8.3. Some standard objects are exotic objects and have behaviour defined in 8.4.

© Ecma International 2012 41

Proxies.

Formatted: Strikethrough

Formatted: Strikethrough

N1
[Formatted: Strikethrough

(

(

Formatted: Strikethrough

o U

eCma

)

Exotic objects may implement internal methods in any manner unless specified otherwise; for example, one
possibility is that [[Get]] and [[Set]] for a particular exotic object indeed fetch and store property values but
[[HasOwnProperty]] always generates false. However, if any specified manipulation of an exotic object's
internal properties is not supported by an implementation, that manipulation must throw a TypeError
exception when attempted.

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each
property of the object:

If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no.mechanism to change the
value is exposed via the other internal methods.

If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.
If the result of calling an object’s [[IsExtensible]] internal method has been observed by ECMAScript code

to be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of all objects must not permit the addition of a new property to an
object if the [[Extensible]] internal method of that object has been observed by ECMAScript code to be false.

If the result of calling the [[IsExtensible]] internal method of an object has been observed by ECMAScript code
to be false then it must not subsequently become true.

8.1.7.4 Well-Known Symbols and Intrinsics

Well-known symbols are built-in Symbol values (8:4.4) that are explicitly referenced by algorithms of this
specification. They are typically used as the keys of properties whose values serve as extension points of a
specification algorithm. Unless otherwise specified, well-known symbols values are shared by all Code
Realms (10.3) and the value of their [[Private]] attribute is false.

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where
“name” is one of the values listed in Table 10.

42

© Ecma International 2012

pecma

Table 10--Well-known Symbols

Specification Name

Value and Purpose

@@create

A method used to allocate an object. Called from the
[[Construct]] internal method.

@@bhaslnstance

A method that determines if a constructor object
recognizes an object as one of the constructor’s
instances. Called by the semantics of the instanceof
operator.

@@isRegExp A Boolean value that if true indicates thatan object may
be used as a regular expression.
@ @iterator A method that returns the default iterator for an object.

Called by the semantics of the for-of statement.

@@ToPrimitive

A method that converts an object to a corresponding
primitive value. Called by the ToPrimitive abstract
operation.

@@toStringTag

A string value that is‘used in the creation of the default
string description-of an object. Called by the built-in
method Object.prototype.toString.

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification
and which usually have Realm specific identities. Unless otherwise specified each intrinsic object actually

corresponds to a set of similar objects, one per Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current
Realm, corresponding to the name. Determination of the current Realm and its intrinsics is described in 10.4.
The well-known intrincs are listed in Table 11.

© Ecma International 2012

43

secmd

44

Table 11 — Well-known Intrinsic Objects

Intrinsic Name

ECMAScript Language Association

%O0bject%

The initial value of the global object
property named "Object".

%0bjectPrototype%

The initial value of the "prototype"
data property of the intrinsic %Object%.

%ObjProto_toString%

The initial value of the "toString" data
property of the
intrinsic %0bjectPrototype%.

%~Function%

The initial value of the global object
property named "Function".

%FunctionPrototype%

The initial value of the "prototype"
data property of the intrinsic %Function%.

%Array% The initial value of the global object
property named "Array".
%ArrayPrototype% The initial” value of the "prototype"

data property of the intrinsic %Array%.

%ArraylteratorPrototype%

The prototype objectused for
lterator objects created by the
CreateArraylterator abstract operation.

%Map% The initial value of the global object
property hamed "Map".
%MapPrototype% The initial value of the "prototype"

data property of the intrinsic %Map%.

%MaplteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateMaplterator abstract operation

%WeakMap%

The initial value of the global object
property named "WeakMap".

%WeakMapPrototype%

The initial value of the "prototype"
data property of the
intrinsic %WeakMap%.

%Set% The initial value of the global object
property named "Set".
%SetPrototype% The initial value of the "prototype"

data property of the intrinsic %Set%.

%SetlteratorPrototype%

The prototype object used for
Iterator objects created by the
CreateSetlterator abstract operation

%GeneratorFunction%

The initial value of the name
"GeneratorFunction" exported from the
built-in module "std:iteration".

%Generator% The initial value of the name "Generator"
exported from the builtin module
"std:iteration"

%ErrorPrototype%

%EvalErrorPrototype%

9%RangeErrorPrototype%

© Ecma International 2012

[Formatted Table

[Formatted Table

oecmd

%ReferenceErrorPrototype%

%SyntaxErrorPrototype%

%T ypeErrorPrototype%

%URIErrorPrototype%

%ArrayBuffer%

%DateViewPrototype%

&

[l‘ ed [AWB1215]: TODO more to comeTODO

© Ecma International 2012

45

[Formatted Table

secma

8.2 ECMASCcript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data Block.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

8.2.1 Data Blocks

This section is a placeholder for describing the Data Block internal type. The
following material is verbatium from the the Binary Data ES wiki proposal. The
material has not yet been reviewed or integrated with the rest of this spec.

This spec introduces a new, spec-internal block datatype, intuitively representing a contiguously allocated
block of binary data. Blocks are not ECMAScript language values and appear only in the program store (aka
heap).

A block is one of:

e anumber-block
e an array-block]t, n]
e astruct-block]tl, ..., tn]

A number-block is one of:
e anunsigned-integer; i.e., one of uint8, uint16, uint32, or uint64
e asigned-integer; i.e., one of int8, int16, int32, or int64

o afloating-point; i.e., one of float32 or float64

A uintk is an integer in the range [0, 2k). An intk is an integer in the range [-2k-1, 2k-1). A floatk is a floating-
point number representable as a k-bit IEE754 value.

An array-block[t, n] is an ordered sequence of n blocks of homogeneous block type t. Each element of the
array is stored at in independently addressable location in the program store, and multiple Data objects may
contain references to the element.

A struct-block[tl; ..., tn] is an ordered sequence of n blocks of heterogeneous types t1 to tn, respectively. Each
field of the struct is stored at in independently addressable location in the program store, and multiple Data
objects may contain references to the field.

The spec also introduces a datatype of Data objects, which are ECMAScript objects that encapsulate
references to block data in the program store. Every Data object has the following properties:

[[Class]] = “Data”
[[Value]] : reference[block] — a reference to a block in the program store

[[DataType]] : reference[Type] — a reference to a Type object describing this object’s data block

46 © Ecma International 2012

oechd

8.2.2 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

The Record type is used to describe data aggregations within the algorithms of this specification. A Record
type value consists of one or more named fields. The value of each field is either an ECMAScript value or an
abstract value represented by a name associated with the Record type. Field names are always enclosed in
double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that has
three fields each of which is initialized to a specific value. Field name order is not significant. Any fields that
are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthand for “the field of R
named [[field2]]".

Schema for commonly used Record field combinations ' may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

8.2.3 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as
the behaviour of statements (break, continue, return and throw) that perform nonlocal transfers of
control.

Values of the Completion type are Record values whole fields are defined as by Table 12.

Table 12 — Completion Record Fields

Field Name | Value Meaning
[[type]l One of normal; break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript identifier or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[type]] value other than normal.

8.2.3.1 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:

1. Return NormalCompletion(argument).

Is a short hand that is defined as follows:

1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty}.

8.2.3.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.

Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

© Ecma International 2012 47

secmd

1. Return "Infinity".

Generally means the same thing as:

1. Return NormalCompletion("Infinity").

A “return” statement without a value in an algorithm step means the same thing as:

1. Return NormalCompletion(undefined).

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.

8.2.3.3 Throw an Exception

Algorithms steps that say to throw an exception, such as

1. Throw a TypeError exception.

Mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object, [[target]]:empty}.
8.2.3.4 ReturnlfAbrupt

Algorithms steps that say

1. ReturnIfAbrupt(argument).

mean the same things as:

1. Ifargument is an abrupt completion, then return argument.
2. Else if argument is/a Completion Record, then let argument be argument.[[value]].

8.2.4 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof, the assignment
operators, the super keyword and other language features. For example, the left-hand operand of an assignment is
expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the base
value, the referenced name and the Boolean valued strict reference flag. The base value is either undefined, an
Object, a Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined indicates
that the Reference could not be resolved to a binding. The referenced name is a String or Symbol.

A Super Reference is a Reference that is used to represents a name binding that was expressed using the
super keyword. A Super Reference has an additional thisValue component and its base value will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.

GetReferencedName(V). Returns the referenced name component of the reference V.

IsStrictReference(V). Returns the strict reference flag component of the reference V.

HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.
IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

e IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

48 © Ecma International 2012

secma

e IsSuperReference(V). Returns true if this reference has a thisValue component.
The following abstract operations are used in this specification to operate on references:
8.2.4.1 GetValue (V)

ReturnlfAbrupt(V).
If Type(V) is not Reference, return V.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be a Symbol, null or undefined.
ii. Let base be ToObject(base).
b. Return the result of calling the [[Get]] internal method of base passing GetReferencedName(V) and
GetThisValue(V) as the arguments.
6. Else base must be an environment record,
a. Return the result of calling the GetBindingValue (see10.2.1) concrete method of base passing
GetReferencedName(V) and IsStrictReference(V) as arguments.

arwn e

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and the
ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

8.2.4.2 PutValue (V, W)

ReturnlfAbrupt(V).
ReturnlfAbrupt(W).
If Type(V) is not Reference, throw a ReferenceError exception.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), then
a. If IsStrictReference(V) is true, then
i Throw ReferenceError exception.
b. Let globalObj.be the result of the abstract operation GetGlobalObject.
c. Return the result of calling Put(globalObj,GetReferencedName(V), W, false).
6. Else if IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i Assert: In this case, base will never be a Symbol, null or undefined.
ii. Set base to ToObject(base).
b. <Let succeeded be the result of calling the [[Set]] internal method of base passing
GetReferencedName(V), W, and GetThisValue(V) as arguments.
c. ReturnIfAbrupt(succeeded).
d. If succeeded is false and IsStrictReference(V) is true, then throw a TypeError exception.
e. Return.
7. Else base must be a reference whose base is an environment record. So,
a. Return the result of calling the SetMutableBinding (10.2.1) concrete method of base, passing
GetReferencedName(V), W, and IsStrictReference(V) as arguments.
8. Return.

arwn e

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary
object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

8.2.4.3 GetThisValue (V)

ReturnlfAbrupt(V).
If Type(V) is not Reference, return V.
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsSuperReference(V), then
a. Return the value of the thisValue component of the reference V.
Return GetBase(V).

SN S

o1

© Ecma International 2012 49

secmd

8.2.5 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.
Values of the Property Descriptor type are Records composed of named fields where each field’s name is an
attribute name and its value is a corresponding attribute value as specified in 8.1.6.1. In addition, any field
may be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.1.6.1 Table 5 or Table 6.

A Property Descriptor may be derived from an ECMAScript object that has properties that directly correspond
to the fields of a Property Descriptor. Such a derived Property Descriptor has an additional field named
[[Origin]] whose value is the object from which the Property Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

8.2.5.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desc, the following steps

are taken:

1. If Desc is undefined, then return false. N Formatted: Outline numbered + Level: 1 + Numbering Style:
2. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false. 1,2,3,.. + Start at: 1 + Alignment: Left + Aligned at: 0"+
3. Return true. Tab after: 0.25" + Indent at: 0.25"

8.2.5.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor-is_called with property descriptor Desc, the following steps are
taken:

1. If Desc is-undefined, then return false.

2. If both-Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.
8.

253 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps
are taken:

1. If Desc is undefined, then return false.

2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
3. Return false.
8.

2.5.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following
steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1. If Desc is undefined, then return undefined.
2. If Desc has an [[Origin]] field, then return Desc.[[Origin]].

50 © Ecma International 2012

pecma

Let obj be the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype % as its
argument.
Assert: obj is an extensible ordinary object with no own properties.
If Deschas a [[Value]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "value, and Property Descriptor {[[Value]]:
Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}
If Deschas a [[Writable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "writable", and Property Descriptor {[[Value]]:
Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
If Deschas a [[Get]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "get" , and Property-Descriptor {[[Value]l:
Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
If Deschas a [[Set]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "set", and Property Descriptor {[[Value]]:
Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
If Deschas a [[Enumerable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "enumerable", and Property Descriptor
{[[Vvalue]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

10. If Zeschas a [[Configurable]] field, then

1
8

a. Call OrdinaryDefineOwnProperty with arguments obj , "configurable", and Property Descriptor
{[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
1. Return obj.

25,5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1

2.
3.
4

ReturnIfAbrupt(Obj).
If Type(Obj) is not Object throw a TypeError exception.
Let desc be the result of creating a new Property Descriptor that initially has no fields.
If the result of HasProperty(Obj, "enumerable") istrue, then
a. Letenum be the result of Get(Obj, "enumerable").
b. ReturnlfAbrupt(enum).
c. Setthe [[Enumerable]] field of desc to ToBoolean(enum).
If the result of HasProperty(Obj, "configurable") is true, then
a. Letconf be the result of Get(Obj, "configurable").
b. ReturnlfAbrupt(conf).
c. _Set the [[Configurable]] field of desc to ToBoolean(conf).
If the result of HasProperty(Obj, "value") is true, then
a. Letvalue be the result of Get(Obj, "value").
b. ReturnlfAbrupt(value).
c. - Set the [[Value]] field of desc to value.
If the result of HasProperty(Obj, "writable") is true, then
a. Letwritable be the result of Get(Obj, "writable").
b. ReturnifAbrupt(writable).
c. Setthe [[Writable]] field of desc to ToBoolean(writable).
If the result of HasProperty(Obj, "get") is true, then
a. Let getter be the result of Get(Obj, "get").
b. ReturnlfAbrupt(getter).
c. If IsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
d. Set the [[Get]] field of desc to getter.
If the result of HasProperty(Obj, "set") is true, then
a. Let setter be the result of Get(Obj, "set").
b. ReturnlfAbrupt(setter).
c. If IsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.
d. Set the [[Set]] field of desc to setter.

10. If either desc.[[Get]] or desc.[[Set]] are present, then

1

a. Ifeither desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.
1. Set the [[Origin]] field of desc to Obj.

© Ecma International 2012 51

»ecind

12. Return desc.
8.2.5.6 CompletePropertyDescriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desc, the following
steps are taken:

1. Assert: LikeDesc is either a Property Descriptor or undefined.
2. ReturnlfAbrupt(Desc).
3. Assert: Desc is a Property Descriptor
4. If LikeDesc is undefined, then set LikeDesc to Record{[[Value]]: undefined, [[Writable]]: false, [[Get]]:
undefined, [[Set]]: undefined, [[Enumerable]]: false, [[Configurable]]: false}.
5. If either IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
a. |If Desc does not have a [[Value]] field, then set Desc.[[Value]] to.LikeDesc.[[Value]].
b. 1f Desc does not have a [[Writable]] field, then set Desc.[[Writable]] to LikeDesc.[[Writable]].
6. Else,
a. |If Desc does not have a [[Get]] field, then set Desc.[[Get]] to LikeDesc.[[Get]].
b. If Desc does not have a [[Set]] field, then set Desc.[[Set]] to LikeDesc.[[Set]].
7. If Desc does not have a [[Enumerable]] field, then set Desc.[[Enumerable]] to LikeDesc.[[Enumerable]].
8. If Desc does not have a [[Configurable]] field, then set Desc.[[Configurable]] to LikeDesc.[[Configurable]].
9. Return Desc.
8

.2.6 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.3 Ordinary Object Internal Methods and Internal Data Properties

Sections 8.3-8.5 will eventually be subsectons of a new toplevel section that

follow the current section 10

All ordinary objects have an internal data property called [[Prototype]]. The value of this property is either null
or an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited
(are visible as properties of the child-object) for the purposes of get access, but not for set access. Accessor
properties are inherited for both get'access and set access.

Every ordinary ECMAScript object has a Boolean-valued [[Extensible]] internal data property that controls
whether or not properties may be added to the object. If the value of the [[Extensible]] internal data property is
false then additional properties may not be added to the object. In addition, if [[Extensible]] is false the value
of [[Prototype]] internal data properties of the object may not be modified. Once the value of an object’s
[[Extensible]] internal data property has been set to false it may not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary ECMAScript object, P is a property key value,
V is any ECMAScript language value, Desc is a Property Description record, and B is a Boolean flag.

8.3.1 [[GetInheritance]] ()

When the [[GetInheritance]] internal method of O is called the following steps are taken:

1. Return the value of the [[Prototype]] internal data property of O.

8.3.2 [[SetInheritance]] (V)

When the [[SetInheritance]] internal method of O is called with argument V the following steps are taken:
1. Assert: Either Type(V) is Object or Type(V) is Null.

2. Let extensible be the value of the [[Extensible]] internal data property of O.
3. Let current be the value of the [[Prototype]] internal data property of O.

52 © Ecma International 2012

(commented [AWB1217]: TODO

secma

If SameValue(V, current), then return true.
5. If extensible is false, then return false.
6. If Vis not null, then
a. LetpbeV.
b. Repeat, while p is not null
i. If SameValue(p, O) is true, then return false.
il. Let nextp be the result of calling the [[GetInheritance]] internal method of p with no
arguments.
iii. ReturnIfAbrupt(nextp).
iv. Let p be nextp.
7. Set the value of the [[Prototype]] internal data property of O to V.
8. Return true.

>

8.3.3 [[HasIntegrity]] (Level)
When the [[HaslIntegrity]] internal method of O is called the following steps are taken:

1. Assert: Level is one of "nonextensible", "sealed", or "frozen".
2. If Level is "nonextensible", then

a. Return Boolean negation of the value of the [[Extensible]] internal data property of O
3. Return the result of TestIntegrityLevel(O, Level).

8.3.4 [[Setintegrity]] (Level)
When the [[SetIntegrity]] internal method of O-is called the following steps are taken:
1. Assert: Level is one of "nonextensible"”, "sealed", or "frozen".
2. Set the value of the [[Extensible]] internal data property of O to false.
3. If Level is not "nonextensible", then
a. Return the result of SetlntegrityLevel(O, Level).
4. Return true.

8.3.5 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. 1f O does not have an own property with key P, return false
3. Return true.

8.3.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Return the result of OrdinaryGetOwnProperty with arguments O and P.
8.3.6.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P, the

following steps are taken:

Assert: IsPropertyKey(P) is true.
If O does not have an own property with key P, return undefined.
Let D be a newly created Property Descriptor with no fields.
Let X be O’s own property whose key is P.
If X is a data property, then

a. Set D.[[Value]] to the value of X’s [[Value]] attribute.

b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
6. Else X is an accessor property, so

gL R

© Ecma International 2012

53

secmd

a. Set D.[[Get]] to the value of X’s [[Get]] attribute.

b. Set D.[[Set]] to the value of X’s [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
9. Return D.

8.3.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of O is called with property key P and property descriptor
Desc, the following steps are taken:

1. Return the result of OrdinaryDefineOwnProperty with arguments O, P, and Desc.
8.3.7.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and property
descriptors Desc the following steps are taken:

1. Let current be the result of calling OrdinaryGetOwnProperty with arguments O and P.

2. Let extensible be the value of the [[Extensible]] internal data property of O.

3. Return the result of VValidateAndApplyPropertyDescriptor with arguments O, P, extensible, Desc, and
current.

8.3.7.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and
property descriptors Desc, and Current the following steps are taken:

1. Return the result of ValidateAndApplyPropertyDescriptor with. arguments undefined, undefined,
Extensible, Desc, and Current.

8.3.7.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P,
Boolean value extensible; and property descriptors Desc, and current the following steps are taken:

This algorithm contains steps that test various fields.of the Property Descriptor Desc for specific values. The
fields that are tested in this manner need not actually exist in Desc. If a field is absent then its value is
considered to be false.

NOTE If undefined is passed as the O argument only validation is performed and no object updates are preformed.

1. Assert: If O is not undefined then P is a valid property key.
2. If current is undefined, then
a. Ifextensible is false, then return false.
b. Assert: extensibles true.
c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
i If.O is not undefined, then create an own data property named P of object O whose
[[\Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described
by Desc. If the value of an attribute field of Desc is absent, the attribute of the newly
created property is set to its default value.
d. Else Desc must be an accessor Property Descriptor,
i. If O is not undefined, then create an own accessor property named P of object O whose
[[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc.
If the value of an attribute field of Desc is absent, the attribute of the newly created
property is set to its default value.
e. Return true.
Return true, if every field in Desc is absent.
Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same
value as the corresponding field in current when compared using the SameValue algorithm (9.12).
5. If the [[Configurable]] field of current is false then

Hw

54 © Ecma International 2012

secma

a. Return false, if the [[Configurable]] field of Desc is true.
b. Return false, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current
and Desc are the Boolean negation of each other.
6. If IsGenericDescriptor(Desc) is true, then no further validation is required.
7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Return false, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then
i If O is not undefined, then convert the property named P of object O from a data property
to an accessor property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes to
their default values.
c. Else,
i If O is not undefined, then convert the property named P of object O from an accessor
property to a data property. Preserve the existing values-of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes to
their default values.
8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. If the [[Configurable]] field of current is false, then
i Return false, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is
true.
il If the [[Writable]] field of current is false, then
1. Return false, if the [[Value]] field of Desc is present and
SameValue(Desc.[[Valuel], current.[[Value]]) is false.
b. else the [[Configurable]] field of current is true, so any change is acceptable.
9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,
a. If the [[Configurable]] field of currentis false, then
i. Return false, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]],
current.[[Set]]) is false.
ii. Return false, if the [[Get]] field of Descis present and SameValue(Desc.[[Get]],
current.[[Get]]).is false.
10. If O is not undefined, then
a. For each attribute field of Desc that is present, set the correspondingly named attribute of the
property named P of object O to the value of the field.
11. Return true.

NOTE Step 8.b allows any field of Desc to be different from the corresponding field of current if current’s
[[Configurable]] field is true. This evenpermits changing the [[Value]] of a property whose [[Writable]] attribute is false. This
is allowed because a.true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is first
set to true, anew [[Value]] is set, and then [[Writable]] is set to false.

[8.3.8 [[HasProperty]](P)
When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let hasOwn be the result‘of calling the [[HasOwnProperty]] internal method of O with argument P.
3. ReturnlfAbrupt(hasOwn).
4. If hasOwn is false, then

a. Let parentbe the result of calling the [[GetInheritance]] internal method of O.

b. ReturnIfAbrupt(parent).

c. If parentis not null, then

i. Return the result of calling the [[HasProperty]] internal method of parent with argument P.

5. Return hasOwn.

8.3.9 [[Get]] (P, Receiver)

When the [[Get]] internal method of O is called with property key P and ECMAScript language value Receiver
the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

© Ecma International 2012 55

secmd

3. ReturnlfAbrupt(desc).
4. If desc is undefined, then
a. Let parent be the result of calling the [[GetInheritance]] internal method of O.
b. ReturnIfAbrupt(parent).
c. If parentis null, then return undefined.
d. Return the result of calling the [[Get]] internal method of parent with arguments P and Receiver.
5. If IsDataDescriptor(desc) is true, return desc.[[Value]].
6. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].
7. If getter is undefined, return undefined.
8. Return the result of calling the [[Call]] internal method of getter with Receiver as the thisArgument and an

empty List as argumentsList.
8.3.10 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of O is called with property key P, value'V, and ECMAScript language value
Receiver, the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let ownDesc be the result of calling the [[GetOwnProperty]}internal method of O with argument P.
ReturnlfAbrupt(ownDesc).
If ownDesc is undefined, then

a. Let parent be the result of calling the [[GetInheritance]] internal method of O.

b. ReturnlfAbrupt(parent).

c. If parentis not null, then

i Return the result of calling the [[Set]] internal method of parent with arguments P, V, and
Receiver.

Hwn e

d. Else,
i. If Type(Receiver) is not Object, return false:
ii. Return the result of performing CreateOwnDataProperty(Receiver, P, V).
5. If IsDataDescriptor(ownDesc) is true, then
a. If ownDesc.[[Writable]] is false, return false.
b. If Type(Receiver)iis not Object, return false.
c. LetexistingDescriptor be the result of calling the [[GetOwnProperty]] internal method of Receiver
with argument P.
d. ReturnIfAbrupt(existingDescriptor).
e. If existingDescriptor is not undefined, then
i Let valueDesc be the Property Descriptor {[[Valuel]: V}.
ii. Return the result of calling the [[DefineOwnProperty]] internal method of Receiver with
arguments P and valueDesc.
f. Else Receiver does not currently have a property P,
i Return the result of performing CreateOwnDataProperty(Receiver, P, V).
6. IfIsAccessorDescriptor(ownDesc) is true, then
a. Let setter be ownDesc.[[Set]].
b." If setter is undefined, return false.
c. Let setterResult be the result of calling the [[Call]] internal method of setter providing Receiver as
thisArgument and a new List containing V as argumentsList.
d. ReturnlfAbrupt(setterResult).
e. Return true.

j8.3.11 [[Delete]] (P)
When the [[Delete]] internal method of O is called with property key P the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
If desc is undefined, then return true.
If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.
5. Return false.

Hwn e

56 © Ecma International 2012

secma

8.3.12 [[Enumerate]] ()
When the [[Enumerate]] internal method of O is called the following steps are taken:

1. Return an Iterator object (reference xxxx) whose next method iterates over all the String valued keys of

enumerable property keys of O. The mechanics and order of enumerating the properties is not specified but

must conform to the rules specified below.

Enumerated properties do not include properties whose property key is a Symbol. Properties of the object
being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to.the object being enumerated
during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A

property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed”
because some previous object in the prototype chain has a property with the same name. The values of
[[Enumerable]] attributes are not considered when determining if a property of a prototype object is shadowed

by a previous object on the prototype chain.
The following is an informative algorithm that conforms to these rules

Let obj be O.
Let proto be the result of calling the [[GetInheritance]] internal method of O with no arguments.
ReturnlfAbrupt(proto).
If proto is the value null, then
a. LetpropList be a new empty List.
Else
a. Let propList be the result of calling the [[Enumerate]] internal method of proto.
ReturnlfAbrupt(propList).
For each name that is the property key of an own property of O
a. If Type(name)is String, then

BTl N

o1

~No

i. Letdesc be the result of calling OrdinaryGetOwnProperty with arguments O and name.

ii. If name.is an element of propList, then remove name as an element of propList.
il If desc.[[Enumerable]] is true, then.add name as an element of propList.

8. Order the elements of propList in an implementation defined order.

9. Return propList.

8.3.13 [[OwnPropertyKeys]] ()
When the [[OwnPropertyKeys]] internal method of O is called the following steps are taken:

1. Let keys be a new empty List.
2. For each own property key P of O
a. IfPisnot a private Symbol, then
i. Add P-as the last element of keys.
3. Return MakeListlterator(keys).

8.3.14 ObjectCreate(proto, internalDataList) Abstract Operation

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime
creation of new ordinary objects. The optional argument internalDataList is a List of the names of internal data
property names that should be defined as part of the object. If the list is not provided, an empty List is used. It

performs the following steps:

1. If proto was not provided, let proto be the intrinsic %ObjectPrototype%.

2. Let obj be a newly created ECMAScript object with an internal data property for each name in
internalDatalList.

3. Set obj’s essential internal methods to the default ordinary object definitions specified in 8.3.

4. Set the [[Prototype]] internal data property of obj to proto.

© Ecma International 2012

57

Commented [AWB623]: TODO

Commented [AWB624]: TODO: Finish this up, and turn it
into iterator definition include a next method.

The algorithm is also confused about [[Enumerate]] called on
proto returning a list or Iterator. See
https://bugs.ecmascript.org/show_bug.cqi?id=944

Commented [AWB1325]: TODO: need to define, returns
an iterator object over the elements of an internal list.

https://bugs.ecmascript.org/show_bug.cgi?id=944

sechma

5. Set the [[Extensible]] internal data property of obj to true.
6. Return obj.

8.3.15 Ordinary Function Objects

Ordinary function objects encapsulate parameterised ECMAScript code closed over a lexical environment and
support the dynamic evaluation of that code. An ordinary function object is an ordinary object and has the
same internal data properties and (except as noted below) the same internal methods as other ordinary
objects.

Ordinary function objects have the additional internal data properties listed in Table 13.

Ordinary function objects provide alternative definitions for the [[Get]] and [[GetOwnProperty]] internal
methods. These alternatives prevent the value of strict mode function from being revealed as the value of a
function object property named "caller". These alternative definitions exist sole to preclude a non-standard
legacy feature of some ECMAScript implementations from revealing information about strict mode callers. |If
an implementation does not provide such a feature, it need not implement these alternative internal methods
for ordinary function objects.

Table 13 -- Internal Data Properties of Ordinary Function Objects

Internal Data Property Type Description
[[Scopel]] Lexical The Lexical Environment that the function was closed over.
Environment Is used as the outer environment when evaluating the code

of the function.

[[FormalParameters]] Parse Node The root.parse node of the source code that defines the
function’s formal parameter list.

[[FunctionKind]] String Either "normal” or "generator".

[[Code]] Parse Node The root parse node of the source code that defines the
function’s body.

[[Realm]] Realm Record | The Code Realm in which the function was created and

which provides any intrinsic objects that are accessed
when evaluating the function.

[[ThisMode]] (lexical, strict; Defines how this references are interpreted within the
global) formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically
enclosing function. strict means that the this value is used
exactly as provided by an invocation of the function.
global means that a this value of undefined is interpreted
as a reference to the global object.

[[Strict]] Boolean true if this is a strict mode function, false this is not a strict
mode function.
[[Home]] Object If the function uses super, this is the object whose

[[Getinheritance]] provides the object where super property
lookups begin. Not present for functions that dont
reference super.

[[MethodName]] String or If the function uses super, this is the property keys that is
Symbol used for unqualified references to super. Not present for
functions that don’t reference super.

Ordinary function objects all have the [[Call]], [[Get]] and [[GetOwnProperty]] internal methods defined here.
Ordinary functions that are also constructors in addition have the [[Construct]] internal method.

8.3.15.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for an ordinary Function object F is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

58 © Ecma International 2012

secma

Let callerContext be the running execution context.

If, callerContext is not already suspended, then Suspend callerContext.

Let calleeContext be a new ECMAScript Code execution context.

Let calleeRealm be the value of F’s [[Realm]] internal data property.

Set calleeContext’s Realm to calleeRealm.

Let thisMode be the value of F’s [[ThisMode]] internal data property.

If thisMode is lexical, then

a. Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the [[Scope]]

internal data property of F as the argument.

Nouo~wNE

8. Else,
a. If thisMode is strict, set thisValue to thisArgument.
b. Else
i if thisArgument is null or undefined, then
1. Set thisValue to calleeRealm.[[globalThis]].
il Else if Type(thisArgument) is not Object, set the thisValue to ToObject(thisArgument).
iii. Else set the thisValue to thisArgument.
c. LetlocalEnv be the result of calling NewFunctionEnvironment passing F and thisValue as the
arguments.
9. Set the LexicalEnvironment of calleeContext to localEnv.
10. Set the VariableEnvironment of calleeContext to localEnv.
11. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
12. Let status be the result of performing Function Declaration Instantiation using the function F, argumentsList

, and localEnv as described in [ﬁl.O.5L3. Ci ed [AWB 326]: May need to update section
13. If status is an abrupt completion, then number

a. Remove calleeContext from the execution context stack and restore callerContext as the running
execution context.
b. Return status.
14. Let result be the result of EvaluateBody of the production that is the value of F's [[Code]] internal data
property passing F as the argument.
15. Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.
16. Return result.

NOTE1 Most ordinary functions use a Function Environment Record as their LexicalEnvironment. Ordinary functions
that are arrow functions use a Declarative Environment Record as their LexicalEnvironment.

NOTE 2 When calleeContext is removed from the execution context stack it must not be destroyed because it may have
been suspended and.retained by a generator object for later resumption.

8.3.15.2 < [[Construct]] (argumentsList)

The“[[Construct]] internal method for an ordinary Function object F is called with a single parameter
argumentsList which is a possibly empty List of ECMAScript language values. The following steps are taken:

1. Return the result of OrdinaryConstruct(F, argumentsList).
8.3.15.2.1 OrdinaryConstruct (F, argumentsList)

When the abstract operation OrdinaryConstruct is called with Object F and List argumentsList the following
steps are taken:

1. Letcreator be the result of Get(F, @@create).
2. ReturnlfAbrupt(creator).
3. Ifcreator is not undefined, then
a. If IsCallable(creator) is false, then throw a TypeError exception.
b. Let obj be the result of calling the [[Call]] internal method of creator with arguments F and an empty List.

4. Else creator is undefined so fall back to object creation defaults Commented [AWB1427]: At Jan 29, 2012 TC39 serveral

a. |Let obj be the result of calling OrdinaryCreateFromConstructor(F, "%objectprototype%").] peopled suggest that this fall back was unnecessary
5. ReturnlfAbrupt(obj). complexity and that it should this throw. However, that means
6. If Type(obj) is not Object, then throw a TypeError exception. that a ordinary function whose __proto__is set to undefined
7. Let result be the result of calling the [[Call]] internal method of F, providing obj and argumentsList as the arguments. il oo d inucisucinatiseesebied Sl

L breaking change for the reality web.

© Ecma International 2012 59

secmd

8. ReturnIfAbrupt(result).
9. If Type(result) is Object then return result.
10. Return obj.

8.3.15.3 [[Get]] (P, Receiver)

When the [[Get]] internal method of ordinary function object F is called with property key P and ECMAScript
language value Receiver the following steps are taken:

1. Letv be the result of calling the default ordinary object [[Get]] internal method (8.3.7) on F passing P and
Receiver as arguments.

2. ReturnlfAbrupt(v).

3. IfPis"caller" andv is astrict mode Function object, return null.

4. Returnv.

If an implementation does not provide such a built-in caller method for Function.prototype then it must
not use this definition. Instead the ordinary object [[Get]] internal method is used.

8.3.15.4 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of ordinary function object F is called with property key P, the
following steps are taken:

1. Letv be the result of calling the default ordinary object [[GetOwnProperty]] internal method (8.3.6) on F
passing P as the argument.
2. ReturnIfAbrupt(v).
3. If IsDataDescriptor(v) is true, then
a. IfPis"caller" and v.[[Value]] is astrict mode Function object, then
i. Setv.[[Value]] to null.
4. Returnv.

If an implementation does not provide such a built-in caller method for Function.prototype then it must
not use this definition. Instead the ordinary object [[GetOwnProperty]] internal method is used.

8.3.15.5 FunctionAllocate Abstract Operation

The abstract operation FunctionAllocate requires the one arguments, functionPrototype and accepts one
optional argument, functionKind. FunctionAllocate performs the following steps:

Assert: Type(functionPrototype) is Object.

Assert: If functionKind is present, its value is either "normal" or "generator".

If functionKind is not present, then let functionKind be "normal".

Let F be a newly created ordinary function object with the internal data properties listed in Table 13.

Set F’s essential internal methods except for [[Get]] and [[GetOwnProperty]] to the default ordinary object
definitions specified in 8.3

Set F’s essential internal methods for [[Call]], [[Get]] and [[GetOwnProperty]] to the default ordinary
object definitions specified in 8.3.15.

7. Set the [[FunctionKind]] internal data property of F to functionKind.

8. Set the [[Prototype]] internal data property of F to functionPrototype.

9. Setthe [[Extensible]] internal data property of F to true.

10. Set the [[Realm]] internal data property of F to the running execution context’s Realm.

11. ReturnF.

gas NP

(24

8.3.15.6 Functionlnitialize Abstract Operation

The abstract operation Functioninitialize requires the arguments: a function object F, kind which is one of
(Normal, Method, Arrow), an parameter list production specified by ParameterList, a body production specified
by Body, a Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object homeObject
and a property key methodName. Functioninitialize performs the following steps:

60 © Ecma International 2012

pecma

Set the [[Prototype]] internal data property of F to functionPrototype.
Set the [[Scope]] internal data property of F to the value of Scope.
Set the [[FormalParameters]] internal property of F to ParameterList .
Set the [[Code]] internal data property of F to Body.
If the homeObject argument was provided, set the [[HomeODbject]] internal data property of F to homeObject.
If the methodName argument was provided, set the [[MethodName]] internal data property of F to methodName.
Set the [[Strict]] internal data property of F to Strict.
If kind is Arrow, then set the [[ThisMode]] internal data property of F to lexical.
9. Else if Strict is true, then set the [[ThisMode]] internal data property of F to strict.
10. Else set the [[ThisMode]] internal data property of F to global.
11. Let len be the ExpectedArgumentCount of ParameterList.
12. Call the [[DefineOwnProperty]] internal method of F with arguments "length" and Property Descriptor
{[[Value]]: len, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}
13. If Strict is true, then
a. Perform the AddRestrictedFunctionProperties abstract operation with argument F.
14. Return F.

PN WD

8.3.15.7 FunctionCreate Abstract Operation

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow),
an parameter list production specified by ParameterList, a body production specified by Body, a Lexical
Environment specified by Scope, a Boolean flag Strict, and optionally, an object functionPrototype, an object
homeObject and a string methodName. FunctionCreate performs the following steps:

1. If the functionPrototype argument was not passed;then
a. Let functionPrototype be the intrinsic object %FunctionPrototype%.
2. LetF be the result of performing FunctionAllocate with argument functionPrototype.
3. Return the result of performing Functionlnitialize with passing F; kind, ParameterList, Body, Scope, and
Strict. Also pass homeObject and methodName if they are present.

8.3.15.7 GeneratorFunctionCreate Abstract Operation

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal,
Method, Arrow), an parameter list production specified by ParameterList, a body production specified by Body,
a Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object functionPrototype, an
object homeObject and a string methodName. GeneratorFunctionCreate performs the following steps:

1. Ifthe functionPrototype argument was not passed,then
a. Let functionPrototype be the intrinsic object %Generator%.
2. LetF be the result of performing FunctionAllocate with arguments functionPrototype and "generator".
3. Return the result of performing Functionlnitialize with passing F, kind, ParameterList, Body, Scope, and
Strict. Also pass homeObject and methodName if they are present.

8.3.15.8 AddRestrictedFunctionProperties Abstract Operation

The abstract operation is-called with a function object F as its argument. It performs the following steps:

1. Let thrower be the %ThrowTypeError% intrinsic function Object.

2. Call the [[DefineOwnProperty]] internal method of F with arguments "caller" and PropertyDescriptor {[[Get]]:
thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}.

3. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments" and PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}.

The %ThrowTypeError% object is a unique function object that is defined once for each Realm as follows:

1. Let the scope be the Global Environment.

2. Let formalParameters be the syntactic production: FormalParameters : [empty].
3. Let body be the syntactic production: FunctionBody : ThrowTypeError.

© Ecma International 2012 61

secmd

4. Let F be the result of the abstract operation FunctionCreate with arguments Normal, formalParameters, body, scope,
and true.

5. Call the [[SetIntegrity]] internal method of F with argument "nonextensible".

6. Let %ThrowTypeError% be F.

8.3.15.9 MakeConstructor Abstract Operation

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean
writablePrototype and an object prototype. If prototype is provided it is assume to already contain, if needed, a
"constructor" property whose value is F. This operation converts F into a constructor by performs the
following steps:

1. LetinstallNeeded be false.
2. If the prototype argument was not provided,then
a. LetinstallNeeded be true.
b. Let prototype be the result of the abstract operation ObjectCreate with the intrinsic
object %ObjectPrototype% as its argument.
3. If the writablePrototype argument was not provided,then
a. LetwritablePrototype be true.
Set F’s essential internal method [[Construct]] to the definition specified in 8.3.15.2.
If installNeeded, then
a. Call the [[DefineOwnProperty]] internal method of prototype with arguments "constructor" and
Property Descriptor {[[Value]]: F, [[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]:
writablePrototype }
7. Call the [[DefineOwnProperty]] internal method of F with arguments "prototype" and Property Descriptor
{[[Value]l: prototype , [[Writable]]: writablePrototype , [[Enumerable]]: false, [[Configurable]]: false}.
8. Return.

o~

8.4 Built-in Exotic Object Internal Methods and.Data Fields

This specification defines several kinds of built-in exotic objects. These objects generally behave similar to
ordinary objects except for a few specific situations. The following exotic objects use the ordinary object
internal methods exceptwhere it is explicitly specified otherwise below:

8.4.1 Bound Function Exotic Objects

A bound function is an exotic object that wrappers another function object. A bound function is callable (it has
[[Call]] and [[Construct]] internal methods). Calling a bound function generally results in a call of its wrappered
function:

Bound function objects do not have the internal data properties of ordinary function objects defined in Table
13. Instead they have the internal data properties defined in Table 14.

Table 14 --Internal Data Properties of Exotic Bound Function Objects

Internal Data Property Type Description

[[BoundTargetFunction]] | Callable Object | The wrappered function object.

[[BoundThis]] Any The value that is always passed as the this value when
calling the wrappered function.

[[BoundArguments]] List of Any A list of values that whose elements are used as the first
arguments to any call to the wrappered function.

Unlike ordinary function objects, bound function objects do not use alternative definitions of the [[Get]] and
[[GetOwnPropety]] internal methods. Bound function objects provide all of the essential internal methods as
specified in 8.3. However, they use the following definitions for the essential internal methods of function
objects.

62 © Ecma International 2012

pecma

84.1.1 [[Call]]

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind
function is called with parameters thisArgument and argumentsList, a List of ECMAScript language values, the
following steps are taken:

Let boundArgs be the value of F’s [[BoundArguments]] internal data property.

Let boundThis be the value of F’s [[BoundThis]] internal data property.

Let target be the value of F’s [[BoundTargetFunction]] internal data property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list argumentsList in the same order.

Return the result of calling the [[Call]] internal method of target providing boundThis as thisArgument and
providing args as argumentsList.

8.4.1.2 [[Construct]]

LN

o

When the [[Construct]] internal method of an exotic bound function-object, F that was created using the bind
function is called with a list of arguments ExtraArgs, the following steps are taken:

Let target be the value of F’s [[BoundTargetFunction]] internal data property.

If target has no [[Construct]] internal method, a TypeError exception isthrown.

Let boundArgs be the value of F’s [[BoundArguments]] internal data property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Construct]].internal method of target providing args as the arguments.

BTl N

8.4.1.3 BoundFunctionCreate Abstract Operation

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is
used to specify the creation of new Bound Function exotic.objects. It performs the following steps:

Let proto be the the intrinsic %FunctionPrototype%.

Let obj be a newly created ECMAScript object.

Set obj’s essential internal methods to the default ordinary object definitions specified in 8.3.
Set the [[Call]] internal method of obj as described in 8.4.1.1.

Set the [[Construct]] internal method of obj as described in 8.4.1.2.

Set the [[Prototype]] internal data property of obj to proto.

Set the [[Extensible]] internal data property of obj to true.

Set the [[BoundTargetFunction]] internal data property of obj to targetFunction.
. Set the [[BoundThis]] internal data property of obj to the value of boundThis.
10. Set the [[BoundArguments]] internal data property of obj to boundArgs.

11. Return obj.

©CRONDO A WN P

8.4.2 Array Exotic Objects

An Array object is.an exotic object that gives special treatment to a certain class of property names. A
property name P (in the form of a String value) is an array index if and only if ToString(ToUint32(P)) is equal to
P and ToUint32(P) is not equal to 2%2-1. A property whose property name is an array index is also called an
element. Every Array object has a 1length property whose value is always a nonnegative integer less than 2%,
The value of the 1length property is numerically greater than the name of every property whose name is an
array index; whenever a property of an Array object is created or changed, other properties are adjusted as
necessary to maintain this invariant. Specifically, whenever a property is added whose name is an array index,
the length property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the 1length property is changed, every property whose name is an array index whose value is not
smaller than the new length is automatically deleted. This constraint applies only to own properties of an Array
object and is unaffected by length or array index properties that may be inherited from its prototypes.

Exotic Array objects have the same internal data properties as ordinary objects. They also have an
[[ArraylnitialisationState]] internal data property.

© Ecma International 2012 63

secmd

Exotic Array objects always have a non-configurable property named "length".

Exotic Array objects provide alternative definitions for the [[Set]] and [[DefineOwnProperty]] internal methods.
Except for these two internal methods, exotic Array objects provide all of the other essential internal methods
as specified in 8.3.

8.4.2.1 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Array object A is called with property P, and
Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. IfPis"length", then
a. Return the result of calling ArraySetLength with arguments A, and Desc.
3. Elseif Pis an array index, then
a. LetoldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing
"length' as the argument. The result will never be undefined or an accessor descriptor because
Array objects are created with a length data property-that cannot be deleted or reconfigured.

b. LetoldLen be oldLenDesc.[[Value]].

c. Letindex be ToUint32(P).

d. ReturnIfAbrupt(index).

e. Ifindex > oldLen and oldLenDesc.[[Writable]] is false, then'return false.

f. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, P, and Desc as
arguments.

g. ReturnlfAbrupt(succeeded).

h. If succeeded is false, then return false.

i. If index >oldLen
i. SetoldLenDesc.[[Value]] toindex + 1.
ii. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, "length",
and oldLenDesc as arguments.
iii. ReturnlfAbrupt(succeeded).
j. Return true.
4. Return the result of calling OrdinaryDefineOwnProperty passing A, P, and Desc as arguments.

8.4.2.2 ArrayCreate Abstract Operation

The abstract operation ArrayCreate with argument length (a positive integer or undefined) and optional
argument proto is used to specify the creation of new exotic Array objects. It performs the following steps:

If the proto argument was not passed, then let proto be the intrinsic object %ArrayPrototype%.
Let A be a newly created Array exotic object.
Set A’s essential internal methods to the default ordinary object definitions specified in 8.3.
Set the [[DefineOwnProperty]] internal method of A as specified in 8.4.2.1.
Set the [[Prototype]] internal data property of A to proto.
Set the [[Extensible]] internal data property of A to true.
If length is not undefined, then
a. Set the [[ArraylnitialisationState]] internal data property of A to true.
Else
a. Setthe [[ArraylnitialisationState]] internal data property of A to false.
b. Letlength be 0.
9. Call OrdinaryDefineOwnProperty with arguments A, "length" and Property Descriptor {[[Value]]: length,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false}.
10. Return A.

NourwnE

©

8.4.2.3 ArraySetLength Abstract Operation

When the abstract operation ArraySetLength is called with an exotic Array object A, and Property Descriptor
Desc the following steps are taken:

1. If the [[Value]] field of Desc is absent, then

64 © Ecma International 2012

secma

a. Return the result of calling OrdinaryDefineOwnProperty passing A, "length", and Desc as
arguments.
Let newLenDesc be a copy of Desc.
Let newLen be ToUint32(Desc.[[Value]]).
If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.l
Set newLenDesc.[[Value]] to newLen.
[Let}oIdLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing ""1length' as
the argument. The result will never be undefined or an accessor descriptor because Array objects are
created with a length data property that cannot be deleted or reconfigured.
7. LetoldLen be oldLenDesc.[[Value]].
8. If newLen >oldLen, then
a. Return the result of calling OrdinaryDefineOwnProperty passing A, ""length", and newLenDesc as
arguments.
9. If oldLenDesc.[[Writable]] is false, then return false.
10. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
11. Else,
a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
b. Let newWritable be false.
c. Set newLenDesc.[[Writable]] to true.
12. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, ""length', and newLenDesc
as arguments.
13. ReturnlfAbrupt(succeeded).
14. If succeeded is false, return false.
15. While newLen < oldLen repeat,
a. SetoldLen tooldLen — 1.
b. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing
ToString(oldLen).
ReturnlfAbrupt(succeeded).
If deleteSucceeded is false, then
i. Set newLenDesc:[[Value]] to oldLen+1.
ii. If newWritable is false, set newLenDesc.[[Writable]] to false.
il Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, ""length",
and newLenDesc as arguments.
iv. Returnl fAbrupt(succeeded).
V. Return false.
16. If newWritable is false, then
a. Call-OrdinaryDefineOwnProperty passing A, "length", and Property Descriptor{[[Writable]]:
false} as arguments. This.call will always return true.
17. Return true.

o gk N

a0

8.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes virtual array index data
properties corresponding to the individual code unit elements of the string value. Exotic String objects always
have a data property named "length" whose value is the number of code unit elements in the encapsulated
String value. Both the code unit data properties and the "length" property are non-writable and non-
configurable.

Exotic String objects have the same internal data properties as ordinary objects. They also have a
[[StringData]] internal data property.

Exotic String objects provide alternative definitions for the following internal methods. All of the other exotic
String object essential internal methods that are not defined below are as specified in 8.3.

8.4.3.1 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of exotic String object O is called with property key P, the
following steps are taken:

© Ecma International 2012 65

Commented [AWB1428]: Note that if [Value]] is an object
this sequence will call its valueoOf method twice. That seems
undesirable, but it is the legacy behaviour going back to at

| least ES3

(Commented [AWB1429]: See bug

https://bugs.ecmascript.org/show_bug.cqi?id=1200 for why

these two lines moved.

https://bugs.ecmascript.org/show_bug.cgi?id=1200

secma

1. Assert: IsPropertyKey(P) is true.

Let has be the result of calling the ordinary object [[HasOwnProperty]] internal method (8.3.5) on O with

argument P.

ReturnIfAbrupt(has).

If has is true, then return true.

Let index be Tolnteger(P).

ReturnlfAbrupt(index).

Let absintindex be ToString(abs(index)).

ReturnIfAbrupt(absintindex).

If SameValue(abslIntindex, P) is false return false.

0. Let str be the String value of the [[StringData]] internal property of O, if the value of [[StringData]] is
undefined the empty string is used as its value.

11. Let len be the number of elements in str.

12. If len < index, return false.

13. Return true.

I

BoOooN® O~ W

8.4.3.2 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an an exotic'String object S is called with property key P the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let desc be the result of OrdinaryGetOwnProperty(S, P).

ReturnlfAbrupt(desc).

If desc is not undefined return desc.

Let index be Tolnteger(P).

ReturnlfAbrupt(index).

Let absIntindex be ToString(abs(index)).

ReturnlfAbrupt(absintindex).

If SameValue(abslIntindex, P).is false return undefined.

0. Let str be the String value of the [[StringData]] internal data property of S, if the value of [[StringData]] is

undefined the empty string is used as its value.

11. Let len be the numberof elements in str.

12. If len <index, return undefined.

13. Let resultStr be a String value of length 1, containing one code unit from str, specifically the code unit at
position index, where the first (leftmost) element in str is considered to be at position 0, the next one at
position 1, and so on.

14. Return aProperty Descriptor { [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,

[[Configurable]]: false }.

BOooNoa~wdE

8.4.3.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic String object O is called with property P, and
Property Descriptor Desc the following steps are taken:

1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

2. Let extensible be the value of the [[Extensible]] internal data property of O.

3. Return the result of ValidateAndApplyPropertyDescriptor with arguments O, P, extensible, Desc, and
current.

NOTE This algorithm differs from the ordinary object OrdinaryDefineOwnProperty abstract operation algorithm only in
invocation of [[GetOwnProperty]] in step 1.

8.4.3.4 [[Enumerate]] () (c ed [AWB1230]: TODO

When the [[Enumerate]] internal method of an exotic String object O is called the following steps are taken:

66 © Ecma International 2012

secma

8.4.3.5 [[OwnPropertyKeys]] () (c ed [AWB1231]: TODO

When the [[OwnPropertyKeys]] internal method of an exotic String object O is called the following steps are

taken] (c ed [AWB1332]: TODO

8.4.3.6 StringCreate Abstract Operation

The abstract operation StringCreate with argument prototype is used to specify the creation of new exotic
String objects. It performs the following steps:

1. Let A be a newly created String exotic object.

2. Set A’s essential internal methods to the default ordinary object definitions specified in 8.3.
3. Set the [[HasOwnProperty]] internal method of A as specified in 8.4.3.1.

4. Set the [[GetOwnProperty]] internal method of A as specified in 8.4.3.2.

5. Set the [[DefineOwnProperty]] internal method of A as specified in 8.4.3.3.

6. Set the [[Enumerate]] internal method of A as specified in 8.4.3.4.

7. Set the [[OwnPropertyKeys]] internal method of A as specified in 8:4.3.5.

8. Set the [[Prototype]] internal data property of A to prototype.
9. Set the [[Extensible]] internal data property of A to true.
10. Return A.

18.4.4 Exotic Arguments Objects

An arguments object is an exotic object whose array index properties map to the formal parameters bindings
of an invocation of a non-strict function.

Exotic arguments objects have the same internal data properties as ordinary objects. They also have a
[[ParameterMap]] internal data.

Exotic arguments objects provide alternative definitions for the following internal methods. All of the other

exotic arguments object essential internal methods that are not defined below are as specified in 8.3|) C ed [AWB1239]: TODO move arguments internal
methods here.

8.4.5 Integer Indexed Delegation Exotic Objects

An Integer Indexed object is an exotiC object that that delegates [[Get]] and [[Set]] handling of integer property Commented [AWB1340]: Issue: does the TypedArray
keys to methods of the object. spec./WEDIDL specs require that such indexed properties
show up using [[GetOwnProperty]], keys, etc? If so, some

3 . o . . " . more internal method over-rides will be needed.
Integer Indexed exotic objects initially. have the same internal data properties as ordinary objects.

Integer Indexed Exotic objects provide alternative definitions for the following internal methods. All of the
other Integer Indexed exotic object essential internal methods that are not defined below are as specified in
8.3.

8.45.1 [[Get]] (P, Receiver)

When the [[Get]] internal method of an Integer Indexed exotic object O is called with property key P and
ECMAScript language value Receiver the following steps are taken:

1. If SameValue(O, Receiver) is true, then
a. Letintindex be Tolnteger(P).
b. If SameVaue(ToString(intindex, P) is true, then
i. Let args be a new List containing intIndex.

i, Return the result of Invoke(O, [@@elementGet], args). Commented [AWB1341]: If we make this a private symbol
2. Return the result of calling the default ordinary object [[Get]] internal method (8.3.7) on O passing P and that is not exposed, then itis just a specification device. If we
Receiver as arguments. make it an exposed symbol (whether private or not) it

becomes a ES programmer extension point.

© Ecma International 2012 67

secmd

8.4.5.2 [[Set]] (P,V, Receiver)

When the [[Set]] internal method of an an Integer Indexed exotic object O is called with property key P, value V,
and ECMAScript language value Receiver, the following steps are taken:

1. If SameValue(O, Receiver) is true, then
a. Letintindex be Tolnteger(P).
a. If SameVaue(ToString(intIndex, P) is true, then
i Let args be a new List containing intlndex and V.
ii. Return the result of ToBoolean(Invoke(O, @ @elementSet, args)).
2. Return the result of calling the default ordinary object [[Set]] internal method (8:3.7) on O passing P, V, and
Receiver as arguments.

8.45.3 IntegertindexedObjectCreate Abstract Operation

The abstract operation IntegerindexedObjectCreate with argument prototype is used to specify the creation of
new Integer Indexed exotic objects. It performs the following steps:

11. Let A be a newly created ECMAScript object.

12. Set A’s essential internal methods to the default ordinary object definitions specified in 8.3.
13. Set the [[Get]] internal method of A as specified in 8.4.6.1.

14. Set the [[Set]] internal method of A as specified in 8.4.6.2.

15. Set the [[Prototype]] internal data property of A to prototype.

16. Set the [[Extensible]] internal data property of A to true.

17. Return A.

8.4.6 Built-in Function Objects

The function objects specified in Clause 15 may be implemented as either ordinary function objects whose
behaviour is provided using ECMAScript code or as implementation provided exotic function objects whose
behaviour is provided in some other manner. In either case, the effect of calling such functions must be that
specified for each one in Clause 15.

If an implementation provided exotic .object is used, the object must have the ordinary object behaviour
specified in 8.3 except for [[Get]] and [[GetOwnProperty]] which must be as specified in 8.3.15. All such exotic
function objects also have [[Prototype]] and [[Extensible]] internal data.

[[calll]] and [[Construct]]]

Commented [AWB1342]: If we make this a private symbol
that is not exposed, then it is just a specification device. If we
make it an exposed symbol (whether private or not) it
becomes a ES programmer extension point.

C ed [AWB1243]: TODO: need to talk about [[Call]]

8.5 _Proxy Object Internal Methods and Internal Data Properties

A proxy object is an exotic object whose essential internal methods are partially implemented using
ECMAScript code. Every proxy objects has an internal data property called [[ProxyHandler]]. The value of
[[ProxyHandler]] is always an/object, called the proxy’s handler object. Methods of a handler object may be
used to augment the implementation for one or more of the proxy object’s internal methods. Every proxy
object also has an internal data property called [[ProxyTarget]] whose value is either an object or the null
value. This object is called the proxy’s target object.

When a handler method is called to provide the implementation of a proxy object internal method, the handler
method is passed the proxy’s target object as a parameter. A proxy’s handler object does not necessarily
have a method corresponding to every essential internal method. Invoking an internal method on the proxy
results in the invocation of the corresponding internal method on the proxy’s target object if the handler object
does not have a method corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal data properties of a proxy object are always initialized when
the object is created and typically may not be modified. Some proxy objects are created in a manner that
permits them to be subsequently revoked. When a proxy is revoked, its [[ProxyHander]] internal data property
is set to a special revoked proxy handler object and its [[ProxyTarget]] internal data property is set to null.

68 © Ecma International 2012

and [[Construct]] behaviour of chapter 15 native functions.

secma

Because proxy permit arbitrary ECMAScript code to be used to in the implementation of internal methods, it is
possible to define a proxy object whose handler methods violates the invariants defined in 8.1.6.2. Some of
the internal method invariants defined in 8.1.6.2 are essential integrity invariants. These invariants are
explicitly enforced by the proxy internal methods specified in this section. An ECMAScript implementation
must be robust in the presence of all possible invariant violations.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key value, V
is any ECMAScript language value, Desc is a Property Description record, and B is a Boolean flag.

8.5.1 [[GetInheritance]] ()
When the [[GetInheritance]] internal method of an exotic Proxy object O is called the following steps are taken:

Let handler be the value of the [[ProxyHandler]] internal data property.of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "getPrototypeO£f").
ReturnIfAbrupt(trap).
If trap is undefined, then

a. Return the result of calling the [[GetInheritance]] internal method of target.
Let handlerProto be the result of calling the [[Call]] internal method of trap with handler as the this value
and a new List containing target.
7. ReturnlfAbrupt(handlerProto).
8. Let targetProto be the result of calling the [[GetInheritance]] internal method of target.
9. ReturnIfAbrupt(targetProto).
10. If SameValue(handlerProto, targetProto) is false, then throw a TypeError exception.
11. Return handlerProto.

g wnN e

o

NOTE [[GetInheritance]] for proxy objects enforces the following invariant:
e [[Getinheritance]] applied to the proxy object must return the same value as [[Getinheritance] applied to the
proxy object’s target object.

8.5.2 [[SetInheritance]] (V)

When the [[SetInheritance]] internal method of an exotic Proxy object O is called with argument V the following
steps are taken:

Assert: Either Type(V) is Object or Type(V) is Null.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "setPrototypeO£f").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[SetInheritance]] internal method of target with argument V.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and V.
8. ReturnlfAbrupt(trapResult).
9. Let trapResult be ToBoolean(trapResult).
10. Let extensibleTarget be the result of IsExtensible(target).
11. ReturnlfAbrupt(extensibleTarget).
12. Set extensibleTarget to ToBoolean(extensibleTarget).
13. If extensibleTarget is true, then return trapResult.
14. Let targetProto be the result of calling the [[GetInheritance]] internal method of target.
15. ReturnlfAbrupt(targetProto).
16. If trapResult is true and SameValue(V, targetProto) is false, then throw a TypeError exception.
17. Return trapResult.

o0k wn e

~

NOTE [[Setinheritance]] for proxy objects enforces the following invariant:
e If the target object is not extensible, the argument value must be the same as the result of [[GetInheritance]]
applied to target object.

© Ecma International 2012 69

secmd

8.5.3 [[HaslIntegrity]] (Level)
When the [[HasIntegrity]] internal method of an exotic Proxy object O is called the following steps are taken:

Assert: Level is one of "nonextensible", "sealed", or "frozen".

Let handler be the value of the [[ProxyHandler]] internal data property of O.

Let target be the value of the [[ProxyTarget]] internal data property of O.

If Level is "nonextensible", then let trapName be "isExtensible".

Else if Level is "sealed", then let trapName be "isSealed".

Else Level is "frozen", so let trapName be "isFrozen".

Let trap be the result of GetMethod(handler, trapName).

ReturnIfAbrupt(trap).

If trap is undefined, then
a. Return the result of calling the [[HasIntegrity]] internal method of target with argument Level.

10. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target.

11. ReturnlfAbrupt(trapResult).

12. Let booleanTrapResult be ToBoolean(trapResult).

13. Let targetResult be the result of calling the [[HasIntegrity]] internal method of target with argument Level.

14. ReturnlfAbrupt(targetResult).

15. If SameValue(booleanTrapResult, targetResult) is false, then throw a TypeError exception.

16. Return booleanTrapResult.

NGO ~WN R

NOTE [[HasIntegrity]] for proxy objects enforces the following invariant:
e [[HaslIntegrity]] applied to the proxy object must return the same value as [[HasIntegrity]] applied to the proxy
object’s target object with the same argument.

8.5.4 [[SetIntegrity]] (Level)
When the [[Setntegrity]] internal method of an exotic Proxy object O is the following steps are taken:

Assert: Level is one of “nonextensible", "sealed", or "frozen".

Let handler be the value of the [[ProxyHandler]] internal data property of O.

Let target be the value of the [[ProxyTarget]] internal data property of O.

If Level is "nonextensible", then let trapName be "preventExtensions".

Else if Level is "sealed", thenlet trapName be "seal".

Else Level.is "frozen", so let trapName be "freeze".

Let trap be the result of GetMethod(handler, trapName).

ReturnlfAbrupt(trap).

Iftrap is undefined, then
a. Return the result of calling the [[SetIntegrity]] internal method of target with argument Level.

10. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target.

11. ReturnlfAbrupt(trapResult).

12. Let booleanTrapResult be ToBoolean(trapResult).

13. Let targetResult be the result of calling the [[HasIntegrity]] internal method of target with argument Level.

14. ReturnlfAbrupt(targetResult).

15. If SameValue(booleanTrapResult, targetResult) is false , then throw a TypeError exception.

16. Return booleanTrapResult.

©OND> WD

NOTE [[SetIntegrity]] for proxy objects enforces the following invariant:
e [[Setintegrity]] applied to the proxy object must return the same value as [[HasIntegrity]] applied to the proxy
object’s target object with the same argument
8.5.5 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

70 © Ecma International 2012

secma

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "hasOwn").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[HasOwnProperty]] internal method of target with argument P.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and P.
8. ReturnIfAbrupt(trapResult).
9. Let success be ToBoolean(trapResult).
10. If success is false, then
a. LettargetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.
b. ReturnlfAbrupt(targetDesc).
c. If targetDesc is not undefined, then
i. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
il Let extensibleTarget be the result of calling the [[IsExtensible]] internal method of target.
iii. ReturnlfAbrupt(extensibleTarget).
iv. If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.
11. Else success is true,

SO~ wN R

~

a. LetextensibleTarget be the result of IsExtensible(target).

b. ReturnlfAbrupt(extensibleTarget).

c. If ToBoolean(extensibleTarget) is true, then return success.

d. Let targetDesc be the result of calling.the [[GetOwnProperty]] internal method of target with
argument P.

e. ReturnlfAbrupt(targetDesc).

f. If targetDesc is undefined, then throw a TypeError exception.

12. Return success.

NOTE [[HasOwnProperty]] for proxy objects enforces the following invariants:
* A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
e A property cannot_be reported as non-existent, if it exists as a own property of the target object and the target
object is not extensible.
e A property cannot be reported as existent;.if it does not exists as a own property of the target object and the
target object is not extensible.

8.5.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal data property of O.

Let target be the value of the [[ProxyTarget]] internal data property of O.

Let trap be the result of GetMethod(handler, "getOwnPropertyDescriptor”).

ReturnIfAbrupt(trap).

If trap is undefined, then
a. Return the result of calling the [[GetOwnProperty]] internal method of target with argument P.

7. Let trapResultObj be the result of calling the [[Call]] internal method of trap with handler as the this value
and a new List containing target and P.

8. ReturnlfAbrupt(trapResultObj).

9. If Type(trapResultObj) is neither Object or Undefined, then throw a TypeError exception.

10. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.

11. ReturnIfAbrupt(targetDesc).

12. If trapResultObj is undefined, then

a. If targetDesc is undefined, then return undefined.

b. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.

c. LetextensibleTarget be the result of IsExtensible(target).

d. ReturnlfAbrupt(extensibleTarget).

o0k wN R

© Ecma International 2012 71

22.

ecma

&

e. |If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.
f. Return undefined.

. Let extensibleTarget be the result of IsExtensible(target).
. ReturnIfAbrupt(extensibleTarget).

. Set extensibleTarget to ToBoolean(extensibleTarget),

. Let resultDesc be ToPropertyDescriptor(trapResultObj).

. ReturnIfAbrupt(resultDesc).

. Call CompletePropertyDescriptor(resultDesc, kargetDescD.

C ed [AWB1244]: Note the result descriptor

. Let valid be the result of IsCompatiblePropertyDescriptor (extensibleTarget, resultDesc, targetDesc).
. If valid is false, then throw a TypeError exception.
. If resultDesc.[[Configurable]] is false, then

a. If targetDesc is undefined or targetDesc.[[Configurable]] is true, then
i Throw a TypeError exception.
Return [resultDesc],

defaults are set to the values in the targetDesc (if there is one)
rather than the normal defaults. This is a change from the wiki
spec.

C ed [AWB1245]: The resultDesc carries a

NOTE [[GetOwnProperty]] for proxy objects enforces the following invariants:

e The result of [[GetOwnProperty]] must be either an Object or undefined.

e A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.

e A property cannot be reported as non-existent, if it exists as‘a own property of the target object and the target
object is not extensible.

e A property cannot be reported as existent, if it does not exists as a own property of the target object and the
target object is not extensible.

e A property cannot be reported as non-configurable, if it does not exists as a own property of the target object or if
it exists as a configurable own property of the target object.

e The result of [[GetOwnProperty]] can be applied to the target object using [[DefineOwnPropery]] and will not
throw an exception.

8.5.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Proxy object O is called with property key P and
property descriptor Desc, the following steps are taken:

o hwne

19.

72

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler; "defineProperty").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. _Return the result of calling the [[DefineOwnProperty]] internal method of target with arguments P
and Desc.
LetdescObj be FromPropertyDescriptor(Desc).
NOTE If Desc was originally generated from an object using ToPropertyDescriptor, then descObj will be that original
object.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target, P, and descObj.

. ReturnIfAbrupt(trapResult).

. If ToBoolean(trapResult) is false, then return false.

. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
. ReturnIfAbrupt(targetDesc).

. Let extensibleTarget be the result of IsExtensible(target).

. ReturnIfAbrupt(extensibleTarget).

. Set extensibleTarget to ToBoolean(extensibleTarget),

. If targetDesc is undefined, then

a. If extensibleTarget is false, then throw a TypeError exception.
b. If Desc.[[Configurable]] is false, then throw a TypeError exception.

. Else targetDesc is not undefined,

a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc , targetDesc) is false, then throw a
TypeError exception.
b. If Desc.[[Configurable]] is false and targetDesc.[[Configurable]] is true, then throw a TypeError
exception.
Return true.

© Ecma International 2012

reference to the original descriptor returned by the trap. A
copy is not made and missing attribute properties are not
added to it.

This is a change from the wiki spec.

secma

NOTE [[DefineOwnProperty]] for proxy objects enforces the following invariants:
e A property cannot be added, if the target object is not extensible.
e A property cannot be added as or modified to be non-configurable, if it does not exists as a non-configurable own
property of the target object.
e A property may not be non-configurable, if is corresponding configurable property of the target object exists.
e |If a property has a corresponding target object property then apply the property descriptor of the property to the
target object using [[DefineOwnPropery]] will not throw an exception.

8.5.8 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an exotic Proxy object O is called-with property key P, the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let handler be the value of the [[ProxyHandler]] internal data property of O.
3. Let target be the value of the [[ProxyTarget]] internal data property of O.
4. Let trap be the result of GetMethod(handler, "has").
5. ReturnIfAbrupt(trap).
6. If trap is undefined, then
a. Return the result of calling the [[HasProperty]] internal method of target with argument P.
7. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and

a new List containing target and P.
8. ReturnIfAbrupt(trapResult).
9. Let success be ToBoolean(trapResult).
10. If success is false, then
a. LettargetDesc be the result of calling the [[GetOwnProperty]].internal method of target with
argument P.
b. ReturnlfAbrupt(targetDesc).
c. If targetDesc is not undefined, then
i. If targetDesc.[[Configurable]] is false; then throw a TypeError exception.
il Let extensibleTarget be the result of IsExtensible(target).
iii. ReturnlfAbrupt(extensibleTarget).
iv. If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.
11. Return success.

NOTE [[HasProperty]] for proxy objects enforces the following invariants:
e A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
e A property cannot be reported as non-existent, if it exists as a own property of the target object and the target
object is not extensible.

8.5.9 « [[Get]] (P, Receiver)

When the [[Get]] internal method of an exotic Proxy object O is called with property key P and ECMAScript
language value Receiver the following steps are taken:

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal data property of O.

Let target be the value of the [[ProxyTarget]] internal data property of O.

Let trap be the result of GetMethod(handler, "get").

ReturnIfAbrupt(trap).

If trap is undefined, then
a. Return the result of calling the [[Get]] internal method of target with arguments P and Receiver.

7. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target, P, and Receiver.

8. ReturnlfAbrupt(trapResult).

9. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.

10. ReturnlfAbrupt(targetDesc).

11. If targetDesc is not undefined, then

a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then

o0k wNE

© Ecma International 2012 73

secmd

i If SameValue(trapResult, targetDesc.[[Value]]) is false, then throw a TypeError
exception.
b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and targetDesc.[[Get]]
is undefined, then
i If trapResult is not undefined, then throw a TypeError exception.
12. Return trapResult.

NOTE [[Get]] for proxy objects enforces the following invariants:
e The value reported for a property must be the same as the value of the corresponding target object property if the
target object property is a non-writable, non-configurable data property.
e The value reported for a property must be undefined if the corresponding corresponding target object property is
non-configurable accessor property that has undefined as its [[Get]] attribute.

8.5.10 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of an exotic Proxy object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let handler be the value of the [[ProxyHandler]] internal data property of O.
3. Let target be the value of the [[ProxyTarget]] internal data property of O.
4. Let trap be the result of GetMethod(handler, "set").
5. ReturnlfAbrupt(trap).
6. Iftrap is undefined, then
a. Return the result of calling the [[Set]] internal method of target with arguments P, V, and Receiver.
7. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and

a new List containing target, P, V, and Receiver.
8. ReturnIfAbrupt(trapResult).
9. If ToBoolean(trapResult) is false, then return false.
10. Let targetDesc be the result of calling the [[GetOwnProperty]] internal-method of target with argument P.
11. ReturnlfAbrupt(targetDesc).
12. If targetDesc is not undefined, then
a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i I1f'SameValue(V, targetDesc.[[Value]]) is false, then throw a TypeError exception.
b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false, then
i If targetDesc.[[Set]] is undefined, then throw a TypeError exception.
13. Return true.

NOTE [[Set]] for proxy objects enforces the following invariants:
e Cannnot change the value of a property to be different from the value of the corresponding target object property
if the corresponding target object property is a non-writable, non-configurable data property.
e Cannot set the value of a property if the corresponding corresponding target object property is a non-configurable
accessor property that has undefined as its [[Set]] attribute.

8.5.11 [[Delete]] (P)

When the [[Delete]] internal method of an exotic Proxy object O is called with property name P the following
steps are taken:

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "deleteProperty").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[Delete]] internal method of target with argument P.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and P.
8. ReturnlfAbrupt(trapResult).
9. If ToBoolean(trapResult) is false, then return false.

o wne=

~

74 © Ecma International 2012

»ecma

10. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
11. ReturnlfAbrupt(targetDesc).

12. If targetDesc is undefined, then return true.

13. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.

14. Return true.

NOTE [[Delete]] for proxy objects enforces the following invariant:
* A property cannot be deleted, if it exists as a non-configurable own property of the target object.

8.5.12 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic Proxy object O is called the following steps are taken:

Let handler be the value of the [[ProxyHandler]] internal data property of ©.

Let target be the value of the [[ProxyTarget]] internal data property of O.

Let trap be the result of GetMethod(handler, "enumerate").

ReturnlfAbrupt(trap).

If trap is undefined, then
a. Return the result of calling the [[Enumerate]] internal method of target.

6. Let trapResult be the result of calling the [[Call]] internal-method of trap with handler as the this value and
a new List containing target.

7. ReturnlfAbrupt(trapResult).

8. If Type(trapResult) is not Object, then throw a TypeError exception.

TODO: we may need to add a lot of additional invariant checking here according to the wiki spec. But maybe it

ar R

really isn’t necessaryl. Tomvc response: | think it may be possible to waive the extra invariant checks for C

ed [AWB1246]: TODO.

[[Enumerate]]. It's not a crucial primitive. My reasoning is that [[Enumerate]] deals with both own and inherited
properties, and we don't really enforce any invariants on inherited properties. So | guess it's ok if the invariants
for [[Enumerate]] are weakened.

Do note that this is a bit inconsistent with the way we treat internal methods like [[HasProperty]], [[GetP]] and
[[SetP]]: these also deal with own and inherited properties, but still enforce invariants on own properties.

9. Return trapResult.

NOTE [[Enumerate]] for proxy objects enforces the following invariants:
e The result of [[Enumerate]] must be an Object.

[8.5.13 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic Proxy object O is called the following steps are
taken:

1. Lethandler be the value of the [[ProxyHandler]] internal data property of O.
2. et target be the value of the [[ProxyTarget]] internal data property of O.
3. Lettrap be the result of GetMethod(handler, "ownKeys").
4. ReturnlfAbrupt(trap).
5. If trap is undefined, then
a. Return the resultof calling the [[OwnPropertyKeys]] internal method of target.
6. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and

a new List containing target.
7. ReturnlfAbrupt(trapResult).
8. If Type(trapResult) is not Object, then throw a TypeError exception.
9. fTODO: we may need to add a lot of additional invariant checking here according to the wiki spec. But

ed [AWB1248]: TODO

maybe it really isn’t necessaryl| [r

10. Return trapResult.

NOTE [[OwnPropertyKeys]] for proxy objects enforces the following invariants:
e The result of [[OwnPropertyKeys]] must be an Object.

8.5.14 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method of an exotic Proxy object O is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

© Ecma International 2012 75

secma

Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "apply").
ReturnIfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[Call]] internal method of target with arguments thisArgument and
argumentsList.
6. LetargArray be the result of CreateArrayFromList(argumentsList).
7. Return the result of calling the [[Call]] internal method of trap with handler as the this value and a new List
containing target, thisArgument, and argArray.

arwnE

NOTE An Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal data
property is an object that has a [[Call]] internal method.

8.5.15 [[Construct]] Internal Method

The [[Construct]] internal method of an exotic Proxy object O is called with a single parameter argumentsList
which is a possibly empty List of ECMAScript language values. The following steps are taken:

Let handler be the value of the [[ProxyHandler]] internal 'data property of O.

Let target be the value of the [[ProxyTarget]] internal-data property of O.

Let trap be the result of GetMethod(handler, "construct").

ReturnlfAbrupt(trap).

If trap is undefined, then
a. Return the result of calling the [[Construct]] internal method of target with argument argumentsList.

Let argArray be the result of Create ArrayFromList(argumentsList).

7. Let newObj be the result of calling trap with handler as the this value and a new List containing target and
argArray.

8. ReturnlfAbrupt(newObj).

9. If Type(newObj) is not Object, then.throw a TypeError exception.

10. Return newObj.

arwpe=

o

NOTE 1 An Proxy exotic'object only has a [[Construct]] internal method if the initial value of its [[ProxyTarget]] internal
data property is an objectthat has a [[Construct]] internal method.

NOTE 2 [[Construct]]] for proxy.objects enforces the following invariants:
e The result of [[Construct]] must be an Object.

9 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript language. Other, more specialized abstract operations are
defined throughout this specification.

9.1 Type Conversion and Testing

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics
of certain constructs it is useful to define a set of conversion abstract operations. The conversion abstract
operations are polymorphic; they can accept a value of any ECMAScript language type or of a Completion
Record value. But no other specification types are used with these operations.

9.1.1 ToPrimitive
The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of

converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to Table 15:

76 © Ecma International 2012

pecma

Table 15 — ToPrimitive Conversions

Input Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToPrimitive(argument.[[value]]) also passing the optional hint
PreferredType.

Undefined Return argument (no conversion).

Null Return argument (no conversion).

Boolean Return argument (no conversion).

Number Return argument (no conversion).

String Return argument (no conversion).

Symbol Return argument (no conversion).

Object Perform the steps following this table.

When the InputType is Object, the following steps are taken:

If PreferredType was not passed, let hint be "default".
Else if PreferredType is hint String, let hint be "string".
Else PreferredType is hint Number, let hint be "number".
Let exoticToPrim be the result of Get(argument, @ @ToPrimitive).
ReturnIfAbrupt(exoticToPrim).
If exoticToPrim is not undefined, then
a. IfIsCallable(exoticToPrim) is false, then throw a TypeError exception.
b. Let result be the result of calling the [[Call]] internal method of exoticToPrim, with argument as
thisArgument and a List containing hint as argumentsList.
c. ReturnlfAbrupt(result).
d. If result is an ECMASeript language value and Type(result) is not Object, then return result.
e. Else, throw a TypeError exception.
7. Ifhintis "default" then, let hint be "number".
8. Return the result of OrdinaryToPrimitive(argument,hint).

QU WD

When the OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

1. Assert: Type(O).is Object
2. Assert: Type(hint) is String and its value is either "string" or "number".
3. Ifhintis "string", then
a. LettryFirst be "toString".
b. LettrySecond be "valueOf".
4. Else,
a. LettryFirst be "valueOf".
b. LettrySecond be "toString".
Let first be the result of Get(O, tryFirst).
ReturnlfAbrupt(first):
7. If IsCallable(first) is true then,
a. Let result be the result of calling the [[Call]] internal method of first, with O as thisArgument and an
empty List as argumentsList.
b. ReturnIfAbrupt(result).
c. Ifresultis an ECMAScript language value and Type(result) is not Object, then return result.
Let second be the result of Get(O, trySecond).
ReturnlfAbrupt(second).
10. If IsCallable(second) is true then,
a. Let result be the result of calling the [[Call]] internal method of second, with O as thisArgument and
an empty argument list.
b. ReturnlfAbrupt(result).
c. Ifresultis an ECMAScript language value and Type(result) is not Object, then return result.
11. Throw a TypeError exception.

o a

© ®

© Ecma International 2012 77

pecma

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However,
objects may over-ride this behaviour by defining a @@ToPrimitive method. Of the objects defined in this specification only
Date objects (see 15.9.6) over-ride the default ToPrimitive behaviour. Date objects treat no hint as if the hint were String.

9.1.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 16:

Table 16 — ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0,=0, or NaN; otherwise return true.

String Return false if the argument'is the empty String (its length is. zero);
otherwise return true.

Symbol Return true

Object Return true

9.1.3 ToNumber

The abstract operation ToNumber converts its argument to.a value of type Number according to Table 17:

Table 17 — ToNumber Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])

Undefined Return NaN

Null Return +0

Boolean Return 1 if argument is true. Return +0 if argument is false.

Number Return argument (no conversion).

String See grammar and note below.

Symbol Return NaN

Object Apply the following steps:
1. Let primValue be ToPrimitive(argument, hint Number).
2. Return ToNumber(primValue).

9.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret

the String as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

Syntax

StringNumericLiteral :::
StrWhiteSpaceopt

StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceqpt

78

© Ecma International 2012

secma

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::

Infinity

DecimalDigits . DecimalDigitsopt ExponentPartop
. DecimalDigits ExponentPartqp

DecimalDigits ExponentPartopt

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of

0

1 2 3 4 5 6 7 8 9

ExponentPart :::
Exponentindicator Signedinteger

Exponentindicator ::: one of

e

E

Signedlinteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of

0

NOTE

7.8.3):
.
.
.

1 2 3 45 6 7 8 9 a b c de £ A B CDE F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see

A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.

A StringNumericLiteral that is decimal may have any number of leading 0 digits.

A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

A StringNumericLiteral that is empty or contains only white space is converted to +0.

Infinity and -Infinity are recognised as a StringNumericLiteral but not as a NumericLiteral.

Runtime Semantics

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric

© Ecma International 2012 79

)

ecmad

literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

80

The MV of StringNumericLiteral ::: [empty] is O.

The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

The MV of StringNumericLiteral ::: StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt is the MV of
StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalliteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral'is 0, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or —0 as appropriate.)

The MV of StrUnsignedDecimalLiteral::: Infinity is 10'°% (a‘'value so large that it will round to +o).

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits «* DecimalDigits is the MV of the first DecimalDigits
plus (the MV of the second DecimalDigits times 10™), where n is the'number of characters in the second
DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™)) times 10°, where n is the number of characters
in the second DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 10™, where n is the
number of characters in DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10",
where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10°
where e is the MV of ExponentPart.

The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

The MV of ExponentPart ::: Exponentlndicator Signedinteger is the MV of Signedinteger.

The MV of Signedinteger ::: DecimalDigits is the MV of DecimalDigits.

The MV of Signedinteger ::: + DecimalDigits is the MV of DecimalDigits.

The MV of Signedinteger ::: = DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit ::: 0 or of HexDigit ::: 0 is 0.

The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.

The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.

The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.

The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.

The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.

The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.

The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.

The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.

The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.

The MV of HexDigit ::: a or of HexDigit ::: A is 10.

The MV of HexDigit ::: b or of HexDigit ::: B is 11.

The MV of HexDigit ::: ¢ or of HexDigit ::: C is 12.

© Ecma International 2012

secma

e The MV of HexDigit ::: d or of HexDigit ::: D is 13.
e The MV of HexDigit ::: e or of HexDigit ::: E is 14.
e The MV of HexDigit ::: £ or of HexDigit ::: F is 15.
e The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.
e The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

e The MV of HexIntegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
String numeric literal is ‘-’, in which case the rounded value is —0. Otherwise, the rounded value must be the
Number value for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimalLiteral
and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is_significant if it is not part of an ExponentPart
and

e itisnotO;or

e there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

9.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

1. Let number be the result of calling ToNumber on the input.argument.
2. ReturnlfAbrupt(number).

3. Ifnumber is NaN, return +0.

4. If number is +0, =0, +o0, or —oo; return number.

5. Return the result of computing sign(number) x floor(abs(number)).
9.

1.5 Tolnt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its-argument to one of 2% integer values in the range -2 through
231, inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.
ReturnlfAbrupt(number).

If number is NaN, +0, =0, +oo, or —oo, return +0.

Let int be sign(number) x floor(abs(number)).

Let int32bit be int modulo 2%,

If int32bit > 23, return int32bit — 2%, otherwise return int32bit.

ok wWNE

NOTE Given the above definition of ToInt32:

e The TolInt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

e Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property that +e and —o are
mapped to +0.)

e ToInt32 maps -0 to +0.

9.1.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2% integer values in the range 0 through 2*-1,
inclusive. This abstract operation functions as follows:

1. Let number be the result of calling ToNumber on the input argument.

2. ReturnIfAbrupt(number).
3. If number is NaN, +0, -0, +e, or —eo, return +0.

© Ecma International 2012 81

/

ecma

4,
5,
6.

Let int be sign(number) x floor(abs(number)).
Let int32bit be int modulo 2%,
Return int32bit.

NOTE Given the above definition of ToUInt32:

Step 6 is the only difference between ToUint32 and TolInt32.

The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

ToUint32(TolInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +co and —o are
mapped to +0.)

ToUint32 maps —0 to +0.

9.1.7 ToUint16: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 2'° integer values in the range 0 through 2°-1,
inclusive. This abstract operation functions as follows:

ol wNE

Let number be the result of calling ToNumber on the input argument.
ReturnlfAbrupt(number).

If number is NaN, +0, -0, +o0, or —oo, return +0.

Let int be sign(number) x floor(abs(number)).

Let int16bit be int modulo 21€.

Return int16bit.

NOTE Given the above definition of ToUint16:

The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.
ToUint16 maps -0 to +0.

9.1.8 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 18:

Table 18 — ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToString(argument.[[value]])

Undefined "undefined"
Null "null"
Boolean If argumentis true, then return "true".
If argument is false, then return "false".
Number See 9.8.1.
String Return argument (no conversion)
Symbol "[object Symbol]"
Object Apply the following steps:

1. Let primValue be ToPrimitive(argument, hint String).
2. Return ToString(primValue).

9.1.8.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number m to String format as follows:

Hwn R

82

If m is NaN, return the String "NaN".

If mis +0 or -0, return the String "0".

If m is less than zero, return the String concatenation of the String "-" and ToString(—m).
If m is +oo, return the String "Infinity".

© Ecma International 2012

secmd

5. Otherwise, let n, k, and s be integers such that k > 1, 10“* < s < 10%, the Number value for s x 10"*is m, and
k is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not
divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these
criteria.

6. Ifk <n <21, return the String consisting of the k digits of the decimal representation of s (in order, with no
leading zeroes), followed by n—k occurrences of the character ‘0°.

7. 1f0<n <21, return the String consisting of the most significant n digits of the decimal representation of s,
followed by a decimal point “.’, followed by the remaining k—n digits of the decimal representation of s.

8. If—6 <n <0, return the String consisting of the character ‘0°, followed by a decimal point *.’, followed by
—n occurrences of the character “0°, followed by the k digits of the decimal representation of s.

9. Otherwise, if k = 1, return the String consisting of the single digit of s, followed by lowercase character ‘e’,
followed by a plus sign ‘4’ or minus sign ‘=’ according to whether n—1 is positive or negative, followed by
the decimal representation of the integer abs(n-1) (with no leading zeroes).

10. Return the String consisting of the most significant digit of the decimal representation of s, followed by a
decimal point “.”, followed by the remaining k—1 digits of the decimal representation of s, followed by the
lowercase character ‘e’, followed by a plus sign ‘+’ or minus sign ‘=" according to whether n—1 is positive
or negative, followed by the decimal representation of the integer abs(n—1) (with no leading zeroes).

NOTE1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

e If xis any Number value other than —0, then ToNumber(ToString(x)) is exactly the same Number value as x.

e The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:
Otherwise, let n, k, and s be integers such that k > 1, 10 <'s < 10% the Number value for s x 10"* is m, and k is as small as
possible. If there are multiple possibilities for s, choose the value of s for.which s x 10" is closest in value to m. If there are
two such possible values of s, choose the one that is even. Note that k is the number of digits in the decimal representation of
s and that s is not divisible by 10:

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:
Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as
http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

9.1.9 ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 19:

© Ecma International 2012 83

secmd

Table 19 — ToObject Conversions

Argument Type

Result

Completion Record

If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal data property
is set to the value of argument. See 15.6 for a description of Boolean
objects.

Number Return a new Number object whose [[NumberData]] internal data property
is set to the value of argument. See 15.7 for a description of Number
objects.

String Return a new String object whose [[StringData]] internal data property is
set to the value of argument. See 15.5 for a description of String objects.

Symbol Throw a TypeError exception.

Object Return argument (no conversion).

9.1.10 ToPropertyKey

The abstract operation ToPropertyKey converts its argument to a value that can be used as a property key by

performing the following steps:

1. ReturnlfAbrupt(argument).

2. If Type(argument) is Symbol, then
a. Return argument.

3. Return ToString(argument).

9.2 Testing and Comparison Operations

9.2.1 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be

converted to an Object using ToObject. It is defined by Table 20:

9.2.2

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language value or

Table 20 — CheckObjectCoercible Results

Argument Type

Result

Completion Record

If argument is an abrupt completion, return argument. Otherwise return
CheckObjectCoercible(argument.[[value]])

Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument
Number Return argument
String Return argument
Symbol Throw a TypeError exception.
Object Return argument
IsCallable

a Completion Record, is a callable function Object according to Table 21:

84

© Ecma International 2012

pecma

Table 21 — IsCallable Results

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
IsCallable(argument.[[value]])

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Symbol Return false.

Object If argument has a [[Call]] internal method, then return true, otherwise return
false.

9.2.3 SameValue(x, y)

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

ReturnIfAbrupt(x).
ReturnlfAbrupt(y).
If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
a. IfxisNaN andy is NaN, return true.
b. Ifxis+0andy is -0, return false.
c. Ifxis-0andy is +0, return false.
d. If x is the same Number value as y, return true.
e. Return false.
7. 1f Type(x) is String, then
a. Ifx andy are exactly the same sequence of code units (same length and same code units in
corresponding positions) return true; otherwise, return false.
8. If Type(x) is Boolean, then
a. Ifx andy are both true or both false, then return true; otherwise, return false.
9. If Type(x)is Symbol, then
a. Ifx and y are both the same Symbol value, then return true; otherwise, return false.
10. Return true if x and y are the same Object value. Otherwise, return false.

oA~ E

9.2.4 SameValueZero(x, y)

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript language
values, produces true or false. Such a comparison is performed as follows:

ReturnlfAbrupt(x).
ReturnIfAbrupt(y).
If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
a. IfxisNaN andy is NaN, return true.
b. Ifxis+0andy is -0, return true.
c. Ifxis-0andy is +0, return true.
d. If x is the same Number value as y, return true.
e. Return false.
7. 1f Type(x) is String, then
a. Ifx andy are exactly the same sequence of code units (same length and same code units in
corresponding positions) return true; otherwise, return false.

ok wWN P

© Ecma International 2012 85

secmd

8. If Type(x) is Boolean, then

a. Ifxandy are both true or both false, then return true; otherwise, return false.
9. If Type(x) is Symbol, then

a. Ifxandy are both the same Symbol value, then return true; otherwise, return false.
10. Return true if x and y are the same Object value. Otherwise, return false.

NOTE SameValueZero differs from SameValue only in its treatment of +0 and -0. «

9.2.5 |IsConstructor

The abstract operation IsConstructor determines if its argument, which must be an ECMAScript language value
or a Completion Record, is a function object with a [[Construct]] internal method.

ReturnlfAbrupt(argument).

If Type(argument) is not Object, return false.

If argument has a [[Construct]] internal method, return true.
Return false.

HwN e

9.2.6 IsPropertyKey

The abstract operation IsPropertyKey determine if its argument, which must be an ECMAScript language value
or a Completion Record, is a value that may be used as a property key.

ReturnlfAbrupt(argument).

If Type(argument) is String, return true.
If Type(argument) is Symbol, return true:
Return false.

Hwn e

9.2.7 IsExtensible (O)

The abstract operation IsExtensible is used to determine whether additional properties can be added to an
object. A Boolean value is returned. The the argument O where is the object that is tested. This abstract
operation performs the following steps:

1. Assert: Type(O) is Object.

2. Let notExtensible be the result of calling the [[HaslIntegrity]] internal method of O with argument
"nonextensible".

3. ReturnlfAbrupt(notExtensible).

4. If notExtensible is true; then return false; else return true.

9.3/ Operations on Objects
9.3.1 Get (O, P)

The abstract operation Get is used to retrieve the value of an specific property of an object. The operation is
called with arguments O‘and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Return the result of calling the [[Get]] internal method of O passing P and O as the arguments.
9.

3.2 Put (O, P, V, Throw)
The abstract operation Put is used to set the value of a specific property of an object. The operation is called
with arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value for the
property and Throw is a Boolean flag. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.

86 © Ecma International 2012

\: Formatted: Note

secma

3. Assert: Type(Throw) is Boolean.

4. Let success be the result of calling the [[Set]] internal method of O passing P, V, and O as the arguments.
5. ReturnIfAbrupt(success).

6. If success is false and Throw is true, then throw a TypeError exception.

7. Return success.

9.

3.3 CreateOwnbDataProperty (O, P, V)
The abstract operation CreateOwnDataProperty is used to create a new own property of an object. The

operation is called with arguments O, P, and V where O is the object, P is the property key, and V is the new
value for the property. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Assert: O does not have an own property whose key is P.

4. Let newDesc be the Property Descriptor {[[Valuel]: V, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

5. Return the result of calling the [[DefineOwnProperty]] internal- method of O passing P and newDesc as
arguments.

NOTE This abstract operation creates a property whose attributes as set to.the same defaults used for properties <

created by the ECMAScript language assignment operator.
9.3.4 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperlty]] internal method of an
object in a manner that will throw a TypeError exception if the requested property update cannot be
performed. The operation is called with arguments O, P, and desc where O is the object, P is the property key,
and desc is the Property Descriptor for the property. This abstract operation perform, the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P)qis true.

3. Let success be the result of calling the [[DefineOwnProperty]] internal method of O passing P and desc as
arguments.

4. ReturnlfAbrupt(success).

5. If success is false, then throw a TypeError exception.

6. Return success.

9.3.5 DeletePropertyOrThrow (O, P)

The abstract operation Put is used to remove a specific own property of an object. It throws an exception is the
property is not configurable. The operation is called with arguments O and P where O is the object and P is
the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object:

2. Assert: IsPropertyKey(P) is true.

3. Let success be the result of calling the [[Delete]] internal method of O passing P as the argument.
4. ReturnlfAbrupt(success).

5. If success is false, then throw a TypeError exception.

6. Return success.

9.

3.6 HasProperty (O, P)

The abstract operation HasProperty is used to determine whether an object has a property with the specified
property key. The property may be either an own or inherited. A Boolean value is return. The operation is
called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.
3. Return the result of calling the [[HasProperty]] internal method of O with argument P.

© Ecma International 2012 87

[Formatted: Note

secmd

9.3.7 GetMethod (O, P)

The abstract operation GetMethod is used to get the value of an specific property of an object when the value
of the property is expected to be a function. The operation is called with arguments O and P where O is the
object, P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let func be the result of calling the [[Get]] internal method of O passing P and O as the arguments.
4. ReturnlfAbrupt(func).

5. If func is undefined, then return undefined.

6. If IsCallable(func) is false, then throw a TypeError exception.

7. Return func.

9.

3.8 Invoke(O,P, [args])

The abstract operation Invoke is used to call a method property of an object. The operation is called with
arguments P, O, and optionally args where P is the property key, O serves as both the lookup point for the
property and the this value of the call, and args is the list of arguments values passed to the method. If args is
not present, an empty List is used as its value. This abstract.operation performs the following steps:

Assert: P is a valid property key.

If args was not passed, then let args be a new empty List.

Let obj be ToObject(O).

ReturnIfAbrupt(obj).

Let func be the result of GetMethod(obj, P).

ReturnlfAbrupt(func).

If func is undefined, throw a TypeError exception.

Return the result of calling the [[Call]] internal method of func passing O as thisArgument and args as
argumentsList.

NG~ WNE

9.3.9 SetintegrityLevel (O, level)

The abstract operation SetlntegrityLevel 'is used to fix the set of own properties of an object. This abstract
operation performs the following steps:

Assert: Type(O) is Object.
Assert: level.is either "sealed" or "frozen".
Let keys'be the result of calling the [[OwnPropertyKeys]] internal method of O.
ReturnlfAbrupt(keys).
Let pendingException be undefined.
If level is "sealed", then
a. Repeat for each element k of keys,
i. Let status be the result of DefinePropertyOrThrow(O, k, PropertyDescriptor{
[[Configurable]]: false}).
ii. If status is an Abrupt Completion, then
1. If pendingException is undefined, then set pendingException to status.

7. Else level is "frozen",

ok wNE

a. Repeat for each element k of keys,| [Commented [AWB1449]: TODO: don't freeze privare
i. Let status be the result of calling the [[GetOwnProperty]] internal method of O with k. | symbol properties.

ii. If status is an Abrupt Completion, then
1. If pendingException is undefined, then set pendingException to status.
iii. Else,
1. LetcurrentDesc be status.[[value]].
2. If currentDesc is not undefined, then
a. IfIsAccessorDescriptor(currentDesc) is true, then
i. Let desc be PropertyDescriptor{[[Configurable]]: false}.
b. Else,
i. Let desc be PropertyDescriptor { [[Configurable]]: false,
[[Writable]]: false }.

88 © Ecma International 2012

secma

c. Let status be the result of DefinePropertyOrThrow(O, k, desc).
d. If status is an Abrupt Completion, then
i. If pendingException is undefined, then set pendingException
to status.
8. If pendingException is not undefined, then return pendingException.
9. Return the result of calling the [[PreventExtensions]]|internal method of O.

C ed [AWB1550]: We're going to get write of

9.3.10 TestiIntegrityLevel (O, level)

The abstract operation TestIntegrityLevel is used to determine if the set of own properties of an object are fixed.

This abstract operation performs the following steps:

Assert: Type(O) is Object.
Assert: level is either "sealed" or "frozen".
Let status be the result of IsExtensible(O).
ReturnlfAbrupt(status).
If status is true, then return false
NOTE If the object is extensible, none of its properties are examined.
Let keys be the result of calling the [[OwnPropertyKeys]] internal method of O.
ReturnlfAbrupt(keys).
Let pendingException be undefined.
10. Let configurable be false.
11. Let writable be false.
12. Repeat for each element k of keys,
a. Let status be the result of calling the [[GetOwnProperty]] internal method of O with k.
b. If status is an Abrupt Completion, then
i. If pendingException is undefined, then set pendingException to status.
il. Let configurable be true.
c. Else,
i. LetcurrentDesc be status.[[value]].
ii. If currentDesc is not undefined, then
1. Set configurable to configurable logically ored with
currentDesc.[[Configurable]].
2. If IsDataDescriptor(currentDesc) is true, then
a.. Set writable to writable logically ored with currentDesc.[[Writable]].
13. If pendingException is not.undefined, then return pendingException.
14. If level is "frozen" and writable is true, then return false.
15. If configurable is true, then return false.
16. Return-true.

©oNOGAWNE

9.3.11 CreateArrayFromList (elements)

The abstract operation CreateArrayFromList is used to create an Array object whose elements are provided by
an internal List. This abstract operation performs the following steps:

1. Assert: elements is a List whose elements are all ECMAScript language values.
2. Let array be the result of the abstract operation ArrayCreate with argument 0.
3. LetnbeO.
4. For each element e of elements
a. Call CreateOwnDataProperty(array, ToString(n), e).
b. Assert: the call in step 4.a will never result in an abrupt completion.
c. Incrementn by 1.
5. Return array.

9.3.12 OrdinaryHaslInstance (C, O)

The abstract operation OrdinaryHaslInstance implements the default algorithm for determining if an object O
inherits from the instance object inheritance path provided by constructor C. This abstract operation performs
the following steps:

1. IfIsCallable(C) is false, return false.

© Ecma International 2012 89

Get/Setlntegrity so this will be valid again soon.

secmd

2. If C has a [[BoundTargetFunction]] internal data property, then
a. Let BC be the value of C’s [[BoundTargetFunction]] internal data property.
b. Return the result of instanceofOperator(O,BC) (see 11.8).

If Type(O) is not Object, return false.

Let P be the result of Get(C, "prototype").

ReturnIfAbrupt(P).

If Type(P) is not Object, throw a TypeError exception.

Repeat
a. Set O to the result of calling the [[GetInheritance]] internal method of O with no arguments.
b. ReturnlfAbrupt(O).
c. IfOisnull, return false.
d. If SameValue(P, O) is true, return true.

Nouos~w

9.3.13 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFromConstructor determines the [[Prototype]] value that should be used to
create an object corresponding to a specific constructor. The value is retrieved from the constructor’s
prototype property, if it exists. Otherwise the supplied default is used for [[Prototype]]. This abstract
operation performs the following steps:

1. Assert: intrinsicProto is a string value that is this specification’s name of an intrinsic object. The corresponding
object must be an intrinsic that is intended to be used as the [[Prototype]]value of an object.
If 1sConstructor (constructor) is false, then throw a TypeError exception.
Let proto be the result of Get(constructor, "prototype").
ReturnlfAbrupt(proto).
If Type(proto) is not Object, then
a. If constructor has a [[Realm]] internal data property, let.realm be constructor’s [[Realm]].
b. Else,
i Let ctx be the running execution context.
il Let realm be ¢#x’s Realm.
c. Let proto be realm’s intrinsic object named intrinsicDefaultProto.
6. Return proto.

garwn

NOTE If constructor‘does not supply a [[Prototype]] value, the default value that is used is obtained from the Code
Realm of the constructor function rather than from the running execution context. This accounts for the possibility that a
built-in @@create method from a different Code Realm might be installed on constructor.

9.3.14 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalDataList)

The abstract operation OrdinaryCreateFromConstructor creates an ordinary object whose [[Prototype]] value is
retrieved from a constructor’s prototype property, if it exists. Otherwise the supplied default is used for
[[Prototype]]. The optional internalDataList is a List of the names of internal data property names that should
be defined as part of the object. If the list is not provided, an empty List is used. This abstract operation
performs the following steps:

1. Assert: intrinsicDefaultProto is a string value that is this specification’s name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.
2. Let proto be the result of GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).

3. ReturnifAbrupt(proto).
4. Return the result of the abstract operation ObjectCreate(proto, internalDataList).

10 Executable Code and Execution Contexts
10.1 Types of Executable Code

There are four types of ECMAScript executable code:

90 © Ecma International 2012

pecma

e Global code is source text that is treated as an ECMAScript Script. The global code of a particular
Script does not include any source text that is parsed as part of a FunctionBody, GeneratorBody,
ConciseBody, ClassBody, or ModuleBody.

e Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a String, it is treated as an ECMAScript Script. The eval code for a
particular invocation of eval is the global code portion of that Script.

Function code is source text that is parsed to supply the value of the [[Code]] internal data property
(see 8.3.15) of function and generator objects. The function code of a particular function or
generator does not include any source text that is parsed as the function code of a nested
FunctionBody, GeneratorBody, ConciseBody, or ClassBody.

e Module code is source text that is parse code that is provided as a ModuleBody. It is the code that is
directly evaluated when a module is initialized. The module code of a particular module does not
include any source text that is parsed as part of a nested FunctionBody, GeneratorBody, ConciseBody,
ClassBody, or ModuleBody.

NOTE Function code is generally provided as the bodies of Function Definitions (13.1), Arrow Function Definitions
(13.2), Method Definitions (13.3) and Generator Definitions (13.4): Function code is.also derived from the last argument to
the Function constructor (15.3).

10.1.1 Strict Mode Code

An ECMAScript Script syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the four.types of ECMAScript code are referred to as module
code, strict global code, strict eval code, and strict function.code. Code is interpreted as strict mode code in
the following situations:

e Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.1).

e Module code is always strict code.
e All code contained ina ClassBody is strict code:

e Eval code.is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if
the call'to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

e Function code that is part of a FunctionDeclaration, FunctionExpression, or accessor PropertyDefinition is
strict function code if its FunctionDeclaration, FunctionExpression, or PropertyDefinition is contained in strict
mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

e Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last.argument is a String that when processed as a FunctionBody begins with a Directive
Prologue that contains a Use Strict Directive.

10.1.2 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of function objects whose evaluative behaviour is
expressed in some implementation defined form of executable code other than via ECMAScript code.
Whether a function object is an ECMAScript code function or a non-ECMAScript function is not semantically
observable from the perspective of an ECMAScript code function that calls or is called by such a non-
ECMAScript function.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of

© Ecma International 2012 91

Commented [AWB751]: TODO: may need an additional
reference to the [[Code]] of a generator.

secmd

an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration, a BlockStatement, or a Catch clause of a TryStatement and a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global
environment's outer environment reference is null. A global environment’'s environment record may be
prepopulated with identifier bindings and includes an associated global object whose properties provide some
of the global environment’s identifier bindings. This global object is the value of a global environment's this
binding. As ECMAScript code is executed, additional properties may be added to the global object and the
initial properties may be modified.

A method environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function
object that establishes a new this binding: A method environment also captures the state necessary to
support super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

10.2.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative environment
records and object environment records. Declarative. environment records are used to define the effect of
ECMAScript language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch
clauses that directly. associate identifier bindings with ECMAScript language values. Object environment
records are used to define the effect. of ECMAScript elements such as WithStatement that associate identifier
bindings with the properties of some object. Global Environment Records and Function Environment Records
are specializations that are used for specifically for Script global declarations and for top-level declarations
within functions.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with three concrete subclasses, declarative
environment record; object-environment record, and global environment record. Function environment records
are a subclass of declarative environment record. The abstract class includes the abstract specification
methods defined in Table 22. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

92 © Ecma International 2012

pecma

Table 22 — Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D) Create a new but uninitialised mutable binding in an
environment record. The String value N is the text of the bound
name. If the optional Boolean argument D is true the binding is
may be subsequently deleted.

CreatelmmutableBinding(N) Create a new but uninitialised” immutable binding in an
environment record. The Stringvalue N is the text of the bound
name.

InitialiseBinding(N,V) Set the value of an already existing but uninitialised binding in

an environment record. The String value N is the text of the
bound name. V is the value for the binding and is a value of any
ECMAScript language type.

SetMutableBinding(N,V, S) Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for‘the binding and may be a value of any
ECMAScript language type. S is a Boolean flag. If Sis true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S) Returns the. value of an already existing binding from an
environment record. The String value N is the text of the bound
name. S is used to identify strict mode references. If S is true
and the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N) Delete a binding from an environment record. The String value N
is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

HasThisBinding() Determine if an environment record establishes a this binding.
Return true if it does and false if it does not.

HasSuperBinding() Determine if an environment record establishes a super
method binding. Return true if it does and false if it does not.

WithBaseObject () If this environment record is associated with a with statement,

return the with object. Otherwise, return undefined.

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable,
constant, let, class, madule, import, and/or function declarations. A declarative environment record binds the
set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

10.2.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. LetenvRec be the declarative environment record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.

© Ecma International 2012 93

secmd

3. Ifit does not have such a binding, return false.
10.2.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is uninitialised. A binding must not already exist in this
Environment Record for N. If Boolean argument D is provided and has the value true the new binding is
marked as being subject to deletion.

1. LetenvRec be the declarative environment record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create a mutable binding in envRec for N and record that it is uninitialised. 1f.D is true record that the newly
created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletion(empty)

10.2.1.1.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is uninitialised. A binding must not already exist in this
environment record for N.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that it is uninitialised.

10.2.1.1.4 InitialiseBinding (N,V)

The concrete Environment Record method InitialiseBinding for declarative environment records is used to set
the bound value of the current binding of the identifier whose nameiis the value of the argument N to the value
of argument V. An uninitialised binding for N must already exist.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec must have an uninitialised binding for N.

3. Set the bound value for N'in envRec to V.

4. Record that the binding for N in envRec has been initialised.

10.2.1.1.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeError is thrown if S is true.

Let envRec be the declarative environment record for which the method was invoked.

Assert: envRec must have a binding for N.

If the f binding for N in envRec has not yet been initialized throw a ReferenceError exception.

Else if the binding for N in envRec is a mutable binding, change its bound value to V.

Else this must be anattempt to change the value of an immutable binding so if S is true throw a TypeError
exception.

6. Return NormalCompletion(empty).

10.2.1.1.6 GetBindingValue(N,S)

abrwpE

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. The binding must already
exist. If S is true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If the binding for N in envRec is an uninitialised binding, then
a. IfSis false, return the value undefined, otherwise throw a ReferenceError exception.

94 © Ecma International 2012

Commented [AWB52]: This probably needs a D option
argument, just like createMutable Environment

pecma

4. Else,
a. Return the value currently bound to N in envRec.

10.2.1.1.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

Let envRec be the declarative environment record for which the method was invoked.
If envRec does not have a binding for the name that is the value of N, return true.

If the binding for N in envRec cannot be deleted, return false.

Remove the binding for N from envRec.

Return true.

10.2.1.1.8 HasThisBinding ()

arwNE

Regular Declarative Environment Records do not provide a this binding.

1. Return false.
10.2.1.1.9 HasSuperBinding ()

Regular Declarative Environment Records do not provide a super binding.

1. Return false.
10.2.1.1.10 WithBaseObject()

Declarative Environment Records always return undefined as their WithBaseObject.

1. Return undefined.

10.2.1.2 Object Environment Records

Each object environment record is associated with an object called its binding object. An object environment
record binds the set of identifier names that directly correspond to the property names of its binding object.
Property names that are not an IdentifierName are.not included in the set of bound identifiers. Both own and
inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because
properties can _be dynamically added and deleted from objects, the set of identifiers bound by an object
environment record may. potentially change as a side-effect of any operation that adds or deletes properties.
Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if
the Writable attribute of the corresponding property has the value false. Immutable bindings do not exist for
object environment records.

Object environment records created for with statements (12.10) can provide their binding object as an
implicit this value for use in function calls. The capability is controlled by a withEnvironment Boolean value that
is associated with each object environment record. By default, the value of withEnvironment is false for any
object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. LetenvRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.
3. Return the result of HasProperty(bindings, N).

© Ecma International 2012 95

secmd

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates in
an environment record’s associated binding object a property whose name is the String value and initialises it
to the value undefined. A property named N must not already exist in the binding object. If Boolean argument
D is provided and has the value true the new property’s [[Configurable]] attribute is set to true, otherwise it is
set to false.

Let envRec be the object environment record for which the method was invoked.

Let bindings be the binding object for envRec.

Assert: The result of HasProperty(bindings, N) is false.

If D is true then let configValue be true otherwise let configValue be false.

Return the result of DefinePropertyOrThrow(bindings, N, Property Descriptor {[[Value]]:undefined,
[[Writable]]: true, [[Enumerable]]: true , [[Configurable]]: configValue}).

arwpe=

10.2.1.2.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding is never used within this specification in
association with Object environment records.

10.2.1.2.4 InitialiseBinding (N,V)

The concrete Environment Record method InitialiseBinding for object environment records is used to set the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. An uninitialised binding for N must already exist.

1. LetenvRec be the object environment record for which the method was invoked.

2. Assert: envRec must have an uninitialised binding for N.

3. Record that the binding for N in envRec has been initialised.

4. Call the SetMutableBinding concrete method of envRec with N, V, and false as arguments.

10.2.1.2.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to set
the value of the environment record’s associated binding object's property whose name is the value of the
argument N to the value of argument V. A property named N normally already exists but if it does not or is not
currently writable;-error handling is determined by the value of the Boolean argument S.

1. Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of Put(bindings, N, V, and S).

10.2.1.2.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value
of its associated binding object’s property whose name is the String value of the argument identifier N. The
property should already exist but if it does not the result depends upon the value of the S argument:

Let envRec be the object environment record for which the method was invoked.
Let bindings be the binding object for envRec.
Let value be the result of HasProperty(bindings, N).
ReturnlfAbrupt(value).
If value is false, then
a. IfSis false, return the value undefined, otherwise throw a ReferenceError exception.
Return the result of Get(bindings, N).

arowpe=

o

96 © Ecma International 2012

Commented [AWB54]: This probably needs a D option
argument, just like createMutableEnvironment

oechd

10.2.1.2.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

1. LetenvRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[Delete]] internal method of bindings passing N as the argument.

10.2.1.2.8 HasThisBinding ()
Regular Object Environment Records do not provide a this binding.

1. Return false.
10.2.1.2.9 HasSuperBinding ()

Regular Object Environment Records do not provide a super binding.

1. Return false.
10.2.1.2.10 WithBaseObject()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag is
true.

1. Let envRec be the object environment record for which the. method was invoked.
2. If the withEnvironment flag of envRec is true, return the binding.object for envRec.
3. Otherwise, return undefined.

10.2.1.3 Function Environment Records

A function environment record is a declarative environment record that is used to represent the outer most
scope of a function that provides a this binding. In addition to its identifier bindings, a function environment
record contains the this value used within.its scope. If such a function references super, its function
environment record also contains the state that is used.to perform super method invocations from within the
function.

Function environment records store their this binding as the value of their thisValue. If the associated
function references superz, the environment record stores in HomeObject the object that the function is bound
to as a method and in MethodName the property key used for unqualified super invocations from within the
function. The default value for HomeObject and MethodName is undefined.

Methods environment records support all of Declarative Environment Record methods listed in Table 22 and
share the same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In
addition, declarative environment records support the methods listed in Table 23:

Table 23 — Additional Methods of Function Environment Records

Method Purpose
GetThisBinding() Return the value of this environment record’s this binding.
GetSuperBase() Return the object that is the base for super property accesses

bound in this environment record. The object is derived from this
environment record’s HomeObject binding. If the value is Empty,
return undefined.

GetMethodName() Return the value of this environment record’s MethodName
binding.

© Ecma International 2012 97

secmd

The behaviour of the additional concrete specification methods for Function Environment Records is defined
by the following algorithms:

10.2.1.3.1 HasThisBinding ()
Function Environment Records always provide a this binding.

1. Return true.
10.2.1.3.2 HasSuperBinding ()

1. If this environment record’s HomeObject has the value Empty, then return false. Otherwise, return true.
10.2.1.3.3 GetThisBinding ()

1. Return the value of this environment record’s thisValue.
10.2.1.3.4 GetSuperBase ()

1. Let home be the value of this environment record’s HomeObject.

2. If home has the value Empty, then return undefined.

3. Assert Type(home) is Object.

4. Return the result of calling home’s [[GetInheritance]] internal method.

10.2.1.3.5 GetMethodName ()

1. Return the value of this environment record’s MethodName.
10.2.1.4 Global Environment Records

A global environment record is used to represent the outer most scope that is shared by all of the ECMAScript
Script elements that are processed in.a.common Realm (10.3): A global environment provides the bindings for built-
in globals (15.1), properties of the global object, and for all declarations that are not function code and that
occur within Script productions.

A global environment.record is logically a single record but it is specified as a composite encapsulating an
object environment record and a declarative environment record. The object environment record has as its
base object the global object of the associated Realm. This global object is also the value of the global
environment record’s thisValue. The object environment record component of a global environment record
contains the bindings for all built-in globals (15.1) and all bindings introduced by a FunctionDeclaration or
VariableStatement contained.in global code. The bindings for all other ECMAScript declarations in global code
are contained in the declarative environment record component of the global environment record.

Properties may be created directly on a global object. Hence, the object environment record component of a
global environment record may contain both bindings created explicity by FunctionDeclaration or
VariableStatement declarations' and binding created implicitly as properties of the global object. In order to
identify which bindings were explicitly created using declarations, a global environment record maintains a list
of the names bound usingits CreateGlobalVarBindings and CreateGlobalFunctionBindings concrete methods.

Global environment records have the additional state components listed in Table 24 and the additional
methods listed in Table 25.

98 © Ecma International 2012

oechd

Table 24 -- Components of Global Environment Records

Component Purpose
ObjectEnvironment A Object Environment Record whose base object is the global object.
Contains global built-in bindings as well as bindings for

FunctionDeclaration or VariableStatement declarations in global code for
the associated Realm.

DeclarativeEnvironment | A Declarative Environment Record that contains bindings for all
declarations in global for the associated Realm code except for
FunctionDeclaration and VariableStatement declarations.

VarNames A List containing the string names bound by FunctionDeclaration or
VariableStatement declarations in global code for the associated Realm.

Table 25 — Additional Methods of Global Environment Records

Method

Purpose

GetThisBinding()

Return the value of this environment record’s this binding.

HasVarDeclaration (N)

Determines if the argument identifier has a binding in this
environment record that was created using a VariableStatement or a
FunctionDeclaration.

HasLexicalDeclaration (N)

Determines if the argument identifier has a binding in this
environment record that was created using a lexical declaration
such as a LexicalDeclaration or a ClassDeclaration.

CanDeclareGlobalVar (N)

Determines if a corresponding CreateGlobalVarBinding call would
succeed if called for the same argument N.

CanDeclareGlobalFunction (N)

Determines if a corresponding CreateGlobalFunctionBinding call
would succeed if called for the same argument N.

CreateGlobalVarBinding(N, D)

Used to create global var bindings in the
ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global object
property will-have attribute values approate for a var. The String
value N is the text of the bound name. V is the initial value of the
binding If the optional Boolean argument D is true the binding is
may be subsequently deleted. This is logically equivalent to
CreateMutableBinding but it allows var declarations to receive
special treatment.

CreateGlobalFunctionBinding(N, V, D)

Used to create and initialize global function bindings in the
ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global object
property will have attribute values approate for a function.The
String value N is the text of the bound name. If the optional Boolean
argument D is true the binding is may be subsequently deleted.
This is logically equivalent to CreateMutableBinding followed by a
SetMutableBinding but it allows function declarations to receive
special treatment.

The behaviour of the concrete specification methods for Global Environment Records is defined by the

following algorithms.

10.2.1.4.1 HasBinding(N)

The concrete environment record method HasBinding for global environment records simply determines if the
argument identifier is one of the identifiers bound by the record:

© Ecma International 2012

99

secma

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

If the result of calling DclRec’s HasBinding concrete method with argument N is true, return true.
Let ObjRec be envRec’s ObjectEnvironment.

Return the result of calling ObjRec’s HasBinding concrete method with argument N.

arwpnE

10.2.1.4.2 CreateMutableBinding (N, D)

The concrete environment record method CreateMutableBinding for global environment records creates a
new mutable binding for the name N that is uninitialised. The binding is created in the associated
DeclarativeEnvironment. A binding for N must not already exist in the DeclarativeEnvironment. If Boolean
argument D is provided and has the value true the new binding is marked as being subject to deletion.

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

Assert: DclRec does not already have a binding for N.

Create a mutable binding in DcIRec for N and record that it is uninitialised. If D is true record that the newly
created binding may be deleted by a subsequent DeleteBinding call.

5. Return NormalCompletion(empty)

10.2.1.4.3 CreatelmmutableBinding (N)

rwnpE

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is uninitialised. A binding must not already exist in this
environment record for N.

1. LetenvRec be the global environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that it is uninitialised.

10.2.1.4.4 InitialiseBinding (N;V)

The concrete Environment-Record method InitialiseBinding for global environment records is used to set the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. An uninitialised binding for'N must already exist.

1. Let envRec be the global environment record for which the method was invoked.
2. Let DclRec be-envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling DclRec s InitialiseBinding concrete method with arguments N and V.
4. Let ObjRec be envRec’s ObjectEnvironment.
5. If the result of calling ObjRec s HasBinding concrete method with argument N is true, then
a. Set the bound value for N in envRec to V.
b." Record that the binding for N in envRec has been initialised.

10.2.1.4.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for global environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. If the binding is an immutable binding, a TypeError is thrown if S is true. A property
named N normally already exists but if it does not or is not currently writable, error handling is determined by
the value of the Boolean argument S.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the SetMutableBinding concrete method of DclRec with arguments N, V,
and S.
Let ObjRec be envRec’s ObjectEnvironment.
Return the result of calling the SetMutableBinding concrete method of ObjRec with arguments N, V, and S.

o~

100 © Ecma International 2012

Commented [AWB55]: This probably needs a D option
argument, just like createMutableEnvironment

secma

10.2.1.4.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for global environment records simply returns the
value of its bound identifier whose name is the value of the argument N. If S is true and the binding is an
uninitialised binding throw a ReferenceError exception. A property named N normally already exists but if it
does not or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the GetBindingValue concrete method of DclRec with arguments N, and
S.
4. Let ObjRec be envRec’s ObjectEnvironment.
5. Return the result of calling the GetBindingValue concrete method of ObjRec with arguments N, and S.

10.2.1.4.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for global environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the DeleteBinding concrete method of DclRec with argument N.
Let ObjRec be envRec’s ObjectEnvironment:
5. If the result of calling ObjRec’s HasBinding concrete method with-argument N is true, then
a. Let status be the result of calling the DeleteBinding concrete method of ObjRec with argument N.
b. ReturnlfAbrupt(status).
c. |Ifstatusis true, then
i. Let varNames be envRec’s VarNames List.
ii. If N is an element of varNames, then remove that element from the varNames.
d. Return status.
6. Return true.

10.2.1.4.8 HasThisBinding ()

>

Global Environment Records always provide a this binding whose value is the associated global object.

1. Return true.
10.2.1.49 HasSuperBinding ()

1. Return false.

10.2.1.4.10 WithBaseObject()

Global Environment Records always return undefined as their WithBaseObject.
1. Return undefined.

10.2.1.4.11 GetThisBinding ()

2. LetenvRec be the global environment record for which the method was invoked.
3. Let ObjRec be envRec’s ObjectEnvironment.
:

Let bindings be the binding object for ObjRec.
Return bindings.

© Ecma International 2012 101

secmd

10.2.1.4.12 HasVarDeclaration (N)

The concrete environment record method HasVarDeclaration for global environment records determines if the
argument identifier has a binding in this record that was created using a VariableStatement or a
FunctionDeclaration:

1. LetenvRec be the global environment record for which the method was invoked.
2. LetvarDeclaredNames be envRec’s VarNames List.

3. If varDeclaredNames contains the value of N, return true.

4. Return false.

10.2.1.4.13 HasLexicalDeclaration (N)

The concrete environment record method HasLexicalDeclaration for global environment records determines if
the argument identifier has a binding in this record that was created. using a lexical declaration such as a
LexicalDeclaration or a ClassDeclaration:

1. LetenvRec be the global environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. Return the result of calling DclRec’s HasBinding concrete method with argument N.

10.2.1.4.14 CanDeclareGlobalVar (N)

The concrete environment record method CanDeclareGlobalVar for global environment records determines if
a corresponding CreateGlobalVarBinding call' would succeed if called for the same argument N. Redundent
var declarations and var declarations for pre-existing global object properties are allowed.

Let envRec be the global environment record for which the method was invoked.

Let ObjRec be envRec’s ObjectEnvironment.

If the result of calling ObjRec’s HasBinding concrete'method with argument N is true, return true.
Let bindings be the binding object for ObjRec.

Let extensible be the result of IsExtensible(bindings).

Return extensible.

oarwNE

10.2.1.4.15 CanDeclareGlobalFunction (N)

The concrete environment record method CanDeclareGlobalVar for global environment records determines if
a corresponding CreateGlobalFunctionBinding call would succeed if called for the same argument N.

Let envRec be the global environment record for which the method was invoked.

Let ObjRec be envRec’s ObjectEnvironment.

Let globalObject be the binding object for ObjRec.

Let extensible be the result of IsExtensible(globalObject).

ReturnIfAbrupt(extensible).

If the result of calling ObjRec’s HasBinding concrete method with argument N is false, then return

extensible.

Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject with

argument N.

8. If existingProp is undefined, then return extensible.

9. If existingProp.[[Configurable]] is true, then return true.

10. If IsDataDescriptor(existingProp) is true and existingProp has attribute values {[[Writable]]: true,
[[Enumerable]]: true}, then return true.

11. Return false.

ok wnE

~

10.2.1.4.16 CreateGlobalVarBinding (N, D)
The concrete Environment Record method CreateVarBinding for global environment records creates a

mutable binding in the associated object environment record and records the bound name in the associated
VarNames List. If a binding already exists, it is reused.

102 © Ecma International 2012

Commented [AWB1156]: Carry over from ES5, but
perhaps unnecessary

secma

Let envRec be the declarative environment record for which the method was invoked.
Let ObjRec be envRec’s ObjectEnvironment.
Assert: The result of calling envRec’s CanDeclareGlobalVar concrete method with argument N is true.
If the result of calling ObjRec’s HasBinding concrete method with argument N is false, then
a. Call the CreateMutableBinding concrete method of ObjRec with arguments N and D.
Let varDeclaredNames be envRec’s VarNames List.
If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
7. Return.

LN S

o a

10.2.1.4.17 CreateGlobalFunctionBinding (N, V, D)

The concrete Environment Record method CreateFunctionBinding for global environment records creates a
mutable binding in the associated object environment record and records-the bound name in the associated
VarNames List. If a binding already exists, it is replaced.

Let envRec be the declarative environment record for which the method was invoked.
Let ObjRec be envRec’s ObjectEnvironment.
Assert: The result of calling envRec’s CanDeclareGlobalFunction concrete method with argument N is true.
Let globalObject be the binding object for ObjRec.
Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject with
argument N.
If existingProp is undefined or existingProp.[[Configurable]] is true, then
a. Call the [[DefineOwnProperty]] internal method of globalObject passing N and Property Descriptor
{[[\Valuell:V, [[Writable]]: true, [[Enumerable]]: true , [[Configurable]]: D} as arguments.

arwNE

s

7. Else,

a. Call the [[DefineOwnProperty]] internal method of globalObject passing N and Property Descriptor
{[[\Value]]:V } as arguments.

8. NOTE he assertion in step 3 means that the above [[DefineOwnProperty]] calls will never return false or an abrupt

completion,|

C ed [AWB1257]: TODO: need to reconsider this?

9. LetvarDeclaredNames be envRec’s VarNames List.

10. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.

11. Return.

NOTE Global function declarations are always represented as a own property of the global object. If possible, an
existing own property is reconfigured to have a standard set of attribute values.

10.2.2 Lexical Environment Operations
The following abstract operations are used in this specification to operate upon lexical environments:
10.2.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and a
Boolean flag strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null, then
a. Return a value of type Reference whose base value is undefined, whose referenced name is name,

and whose strict reference flag is strict.

Let envRec be lex’s environment record.

Let exists be the result of calling the HasBinding(N) concrete method of envRec passing name as the

argument N.

4, Ifexists is true, then
a. Return a value of type Reference whose base value is envRec, whose referenced name is name, and

whose strict reference flag is strict.

(S

5. Else
a. Let outer be the value of lex’s outer environment reference.
b. Return the result of calling GetldentifierReference passing outer, name, and strict as arguments.

© Ecma International 2012 103

May not be true if the global object can be a Proxy.

secma

10.2.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null
as argument E the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new declarative environment record containing no bindings.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

10.2.2.3 NewObjectEnvironment (O, E)

opwne

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E
(or null) as arguments, the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new object environment record containing O as the binding object.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

10.2.2.4 NewFunctionEnvironment (F, T)

arwpE

When the abstract operation NewFunctionEnvironment is called with an ECMAScript function Object F and a
ECMAScript value T as arguments, the following steps are performed:

Assert: The value of F’s [[ThisMode]] internal data property. is not lexical.
Let env be a new Lexical Environment.
Let envRec be a new Function environment record containing containing no bindings.
Set envRec s thisValue to T.
If F has a [[HomeObject]].internal data property, then
a. SetenvRec’s HomeObject to the value of F’s [[HomeObject]] internal data property.
b. Set envRec’s‘MethodName to the value of F’s [[MethodName]] internal data property.
6. Else,
a. SetenvRec’s HomeObject to Empty.
7. Set env’s environment record to be envRec.
8. Set the outer lexical environment reference of env to the value of F’s [[Scope]] internal data property.
9. Return env.

10.3 Code Realms

arwNE

Before it is evaluated, all ECMAScript code must be associated with a Realm. Conceptually, a realm consists
of a set of intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that is loaded
within the scope of that global environment, a Loader object that can associate new ECMAScript code with the
realm, and other associated state and resources.

A Realm is specified as-a Record with the fields specified in Table 26:

Table 26 — Realm Record Fields

Field Name | Value Meaning

[[intrinsics]]

A record whose field names are intrinsic
keys and whose values are objects

These are the intrinsic values used by code
associated with this Realm

[[globalThis]] | An ECMAScript object The global object for this Realm
[[globalEnv]] | A ECMAScript environment The global environment for this Realm
[[loader]] any ECMAScript identifier or empty The Loader object that can associate

ECMAScript code with this Realm

104

© Ecma International 2012

Commented [AWB858]: Other possible terms that have

been discussed are “Home” and “Island”. We still need to get

final agreement on terminology.

oechd

The intrinsic objects associated with a code Realm include the well-known intrinsics listed in Table 11 and
additional intrinsics specified by Table 27.

Table 27 — Additional Intrinsic Objects with Realm Specific Bindings

Intrinsic Name ECMAScript Language Association
?2?7? ?2??
P2 2772

10.4 Execution Contexts

An execution context is a specification device that is used to track the runtime evaluation of code by an
ECMAScript implementation. At any point in time, there is at most one_éxecution context that is actually
executing code. This is known as the running execution context. A stack is used to track execution contexts.
The running execution context is always the top element of this stack. A new execution context is created
whenever control is transferred from the executable code associated with the currently running execution
context to executable code that is not associated with that execution context. The newly. created execution
context is pushed onto the stack and becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution
progress of its associated code. Each execution context has the state components listed in Table 28.

Table 28 —State Components for All'Execution Contexts

Component Purpose

code evaluation state Any state needed to perform, suspend, and resume evaluation of the
code associated with this execution context.

Realm The Realm from which associated code accesses ECMAScript
resources.

Evaluation of code by the running execution context may be suspended at various points defined within this
specification. Once the running execution.context has been suspended a different execution context may
become the running execution context and commence evaluating its code. At some latter time a suspended
execution context may again become the running execution context and continue evaluating its code at the
point where it-had previously been suspended. Transition of the running execution context status among
execution contexts usually occurs in stack-like last-in/first-out manner. However, some ECMAScript features
require non-LIFO transitions of the running execution context.

The value is the Realm component of the running execution context is also called the current Realm.
Execution contexts for ECMAScript code have the additional state components listed in Table 29.

Table 29 —Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds
bindings created by VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment
components initially have the same value. The value of the VariableEnvironment component never changes
while the value of the LexicalEnvironment component may change during execution of code within an
execution context.

© Ecma International 2012 105

Commented [AWB1359]: This is where we should list all
the per realm intrinsics that don
T have %names%

secmd

Execution contexts representing the evaluation of generator objects have the additional state components
listed in Table 30.

Table 30 -- Additional State Components for Generator Execution Contexts

Component Purpose

Generator The GeneratorObject that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and
“VariableEnvironment” are used without qualification they are in reference to those components of the running
execution context.

An execution context is purely a specification mechanism and need not correspond. to any particular artefact
of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access or observe
an execution context.

10.4.1 Identifier Resolution

Identifier resolution is the process of determining the binding® of an IdentifierName using the
LexicalEnvironment of the running execution context. During execution of ECMAScript code, Identifier
Resolution is performed using the following algorithm:

1. Letenv be the running execution context’s Lexical Environment.

2. If the syntactic production that is being evaluated is contained in strict mode code, then let strict be true,
else let strict be false.

3. Return the result of calling GetldentifierReference abstract operation passing env, the StringValue of
IdentifierName, and strict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component
equal to the IdentifierName String.

10.4.2 GetThisEnvironment

The abstract operation GetThisEnviroment finds the lexical environment that currently supplies the binding of
the keyword this. GetThisEnviroment performs the following steps:

1. Let lex be the running execution context’s LexicalEnvironment.
2. Repeat
a. LetenvRec be lex’s environment record.

b. . Let exists be the result of calling the HasThisBinding concrete method of envRec.
¢. Ifexists is true, then return envRec.
d. Letouter be the value of /ex’s outer environment reference.
e. Letlex be outer.
NOTE The loop in step 2 will always terminate because the list of environments always ends with the global

environment which has a this binding.
10.4.3 This Resolution

The abstract operation ThisResolution is the process of determining the binding of the keyword this using the
LexicalEnvironment of the running execution context. ThisResolution performs the following steps:

1. Letenv be the result of performing the GetThisEnvironment abstract operation.
2. Return the result of calling the GetThisBinding concrete method of env.

106 © Ecma International 2012

secma

10.4.4 GetGlobalObject

The abstract operation GetGlobalObject returns the global object used by the currently running execution
context. GetGlobalObject performs the following steps:

1. Let ctx be the running execution context.
2. Let currentRealm be ctx’s Realm.
3. Return currentRealm.[[global This]].

10.5 Declaration Binding Instantiation

[10.5.1 Global Declaration Instantiation|

C ed [AWB60]: It may make sense to split eval

NOTE When an execution context is established for evaluating scripts, declarations are instantiated in the current
global environment. Each global binding declarated in the code is instantiated.

Global Declaration Instantiation is performed as follows using arguments script, env, and deletableBindings.
script is the ScriptBody that for which the execution context'is being established. . env is the global
environment record in which bindings are to be created. deletableBindings is true if the bindings that are
created should be deletable.

Let strict be IsStrict of script.
Let lexNames be the LexicallyDeclaredNames of script.
Let varNames be the VarDeclaredNames of script.
For each name in lexNames, do
a. If the result of calling env’s HasVVarDeclaration concrete method passing name as the argument is
true, throw a SyntaxError exception.
b. If the result of calling env’s HasLexicalDeclaration concrete method passing name as the argument
is true, throw a SyntaxError exception.
5. For each name in varNames, do
a. If the result of calling env’s HasLexicalDeclaration concrete method passing name as the argument
is true, throw a SyntaxError exception.
Let varDeclarations be‘the VVarScopedDeclarations of script.
Let functionsTolnitialize be an empty List.
Let declaredFunctionNames be an empty. List.
For each d in varDeclarations, in reverse list order do
a. Ifdisa FunctionDeclaration then
i. NOTE If there are multiple FunctionDeclarations for the same name, the last declaration
is used.
ii. Let fn be the sole element of the BoundNames of d.
iii. If fn is not.an element of declaredFunctionNames, then
1. Let fnDefinable be the result of calling env’s CanDeclareGlobalFunction concrete
method passing fn as the argument.
2. IffnDefinable is false, throw TypeError exception.
3. Append fn to declaredFunctionNames.
4. <Append d to functionsTolnitialize.
10. Let declaredVarNames be an empty List.
11. For each d in varDeclarations, do
a. IfdisaVariableStatement then
i For each String vn in the BoundNames of d, do
1. Ifvnis not an element of declaredFunctionNames, then
a LetvnDefinable be the result of calling env’s CanDeclareGlobalVar
concrete method passing vn and deletableBindings as the arguments.
b If vnDefinable is false, throw TypeError exception.
¢ Ifvnis not an element of declaredVarNames, then
. Append vn to declaredVarNames.
12. NOTE: No abnormal terminations occur after this algorithm step.
13. For each FunctionDeclaration f in functionsTolnitialize, do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.

AL PR

© NP

© Ecma International 2012 107

code out into a separate subsection.

secmd

c. Call env’s CreateGlobalFunctionBinding concrete method passing fn, fo, and deletableBindings as
the arguments.
14. For each String vn in declaredVarNames, in list order do
a. Call env’s CreateGlobalVarBinding concrete method passing vn and deletableBindings as the
argument.
15. Let lexDeclarations be the LexicallyScopedDeclarations of script.
16. For each element d in lexDeclarations do
a. NOTE Lexically declarated names are only instantiated here but not initialized.
b. Foreach element dn of the BoundNames of d do
i. If IsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,
1. Call env’s CreateMutableBinding concrete method passing dn and false as the
arguments.
c. Ifdis aGeneratorDeclaration production, then
i Let fn be the sole element of the BoundNames of d.
ii. Let fo be the result of performing InstantiateFunctionObject for d with argument env.
iii. Call env’s SetMutableBinding concrete method passing fn, fo, and false as the arguments.
17. Return NormalCompletion(empty)

NOTE Early errors specified in 14.1 prevent name conflicts between function/var declarations and
let/const/class/module declarations as well as redeclaration of let/const/class/module bindings for declaration contained
within a single Script. However, such conflicts and redeclarations that span more than one Script are detected as runtime
errors during Global Declaration Instantiation. If any such errors are detected, no bindings are instantiated for the script.

Unlike explicit var or function declarations, properties that.are directly created on the global object result in global bindings
that may be shadowed by let, const, class, and module declarations.

110.5.2 Module Declaration Instantiation|

Ci ed [AWB61]: The exact details of declaration

10.5.3 Function Declaration Instantiation

instantion for module code still need to be worked out.

This version reflects the concensus as of the Sept. 2012 TC39
meeting. However, it now appears that the binding semantics of
formal parameters is like to change again.

NOTE When an execution context is established for evaluating function code a new Declarative Environment Record is
created and bindings for each formal parameter, and each function level variable, constant, or function declarated in the
function are instantiated in the environment record. Formal parameters and functions are initialized as part of this process.
All other bindings are initialized during execution of the function code.

Function Declaration Instantiation is performed as follows using arguments func, argumentsList, and env. func
is the function object that for which the execution context is being established. env is the declarative
environment record in which bindings are to be created.

Let code be the value of the [[Code]] internal data property of func.
Let strict be the value of the [[Strict]] internal data property of func.
Let formals be the value of the [[FormalParameters]] internal data property of func.
Let parameterNames be the BoundNames of formals.
Let varDeclarations be the VarScopedDeclarations of code.
Let functionsTolnitialize be an empty List.
Let argumentsObjectNotNeeded be false.
For each d in varDeclarations, in reverse list order do
a. IfdisaFunctionDeclaration then

PN~ WNE

108 © Ecma International 2012

secma

i NOTE If there are multiple FunctionDeclarations for the same name, the last declaration
is used.
ii. Let fn be the sole element of the BoundNames of d.
il If fn is "arguments", then let argumentsObjectNotNeeded be true.
iv. Let alreadyDeclared be the result of calling env’s HasBinding concrete method passing fn
as the argument.
V. If alreadyDeclared is false, then
1. Let status be the result of calling env’s CreateMutableBinding concrete method
passing fn as the argument.
2. Assert: status is never an Abrupt Completion.
3. Append d to functionsTolnitialize.
9. Foreach String paramName in parameterNames, do
a. LetalreadyDeclared be the result of calling env’s HasBinding concrete method passing paramName
as the argument.
b. NOTE Duplicate parameter names can only occur in non-strict functions. Parameter names that are
the same as function declaration names do not get initialized to undefined.
c. IfalreadyDeclared is false, then
i If paramName is "arguments"”, then let argumentsObjectNotNeeded be true.
ii. Let status be the result of calling env’s CreateMutableBinding concrete method passing
paramName as the argument.
iili. Assert: status is never an Abrupt Completion
iv. Call env’s InitialiseBinding concrete method passing paramName, and undefined as the
arguments.
10. NOTE If there is a function declaration or formal parameter with the name "arguments" then an
argument object is not created.
11. If argumentsObjectNotNeeded is false, then Commented [AWB762]: TODO: don't create an arguments
a. Ifstrictistrue, then binding for arrow functions (and perhaps for concise methods)
i Call env’s CreatelmmutableBinding concrete.method passing the String "arguments" as
the argument.
b. Else,
i. Call env’s CreateMutableBinding concrete method passing the String "arguments" as the
argument.
12. Let varNames be the VarDeclaredNames of code.
13. For each String varName in varNames, in list order do
a. LetalreadyDeclared be the resultof calling env’s HasBinding concrete method passing varName as
the argument.
b. NOTE A VarDeclaredNames is only instantiated and initialied here if it is not also the name of a
formal parameter or a FunctionDeclarations.
c. If alreadyDeclared is false, then
i. Call'env’s CreateMutableBinding concrete method passing varName as the argument.
14. Let lexDeclarations be the LexicalDeclarations of code.
15. For each element d in lexDeclarations do
a. NOTE A lexically declared name cannot be the same as a function declaration, formal parameter,
or a var name. Lexically declarated names are only instantiated here but not initialized.
b. For each element dn of the BoundNames of d do
i. If IsConstantDeclaration of d is true, then
1. Call env’s CreateImmutableBinding concrete method passing dn as the argument.
ii. Else,
1. Call env’s CreateMutableBinding concrete method passing dn and false as the
arguments.
c. IfdisaGeneratorDeclaration production, then
i. Append d to functionsTolnitialize.
16. For each production f in functionsTolnitialize, do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Call env’s SetMutableBinding concrete method passing fn, fo, and false as the arguments.
17. NOTE Function declaration are initialised prior to parameter initialisation so that default value expressions
may reference them. "arguments" is not initialized until after parameter initialization.
18. Let ao be the result of Instantiate ArgumentsObject with argument argumentsList.

© Ecma International 2012 109

secmd

19. NOTE If argumentsObjectNotNeeded is true then the value of ao is not directly observable to ECMAScript
code and need not actually exist. In that case, its use in the above steps is strictly as a device for specifying
formal parameter initialisation semantics.

20. Let formalStatus be the result of performing Binding Initialisation for formals with ao and undefined as
arguments.

21. ReturnlfAbrupt(formalStatus).

22. If argumentsObjectNotNeeded is false, then

a. |Ifstrictis true, then
i Perform the abstract operation CompleteStrictArgumentsObject with argument ao.
b. Else,
i Perform the abstract operation CompleteMappedArgumentsObject with arguments ao, func,
formals, and env.
c. Call env’s InitialiseBinding concrete method passing "arguments* and ao as arguments.
23. Return NormalCompletion(empty).

10.5.4 Block Declaration Instantiation

NOTE When a Block or CaseBlock production is evaluated a new Declarative Environment Record is created and
bindings for each block scoped variable, constant, or function declarated in the block are instantiated in the environment
record.

Block Declaration Instantiation is performed as follows using arguments code and env. code is the grammar
production corresponding to the body of the block. env is the declarative environment record in which
bindings are to be created.

1. Let declarations be the LexicalDeclarations of code.
2. Let functionsTolnitialize be an emptyList.
3. Foreach element d in declarations do
a. Foreach element dn of the BoundNames of d do
i. If IsConstantDeclaration-of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,
1. Call env’s CreateMutableBinding concrete method passing dn and false as the arguments.
b. Ifdis a GeneratorDeclaration production or a FunctionDeclaration production, then
i. Append d to functionsTolnitialize.
4. For each production f in declarations, in list order do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Call env’s InitialiseBinding concrete method passing fn, and fo as the arguments.

10.5:5 Eval Declaration Instantiation
10.6 Arguments Object

When function code is evaluated, an arguments object is created unless (as specified in 10.5) the identifier
arguments occurs as an ldentifier in the function’s FormalParameters or occurs as the Bindingldentifier of a
FunctionDeclaration contained in the outermost StatementList of the function code.

The abstract operation Instantiate ArgumentsObject called with an argument args performs the following steps:

1. Let len be the number of elements in args.

2. Let obj be the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as
its argument.

3. Call the [[DefineOwnProperty]] internal method on obj passing "1length" and the Property Descriptor

{[[\Valuell: len, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true} as arguments.

Letindx =len - 1.

Repeat while indx > 0,
a. Letval be the element of args at 0-origined list position indx.

o~

110 © Ecma International 2012

Commented [AWB764]: TODO: don’t create an arguments
binding for arrow functions (and perhaps for concise methods)

Commented [AWB765]: Jan 19 meeting nortes: Current
tentative decision is to support let, const, and local functions in
nonstrict ES5 in the same way as in strict ES6. Fallback to
either specifying limited cases or doing the ES5 nonstrict
status quo (i.e. syntax error + Clause 16) if experiments show
this to not be viable. We won't resolve this discussion without
running some experiments.

Commented [AWB 266]: Additional modification to this text
will probably be need to accout for the new declaration
statements.

secma

b. Call the [[DefineOwnProperty]] internal method on obj passing ToString(indx) and the Property
Descriptor {[[Value]]: val, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} as
arguments.

c. Letindx =indx-1

6. Return obj

The abstract operation CompleteStrictArgumentsObject is called with argument obj which must have been
previously created by the abstract operation InstantiateArgumentsObject. The following steps are performed:

1. Perform the AddRestrictedFunctionProperties abstract operation with argument obj.
2. Return.

The abstract operation CompleteMappedArgumentsObject is called with object obj, object func, grammar
production formals, and environment record env. obj must have been previously created by the abstract
operation InstantiateArgumentsObject. The following steps are performed:

Let len be the result of Get(obj, "1length™).
Let mappedNames be an empty List.
Let numberOfNonRestFormals be NumberOfParameters of formals.
Let map be the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as
its argument.
Letindx =len - 1.
Repeat while indx > 0,
a. Ifindx is less than the numberOfNonRestFormals, then
i. Let param be getParameter of formals with argument indx.
il If param is a Bindingldentifier, then
1. Let name be the sole element of BoundNames of param.
2. If name is not an element of mappedNames, then
a Add name as an element of the list mappedNames.
b Let g be the result of calling the MakeArgGetter abstract operation with
arguments name and env.
¢ Let p be the result of calling the MakeArgSetter abstract operation with
arguments name and env.
d Call the [[DefineOwnProperty]] internal method of map passing
ToString(indx) and the Property Descriptor {[[Set]]: p, [[Get]]: g,
[[Configurable]]: true} as arguments.

HwN e

S

b. Letindx =indx -1
7. 1f mappedNames is not empty, then
a. Setthe [[ParameterMap]] internal data property of obj to map.
b Set the [[Get]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]] internal methods of obj
to the definitions provided below.
8. Call the [[DefineOwnProperty]] internal method on obj passing "callee" and the Property Descriptor
{[[Value]]: func, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true} as arguments.
9. Return obj

The abstract operation MakeArgGetter called with String name and environment record env creates a function
object that when executed returns the value bound for name in env. It performs the following steps:

Let bodyText be the result of concatenating the Strings "return ", name, and "; "

Let body be the result of parsing bodyText using FunctionBody as the goal symbol.

Let parameters be a FormalParameters : [empty] production.

Return the result of calling the abstract operation FunctionCreate using Normal as the kind, parameters as
FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

o R

The abstract operation MakeArgSetter called with String name and environment record env creates a function
object that when executed sets the value bound for name in env. It performs the following steps:

1. Let paramText be the String name concatenated with the String " arg".

2. Let parameters be the result of parsing paramText using FormalParameters as the goal symbol.

3. Let bodyText be the String ""'<name> = <param>; " with <name> replaced by the value of name and
<param> replaced by the value of paramText.

© Ecma International 2012 111

secmd

4. Let body be the result of parsing bodyText using FunctionBody as the goal symbol.
5. Return the result of calling the abstract operation FunctionCreate using Normal as the kind, parameters as
FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when
called with a property name P performs the following steps:

1. Letargs be the arguments object.
2. Let map be the value of the [[ParameterMap]] internal data property of the arguments object.
3. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the

ed [AWB1267]: TODO: keep reference up to

argument.
4. If the value of isMapped is undefined, then
a. Letv be the result of calling the default ordinary object [[Get]] internal method (B.12.3b on args C
passing P and args as the arguments. date
b. IfPis"caller" andv isastrict mode Function object, throw a TypeError exception.
c. Returnv.

5. Else map contains a formal parameter mapping for P,
a. Return the result of calling Get(map, P).

The [[GetOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P performs the following steps:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on the arguments
object passing P as the argument.

2. Ifdesc is undefined then return desc.

3. Let map be the value of the [[ParameterMap]] internal data property of the arguments object.

4. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.

5. If the value of isMapped is not undefined, then

a. Setdesc.[[Value]] to the result of calling Get(map, P).
6. Return desc.

The [[DefineOwnProperty]].internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P and Property Descriptor Desc performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal data property of the arguments object.
2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
3. Let allowed be the result of calling the default [[DefineOwnProperty]] internal method (8.3.9) on the
arguments object passing P and Desc as the arguments.
ReturnlfAbrupt(allowed).
If allowed is false, then return false.
If the value of isMapped is not undefined, then
a. If IsAccessorDescriptor(Desc) is true, then
i.. Call the [[Delete]] internal method of map passing P as the argument.
b. Else
i If Desc.[[Value]] is present, then
1. Assert: the follow Put call will always succeed because formal parameters mapped
by argument objects are always writable.
2. Call Put(map, P, Desc.[[Value]], false).
ii. If Desc.[[Writable]] is present and its value is false, then
1. Call the [[Delete]] internal method of map passing P as the argument.

o g~

7. Return true.
The [[Delete]] internal method of an arguments object for a non-strict mode function with formal parameters
when called with a property key P performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal data property of the arguments object.
2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.

112 © Ecma International 2012

secmd

3. Let result be the result of calling the default [[Delete]] internal method for ordinary objects (8.3.10) on the
arguments object passing P as the argument.
4. Ifresultis true and the value of isMapped is not undefined, then
a. Call the [[Delete]] internal method of map passing P as the argument.
5. Return result.

NOTE 1 For non-strict mode functions the array index (defined in 15.4) data properties of an arguments object whose
numeric name values are less than the number of formal parameters of the corresponding function object initially share
their values with the corresponding argument bindings in the function’s execution context. This means that changing the
property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if such
a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode functions,
the values of the arguments object’s properties are simply a copy of the arguments passed-to the function and there is no
dynamic linkage between the property values and the formal parameter values.

NOTE 2 The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller" and
"callee" which throw a TypeError exception on access. The "callee" property has a more specific meaning for non-
strict mode functions and a "caller" property has historically been provided as an.implementation-defined extension by
some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is
defined in any other manner by conforming ECMAScript implementations.

11 Expressions
11.1 Primary Expressions

Syntax

PrimaryExpression :
this
Identifier
Literal
Arraylnitialiser
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral
CoverParenthesisedExpressionAndArrowParameterList

CoverParenthesisedExpressionAndArrowParameterList :
(Expression)

()
(... ldentifier)
(Expression , ... ldentifier)

Supplemental Syntax

When processing the production PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList the
following grammar is used to refine the interpretation of CoverParenthesisedExpressionAndArrowParameterList.

ParenthesisedExpression :
(Expression)

Static Semantics

Static Semantics: CoveredParenthesisedExpression

© Ecma International 2012 113

secmd

CoverParenthesisedExpressionAndArrowParameterList : (Expression)

1. Return the result of parsing the lexical token stream matched by

CoverParenthesisedExpressionAndArrowParameterList using ParenthesisedExpression as the goal symbol.

Static Semantics: IsValidSimpleAssignmentTarget

PrimaryExpression :
this
Literal
Arraylnitialiser
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral

1. Return false.

PrimaryExpression : ldentifier

1. If this PrimaryExpression is contained in strict code and StringValue of Identifier is "eval" or
"arguments", then return false.

2. Return true.

PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList

1. Letexpr be CoveredParenthesisedExpression of CoverParenthesisedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarget of expr.

11.1.1 The this Keyword
Runtime Semantics: Evaluation
PrimaryExpression:. this

1. Return the result of calling the ThisResolution abstract operation.
11.1.2 Identifier Reference

Runtime Semantics: Evaluation

PrimaryExpression :. Identifier.

1. Let ref be the result of performing Identifier Resolution as specified in 10.4.1 using the IdentifierName
corresponding to Identifier.

2. Return ref.

NOTE: The result of evaluating an Identifier is always a value of type Reference.

11.1.3 Literals

Syntax

Literal :
NullLiteral
ValueLiteral

114 © Ecma International 2012

Commented [AWB868]: It may make sense to define some
of the static semantic rules related static name resolution

secma

ValueLiteral :
BooleanLiteral
NumericLiteral
StringLiteral

Runtime Semantics

Runtime Semantics: Evaluation
Literal : NullLiteral

1. Return null.

ValueLiteral : BooleanLiteral

1. Return false if BooleanLiteral is the token BooleanLiteral :: false
2. Return true if BooleanLiteral is the token BooleanLiteral :: true

ValueLiteral : NumericLiteral
1. Return the number whose value is MV of NumericLiteral as defined in'7.8.3.
ValueLiteral : StringLiteral

1. Return the string whose elements are the SV of StringLiteral as defined in 7.8.4.

11.1.4 Array Initialiser

Syntax

Arraylnitialiser :
ArrayLiteral
ArrayComprehension

11.1.4.1 Array Literal

NOTE An ArrayLiteral is an expression describing the initialisation of an Array object, using a list, of zero or more
expressions each of which represents an array element, enclosed in square brackets. The elements need not be literals;
they are evaluated each time the array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list is
not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the missing array
element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are
not defined. If an element is elided at the end of an array, that element does not contribute to the length of the Array.

Syntax

ArrayLiteral :
[Elisiongpt 1
[ElementList]
[ElementList , Elisiongpt 1]

ElementList :
Elisionept AssignmentExpression
Elisionept SpreadElement
ElementList , Elisionop; AssignmentExpression
ElementList , Elisionop: SpreadElement

© Ecma International 2012 115

secmd

Elision :
’

Elision ,

SpreadElement :
. AssignmentExpression

Static Semantics

Static Semantics: Elision Width
Elision :

1. Return the numeric value 1.
Elision : Elision ,

1. Let preceding be the Elision Width of Elision.
2. Return preceding+1.

Runtime Semantics

Runtime Semantics: Array Accumulation
With parameters array and nextindex.

ElementList : Elisionopt AssignmentExpression

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnlfAbrupt(initValue).

Call the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32(nextIndex+padding)) and the Property Descriptor { [[Value]]: initValue, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}.

6. Assert: the above call to [[DefineOwnProperty]] will never return false or an abrupt completion value.

7. Return nextlndex+padding+1.

arowpe=

ElementList : Elisionopt SpreadElement

1. Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
2. Return the result of performing Array Accumulation for SpreadElement with arguments array and
nextindex+padding.

ElementList : ElementList , Elisionopt AssignmentExpression

1. Let postindex be the result of performing Array Accumulation for ElementList with arguments array and
nextindex.

ReturnlfAbrupt(postindex).

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnIfAbrupt(initvalue).

Call the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32(postindex+padding)) and the Property Descriptor { [[Value]]: initValue, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true}.

8. Assert: the above call to [[DefineOwnProperty]] will never return false or an abrupt completion value.

9. Return postindex+padding+1.

Nouhkwn

ElementList : ElementList , Elisionopt SpreadElement

116 © Ecma International 2012

secma

1. Let postindex be the result of performing Array Accumulation for ElementList with arguments array and
nextindex.

2. ReturnIfAbrupt(postindex).

3. Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

4. Return the result of performing Array Accumulation for SpreadElement with arguments array and
postindex+padding.

SpreadElement: ... AssignmentExpression

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadValue be GetValue(spreadRef).

LLet spreadObj be ToObject(spreadValue),| [commented [AW69]: Note that the value the spread

1
2
3
4. ReturnlfAbrupt(spreadObj). | operator is applied to is coerced to an Object.
5. Let lenVal be the result of calling Get(spreadObj, "1length").
6. Let spreadLen be ToUint32(lenVal).
7. ReturnlfAbrupt(spreadLen).
8. Letn=0;
9. Repeat, while n < spreadLen
a. Letexists be the result of HasProperty(spreadObj, ToString(n)).
b. ReturnlfAbrupt(exists).
c. Ifexists is true then,

i. Letv be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the

argument.
ii. ReturnlfAbrupt(v).

iii. Call the [[DefineOwnProperty]] internal method of array with arguments

[ToString(ToUintSZ(nextIndex)) and Property Descriptor {[[Value]]: v, [[Writable]]: true, [Commented [AW70]: Note that indices wrap. For example |
[[Enumerable]]: true, [[Configurable]]: true}. consider:
iv. Assert: the above call to [[DefineOwnProperty]] will never return false or an abrupt completion

[{4294967293: “x’, length: Math.pow(2,32)-2}]

value.
d. Letn=n+1.
e. Let nextindex = nextlndex +1.
10. Return nextindex.

NOTE [[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the standard
built-in Array prototype object has been modified in-a manner that would preclude the creation of new own properties
using [[Set]].

Runtime Semantics: Evaluation
ArrayLiteral : [Elisionopt]

1. Letarray be the result of the abstract operation ArrayCreate with argument 0.

2. Let pad be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
3. Call Put(array, "length", pad, false).

4. Return array.

ArrayLiteral : [ElementList]

Let array be the result of the abstract operation ArrayCreate with argument 0.

Let len be the result of performing Array Accumulation for ElementList with arguments array and 0.
ReturnlfAbrupt(len).

Call Put(array, "length", len, false).

Return array.

arwONE

ArrayLiteral : [ElementList , Elisionopt]

1. Letarray be the result of the abstract operation ArrayCreate with argument 0.
2. Let len be the result of performing Array Accumulation for ElementList with arguments array and 0.
3. ReturnIfAbrupt(len).

© Ecma International 2012

117

secmd

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
Call Put(array, "length", ToUint32(padding+len), false).
6. Return array.

o &

11.1.4.2 Array Comprehension

Syntax

ArrayComprehension :
[Comprehension]

Comprehension :
ComprehensionFor ComprehensionQualifierTail

ComprehensionQualifierTail :

AssignmentExpression

ComprehensionQualifier ComprehensionQualifierTail
ComprehensionQualifier :

ComprehensionFor

Comprehensionlf

ComprehensionFor :
for (ForBinding of AssignmentExpression)

Comprehensionlf :
if (AssignmentExpression)

ForBinding :
Bindingldentifier
BindingPattern
Static Semantics
Static Semantics: Early Errors
ComprehensionFor : for (ForBinding of AssignmentExpression)
e Itis a Syntax Error.if the BoundNames of ForBinding contains any duplicate entries.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialised prior to evaluation of its initializer.
ForBinding : BindingPattern
1. Letobj be ToObject(value).
2. ReturnlfAbrupt(obj).
3. Return the result of performing Binding Initialisation for BindingPattern passing obj and environment as the
arguments.

Runtime Semantics: ComprehensionEvaluation

With argument accumulator.

118 © Ecma International 2012

secma

NOTE undefined is passed for accumulator to indicate that a comprehension component is being evaluated as part of a
generator comprehension. Otherwise, the value of accumulator is the array object into the elements of an array
comprehension are to be accumulated.

Comprehension : ComprehensionFor ComprehensionQualifierTail

1. Return the result of performing QualifierEvaluation for ComprehensionFor with arguments
ComprehensionQualifierTail and accumulator.

ComprehensionQualifierTail : ComprehensionQualifier ComprehensionQualifierTail

1. Return the result of performing QualifierEvaluation for ComprehensionQualifier with arguments
ComprehensionQualifierTail and accumulator.

ComprehensionQualifierTail : AssignmentExpression

Let valueRef be the result of evaluating AssignmentExpression.
Let value be GetValue(valueRef).
ReturnlfAbrupt(value).
If accumulator is not undefined, then
Assert: this is part of an array comprehension:
Assert: accumulator is an exotic array object so access to its Length property should never fail.
Let len be the result of Get(accumulator, "1length").
If len>232-1, then throw a RangeError exception.
Let putStatus be the result of Put(O, ToString(len), value, true).
ReturnlfAbrupt(putStatus).
Increase len by 1.
Let putStatus be the result of Put(O, "1ength™", len, true).
ReturnlfAbrupt(putStatus).
j. Return NormalCompletion(undefined).
Assert: accumulator is undefined, so this is part of a generator comprehension.
Let yieldStatus be the result of GeneratorYield(CreateltrResultObject(value, false)).
ReturnIfAbrupt(yieldStatus).
Return NormalCompletion(undefined).

LN

mSemeoo o

® NG

Runtime Semantics: QualifierEvaluation
With arguments tail and accumulator.

NOTE< undefined is passed for accumulator to indicate that a comprehension component is being evaluated as part of a
generator .comprehension. Otherwise, the value of accumulator is the array object into the elements of an array
comprehension are to be accumulated.

ComprehensionFor.: for (ForBinding of AssignmentExpression)

1. Let exprRef be the result of evaluating AssignmentExpression.
2. Let experValue be GetValue(exprRef).
3. Let obj be ToObject(experValue).
4. ReturnlfAbrupt(obj).
5. Let iterator be the result of performing Invoke with arguments obj, @ @iterator, and an empty List.
6. Let keys be ToObject(iterator).
7. ReturnlfAbrupt(keys).
8. Let oldEnv be the running execution context’s LexicalEnvironment.
9. LetnoArgs be an empty List.
10. Repeat
a. Let nextResult be the result of Invoke(keys, "next").
b. ReturnlfAbrupt(nextResult).
c. If Type(nextResult) is not Object, then throw a TypeError exception.
d. Let done be IteratorComplete(nextResult).

© Ecma International 2012 119

&

ecma

e. ReturnlfAbrupt(done).
f. If done is true, then return true.
g. Let nextValue be IteratorValue(nextResult);
h. ReturnIfAbrupt(nextValue).
i. Let forEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
j. Foreach element name of the BoundNames of ForBinding do
i Call forEnv’s CreateMutableBinding concrete method with argument name.
k. Let status be the result of performing Binding Initialisation for ForBinding passing value and
environment as the arguments.
. ReturnlfAbrupt(status).
m. Set the running execution context’s LexicalEnvironment to forEnv.
n. Let continue the result of performing ComprehensionEvaluation for tail with argument accumulator.
0. Set the running execution context’s LexicalEnvironment to oldEnv.
p. ReturnlfAbrupt(continue).

ComprehensionFor : if (AssignmentExpression)

arowpe=

o

Let valueRef be the result of evaluating AssignmentExpression.
Let value be GetValue(valueRef).
Let boolValue be ToBoolean(value).
ReturnlfAbrupt(boolValue).
If exprValue is true, then
a. Return the result of performing ComprehensionEvaluation for tail with argument accumulator.
Else,
a. Return NormalCompletion(undefined).

Runtime Semantics: Evaluation

ArrayComprehension : [Comprehension]

rwnpE

Let array be the result of the abstract operation ArrayCreate with argument 0.

Let status be the result of performing ComprehensionEvaluation for Compression with argument array.
ReturnlfAbrupt(status).

Return array.

11.1.5 Object Initialiser

NOTE 1 An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a
literal. It is-alist of zero or more pairs of property names and associated values, enclosed in curly braces. The values need
not be literals; they are evaluated each time the object initialiser is evaluated.

Syn

tax

ObjectLiteral :

{1}
{ PropertyDefinitionkist }
{ PropertyDefinitionList , }

PropertyDefinitionList :

PropertyDefinition
PropertyDefinitionList , PropertyDefinition

PropertyDefinition :

120

IdentifierName

CoverlnitialisedName

PropertyName : AssignmentExpression
MethodDefinition

© Ecma International 2012

secma

PropertyName :
IdentifierName
StringLiteral
NumericLiteral

CoverlnitialisedName :
IdentifierName Initialiser

Initialiser :
= AssignmentExpression

NOTE 2 MethodDefinition is defined in 13.3.

NOTE 3 In certain contexts, ObjectLiteral is used as a cover grammar for a.more restricted secondary grammar. The
CoverlnitialisesdName production is necessary to fully cover these secondary grammars. However, use of this production
results in an early Syntax Error in normal contexts where an actual ObjectLiteral is expected.

Static Semantics

Static Semantics: Early Errors

In addition to describing an actual object initialiser the ObjectLiteral productions are also used as a cover
grammar for ObjectAssignmentPattern (11.13.1). When ObjectLiteral appears in a context where

ObjectAssignmentPattern is required, the following.Early Error rules are not applied.

ObjectLiteral : { PropertyDefinitionList }
and
ObjectLiteral : { PropertyDefinitionList , }

e |t is a Syntax Error if PropertyNameL.ist of PropertyDefinitionList contains any duplicate entries, unless
one of the following conditions are true for each duplicate entry:

1. The source code corresponding to PropertyDefinitionList is not strict code and all occurrences
in the list of the <duplicated entry were obtained from productions of the form
PropertyDefinition : PropertyName : AssignmentExpression.

2. The duplicated entry occurs exactly twice in the list and one occurrence was obtained from a
get accessor MethodDefinition and the other occurrence was obtained from a set accessor
MethodDefinition.

PropertyDefinition : MethodDefinition

e ltis a Syntax Error if ReferencesSuper of MethodDefinition is true.
PropertyDefinition : IdentifierName

e |tis a Syntax Error if IdentifierName is a ReservedWord.
PropertyDefinition : CoverlnitialisedName

e Always throw a Syntax Error if this production is present

NOTE This production exists so that ObjectLiteral can serve as a cover grammar for ObjectAssignmentPattern (11.13.1).
It cannot occur in an actual object initialiser.

Static Semantics: Contains
ith parameter symbol.

PropertyDefinition : MethodDefinition

© Ecma International 2012 121

Commented [AWB871]: The currently prevailing position in
TC39 is that use of super should not be allowed in object
literals. This restriction is arbitrary in the sense that the
runtime semantics would work.

y

ecma

1. If symbol is MethodDefinition, return true.
2. Return false.
NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.

PropertyName : IdentifierName

1.
2.

3.

Stat

If symbol is a ReservedWord, return false.

If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,
return true;

Return false.

ic Semantics: IsValidSimpleAssignmentTarget

PrimaryExpression : Literal

1.

Stat

Return false.

ic Semantics: PropName

PropertyDefinition : IdentifierName

1.

Return StringValue of IdentifierName.

PropertyDefinition : PropertyName : AssignmentExpression

1.

Return PropName of PropertyName.

PropertyName : StringLiteral

1.

Return a String value whose characters are the SV of the StringLiteral.

PropertyName : NumericLiteral

1
2.

Let nbr be the result of forming the value of the NumericLiteral.
Return [ToString(nbr).

Ci ed [AWB1072]: Issue: static semantic rules

Static Semantics: PropertyNameList

PropertyDefinitionList : PropertyDefinition

1.

Return a new List containing PropName of PropertyDefinition.

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1
2.
3.

Let list be PropertyNameList of PropertyDefinitionList.
Append PropName of PropertyDefinition to the end of list.
Return list.

Runtime Semantics

Runtime Semantics: Evaluation

ObjectLiteral : { }

1.

122

Return a new object created as if by the expression new Object () where Object is the standard built-
in constructor with that name.

© Ecma International 2012

probably should call ToString (a runtime operation).

secma

ObjectLiteral :
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

1. Letobj be the result of the abstract operation ObjectCreate with the intrinsic object %ObjectPrototype% as
its argument.

2. Let status be the result of performing Property Definition Evaluation of PropertyDefinitionList with

argument obj.

ReturnlfAbrupt(status).

4. Return obj.

w

Runtime Semantics: Property Definition Evaluation
With parameter object and optional parameter functionPrototype.
PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Let status be the result of performing Property Definition Evaluation of PropertyDefinitionList with
argument object.

2. ReturnlfAbrupt(status).

3. Return the result of performing Property Definition Evaluation of PropertyDefinition with argument object.

PropertyDefinition : IdentifierName

1. Let propName be StringValue of lIdentifierName.

2. LetexprValue be the result of performing Identifier Resolution as specified in 10.3.1 using IdentifierName.

3. Let propValue be GetValue(exprValue).

4. ReturnlfAbrupt(propValue).

5. Let desc be the Property Descriptor{[[Value]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

6. Return the result of DefinePropertyOrThrow(object, propName, desc).

PropertyDefinition : PropertyName : AssignmentExpression

Let propName be PropName of PropertyName.

Let exprValue be the result of evaluating AssignmentExpression.

Let propValue be GetValue(exprVvalue).

ReturnlfAbrupt(propValue).

Let desc be the Property Descriptor{[[Value]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

6. Return the result of DefinePropertyOrThrow(object, propName, desc).

aswnE

11.1.6 Function Defining Expressions

See 13.1 for PrimaryExpression : FunctionExpression.
See 13.4 for PrimaryExpression : GeneratorExpression.
See 13.5 for PrimaryExpression : ClassExpression.
11.1.7 Generator Comprehensions

Syntax

GeneratorComprehension :
(Comprehension)

Static Semantics

Static Semantics: Early Errors

© Ecma International 2012 123

&

ecma

GeneratorComprehension : (Comprehension)

e ltis a Syntax Error if Comprehension Contains YieldExpression is true.

Runtime Semantics

Runtime Semantics: Evaluation

GeneratorComprehension : (Comprehension)

1. If GeneratorComprehension is contained in strict mode code, then let strict be true; otherwise let strict be false.

2. Letscope be the LexicalEnvironment of the running execution context.

3. Let parameters be the production: FormalParameters : [empty].

4. Using Comprehension from the production that is being evaluated, let body.be the supplemental syntactic grammar
production: GeneratorBody : Comprehension.

5. Let closure be the result of performing the GeneratorFunctionCreate abstract operation with arguments Arrow,
parameters, body, scope, and strict.

6. Let prototype be the result of the abstract operation ObjectCreate with the intrinsic object %GeneratorPrototype% as
its argument.

7. Perform the abstract operation MakeConstructor with arguments closure, true;and prototype.

8. Let iterator be the result of calling the [[Call]] internal method of closure with undefined as thisArgument
and a empty List as argumentsList.

9. Return iterator.

NOTE The GeneratorFunction object created in._step 5 is not observable from ECMAScript code so an

implementation may choose to avoid its allocation and initialization. In that case use other semantically equivalent means
must be used to allocate and initialize the iterator object in step 8. In either case, the prototype object created in step 6
must be created because it is potentially observable as the value of the iterator object’s [[Prototype]] internal data property.

11.1.8 Regular Expression Literals

Syntax
See 7.8.4.

Static Semantics

Static Semantics: Early Errors

PrimaryExpression : RegularExpressionLiteral

e Itis a Syntax Error if BodyText of RegularExpressionLiteral cannot be recognised using the goal symbol
Pattern of the ECMAScript RegExp grammar specified in 15.10.

e Itis a Syntax Error if FlagText of RegularExpressionLiteral contains any character other than "g", "i",
"m", "u",or "y", orif it contains the same character more than once.

Runtime Semantics

Runtime Semantics: Evaluation

PrimaryExpression : RegularExpressionLiteral

1.

124

A regular expression literal evaluates to a value of the Object type that is an instance of the standard built-
in constructor RegExp. This value is determined in two steps: first, the characters comprising the regular
expression's RegularExpressionBody and RegularExpressionFlags production expansions are collected
uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a
new object is created as if by the expression new RegExp (Pattern, Flags) where RegExp is the
standard built-in constructor with that name. The newly constructed object becomes the value of the
RegularExpressionLiteral.

© Ecma International 2012

Commented [AWB874]: Should convert to a multistep
algorithm and breakout a static semantic rule for the early
error

secma

11.1.9 Template Literals

Syntax

TemplateLiteral :
NoSubstitutionTemplate
TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

TemplateSpans :
TemplateTail
TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

TemplateMiddleList :
TemplateMiddle Expression
TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Static Semantics

Static Semantics: TemplateStrings
With parameter raw.

TemplateLiteral : NoSubstitutionTemplate

1. If raw is false, then

a. Let string be the TV of NoSubstitutionTemplate.
2. Else,

a. Let string be the TRV of NoSubstitutionTemplate.
3. Return a List containing the single element, string.

TemplateLiteral : TemplateHead Expression. [Lexical goal InputElementTemplateTail] TemplateSpans

1. If raw is false, then
a. Lethead bethe TV of TemplateHead.
2. Else,
a. Lethead be the TRV of TemplateHead.
3. Let tail be TemplateStrings of TemplateSpans with argument raw.
4. Return a List containing head followed by the element, in order of tail.

TemplateSpans : TemplateTail

1. [Ifraw.is false, then
a. Lettail be the TV of TemplateTail.
2. Else,
a. Lettail be the TRV of TemplateTail.
3. Return a List containing the single element, tail.

TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1. Letmiddle be TemplateStrings of TemplateMiddleList with argument raw.
2. Ifraw is false, then
a. Lettail be the TV of TemplateTail.
3. Else,
a. Lettail be the TRV of TemplateTail.
4. Return a List containing the elements, in order, of middle followed by tail.

TemplateMiddleList : TemplateMiddle Expression

1. If raw is false, then
a. Letstring be the TV of TemplateMiddle.

© Ecma International 2012 125

secmd

2. Else,
a. Letstring be the TRV of TemplateMiddle.
3. Return a List containing the single element, string.

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

1. Let front be TemplateStrings of TemplateMiddleList with argument raw.
2. Ifraw is false, then
a. Letlast be the TV of TemplateMiddle.
3. Else,
a. Let last be the TRV of TemplateMiddle.
4. Append last as the last element of the List front.
5. Return front.

Runtime Semantics
Runtime Semantics: ArgumentListEvaluation
TemplateLiteral : NoSubstitutionTemplate

1. Let siteObj be the result of the abstract operation GetTemplateCallSite passing this TemplateLiteral
production as the argument.
2. Return a List containing the one element which is siteObj.

TemplateLiteral : TemplateHead Expression [Lexicalgoal InputElementTemplateTail] TemplateSpans

1. Let siteObj be the result of the abstract operation GetTemplateCallSite passing this TemplateLiteral
production as the argument.

Let firstSub be the result of evaluating Expression.

ReturnlfAbrupt(firstSub).

Let restSub be SubstitutionEvaluation of TemplateSpans.

ReturnlfAbrupt(restSub):

Assert, restSub is a List.

Return a List whose first element is siteObj, whose second elements is firstSub, and whose subsequent
elements are the elements of restSub, in order..restSub may contain no elements.

Nookrown

Runtime Semantics: GetTemplateCallSite Abstract Operation

The abstract operation GetTemplateCallSite is called with a grammar production, templateLiteral, as an
argument. It performs the following steps:

1. Ifacall site object for the source code corresponding to templateLiteral has already been created by a
previous call to this abstract operation, then return that call site object.
Let cookedStrings be TemplateStrings of templateLiteral with argument false.
Let rawStrings be TemplateStrings of templateLiteral with argument true.
Let count be the nhumber of elements in the List cookedStrings.
Let siteObj be the result of the abstract operation ArrayCreate with argument count.
Let rawObj be the result of the abstract operation ArrayCreate with argument count.
Let index be 0.
Repeat while index < count
a. Let prop be ToString(index).
b. Let cookedValue be the string value at 0-based position index of the List cookedStrings.
c. Call the [[DefineOwnProperty]] internal method of siteObj with arguments prop and Property
Descriptor {[[Value]]: cookedValue, [[Writable]]: false, [[Configurable]]: false}.
d. Let rawValue be the string value at 0-based position index of the List rawStrings.
e. Call the [[DefineOwnProperty]] internal method of rawObj with arguments prop and Property
Descriptor {[[Value]]: rawValue, [[Writable]]: false, [[Configurable]]: false}.
f. Letindex be index+1.
9. Call the [[Freeze]] internal method of rawObj.

XN A WN

126 © Ecma International 2012

secmd

10. Call the [[DefineOwnProperty]] internal method of siteObj with arguments "raw" and Property Descriptor
{[[\Value]]: rawObj, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}.

11. Call the [[Freeze]] internal method of siteObj.

12. Remember an association between the source code corresponding to templateLiteral and siteObj such that
siteObj can be retrieve in subsequent calls to this abstract operation.

13. Return siteObj.

NOTE 1 The creation of a call site object cannot result in an abrupt completion.

NOTE 2 Each TemplateLiteral in the program code is associated with a unique Template call site object that is used in
the evaluation of tagged Templates (11.2.6). The same call site object is used each time a specific tagged Template is
evaluated. Whether call site objects are created lazily upon first evaluation of the TemplateLiteral or eagerly prior to first
evaluation is an implementation choice that is not observable to ECMAScript code.

Runtime Semantics: SubstitutionEvaluation

TemplateSpans : TemplateTail

1. Return an empty List.

TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1. Return the result of SubstitutionEvaluation of TemplateMiddleList.

TemplateMiddleList : TemplateMiddle Expression

1. Let sub be the result of evaluating Expression.

2. ReturnlfAbrupt(sub).

3. Return a List containing only sub.

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Let preceeding be the result of SubstitutionEvaluation of TemplateMiddleList .

ReturnIfAbrupt(preceeding).

Let next be the result of evaluating Expression.

ReturnIfAbrupt(next).

Append next as the last element of the List preceeding.
Return preceeding:

ISR

Runtime Semantics: Evaluation
TemplateLiteral : NoSubstitutionTemplate
1. Return the string value whose elements are the TV of NoSubstitutionTemplate as defined in 7.8.5.

TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

ReturnlfAbrupt(tail).
Return the string value whose elements are the code units of head followed by the code units of tail.

1. Let head be the TV of TemplateHead as defined in 7.8.5.

2. Let sub be the result of evaluating Expression.

3. Let middle be [ToString(sub).\ Ci ed [AWB975]: Note that the conversion

4. ReturnlfAbrupt(middle). semantics are like Stirng.prototype.concat rather than the +
5. Let tail be the result of evaluating TemplateSpans . SRera

6.

7.

TemplateSpans : TemplateTail

1. Let tail be the TV of TemplateTail as defined in 7.8.5.
2. Return the string whose elements are the code units of tail.

© Ecma International 2012 127

secmad

TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1. lLet head be the result of evaluating TemplateMiddleList.

2. ReturnlfAbrupt(head).

3. Lettail be the TV of TemplateTail as defined in 7.8.5.

4. Return the string whose elements are the elements of head followed by the elements of tail.

TemplateMiddleList : TemplateMiddle Expression
Let head be the TV of TemplateMiddle as defined in 7.8.5.

Let sub be the result of evaluating Expression.
Let middle be [ToString(sub).|

C ed [AWB977]: Note that the conversion

ReturnlfAbrupt(middle).

abrowpE

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Let rest be the result of evaluating TemplateMiddleList .
ReturnlfAbrupt(rest).

Let middle be the TV of TemplateMiddle as defined in 7:8.5.
Let sub be the result of evaluating Expression.

Return the sequence of characters consisting of the code units of head followed by the elements of middle.

semantics are like Stirng.prototype.concat rather than the +
operator.

Let last be ToString(sub) |
ReturnlfAbrupt(last).
Return the sequence of characters consisting of the elements of rest followed by the code units of middle
followed by the elements of last.

NourwnE

11.1.10 The Grouping Operator
Static Semantics: Early Errors
PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList
e ltis a Syntax Error if the lexical token sequence matched by
CoverParenthesisedExpressionAndArrowParameterList cannot be parsed with no tokens left over using
ParenthesisedExpression as the goal symbol.
e All Early Errors rules for ParenthesisedExpression and its derived productions also apply to the
CoveredParenthesisedExpression of CoverParenthesisedExpressionAndArrowParameterList.
Static Semantics: IsValidSimpleAssignmentTarget

PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesisedExpression of CoverParenthesisedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarget of expr.

ParenthesisedExpression :<(Expression)

1. Return IsValidSimpleAssignmentTarget of Expression.

Runtime Semantics: Evaluation

PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList

1. Letexpr be CoveredParenthesisedExpression of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the result of evaluating expr.

ParenthesisedExpression : (Expression)

1. Return the result of evaluating Expression. This may be of type Reference.

128 © Ecma International 2012

Ci ed [AWB978]: Note that the conversion
semantics are like Stirng.prototype.concat rather than the +
operator.

secma

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this
is so that operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

Syntax
MemberExpression :

[Lexical goal InputElementRegExp] PrimaryExpression

MemberExpression [Expression]
MemberExpression . ldentifierName
MemberExpression TemplateLiteral
super [Expression]

super . ldentifierName

new super ArgumentSopt

new MemberExpression Arguments

NewExpression :
MemberExpression
new NewExpression

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression [Expression 1
CallExpression . IdentifierName
CallExpression TemplateLiteral

Arguments :
()
(ArgumentList)

ArgumentList :
AssignmentExpression
. AssignmentExpression
ArgumentList., AssignmentExpression
ArgumentList , AssignmentExpression

LeftHandSideExpression :
NewExpression
CallExpression

Static Semantics

Static Semantics: Contains

With parameter symbol.

MemberExpression : MemberExpression . ldentifierName

1. If MemberExpression Contains symbol is true, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,

return true;
4. Return false.

MemberExpression : super . ldentifierName

© Ecma International 2012

secma

1. If symbol is the ReservedWord super, return true.

If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,
return true;

4. Return false.

I

CallExpression : CallExpression . ldentifierName

1. If CallExpression Contains symbol is true, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringVValue of IdentifierName,
return true;

4. Return false.

MemberExpression : new super

1. If symbol is the ReservedWord super, return true.
2. If symbol is the ReservedWord new, return true.
3. Return false.

MemberExpression : new super Arguments

1. If symbol is the ReservedWord super, return true.
2. If symbol is the ReservedWord new, return true.
3. Return the result of Arguments Contains symbol.

Static Semantics: IsValidSimpleAssignmentTarget

CallExpression :
CallExpression [Expression]
CallExpression . IdentifierName

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
super [Expression]
super . ldentifierName

1. Return true.

CallExpression :
ﬁ\/lemberExpression Arguments
super Arguments
CallExpression Arguments. |

C ed [AWB1079]: These are false, because we

CallExpression TemplateLiteral
NewExpression : new NewEXxpression
MemberExpression :

new super Argumentsopt

new MemberExpression Arguments
1. Return false.

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation:

130 © Ecma International 2012

disallow host functions returning reference values.

secma

MemberExpression . IdentifierName
CallExpression . IdentifierName

or the bracket notation:

MemberExpression [Expression]
CallExpression [Expression 1

The dot notation is explained by the following syntactic conversion:
MemberExpression . IdentifierName
is identical in its behaviour to
MemberExpression [<identifier-name-string>]
and similarly
CallExpression . IdentifierName
is identical in its behaviour to
CallExpression [<identifier-name-string> 1

where <identifier-name-string> is a string literal containing.the same sequence of characters after processing
of Unicode escape sequences as the IdentifierName.

Runtime Semantics: Evaluation
MemberExpression : MemberExpression [Expression]

Let baseReference be the result of evaluating MemberExpression.

Let baseValue be GetValue(baseReference).

ReturnIfAbrupt(baseValue).

Let propertyNameReference be the result of evaluating Expression.

Let propertyNameValue be GetValue(propertyNameReference).

ReturnIfAbrupt(propertyNameValue).

Let bv be CheckObjectCoercible(baseValue).

ReturnIfAbrupt(bv).

Let propertyNameString be ToString(propertyNameValue).

0. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.

11. Return.a value of type Reference whose base value is bv and whose referenced name is propertyNameString,

and whose strict reference flag is strict.

BOONOOALDE

CallExpression : CallExpression [Expression]

Is evaluated in exactly the same manner as MemberExpression : MemberExpression [Expression 1 except that
the contained CallExpression is evaluated in step 1.

11.2.2 The new Operator
Runtime Semantics: Evaluation
NewExpression : new NewExpression

Let ref be the result of evaluating NewExpression.

Let constructor be GetValue(ref).

ReturnlfAbrupt(constructor).

If Type(constructor) is not Object, throw a TypeError exception.

If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.
Return thﬁ result of calling the [[Construct]] internal method on constructor with an empty List as the
argument.

ok wNE

C ed [AWB980]: TODO probably need to do

© Ecma International 2012 131

something about new operators in tail position.

secma

MemberExpression : new MemberExpression Arguments

Let ref be the result of evaluating MemberExpression.

Let constructor be GetValue(ref).

ReturnlfAbrupt(constructor).

Let argList be the result of evaluating Arguments, producing an internal List of argument values (11.2.4).
ReturnlfAbrupt(argList).

If Type(constructor) is not Object, throw a TypeError exception.

If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.
Return the result of calling the [[Construct]] internal method on constructor, passing argList as the
argument.

PN AWM

11.2.3 Function Calls
Runtime Semantics: Evaluation
CallExpression : MemberExpression Arguments

1. Let ref be the result of evaluating MemberExpression.
2. If this CallExpression is in a tail position (13.6) then let-tailCall be true,.otherwise let tailCall be false.
3. Return the result of the abstract operation EvaluateCall with arguments ref,” Arguments, and tailCall.

CallExpression : CallExpression Arguments

1. Let ref be the result of evaluating CallExpression.
2. If this CallExpression is in a tail position (13.6) then let tailCall be true, otherwise let tailCall be false.
3. Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.

A tail position call must either release any transient internal resources associated with the currently executing
function execution context before-invoking the target function or reuse those resources in support of the target
function.

NOTE1 For example, atail position call should only grow an implementation’s activication record stack by the amount
that the size of the target function’s activation record exceeds the size of the calling function’s activation record. If the
target function’s activation record is smaller, then the total size of the stack should decrease.

Runtime Semantics: EvaluateCall Abstract Operation

The abstract operation EvaluateCall takes as arguments a value ref, and a syntactic grammar production
arguments, and a Boolean argument tailPosition. It performs the following steps:

Let func be GetValue(ref).
ReturnlfAbrupt(func).
Let argList be the result of performing ArgumentListEvaluation of arguments.
ReturnlfAbrupt(argList).
If Type(func) is not Object, throw a TypeError exception.
If IsCallable(func) is false, throw a TypeError exception.
If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then
i Let thisValue be GetThisValue(ref).
b. Else, the base of ref is an Environment Record
i Let thisValue be the result of calling the WithBaseObject concrete method of GetBase(ref).
8. Else Type(ref) is not Reference,
a. LetthisValue be undefined.
9. If tailPosition is true, then
a. Let leafContext be the running execution context.
b. Suspend leafContext.
c. Pop leafContext from the execution context stack. The execution context now on the top of the stack
becomes the running execution context, however it remains in its suspended state.
d. Assert: lleafContext has no further use.| It will never be activated as the running execution context.

NookwhE

Commented [AWB781]: TODO: tail calls.

Jan 19 meeting notes: Tentative decision is to support tail
calls in strict mode only.

132 © Ecma International 2012

Commented [AWB982]: Is this really true. Need to think
about whether generators may impact this assertion.

(il - /‘

10.

11.

12.
13.

ecmad

Let result be the result of calling the [[Call]] internal method on func, passing thisValue as the thisArgument

and argList as the argumentsList.

Assert: If tailPosition is true, the above call will not return here, but instead evaluation will continue with
the resumption of leafCallerContext as the running execution context.

Assert: Type(result) is an ECMAScript language type

Return result.

11.2.4 The super Keyword

Static Semantics

Static Semantics: Early Errors

MemberExpression :

super [Expression]
super . ldentifierName
new super ArgumentSopt

CallExpression : super Arguments

e |tis a Syntax Error if the source code parsed with this productionis global code that is not eval code.
e It is a Syntax Error if the source code parsed with this production is eval code and the source code is
not being processed by a direct call to eval that is contained in function code.

Runtime Semantics: Evaluation

MemberExpression : super [Expression]

AwNE

5.

Let propertyNameReference be the result of evaluating Expression.

Let propertyNameValue be GetValue(propertyNameReference).

Let propertyKey be ToPropertyKey(propertyNameValue).

If the code matched by-the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.

Return the result of MakeSuperReference(propertyKey, strict).

MemberExpression : super . ldentifierName

1
2.

3.

Let propertyKey be StringValue of IdentifierName.

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.

Return the result of MakeSuperReference(propertyKey, strict).

MemberExpression : new super Argumentsop

1

g™

~

If the code matched by.the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.
Let ref be the result of MakeSuperReference(undefined, strict).
Let constructor be GetValue(ref).
ReturnlfAbrupt(constructor).
If Arguments is present, then
a. LetargList be the result of evaluating Arguments, producing an internal List of argument values
(11.2.4).
b. ReturnIfAbrupt(argList).
Else,
a. LetargList be a new empty List.
If Type(constructor) is not Object, throw a TypeError exception.
If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.
Return the result of calling the [[Construct]] internal method on constructor, passing argList as the
argument.

© Ecma International 2012 133

secmd

CallExpression : super Arguments

1. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.

Let ref be the result of MakeSuperReference(undefined, strict).

ReturnlfAbrupt(ref).

If this CallExpression is in atail position (13.7) then let tailCall be true, otherwise let tailCall be false.
Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.

abrwn

Runtime Semantics: Abstract Operation MakeSuperReference(propertyKey, strict)

1. Letenv be the result of performing the GetThisEnvironment abstract operation.

2. If the result of calling the HasSuperBinding concrete method of env is false, then throw a ReferenceError
exception.
3. Let actualThis be the result of calling the GetThisBinding concrete method of env.
4. Let baseValue be the result of calling the GetSuperBase concrete method of env.
5. Let bv be CheckObjectCoercible(baseValue).
6. ReturnIfAbrupt(bv).
7. If propertyKey is undefined, then
a. Let propertyKey be the result of calling the GetMethodName concrete method of env.
8. Return a value of type Reference that is a Super Reference whose base value is bv, whose referenced name is

propertyKey, whose thisValue is actualThis, and whose strict reference flag is strict.
11.2.5 Argument Lists
The evaluation of an argument list produces a List of values (see 8.7).
Runtime Semantics
Runtime Semantics: ArgumentListEvaluation
Arguments: ()
1. Return an empty List.
ArgumentList : AssignmentExpression

1. Let ref be the result of evaluating AssignmentExpression.
2. Let arg be GetValue(ref).

3. ReturnlfAbrupt(arg).

4. Return a List whose sole item is arg.

ArgumentList: . . . AssignmentExpression

1. Let list be an empty List:
2. Let spreadRef be the result of evaluating AssignmentExpression.
3. Let spreadValue be GetValue(spreadRef).
4. et spreadObj be ToObject(spreadValue).
5. ReturnlfAbrupt(spreadObj).
6. LetlenVal be the result of calling Get(spreadObj, "1length").
7. Let spreadLen be ToUint32(lenVal).
8. ReturnIfAbrupt(spreadLen).
9. Letn=0.
10. Repeat, while n < spreadLen
a. Let nextArg be the result of calling Get(spreadObj, ToString(n)).
b. ReturnIfAbrupt(nextArg).
c. Append nextArg as the last element of list.
d. Letn=n+l.
11. Return list.

134 © Ecma International 2012

(Commented [AW83]: Note that the value the spread
| operator is applied to is coerced to an Object.

secma

ArgumentList : ArgumentList , AssignmentExpression

Let precedingArgs be the result of evaluating ArgumentList.

ReturnlfAbrupt(precedingArgs).

Let ref be the result of evaluating AssignmentExpression.

Let arg be GetValue(ref).

ReturnlfAbrupt(arg).

Return a List whose length is one greater than the length of precedingArgs and whose items are the items of
precedingArgs, in order, followed at the end by arg which is the last item of the new list.

gk wLD R

ArgumentList : ArgumentList , ... AssignmentExpression

Let precedingArgs be an empty List.
Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadValue be GetValue(spreadRef).

LLet spreadObj be ToObject(spreadValue) | | Commented [AWS4]: Note that the value the spread
ReturnIfAbrupt(spreadObyj). | operator is applied to is coerced to an Object.

Let spreadLen be ToUint32(lenVal).
ReturnlfAbrupt(spreadLen).

. Letn=0.

0. Repeat, while n < spreadLen
a. Let nextArg be the result of calling Get(spreadObj, ToString(n)).
b. ReturnIfAbrupt(nextArg).
c. Append nextArg as the last element of precedingArgs.
d. Letn=n+l

11. Return precedingArgs.

1
2
3
4
5.
6. Let lenVal be the result of calling Get(spreadObj, "length").
7
8
9
1

11.2.6 Tagged Templates

Runtime Semantics

Runtime Semantics: Evaluation

MemberExpression : MemberExpression TemplateLiteral

1. Let tagRef be the result of evaluating MemberExpression.

2. If this MemberExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.

3. Return the result of the abstract operation EvaluateCall with arguments tagRef, TemplateLiteral, and
tailCall.

CallExpression : CallExpression TemplateLiteral

1. Let tagRef be the result of evaluating CallExpression.

2. If this CallExpression isin a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.

3. Return the result of the abstract operation EvaluateCall with arguments tagRef, TemplateLiteral, and
tailCall.

11.3 Postfix Expressions

Syntax

PostfixExpression :
LeftHandSideExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

Static Semantics

© Ecma International 2012 135

secmd

Static Semantics: Early Errors

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

e [tis an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.
Static Semantics: IsValidSimpleAssignmentTarget

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

1. Return false.

11.3.1 Postfix Increment Operator

Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++

Let Ihs be the result of evaluating LeftHandSideExpression.

Let oldValue be ToNumber(GetValue(lhs)).

ReturnlfAbrupt(oldValue).

Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
11.6.3).

5. Let status be PutValue(lhs, newValue).

6. ReturnlfAbrupt(status).

7. Return oldValue.

rwnpE

11.3.2 Postfix Decrement Operator
Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression [no LineTerminator here] —-

[

Let Ihsbe the result of evaluating LeftHandSideExpression.

2. LetoldValue be ToNumber(GetValue(lhs)).

3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -
operator (11.6.3).

Let status be PutValue(lhs, newValue).

ReturnlfAbrupt(status).

Return oldValue.

o oA

136 © Ecma International 2012

secma

11.4 Unary Operators

Syntax

UnaryExpression :
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

Static Semantics
Static Semantics: Early Errors

UnaryExpression :
++ UnaryExpression
-- UnaryExpression

e ltis an early Reference Error if IsValidSimpleAssignmentTarget of UnaryExpression is false.
Static Semantics: IsValidSimpleAssignmentTarget

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

1. Return false.
11.4.1 The delete Operator
Static Semantics: Early Errors

UnaryExpression : delete UnaryExpression

e |tis a Syntax Error if the UnaryExpression is contained in strict code and the derived UnaryExpression is
PrimaryExpression : ldentifier.
e ltis a Syntax Error if the derived UnaryExpression is
PrimaryExpression : CoverParenthesisedExpressionAndArrowParameterList
and derives a production that is used in place of UnaryExpression would produce a Syntax Error
according to these rules. This rule is recursively applied.

Runtime Semantics: Evaluation

UnaryExpression : delete UnaryExpression

© Ecma International 2012 137

secma

Let ref be the result of evaluating UnaryExpression.
ReturnlfAbrupt(ref).
If Type(ref) is not Reference, return true.
If IsUnresolvableReference(ref) is true, then,
a. If IsStrictReference(ref) is true, then throw a SyntaxError exception.
b. Return true.
5. If IsPropertyReference(ref) is true, then
a. If IsSuperReference(ref), then throw a ReferenceError exception.
b. Let deleteStatus be the result of calling the [[Delete]] internal method on ToObject(GetBase(ref)),
providing GetReferencedName(ref) as the argument.
¢. ReturnIfAbrupt(deleteStatus).
d. If deleteStatus is false and IsStrictReference(ref) is true, then throw aTypeError exception.
e. Return deleteStatus.
6. Else ref is a Reference to an Environment Record binding,
a. Let bindings be GetBase(ref).
b. Return the result of calling the DeleteBinding concrete method of bindings, providing
GetReferencedName(ref) as the argument.

ArwpnpE

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its
UnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if a delete operator
occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError
exception is thrown.

11.4.2 The void Operator

Runtime Semantics: Evaluation

UnaryExpression : void UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.

2. Let status be GetValue(expr).

3. ReturnlfAbrupt(status).

4. Return undefined.

NOTE GetValue must be called even thoughrits value is not used because it may have observable side-effects.

11.4.3 The typeof Operator

Runtime Semantics: Evaluation

UnaryExpression : typeof UnaryExpression

1. Letval be the result of evaluating UnaryExpression.

2. If Type(val) is Reference, then
a. IflsUnresolvableReference(val) is true, return "undefined".
b. Let val be GetValue(val).

3. ReturnIfAbrupt(val):

4. Return a String determined by Type(val) according to Table 31 .

Table 31 — typeof Operator Results

138 © Ecma International 2012

pecma

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean"
Number "number"
String "string"
Symbol "symbol"
Object (ordinary and does "object"

not implement [[Call]])

Object (standard exotic and | "object"
does not implement [[Call]])

Object (implements [[Call]]) | "function"

Object (non-standard exotic | Implementation-defined. May not be
and does not implement | "undefined", "boolean",

[[Call]]) "number"; "symbol", or
"string".
NOTE Implementations are discouraged from defining new typeof result values for non-standard exotic objects. If

possible "object"should be used for such objects.
11.4.4 Prefix Increment Operator

Runtime Semantics: Evaluation
UnaryExpression : ++ UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ToNumber(GetValue(expr)).

ReturnIfAbrupt(oldValue).

Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
11.6.3).

5. Let status be PutValue(expr, newValue).

6. ReturnIfAbrupt(status).

7. Return_newValue.

LN

11.4.5 Prefix Decrement Operator

Runtime Semantics: Evaluation

UnaryExpression : -- UnaryExpression

1. Letexpr be the resultof evaluating UnaryExpression.

2. LetoldValue be ToNumber(GetValue(expr)).

3. ReturnIfAbrupt(oldValue).

4. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -

operator (see 11.6.3).

Let status be PutValue(expr, newValue).
ReturnlfAbrupt(status).

7. Return newValue.

o u

11.4.6 Unary + Operator

NOTE The unary + operator converts its operand to Number type.

© Ecma International 2012 139

secmd

Runtime Semantics: Evaluation
UnaryExpression : + UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Return ToNumber(GetValue(expr)).

11.4.7 Unary - Operator

NOTE The unary - operator converts its operand to Number type and then negates it. Negating +0 produces -0, and
negating —0 produces +0.

Runtime Semantics: Evaluation
UnaryExpression : = UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ToNumber(GetValue(expr)).

ReturnlfAbrupt(oldValue).

If oldValue is NaN, return NaN.

Return the result of negating oldValue; that is, compute a Number with'the same magnitude but opposite
sign.

arwdE

11.4.8 Bitwise NOT Operator (~)
Runtime Semantics: Evaluation
UnaryExpression : ~ UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.
2. LetoldValue be Tolnt32(GetValue(expr)).
3. ReturnlfAbrupt(oldValue).

4. Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

11.4.9 Logical NOT Operator (!)

Runtime Semantics: Evaluation

UnaryExpression : ! UnaryExpression

Let expr be the result of evaluating UnaryExpression.
Let oldValue be ToBoolean(GetValue(expr)).
ReturnlfAbrupt(oldValue).

If oldValue is true, return false.
Return true.

arwdE

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression :
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Static Semantics: IsValidSimpleAssignmentTarget

140 © Ecma International 2012

pecma

MultiplicativeExpression :
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

1. Return false.

Runtime Semantics: Evaluation

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands for one
of the operators in the above definitions, is evaluated as follows:

BOONOOAWLDE

Let left be the result of evaluating MultiplicativeExpression.

Let leftValue be GetValue(left).

ReturnIfAbrupt(leftvalue).

Let right be the result of evaluating UnaryExpression.

Let rightValue be GetValue(right).

Let Inum be ToNumber(leftvValue).

ReturnlfAbrupt(Inum).

Let rnum be ToNumber(rightVvalue).

ReturnlfAbrupt(rnum).

0. Return the result of applying the specified operation (*, /, or %) to Inum and rnum. See the Notes below

11.5.1, 11.5.2, 11.5.3.

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.
Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision

arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs:

Multiplication of an.infinity by a zero results in NaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the
rule already stated above.

Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is
determined by the rule already stated above.

In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

Division of an infinity by an infinity results in NaN.

Division of an infinity by a zero results in an infinity. The sign is determined by the rule
already stated above.

© Ecma International 2012 141

secmd

e Division of an infinity by a nonzero finite value results in a signed infinity. The sign is
determined by the rule already stated above.

e Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.

o Division of a zero by a zero results in NaN; division of zero by any other finite value results
in zero, with the sign determined by the rule already stated above.

e Division of a nonzero finite value by a zero results in a signed infinity. The sign is
determined by the rule already stated above.

e In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
quotient is computed and rounded to the nearest representable value using IEEE 754 round-
to-nearest mode. If the magnitude is too large to represent, the operation overflows; the
result is then an infinity of appropriate sign. If the magnitude‘is too small to represent, the
operation underflows and the result is a zero of the appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

11.5.3 Applying the % Operator

The % operator yields the remainder of its operands from an implied division; the left operand is the dividend
and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating -
point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
“remainder” operation defined by IEEE 754, The IEEE 754 “remainder” operation computes the remainder
from a rounding division, not a truncating division, and so its behaviour is.not analogous to that of the usual
integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to
behave in a manner analogous to that of the Java integer remainder.operator; this may be compared with the
C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
e If either operand is NaN, the result is NaN.
e The sign of the result equals the sign of the dividend.
e If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
e If the dividend is finite and the divisor s an infinity, the result equals the dividend.

e If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the
dividend.

e In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r = n — (d x) where g is an integer that is negative only if n/d is negative and
positive only if n/d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d. r is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

11.6 Additive Operators

Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

Static Semantics: IsValidSimpleAssignmentTarget
AdditiveExpression :

AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

142 © Ecma International 2012

secma

1. Return false.

11.6.1 The Addition operator (+)

NOTE The addition operator either performs string concatenation or numeric addition. Formatted: Note
Runtime Semantics: Evaluation

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

Let Iref be the result of evaluating AdditiveExpression.
Let Ival be GetValue(lref).
ReturnIfAbrupt(lval).
Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).
Let Iprim be ToPrimitive(lval).
ReturnIfAbrupt(lprim).
Let rprim be ToPrimitive(rval).
0. ReturnlfAbrupt(rprim).
1. If Type(lprim) is String or Type(rprim) is String, then
a. Return the String that is the result of concatenating ToString(lprim) followed by ToString(rprim)
12. Return the result of applying the addition operation to ToNumber(lprim) and ToNumber(rprim). See the
Note below 11.6.3.

NOTE 1 No hint is provided in the calls to ToPrimitive.in steps 5 and 6. All standard ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the
hint String were given. Exotic objects may handle the absence of a hint.in some other manner.

BPBOONOOTALNDE

NOTE 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.1), by using the
logical-or operation instead of the logical-and operation.

11.6.2 The Subtraction Operator (-)
Runtime Semantics: Evaluation
AdditiveExpression : AdditiveExpression -~ MultiplicativeExpression

Let Iref be the result of evaluating AdditiveExpression.

Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inumbe ToNumber(lval).

ReturnlfAbrupt(Inum).

. Let rnum be ToNumber(rval).

10. ReturnlfAbrupt(rnum).

11. Return the result of applying the subtraction operation to Inum and rnum. See the note below 11.6.3.

©OND U~ WLN P

11.6.3 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:
o If either operand is NaN, the result is NaN.
e The sum of two infinities of opposite sign is NaN.

© Ecma International 2012 143

secmd

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeroes is —0. The sum of two positive zeroes, or of two zeroes of
opposite sign, is +0.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the same sign or have different magnitudes, the sum is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the operation overflows and the result is then an infinity
of appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type; producing the difference
of its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric
operands a and b, it is always the case that a-b produces the same resultas a + (-b).

11.7 Bitwise Shift Operators

Syntax

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Static Semantics: IsValidSimpleAssignmentTarget

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >>AdditiveExpression
ShiftExpression >>> AdditiveExpression

1. Return false.

11.7.1 TheLeft Shift Operator (<<

NOTE

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

Runtime Semantics: Evaluation

ShiftExpression : ShiftExpression << AdditiveExpression

HBoo~Noo~wNE

Let Iref be the result of evaluating ShiftExpression.
Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.
Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).

ReturnlfAbrupt(Inum).

. Let rnum be ToUint32(rval).

0. ReturnlfAbrupt(rnum).

1. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum

& Ox1F.
12. Return the result of left shifting Inum by shiftCount bits. The result is a signed 32-bit integer.

144

© Ecma International 2012

Formatted: Note

secma

11.7.2 The Signed Right Shift Operator (>>)

NOTE Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).

ReturnlfAbrupt(Inum).

Let rnum be ToUint32(rval).

0. ReturnIfAbrupt(rnum).

1. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.

12. Return the result of performing a sign-extending right shift of Inum by shiftCount bits. The most significant

bit is propagated. The result is a signed 32-bit integer.

PBOONOOTAWLDE

11.7.3 The Unsigned Right Shift Operator (>>>)

NOTE Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >>> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be ToUint32(lval).

ReturnlfAbrupt(Inum).

Let rnum be ToUint32(rval).

0. ReturnlfAbrupt(rnum).

1. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.

12. Return the result of performing a zero-filling right shift of Inum by shiftCount bits. VVacated bits are filled

with zero. The result is an unsigned 32-bit integer.

RBOONOUOA~LONE

11.8 Relational Operators

NOTE The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

© Ecma International 2012 145

Formatted: Note

Formatted: Note

Formatted: Note

secmd

Syntax

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

RelationalExpressionNoln :
ShiftExpression
RelationalExpressionNoln < ShiftExpression
RelationalExpressionNoln > ShiftExpression
RelationalExpressionNoln <= ShiftExpression
RelationalExpressionNoln >= ShiftExpression
RelationalExpressionNoln instanceof ShiftExpression

The semantics of the RelationalExpressionNoln productions are the same as the RelationalExpression
productions except that the contained RelationalExpressionNoln isused in place of the contained
RelationalExpression.

NOTE The “Noln” variants are needed to avoid confusing the in operator in a relational expression with the in
operator in a for statement.

Static Semantics: IsValidSimpleAssignmentTarget

RelationalExpression :
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceo£ ShiftExpression
RelationalExpression in ShiftExpression

1. Return false.

11.8.1 Runtime Semantics
Runtime Semantics: The Abstract Relational Comparison Algorithm

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag.is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the left of the y parameter’s corresponding expression. If LeftFirst is false, the reverse is the case
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. ReturnlfAbrupt(x).
2. ReturnIfAbrupt(y).
3. If the LeftFirst flag is true, then
a. Let px be the result of calling ToPrimitive(x, hint Number).
b. ReturnlfAbrupt(px).
c. Let py be the result of calling ToPrimitive(y, hint Number).
d. ReturnIfAbrupt(py).
4. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Let py be the result of calling ToPrimitive(y, hint Number).

146 © Ecma International 2012

secma

b. ReturnIfAbrupt(py).

c. Let px be the result of calling ToPrimitive(x, hint Number).

d. ReturnIfAbrupt(px).

5. If both px and py are Strings, then

a. If pyis a prefix of px, return false. (A String value p is a prefix of String value q if g can be the
result of concatenating p and some other String r. Note that any String is a prefix of itself, because r
may be the empty String.)

b. If pxis a prefix of py, return true.

c. Letk be the smallest nonnegative integer such that the character at position k within px is different
from the character at position k within py. (There must be such a k, for neither String is a prefix of
the other.)

d. Let m be the integer that is the code unit value for the character at position k within px.

e. Letn be the integer that is the code unit value for the character at position k within py.

f.1f m <n, return true. Otherwise, return false.

6. Else,
a. Let nx be the result of calling ToNumber(px). Because px and py are primitive values evaluation
order is not important.
Let ny be the result of calling ToNumber(py).
If nx is NaN, return undefined.
If ny is NaN, return undefined.
If nx and ny are the same Number value, return false.
If nx is +0 and ny is -0, return false.
If nx is =0 and ny is +0, return false.
If nx is +o0, return false.
If ny is +o0, return true.
If ny is —oo, return false.
If nx is —oo, return true.
If the mathematical value of nx is less than the mathematical value of ny —note that these
mathematical values are both finite and not both zero—return true. Otherwise, return false.

—xToSe@meanT

NOTE 1 Step 3differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

Runtime Semantics: Evaluation
RelationalExpression : RelationalExpression < ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison Ival < rval. (see 11.8.5)
ReturnlfAbrupt(r).

If r is undefined, return false. Otherwise, return r.

PN A WN

RelationalExpression : RelationalExpression > ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison rval < Ival with LeftFirst equal to false.

RN

© Ecma International 2012 147

secmd

7. ReturnIfAbrupt(r).
8. If ris undefined, return false. Otherwise, return r.

RelationalExpression : RelationalExpression <= ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison rval < Ival with LeftFirst equal to false.
ReturnlfAbrupt(r).

If r is true or undefined, return false. Otherwise, return true.

XN A~ WNE

RelationalExpression : RelationalExpression >= ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison Ival < rval.
ReturnlfAbrupt(r).

If r is true or undefined, return false. Otherwise, return true.

XN A WNE

RelationalExpression: RelationalExpression instanceof ShiftExpression

Let Iref be the result of evaluating RelationalExpression.
Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Return the result of instanceofOperator(lval, rval).

Nouoh,rwnpE

The abstract operation instanceofOperator(O, C) implements the generic algorithm for determining if an object
O inherits from-the-inheritance path defined by constructor C. This abstract operation performs the following
steps:

1f Type(C) is not Object, throw a TypeError exception.
Let instOfHandler be the result of GetMethod(C,@ @haslnstance).
ReturnlfAbrupt(instOfHandler).
If instOfHandler is not undefined, then
a. Let result be the result of calling the [[Call]] internal method of instOfHandler passing C as
thisArgument and a new List containing O as argumentsList.
b. Return ToBoolean(result).
5. If IsCallable(C) is false, then throw a TypeError exception.
6. Return the result of OrdinaryHaslnstance(C, O).

rwnpE

NOTE Steps 5 and 6 provide compatibility with previous editions of ECMAScript that did not use a @ @haslInstance
method to define the instanceof operator semantics. If a function object does not define or inherit @ @haslInstance it
uses the default instanceof semantics.

RelationalExpression : RelationalExpression in ShiftExpression

Let Iref be the result of evaluating RelationalExpression.
Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Hwn e

148 © Ecma International 2012

secma

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

If Type(rval) is not Object, throw a TypeError exception.
Return the result of HasProperty(rval, ToPropertyKey(lval)).

® NG

11.9 Equality Operators

NOTE The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.
Syntax

EqualityExpression :
RelationalExpression

EqualityExpression == RelationalExpression
EqualityExpression !'= RelationalExpression
EqualityExpression === RelationalExpression

EqualityExpression !'== RelationalExpression

EqualityExpressionNoln :
RelationalExpressionNoln
EqualityExpressionNoln == RelationalExpressionNoln
EqualityExpressionNoln RelationalExpressionNoln
EqualityExpressionNoln = RelationalExpressionNoln
EqualityExpressionNoln !'== RelationalExpressionNoln

The semantics of the EqualityExpressionNoln productions are the same as the EqualityExpression productions
except that the contained EqualityExpressionNoln and RelationalExpressionNoln are used in place of the
contained EqualityExpression and RelationalExpression, respectively.

Static Semantics: IsValidSimpleAssignmentTarget

EqualityExpression :

EqualityExpression == RelationalExpression
EqualityExpression' !'=. RelationalExpression
EqualityExpression === RelationalExpression

EqualityExpression !=='RelationalExpression
1. Return false.
11.9:1 Runtime Semantics
Runtime Semantics: The Abstract Equality Comparison Algorithm

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Type(y), then
a. Return the result of performing strict equality comparison algorithm x ===y.

2. Ifxisnull and y is undefined, return true.
3. If xis undefined andy is null, return true.
4. 1f Type(x) is Number and Type(y) is String,

return the result of the comparison x == ToNumber(y).
5. If Type(x) is String and Type(y) is Number,

return the result of the comparison ToNumber(x) ==y.
6. If Type(x) is Boolean, return the result of the comparison ToNumber(x) ==y.
7. 1f Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
8. If Type(x) is either String or Number and Type(y) is Object,

return the result of the comparison x == ToPrimitive(y).

© Ecma International 2012 149

Formatted: Note

secmd

9. If Type(x) is Object and Type(y) is either String or Number,
return the result of the comparison ToPrimitive(x) ==y.
10. Return false.

NOTE 1 Given the above definition of equality:

e String comparison can be forced by: "" + a == "" + b.
e Numeric comparison can be forced by: +a == +b.
e Boolean comparison can be forced by: 'a == !b.

NOTE 2 The equality operators maintain the following invariants:
e A !=Bisequivalentto ! (A==B).
e A ==Bis equivalent to B == A, except in the order of evaluation of A and B.

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each
representing the same String value; each String object would be considered equal to the String value by the == operator,
but the two String objects would not be equal to each other. For Example:

e new String("a") =="a" and "a" == new String("a")are both true.
e new String("a") ==new String("a") is false:

NOTE 4 Comparison of Strings uses a simple equality test<on sequences of code unit values. There is no attempt to
use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalised form.

Runtime Semantics: The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
a. Ifxis NaN, return false.
Ify is NaN, return false:
If x is the same Number value as y, return true.
Ifx is +0 and y is -0, return true.
Ifx is —0 and y is +0, return true.
f. Return false.
5. If Type(x) is String, then
a.. Ifx and y are exactly the same sequence of characters (same length and same characters in
corresponding positions), return true.
b. “Else, return false.
6. If Type(x)is Boolean, then
a. Ifx andy are both true or both false, return true.
b. Else, return false.
7. Ifxandy are the same Symbol value, return true.
8. Ifx andy are the same Object value, return true.
9. Return false.

Awn e

Q0T

NOTE This algorithm differs from the SameValue Algorithm (9.12) in its treatment of signed zeroes and NaNs.
Runtime Semantics: Evaluation

EqualityExpression : EqualityExpression == RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

2. Let Ival be GetValue(lIref).
3. ReturnlfAbrupt(lval).

150 © Ecma International 2012

secma

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Return the result of performing abstract equality comparison algorithm rval == Ival.

No oA

EqualityExpression : EqualityExpression !'= RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

2. Let Ival be GetValue(lIref).

3. ReturnIfAbrupt(lval).

4. Let rref be the result of evaluating RelationalExpression.

5. Let rval be GetValue(rref).

6. ReturnIfAbrupt(rval).

7. Let r be the result of performing abstract equality comparison algorithm.rval == Ival.
8. Ifristrue, return false. Otherwise, return true.

EqualityExpression : EqualityExpression === RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

2. Let Ival be GetValue(lIref).

3. ReturnIfAbrupt(lval)

4. Let rref be the result of evaluating RelationalExpression.

5. Let rval be GetValue(rref).

6. ReturnlfAbrupt(rval).

7. Return the result of performing the strict equality comparison algorithm rval === Ival.

EqualityExpression : EqualityExpression !== RelationalExpression

Let Iref be the result of evaluating EqualityExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let r be the result of performing strict equality.comparison algorithm rval === lval.
If ris true, return false. Otherwise, return true.

N A~ WNE

11.10 Binary Bitwise Operators

Syntax

BitwiseANDEXxpression :
EqualityExpression
BitwiseANDExpression & EqualityExpression

BitwiseANDExpressionNoln ;
EqualityExpressionNoln
BitwiseANDExpressionNolIn & EqualityExpressionNoln

BitwiseXORExpression :
BitwiseANDEXxpression
BitwiseXORExpression #~ BitwissANDEXxpression

BitwiseXORExpressionNoln :
BitwiseANDExpressionNoln
BitwiseXORExpressionNoln # BitwiseANDExpressionNoIn

BitwiseORExpression :

BitwiseXOREXxpression
BitwiseORExpression | BitwiseXORExpression

© Ecma International 2012 151

secmd

BitwiseORExpressionNoln :
BitwiseXORExpressionNoln
BitwiseORExpressionNoln | BitwiseXORExpressionNoln

Static Semantics: IsValidSimpleAssignmentTarget

BitwiseANDEXxpression : BitwissANDExpression & EqualityExpression
BitwiseXORExpression : BitwiseXORExpression ~ BitwissANDEXxpression
BitwiseOREXxpression : BitwiseORExpression | BitwiseXORExpression

1. Return false.
Runtime Semantics: Evaluation

The production A: A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

Let Iref be the result of evaluating A.
Let Ival be GetValue(lref).
ReturnIfAbrupt(lval).

Let rref be the result of evaluating B.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).
ReturnIfAbrupt(Inum).

. Let rnum be Tolnt32(rval).

10. ReturnlfAbrupt(rnum).

11. Return the result of applying the bitwise operator @ to Inum and rnum. The result is a signed 32 bit integer.

©WoNOG WD

11.11 Binary Logical Operators

Syntax

Logical ANDEXxpression :
BitwiseORExpression
LogicalANDExpression && BitwiseORExpression

Logical ANDExpressionNoln :
BitwiseORExpressionNoln
LogicalANDExpressionNoln && BitwiseORExpressionNoln

LogicalORExpression :
LogicalANDEXxpression
LogicalORExpression | | LogicalANDExpression

LogicalORExpressionNoln :
Logical ANDExpressionNoln
LogicalORExpressionNoln | | LogicalANDExpressionNoIn

The semantics of the LogicalANDExpressionNoln and LogicalORExpressionNoln productions are the same
manner as the LogicalANDExpression and LogicalORExpression productions except that the contained
Logical ANDExpressionNoln, BitwissORExpressionNoln and LogicalORExpressionNoln are used in place of the
contained LogicalANDExpression, BitwissORExpression and Logical ORExpression, respectively.

NOTE The value produced by a && or | | operator is not necessarily of type Boolean. The value produced will always
be the value of one of the two operand expressions.

Static Semantics: IsValidSimpleAssignmentTarget

152 © Ecma International 2012

secma

Logical ANDExpression : LogicalANDEXxpression && BitwiseORExpression
Logical ORExpression : LogicalORExpression | | LogicalANDExpression

1. Return false.
Runtime Semantics: Evaluation
Logical ANDExpression : LogicalANDExpression && BitwissORExpression

Let Iref be the result of evaluating Logical ANDExpression.
Let Ival be GetValue(lref).

Let Ibool be ToBoolean(lval).

ReturnlfAbrupt(lbool).

If Ibool is false, return Ival.

Let rref be the result of evaluating BitwiseORExpression.
Return GetValue(rref).

Nou~wN R

LogicalORExpression : LogicalORExpression | | LogicalANDEXxpression

Let Iref be the result of evaluating LogicalORExpression.
Let lval be GetValue(lIref).

Let Ibool be ToBoolean(lval).

ReturnIfAbrupt(lbool).

If Ibool is true, return lval.

Let rref be the result of evaluating LogicalANDEXxpression.
Return GetValue(rref).

Noor~wNE

11.12 Conditional Operator (? :)

Syntax
ConditionalExpression :

LogicalORExpression

LogicalORExpression 2 AssignmentExpression : AssignmentExpression
ConditionalExpressionNoln :

LogicalORExpressionNoln

LogicalORExpressionNoln 2 AssignmentExpression : AssignmentExpressionNoln
The semantics of the ConditionalExpressionNoln production is the same as the ConditionalExpression production
except that the contained LogicalORExpressionNoln, AssignmentExpression and AssignmentExpressionNoln are
used in place of the contained LogicalORExpression, first AssignmentExpression and second AssignmentExpression,
respectively.
NOTE The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java, which
each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression.
The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a
conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.
Static Semantics: IsValidSimpleAssignmentTarget
ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression
1. Return false.
Runtime Semantics: Evaluation
ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression

1. Let Iref be the result of evaluating LogicalORExpression.

© Ecma International 2012 153

secmd

n

Let Ival be ToBoolean(GetValue(lref)).

3. ReturnlfAbrupt(lval).
4. If lvalis true, then

a. Let trueRef be the result of evaluating the first AssignmentExpression.
b. Return GetValue(trueRef).

5. Else

a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return GetValue(falseRef).

11.13 Assignment Operators

Syntax

AssignmentExpression :

ConditionalExpression

YieldExpression
ArrowFunction

LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln :

ConditionalExpressionNoln

YieldExpression
ArrowFunction

LeftHandSideExpression = AssignmentExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperator : one of

k= /= %= += - <<= >>= >S>>= &= A= |=

The semantics of the AssignmentExpressionNoln productions are the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoln and AssignmentExpressionNoln are used in
place of the contained ConditionalExpression and AssignmentExpression, respectively.

Static Semantics

Static Semantics: Early Errors

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the
lexical token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left over
using AssignmentPattern as the goal symbol.

If LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical token sequence
matched by LeftHandSideExpression can be parsed with no tokens left over using AssignmentPattern as
the goal symbol then the following rules are not applied. Instead, the Early Error rules for
AssignmentPattern are used.

It is a Syntax Error if LeftHandSideExpression is an Identifier that can be statically determined to always
resolve to a declarative environment record binding and the resolved binding is an immutable binding.
It is an early Reference Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral
and IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

It is a Syntax Error if the LeftHandSideExpression is an Identifier that can be statically determined to
always resolve to a declarative environment record binding and the resolved binding is an immutable
binding.

Itis an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

Static Semantics: IsValidSimpleAssignmentTarget

154

© Ecma International 2012

secma

AssignmentExpression :
YieldExpression
ArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return false.

Runtime Semantics

Runtime Semantics: Evaluation

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral then
Let Iref be the result of evaluating LeftHandSideExpression.
ReturnlfAbrupt(lref).
Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).
Let status be PutValue(lref, rval).
ReturnlfAbrupt(status).
g. Return rval.
Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression using
AssignmentPattern as the goal symbol.
Let rref be the result of evaluating AssignmentExpression.
Let rval be ToObject(GetValue(rref)).
ReturnlfAbrupt(rval).
Let status be the result of performing Destructuring Assignment Evaluation of AssignmentPattern using rval
as the argument.
7. ReturnlfAbrupt(status).
8. Return rval.

+o oo o

N

o 01~ w

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

Let Iref be the result of evaluating LeftHandSideExpression.
Let Ival be GetValue(Iref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let operator be the @ where AssignmentOperator is @=
Let r be the result of applying operator @ to Ival and rval.
. Let status be PutValue(lref, r).

10. ReturnlIfAbrupt(status).

11. Returnr.

©®O N~ WNE

NOTE When an assignment occurs within strict mode code, it is an runtime error if Iref in step 1.e of the first« [Formatted; Note

algorithm or step 9 of the second algorithm it is an unresolvable reference. If it is, a ReferenceError exception is thrown.
The LeftHandSide also may not be a reference to a data property with the attribute value {[[Writable]]:false}, to an accessor
property with the attribute value {[[Set]]:undefined}, nor to a non-existent property of an object for which the IsExtensible
predicate returns the value false. In these cases a TypeError exception is thrown.

11.13.1 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing the production AssignmentExpression : LeftHandSideExpression =
AssignmentExpression the following grammar is used to refine the interpretation of LeftHandSideExpression.

© Ecma International 2012 155

secmd

AssignmentPattern :
ObjectAssignmentPattern
ArrayAssignmentPattern

ObjectAssignmentPattern :
{1}
{ AssignmentPropertyList }
{ AssignmentPropertyList , }

ArrayAssignmentPattern :
[Elisiongp AssignmentRestElementop 1
[AssignmentElementList]
[AssignmentElementList , Elisionop: AssignmentRestElementop: 1

AssignmentPropertyList :

AssignmentProperty

AssignmentPropertyList , AssignmentProperty
AssignmentElementList :

Elisionopt AssignmentElement

AssignmentElementList , Elisionop; AssignmentElement
AssignmentProperty :

Identifier Initialiserop

PropertyName : AssignmentElement

AssignmentElement :
DestructuringAssignmentTarget Initialiseropt

AssignmentRestElement :
. . . DestructuringAssignmentTarget

DestructuringAssignmentTarget :
LeftHandSideExpression

Static Semantics
Static.Semantics: Early Errors

AssignmentProperty : Identifier " Initialiseropt

e Itis a Syntax Error if Identifier is the Identifier eval or the Identifier arguments.
e Itis a Syntax Errorf Identifier [does not statically resolve to a declarative environment record binding

or fif the resolvedbinding is an immutable binding.

AssignmentRestElement . . . DestructuringAssignmentTarget

e Itis a Syntax Error if IsValidSimpleAssignmentTarget of DestructuringAssignmentTarget is false.

DestructuringAssignmentTarget : LeftHandSideExpression

e Itis a Syntax Error LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical
token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left over using

AssignmentPattern as the goal symbol.

e It is a Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and
IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

156

© Ecma International 2012

(Commented [AW85]: This part probably doesn’t need to be)
L here if 11.1.2 has this as a static semantic for extended code.)

secma

e |t is a Syntax Error if the LeftHandSideExpression is an Identifier that can be statically determined to
always resolve to a declarative environment record binding and the resolved binding is an immutable
binding.

e ltis a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments.

. [It is a Syntax Error if IsinvalidAssignmentPattern of LeftHandSideExpression is true.

e Itis a Syntax Error if the LeftHandSideExpression is
CoverParenthesisedExpressionAndArrowParameterList : (Expression)
and Expression derived a production that would produce a Syntax Error according to these rules. This
rule is recursively applied.

Runtime Semantics
Runtime Semantics: Destructuring Assignment Evaluation
with parameter obj

ObjectAssignmentPattern : { }

and
ArrayAssignmentPattern :
[1
[Elision]

1. Return NormalCompletion(empty).
AssignmentPropertyList : AssignmentPropertyList , AssignmentProperty

1. Let status be the result of performing Destructuring Assignment Evaluation for AssignmentPropertyList
using obj as the argument.

2. ReturnlfAbrupt(status).

3. Return the result of performing Destructuring Assignment Evaluation for AssignmentProperty using obj as
the argument.

AssignmentProperty : Identifier Initialiseropt

1. Let P be StringValue of Identifier.
2. Letv be the result of calling Get(obj, P).
3. ReturnlfAbrupt(v).
4. If Initialiseropt is present and v is undefined, then
a. Let defaultValue be the result of evaluating Initialiser.
b. Letv be ToObject(GetValue(defaultValue)).
5. ReturnlfAbrupt(v).
6. Let Iref be the result of performing Identifier Resolution(10.3.1) with the IdentifierName corresponding to

Identifier.
7. Return PutValue(Iref,v).

AssignmentProperty : PropertyName : AssignmentElement

1. Let name be PropName of PropertyName.

2. Return the result of performing Keyed Destructuring Assignment Evaluation of AssignmentElement with obj
and name as the arguments.

ArrayAssignmentPattern : [Elisionept AssignmentRestElement]

1. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

2. Return the result of performing Indexed Destructuring Assignment Evaluation of AssignmentRestElement

with obj and skip as the arguments.

ArrayAssignmentPattern : [AssignmentElementList]

© Ecma International 2012 157

secmd

1. Return the result of performing Indexed Destructuring Assignment Evaluation of AssignmentElementList
using obj and 0 as the arguments.

ArrayAssignmentPattern : [AssignmentElementList , Elisionop: AssignmentRestElementopt 1

1. Let lastindex be the result of performing Indexed Destructuring Assignment Evaluation of

AssignmentElementList using obj and 0 as the arguments.

ReturnlfAbrupt(lastindex).

3. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

4. If AssignmentRestElement is present, then return the result of performing Indexed Destructuring Assignment
Evaluation of AssignmentRestElement with obj and lastindex+skip as the arguments.

5. Return lastIndex.

N

Runtime Semantics: Indexed Destructuring Assignment Evaluation
with parameters obj and index
AssignmentElementList : Elisionoy AssignmentElement

1. Let skip be the Elision Width of Elision; if Elision is not present, use the.numeric value zero.

2. Let name be ToString(index+skip).

3. Let status be the result of performing Keyed Destructuring Assignment Evaluation of AssignmentElement
with obj and name as the arguments.

ReturnlfAbrupt(status).

Return index+skip+1.

o~

AssignmentElementList : AssignmentElementList , Elisionop: AssignmentElement

1. Let listNext be the result of performing Indexed Destructuring Assignment Evaluation of
AssignmentElementList usingobj as the obj parameter and index as the index parameter

Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
ReturnlfAbrupt(listNext).

Let name be ToString(listNext+skip).

Let status be the result of performing Keyed Destructuring Assignment Evaluation of AssignmentElement
with obj and name as the arguments.

ReturnlfAbrupt(status).

7. Return listNext+skip+1.

gk wn

o

AssignmentRestElement : .. . DestructuringAssignmentTarget

1. Let Iref be the result of evaluating DestructuringAssignmentTarget.

2. ReturnlfAbrupt(lref).

3. Let lenVal be the result of Get(obj, "1length").

4. Let len be ToUint32(lenVal).

5. ReturnlfAbrupt(len).

6. Let A be the result of the abstract operation ArrayCreate with argument 0.
7. Letn=0;

8. Repeat, while index < len

a. Let P be ToString(index).
b. Let exists be the result of HasProperty(obj, P).
c. ReturnIfAbrupt(exists).
d. [Ifexists is true, then
i. Letv be the result of Get(obj, ToString(index)).
ii. ReturnlfAbrupt(len).
iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
e. Letn=n+1.
f. Letindex = index+1.
9. Return PutValue(Iref,A).

158 © Ecma International 2012

eCnd

Runtime Semantics: Keyed Destructuring Assignment Evaluation

with parameters obj and propertyName

AssignmentElement : DestructuringAssignmentTarget Initialiseropt

Lo

5.
6.
7

Let v be the result of Get(obj, propertyName).
ReturnlfAbrupt(v).
If Initialiseropt is present and v is undefined, then
a. Let defaultValue be the result of evaluating Initialiser.
b. Letv be GetValue(defaultValue)
If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral then
a. Let AssignmentPattern be the parse of the source code corresponding to
DestructuringAssignmentTarget using AssignmentPattern as the goal symbol
b. Let vObj be ToObject(v).
c. ReturnIfAbrupt(vObj).
d. Return the result of performing Destructuring Assignment Evaluation of AssignmentPattern with
vObj as the argument.
ReturnlfAbrupt(v).
Let Iref be the result of evaluating DestructuringAssignmentTarget.
Return PutValue(lref,v).

11.14 Comma Operator (,)

Syntax

Expression :

AssignmentExpression
Expression , AssignmentExpression

ExpressionNoln :

AssignmentExpressionNoln
ExpressionNolIn , AssignmentExpressionNoln

The semantics of the ExpressionNoln production.is the same manner as the Expression production except that
the contained ExpressionNoln and AssignmentExpressionNoln are used in place of the contained Expression and
AssignmentExpression, respectively.

Static Semantics: IsValidSimpleAssignmentTarget

Expression : Expression , AssignmentExpression

1

Return false.

Runtime Semantics: Evaluation

Expression : Expression ,” AssignmentExpression

1. Let Iref be the result of evaluating Expression.

2. ReturnlfAbrupt(GetValue(lref))

3. Let rref be the result of evaluating AssignmentExpression.

4. Return GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

© Ecma International 2012

159

secmd

12 Statements and Declarations

Syntax

Statement :
BlockStatement
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
BreakableStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
ThrowStatement
TryStatement
DebuggerStatement

Declaration :
FunctionDeclaration
GeneratorDeclaration
ClassDeclaration
LexicalDeclaration

BreakableStatement :
IterationStatement
SwitchStatement

Static Semantics
Static Semantics: VarDeclaredNames

Statement :

EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return'a new empty List.
Runtime Semantics
Runtime Semantics: Labelled Evaluation

With argument labelSet.
BreakableStatement : lterationStatement
1. Let stmtResult be the result of performing Labelled Evaluation of IterationStatement with argument labelSet.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then

a. If stmtResult.[[value]] is empty, then let stmtResult be NormalCompletion(undefined).

b. Else, let stmtResult be NormalCompletion(stmtResult.[[value]])
3. Return stmtResult.

160 © Ecma International 2012

secma

BreakableStatement : SwitchStatement
1. Let stmtResult be the result of evaluating SwitchStatement.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then
a. If stmtResult.[[value]] is empty, then let stmtResult be NormalCompletion(undefined).
b. Else, let stmtResult be NormalCompletion(stmtResult.[[value]])
3. Return stmtResult.
NOTE A BreakableStatement is one that can be exited via an unlabelled BreakStatement.
Runtime Semantics: Evaluation
[BreakableStatement :
IterationStatement
SwitchStatement

1. LetnewLabelSet be a new empty List.
2. Return the result of performing Labelled Evaluation of this BreakableStatement with argument newLabelSet.

12.1 Block

Syntax

BlockStatement :
Block

Block :
{ StatementListopt }

StatementList :
StatementListltem
StatementList StatementListltem
StatementListltem :
Statement
Declaration
Static Semantics
Static Semantics: Early Errors
Block: { StatementList }
e |tis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
e Itis a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.
Static Semantics: LexicalDeclarations
StatementList : StatementList StatementListltem
1. Letdeclarations be LexicalDeclarations of StatementList.
2. Append to declarations the elements of the LexicalDeclarations of StatementListltem.
3. Return declarations.
StatementListitem : Statement

1. Return a new empty List.

StatementListltem : Declaration

© Ecma International 2012 161

secmd

1. Return a new List containing Declaration.

Static Semantics: LexicallyDeclaredNames

Block: { }

1. Return a new empty List.

StatementList : StatementList StatementListltem

1. Let names be LexicallyDeclaredNames of StatementList.

2. Append to names the elements of the LexicallyDeclaredNames of StatementListltem.
3. Return names.

StatementListitem : Statement

1. Return a new empty List.

StatementListltem : Declaration

1. Return the BoundNames of Declaration.

Static Semantics: ToplLevelLexicallyDeclaredNames

StatementList : StatementList StatementListltem

1. Let names be TopLevelLexicallyDeclaredNames of StatementList.

2. Append to names the elements of the TopLevelLexicallyDeclaredNames of StatementListltem.
3. Return names.

StatementListitem : Statement

1. Return a new empty List.

StatementListltem : Declaration

1. If Declaration.is Declaration : FunctionDeclaration, then return a new empty List.
2. Return the BoundNames of Declaration.

NOTE At the top level of a function, or script, function declarations are treated like var declarations rather than like
lexical declarations.

Static Semantics: ToplLevellLexicallyScopedDeclarations

StatementList : StatementList StatementListltem

1. Letdeclarations be TopLevelLexicallyScopedDeclarations of StatementList.

2. Append to declarations the elements of the TopLevelLexicallyScopedDeclarations of StatementListltem.
3. Return declarations.

StatementListltem : Statement

1. Return a new empty List.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new empty List.
2. Return a new List containing Declaration.

Static Semantics: TopLevelVarDeclaredNames

162 © Ecma International 2012

secmd

StatementList : StatementList StatementListltem

1. Let names be TopLevelVarDeclaredNames of StatementList.

2. Append to names the elements of the TopLevelVarDeclaredNames of StatementListltem.

3. Return names.

StatementListitem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return the LexicallyDeclaredNames of
Declaration.

2. Return a new empty List.

StatementListltem : Statement

1. Return VarDeclaredNames of Statement.

NOTE At the top level of a function or script, inner function declarations are treated like var declarations.

Static Semantics: ToplLevelVarScopedDeclarations

StatementList : StatementList StatementListltem

1. Letdeclarations be TopLevelVarScopedDeclarations of StatementList.

2. Append to declarations the elements of the TopLevelVarScopedDeclarations of StatementListltem.

3. Return declarations.

StatementListltem : Statement

1. If Statement is Statement : VariableStatement, then return a new List containing VariableStatement.
2. Return a new empty List.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new List containing Declaration.
2. Return a new empty List:

Static Semantics: VarDeclaredNames

Block : { ¥

1. Return a new empty List.

StatementList : StatementList StatementListltem

1. Let names be VarDeclaredNames of StatementList.
2. Append to names the elements of the VarDeclaredNames of StatementListltem.
3. Return names.

StatementListitem : Declaration

2. Return a new empty List.

Runtime Semantics

Runtime Semantics: Evaluation

Block: { }

1. [Return NormalCompletion(undefined).|

|

Commented [AWB1388]: Breaking change: completion
reform

|

C ed [AWB1389]: TODO, need to verify that under

© Ecma International 2012 163

|

ompletion reform empty blocks evaluate to undefined.

|

o2eCha

Block : { StatementList }

Let oldEnv be the running execution context’s LexicalEnvironment.

Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Perform Block Declaration Instantiation using StatementList and blockEnv.

Set the running execution context’s LexicalEnvironment to blockEnv.

Let blockValue be the result of evaluating StatementList.

Set the running execution context’s LexicalEnvironment to oldEnv.

If blockValue.[[type]] is normal and blockValue.[[value]] is empty, then

Nou,rwnpE

a. Return NormalCompletion(undefined). Commented [AWB1390]: Breaking change: completion
8. Return blockValue. reform

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
[StatementList : StatementList StatementListltem

Let sl be the result of evaluating StatementList.

ReturnlfAbrupt(sl).

Let s be the result of evaluating StatementListltem.

If s.[[type]] is throw, returns.

If s.[[value]] is empty, let V = sl.[[value]], otherwise let V = s.[[value]]:
Return Completion {[[type]]: s.[[type]], [[valuel]: V, [[target]]: s.[[target]]}.

R S

NOTE Steps 4 and 5 of the above algorithm ensure that the value of a StatementList is the value of the last value
producing Statement in the StatementList. For example, the following calls to the eval function all return the value 1:

eval("1;{}")| Commented [AWB1392]: ISSUE: above changes to
eval ("1;var a;") completion reform will means this evaluates to undefined
rather than 1 is

12.2 Declarations and the Variable Statement
12.2.1 Let and Const Declarations

NOTE A 1let and const declarations define variables that are scoped to the running execution context's
LexicalEnvironment. The variables are created when their.containing Lexical Environment is instantiated but may not be
accessed in any way until the variable’s LexicalBinding is evaluated. A variable defined by a LexicalBinding with an
Initialiser is assigned-the value of its Initialiser’s AssignmentExpression when the LexicalBinding is evaluated, not when the
variable is created. If a LexicalBinding in.a let declaration does not have an an Initialiser the variable is assigned the
value undefined when the LexicalBinding is evaluated.

Syntax

LexicalDeclaration :
LetOrConst BindingList ;

LexicalDeclarationNoln :
LetOrConst BindingListNolIn

LetOrConst :
let
const

BindingList :
LexicalBinding
BindingList , LexicalBinding

BindingListNoln :

LexicalBindingNoln
BindingListNoln , LexicalBindingNoln

164 © Ecma International 2012

secma

LexicalBinding :
Bindingldentifier Initialiseropt
BindingPattern Initialiser
LexicalBindingNoln :
Bindingldentifier InitialiserNolInept
BindingPattern InitialiserNoln

Bindingldentifier :
Identifier

InitialiserNoln :
= AssignmentExpressionNoln

The semantics of the LexicalDeclarationNoln, BindingListNoln, LexicalBindingNoln and InitialiserNoln
productions are the same as the LexicalDeclaration, BindingList, LexicalBinding and Initialiser productions
except that the contained BindingListNoln, LexicalBindingNoln, InitialiserNoIln and AssignmentExpressionNoln are
used in place of the contained BindingList, LexicalBinding, Initialiser and AssignmentExpression, respectively.
Static Semantics
Static Semantics: Early Errors
LexicalBinding : Bindingldentifier

e ltis a Syntax Error if IsConstantDeclaration of the LexicalDeclaration containing this production is true.

Bindingldentifier : ldentifier

e |t is a Syntax Error if the Bindingldentifier is contained in strict code and if the Identifier is eval or
arguments.

Static Semantics: BoundNames

LexicalDeclaration : LetOrConst BindingList ;

1. Return the'BoundNames of BindingList.

BindingList : BindingList , LexicalBinding

1. Let names be the BoundNames of BindingList.

2. Append to names the elements of the BoundNames of LexicalBinding.
3. Return names.

LexicalBinding : Bindingldentifier Initialiseropt

1. Return the BoundNames of Bindingldentifier.
LexicalBinding : BindingPattern Initialiser

1. Return the BoundNames of BindingPattern.
Bindingldentifier : Identifier

1. Return a new List containing the StringValue of Identifier.

Static Semantics: IsConstantDeclaration

LexicalDeclaration : LetOrConst BindingList ;

© Ecma International 2012 165

Commented [AWB893]: Consider disallowing undefined as
a binding identifier in all new declaration forms.

oechna

1. Return IsConstantDeclaration of LetOrConst.
LetOrConst: let
1. Return false.
LetOrConst: const
1. Return true.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialised prior to evaluation of its initialiser.
Bindingldentifier : ldentifier
1. If environment is not undefined, then
a. Letname be StringValue of Identifier.
b. Letenv be the environment record.component of environment.
c. Call the InitialiseBinding concrete method of . env passing name and value as the arguments.
d. Return NormalCompletion(undefined).
2. Else
a. Let lhs be the result of evaluating Identifier as described in 11:1.2.
b. Return PutValue(lhs,value).
Runtime Semantics: Evaluation
LexicalDeclaration : LetOrConst BindingList ;
1. Let next be the result of evaluating BindingList.
2. ReturnlfAbrupt(next).
3. Return.NormalCompletion(empty).
BindingList : BindingList , LexicalBinding
1. Letnextbe the result of evaluating BindingList.
2. ReturnlfAbrupt(next).
3. Return the result of evaluating LexicalBinding.
LexicalBinding : Bindingldentifier
1. Letenv be the running execution context’s LexicalEnvironment.
2. Return the result of performing Binding Initialisation for Bindingldentifier passing undefined and env as the
arguments.
NOTE A static semantics rule ensures that this form of LexicalBinding never occurs in a const declaration.
LexicalBinding : Bindingldentifier Initialiser
Let rhs be the result of evaluating Initialiser.
Let value be GetValue(rhs).

ReturnlfAbrupt(value).
Let env be the running execution context’s LexicalEnvironment.

Hwn e

166 © Ecma International 2012

secma

5. Return the result of performing Binding Initialisation for Bindingldentifier passing value and env as the
arguments.

LexicalBinding : BindingPattern Initialiser

1. Let rhs be the result of evaluating Initialiser.

2. Letvalue be ToObject(GetValue(rhs)).

3. ReturnlfAbrupt(value).

4. Let env be the running execution context’s LexicalEnvironment.

5. Return the result of performing Binding Initialisation for BindingPattern using value and env as the
arguments.

12.2.2 Variable Statement

NOTE A var statement declares variables that are scoped to the running execution context's VariableEnvironment.
Var variables are created when their containing Lexical Environment is instantiated and are initialised to undefined when
created. Within the scope of any VariableEnvironemnt a common’ Identifier may appear in more than one
VariableDeclaration but those declarations collective define only one variable. A variable defined by a VariableDeclaration
with an Initialiser is assigned the value of its Initialiser’s AssignmentExpression when the VariableDeclaration is executed, not
when the variable is created.

Syntax

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoln :
VariableDeclarationNoln
VariableDeclarationListNolIn , VariableDeclarationNolIn

VariableDeclaration :
Bindingldentifier Initialiseropt
BindingPattern Initialiser

VariableDeclarationNoln :

Bindingldentifier InitialiserNoInept

BindingPattern InitialiserNoln
The semantics of the VariableDeclarationListNoln, VariableDeclarationNoln and InitialiserNoln productions are
the same as the VariableDeclarationList, VariableDeclaration and Initialiser productions except that the
contained VariableDeclarationListNoIn, VariableDeclarationNoln, InitialiserNoln and AssignmentExpressionNoln
are used in of the contained VariableDeclarationList, VariableDeclaration, Initialiser and AssignmentExpression,
respectively.
Static Semantics
Static Semantics: BoundNames

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of BoundNames of VariableDeclaration.
3. Return names.

VariableDeclaration : Bindingldentifier Initialiseropt

© Ecma International 2012 167

secmd

1. Return the BoundNames of Bindingldentifier.
VariableDeclaration : BindingPattern Initialiser
1. Return the BoundNames of BindingPattern.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialised prior to evaluation of its initializer.

VariableDeclaration : Bindingldentifier

1. Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

VariableDeclaration : Bindingldentifier Initialiser

1. Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

VariableDeclaration : BindingPattern Initialiser

1. Return the result of performing Binding Initialisation for BindingPattern passing value and undefined as the
arguments.

Runtime Semantics: Evaluation

VariableStatement : varx VariableDeclarationList ;

1. Let next be the result of evaluating VariableDeclarationList.

2. ReturnlfAbrupt(next).

3. Return NormalCompletion(empty).

VariableDeclarationList : VariableDeclarationList , VariableDeclaration
1. Letnext be the result of evaluating VariableDeclarationList.

2. ReturnlfAbrupt(next).

3. Return the result of evaluating VariableDeclaration.
VariableDeclaration : Bindingldentifier

1. Return NormalCompletion(empty).

VariableDeclaration : Bindingldentifier Initialiser

1. Let rhs be the result of evaluating Initialiser.

2. Letvalue be GetValue(rhs).

3. ReturnIfAbrupt(value).

4. Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

NOTE If a VariableDeclaration is nested within a with statement and the Identifier in the VariableDeclaration is the

same as a property name of the binding object of the with statement’s object environment record, then step 3 will assign
value to the property instead of to the VariableEnvironment binding of the Identifier.

168 © Ecma International 2012

oecmd

VariableDeclaration : BindingPattern Initialiser

Let rhs be the result of evaluating Initialiser.

Let rval be ToObject(GetValue(rhs)).

ReturnlfAbrupt(rval).

Return the result of performing Binding Initialisation for BindingPattern passing rval and undefined as
arguments.

gk

12.2.4 Destructuring Binding Patterns

Syntax

BindingPattern :
ObjectBindingPattern
ArrayBindingPattern

ObjectBindingPattern :

{1}
{ BindingPropertyList }

Commented [AW94]: The destructuring wiki page argues
for allowing empty binding patterns. I'm not really convinced.

{ BindingPropertyList , }

ArrayBindingPattern :

[lEIiSionQp[BindingRestEIementop‘]] ‘ Commented [AW95]: See above comment about empty
[BindingElementList l] binding patterns.

[BindingElementList , Elisiono,: BindingRestElementop:] Commented [AW96]: See above comment about empty
binding patterns.

BindingPropertyList :

BindingProperty

BindingPropertyList , BindingProperty
BindingElementList :

Elisionept BindingElement

BindingElementList , Elisiono,: BindingElement
BindingProperty :

SingleNameBinding

PropertyName : BindingElement
BindingElement :

SingleNameBinding

BindingPattern Initialiserop

SingleNameBinding :
Bindingldentifier Initialiseropt

BindingRestElement :
. . . Bindingldentifier

Static Semantics
Static Semantics: Early Errors
BindingPattern : ObjectBindingPattern

e |tis a Syntax Error if the BoundNames of ObjectBindingPattern contains the string “eval” or the string
“arguments’.

BindingPattern : ArrayBindingPattern

© Ecma International 2012 169

secmd

e [tis a Syntax Error if the BoundNames of ArrayBindingPattern contains the string “eval” or the string
“arguments”.

Static Semantics: BoundNames

ObjectBindingPattern : { }

1. Return an empty List.

jArrayBindingPattern : [Elisionopt 1

1. Return an empty List.

ArrayBindingPattern : [Elisionop BindingRestElement]

1. Return the BoundNames of BindingRestElement.
ArrayBindingPattern : [BindingElementList , Elisionopt 1

1. Return the BoundNames of BindingElementList.
ArrayBindingPattern : [BindingElementList , Elisionop: BindingRestElement]
1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingRestElement.
3. Return names.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let names be BoundNames.of BindingPropertyList.

2. Append to names the elements of BoundNames of BindingProperty.
3. Return names.

BindingElementList : Elisiongp: BindingElement

1. Return BoundNames of BindingElement.

BindingElementList : BindingElementList., Elisionop: BindingElement

1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingElement.
3. Return names.

BindingProperty : PropertyName : BindingElement

1. Return the BoundNames of BindingElement.

SingleNameBinding : Bindingldentifier Initialiseropt

1. Return the BoundNames of Bindingldentifier.

BindingElement : BindingPattern Initialiseropt

1. Return the BoundNames of BindingPattern.

Static Semantics: Haslnitialiser

BindingElement : BindingPattern

170 © Ecma International 2012

secma

1. Return false.

BindingElement : BindingPattern Initialiser

1. Return true.

SingleNameBinding : Bindingldentifier

1. Return false.

SingleNameBinding : Bindingldentifier Initialiser

1. Return true.

Runtime Semantics

Runtime Semantics: Binding Initialisation
With parameters value and environment.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the

initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.

BindingPattern : ObjectBindingPattern

1. Assert: Type(value) is Object

2. Return the result of performing Binding Initialisation for. ObjectBindingPattern using value and
environment as arguments.

BindingPattern : ArrayBindingPattern

1. Assert: Type(value) is Object

2. Return the result of performing Indexed Binding Initialisation for ArrayBindingPattern using value, 0, and
environment as arguments.

ObjectBindingPattern.: { }

1. Return NormalCompletion(empty).

]BindingPropertyList: BindingPropertyList , BindingProperty

1. Let status be the result of performing Binding Initialisation for BindingPropertyList using value and
environment as arguments:

2. ReturnIfAbrupt(status).

3. Return the result of performing Binding Initialisation for BindingProperty using value and environment as
arguments.

BindingProperty : SingleNameBinding

1. Let name be the string that is the only element of BoundNames of SingleNameBinding.

2. Return the result of performing Keyed Binding Initialisation for SingleNameBinding using value,
environment, and name as the arguments.

BindingProperty : PropertyName : BindingElement

1. Let P be the PropName of PropertyName

2. Return the result of performing Keyed Binding Initialisation for BindingElement using value, environment,
and P as arguments.

© Ecma International 2012 171

secmd

Runtime Semantics: Indexed Binding Initialisation
With parameters array, nextindex, and environment.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.

ArrayBindingPattern : [Elisiongp:]
1. Return NormalCompletion(empty).
ArrayBindingPattern: [Elisionop BindingRestElement]

1. Let nextlndex be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
2. Return the result of performing Indexed Binding Initialisation for BindingRestElement using array,
nextindex, and environment as arguments.

ArrayBindingPattern: [BindingElementList]

1. Return the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextindex, and environment as arguments.

ArrayBindingPattern: [BindingElementList , Elisionopt]

1. Return the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextindex, and environment as arguments.

ArrayBindingPattern: [BindingElementList , Elisiongpt BindingRestElement]

1. Let next be the result of performing Indexed Binding Initialisation for BindingElementList using array ,
nextindex, and environment as arguments.

2. ReturnlfAbrupt(next).

3. Let skip be the Elision Width of Elision;.if Elision is not present, use the numeric value zero.

4. Return the result of performing Indexed Binding Initialisation for BindingRestElement using array,
next+skip , and environment as arguments.

BindingElementList : Elisiong,: BindingElement

1. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

2. Let status be the result of performing Indexed Binding Initialisation for BindingElement using array,
nextlndex+skip , and environment as arguments.

ReturnlfAbrupt(status).

4. Return nextindex +skip+1:

w

BindingElementList : BindingElementList , Elisiono, BindingElement

1. Let listNext be the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextindex, and environment as arguments.

2. ReturnlfAbrupt(listNext).

3. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

4. Let status be the result of performing Indexed Binding Initialisation for BindingElement using array,
listNext+skip , and environment as arguments.

5. ReturnlfAbrupt(status).

6. Return listNext +skip+1.

BindingElement : SingleNameBinding

172 © Ecma International 2012

eCina

1.

Return the result of performing Keyed Binding Initialisation for SingleNameBinding using array,
environment, and ToString(nextIndex) as the arguments.

BindingElement : BindingPattern Initialiseropt

BTl N

Let P be ToString(nextindex).

Let v be the result of Get(array, P).

ReturnIfAbrupt(v).

If Initialiseropt is present and v is undefined, then

a. LetdefaultValue be the result of evaluating Initialiser.
b. Letv be ToObject(GetValue(defaultvalue)).
ReturnlfAbrupt(v).

Return the result of performing Binding Initialisation for BindingPattern passing v and environment as

arguments.

BindingRestElement : . .. Bindingldentifier

XN A WN

Let A be the result of the abstract operation ArrayCreate with.argument 0.
Let lenVal be the result of Get(array, "length").
Let arrayLength be ToUint32(lenVal).
ReturnlfAbrupt(arrayLength).
Let n=0.
Let index = nextIndex.
Repeat, while index < arrayLength
a. Let P be ToString(index).
b. Let exists be the result of HasProperty(array, P):
c. ReturnIfAbrupt(exists).
d. [Ifexists is true, then
i. Letv be the result of Get(array, P).
ii. ReturnIfAbrupt(v).
iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

e. Letn=n+l
f. Letindex = index+1.
Return the result of performing Binding Initialisation for Bindingldentifier using A and environment as
arguments.

Runtime Semantics: Keyed Binding Initialisation

NOTE

With parameters obj, environment, and. propertyName.

When undefined is passed for environment it indicates that a PutValue operation should be used to assign the

initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.

BindingElement : BindingPattern Initialiseropt

1
2.
3.

>

Let v be the result of Get(obj, propertyName).

ReturnIfAbrupt(v).

If Initialiseropt is present and v is undefined, then

a. LetdefaultValue be the result of evaluating Initialiser.

b. Letv be ToObject(GetValue(defaultValue)).

ReturnlfAbrupt(v).

Return the result of performing Binding Initialisation for BindingPattern passing v and environment as
arguments.

SingleNameBinding : Bindingldentifier Initialiseropt

1

Let v be the result of Get(obj, propertyName).

© Ecma International 2012

173

secmd

ReturnIfAbrupt(v).
3. If Initialiseropt is present and v is undefined, then
a. Let defaultValue be the result of evaluating Initialiser.
b. Letv be GetValue(defaultValue).
4. ReturnlfAbrupt(v).
5. Return the result of performing Binding Initialisation for Bindingldentifier passing v and environment as
arguments.

N

12.3 Empty Statement

Syntax
EmptyStatement :

Runtime Semantics

Runtime Semantics: Evaluation
EmptyStatement : ;

1. Return NormalCompletion(empty).
12.4 Expression Statement

Syntax
ExpressionStatement :
[lookahead ¢ {{, function, class }] Expression ;

NOTE An ExpressionStatement cannot start with an opening curly brace because that might make it ambiguous with a
Block. Also, an ExpressionStatement cannot start with the function or class keywords because that would make it
ambiguous with a FunctionDeclaration, a GeneratorDeclaration, or a ClassDeclaration.

Runtime Semantics

Runtime Semantics: Evaluation

ExpressionStatement : [lookahead ¢ {{, function, class }] Expression;
Let exprRef be the result of evaluating Expression.

Let value be GetValue(exprRef).

ReturnlfAbrupt(value).
Return NormalCompletion(value).

HwN e

12.5 The if Statement

Syntax

IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible
if that would otherwise have no corresponding else.

Static Semantics: VarDeclaredNames

IfStatement : i£ (Expression) Statement else Statement

174 © Ecma International 2012

recma

Let names be VarDeclaredNames of the first Statement.

Append to names the elements of the VarDeclaredNames of the second Statement.

Return names.

IfStatement : i £ (Expression) Statement

1

Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Evaluation

IfStatement : i £ (Expression) Statement else Statement

Eal Sl N

o1

6.

7.

Let exprRef be the result of evaluating Expression.
Let exprValue be ToBoolean(GetValue(exprRef)).
ReturnlfAbrupt(exprValue).
If exprValue is true, then
a. Let stmtValue be the result of evaluating the first Statement.
Else,
a. Let stmtValue be the result of evaluating the second Statement:
[If stmtValue.[[type]] is normal and stmtValue.[[value]] is empty, then
a. Return NormalCompletion(undefined). |
Return stmtValue.

IfStatement : i £ (Expression) Statement

Eal Sl N

o1

6.

7.

Let exprRef be the result of evaluating Expression.
Let exprValue be ToBoolean(GetValue(exprRef)).
ReturnlfAbrupt(exprValue).
If exprValue is false, then
a. Return NormalCompletion(undefined).
Else,
a. Let stmtValue be the result of evaluating Statement.
[If stmtValue.[[type]] is normal and stmtValue.[[value]] is empty, then
a. Return NormaICompIetion(undefined).]
Return stmtValue.

12.6 lteration Statements

Syntax

IterationStatement :

do Statement while (Expression)
while (Expression) Statement
for (ExpressionNolngpt; Expressionop: ; Expressionep) Statement

for (var VariableDeclarationListNoln ; Expressionept ; Expressionep) Statement
for (LexicalDeclarationNoln ; Expressionop: ; Expressionop) Statement

for (LeftHandSideExpression in Expression) Statement

for (var ForBinding in Expression) Statement

for (ForDeclaration in Expression) Statement

for (LeftHandSideExpression of AssignmentExpression) Statement
for (var ForBinding of AssignmentExpression) Statement

for (ForDeclaration of AssignmentExpression) Statement

ForDeclaration :

LetOrConst ForBinding

NOTE1 ForBinding is defined in 11.1.4.2.

© Ecma International 2012

Commented [AWB1399]: Breaking change from ES5:
completion reform

Commented [AWB6100]: Breaking change from ES5:
completion reform

Commented [AWB13101]: Breaking change from ES5:
completion reform

Commented [AWB6102]: This is breaking change from
ES5 which allowed a VariableDeclarationNolIn to appear here.
See es-discuss thread “lexical for-in/for-of loose end”

175

secmd

NOTE 2 A semicolon is not required after a do-while statement.

Runtime Semantics

Runtime Semantics: LoopContinues Abstract Operation

The abstract operation LoopContinues with arguments completion and labelSet is defined by the following step:
If completion.[[type]] is normal, then return true.

If completion.[[type]] is not continue, then return false.

If completion.[[target]] is empty, then return true.

If completion.[[target]] is an element of labelSet, then return true.
Return false.

arowpe

NOTE Within the Statement part of an IterationStatement a ContinueStatement.may be used to begin a new iteration.
12.6.1 The do-while Statement
Static Semantics: VarDeclaredNames
IterationStatement : do Statement while (Expression)
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Labelled Evaluation
With argument labelSet.
IterationStatement : do Statement while (Expression ')

1. LetV =undefined.
2. Repeat
a. Let stmt be the result of evaluating Statement.

If stmt.[[value]] is notempty, let V = stmt.[[value]].
If stmt is-an abrupt completion and LoopContinues (stmt,labelSet) is false, return stmt.
Let exprRef be the result of evaluating Expression.
Let exprValue be ToBoolean(GetValue(exprRef)).
If exprValue is false, Return NormalCompletion(V).
Else if exprvalueis not true, then

i Assert: exprValue is an abrupt completion.

il. If LoopContinues (exprValue,labelSet) is false, return exprValue.

PR T

12.6.2 The while Statement

Static Semantics: VarDeclaredNames

IterationStatement : while (Expression) Statement

1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Labelled Evaluation
With argument labelSet.

IterationStatement : while (Expression) Statement

176 © Ecma International 2012

Commented [AWB6103]: Note that this is technically a
breaking change from ES5, however it is made to match web
reality.

Commented [AWB6104]: Breaking change: completion
reform

Commented [AWB6105]: Break/continue/return in the
expression works normally (future for do {} or block lamda
expressions)

secma

1. LetV =undefined. Commented [AWB6106]: ES5 breaking change:
2. Repeat completion reform

a. Let exprRef be the result of evaluating Expression.

b. Let exprValue be ToBoolean(GetValue(exprRef)).
c. IfexprValue is false, return NormalCompletion(V).
d

If exprValue is not true, then Commented [AWB61071: Break/continue/return in the
i. Assert: exprValue is an abrupt completion. expression works normally (future for do {} or block lamda
ii. If LoopContinues (exprValue,labelSet) is false, return exprVvalue. expressions)

e. Let stmt be the result of evaluating Statement.
f. If stmt.[[value]] is not empty, let V = stmt.[[value]].
g. If LoopContinues (stmt,labelSet) is false, return stmt.

12.6.3 [The for Statement\ Ci ed [AWB 3108]: The lexical scoping of for
iteration variables still needs to be taken care of

Static Semantics
Static Semantics: VarDeclaredNames
IterationStatement : for (ExpressionNolnep ; Expressionep ; Expressionop) Statement
1. Return the VarDeclaredNames of Statement.
IterationStatement : for (var VariableDeclarationListNoln ; Expressionopt ; Expressionopt) Statement
1. Let names be BoundNames of VariableDeclarationListNolIn.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.
IterationStatement : for (LexicalDeclarationNoln; Expressionopt ; EXpressionop:) Statement
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Labelled Evaluation
With argument labelSet.
IterationStatement : for (ExpressionNolngp: ; Expressionep: ; Expressionop) Statement
1. IfExpressionNoln is present, then
a. Let exprRef be the result of evaluating ExpressionNoln.
b." Let exprValue be GetValue(exprRef).
c. If LoopContinues(exprValue,labelSet) is false, return exprValue.
2. Return the result of performing For Body Evaluation with the first Expression as the testExpr argument, the

second Expression asthe incrementExpr argument, Statement as the stmt argument, and with labelSet.

IterationStatement : for (var VariableDeclarationListNoln ; Expressionopt ; Expressionept) Statement

[

Let varDcl be the result of evaluating VariableDeclarationListNolIn.

2. If LoopContinues(varDcl,labelSet) is false, return varDcl.

3. Return the result of performing For Body Evaluation with the first Expression as the testExpr argument, the
second Expression as the incrementExpr argument, Statement as the stmt argument, and with labelSet.

IterationStatement : for (LexicalDeclarationNoln ; Expressionopt ; Expressionopt) Statement Commented [AWB6110]: A final decision has not yet been
reached on the scoping semantics used for this form of for
statement. This version uses “loop scoping” a single set of

1. Let oldEnv be the running execution context’s Le_x1ca1Er_1v1r0nment.) R RS v 0Ses) (e s 6 e, This(s
2. Let loopEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument. the simpliest of the semantics under consideration.
3. Let isConst be the result of performing IsConstantDeclaration of LexicalDeclarationNoln.

© Ecma International 2012 177

secmd

4. For each element dn of the BoundNames of LexicalDeclarationNolIn do
a. IfisConstis true, then
i Call loopEnv’s CreatelmmutableBinding concrete method passing dn as the argument.
b. Else,
i Call loopEnv’s CreateMutableBinding concrete method passing dn and false as the
arguments.

Set the running execution context’s LexicalEnvironment to loopEnv.

6. Let forDcl be the result of evaluating LexicalDeclarationNolIn.

7. If LoopContinues(forDcl,labelSet) is false, then

a. Set the running execution context’s LexicalEnvironment to oldEnv.
b. Return forDcl.

8. Let bodyResult be the result of performing For Body Evaluation with the first Expression as the testExpr
argument, the second Expression as the incrementExpr argument, Statement as the stmt argument, and with
labelSet.

9. Set the running execution context’s LexicalEnvironment to oldEnv.

10. Return bodyResult.

o

Runtime Semantics: For Body Evaluation Abstract Operation

The abstract operation For Body Evaluation with arguments testExpr, incrementExpr, stmt, and labelSet is
performed as follows:

1. LetV =undefined. Commented [AWB6111]: ES5 breaking change:
2. Repeat Completion reform
a. If testExpr is not [empty], then
i Let testExprRef be the result of evaluating testExpr.
ii. Let testExprValue be ToBoolean(GetValue(testExprRef))
iii. If testExprValue is false, return NormalCompletion(V).
iv. Else if LoopContinues (testExprValue,labelSet) is false, return testExprValue.
Let result be the result.of evaluating stmt.
If result.[[value]] is not empty, let V = result.[[value]].
If LoopContinues (result,labelSet) is false, return result.
If incrementEXpr is not [empty], then
i Let incExprRef be the result of evaluating incrementExpr.
ii. Let'incExprValue be GetValue(incExprRef).
iii. If LoopContinues(incExprValue,labelSet) is false, return incExprValue.

®oo0oT

12.6.4 The for-in and for-of Statements
Static. Semantics
Static Semantics: Early Errors

IterationStatement :
for (LeftHandSideExpression in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement

e Itis a Syntax Error LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical
token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left over using
AssignmentPattern as the goal symbol.

e If LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical token sequence
matched by LeftHandSideExpression can be parsed with no tokens left over using AssignmentPattern as
the goal symbol then the following rules are not applied. Instead, the Early Error rules for
AssignmentPattern are used.

e It is a Syntax Error if the LeftHandSideExpression is an Identifier that can be statically determined to
always resolve to a declarative environment record binding and the resolved binding is an immutable
binding.

e It is a Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and
IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

178 © Ecma International 2012

secma

e Itis a Syntax Error if the LeftHandSideExpression is
CoverParenthesisedExpressionAndArrowParameterList : (Expression)
and Expression derived a production that would produce a Syntax Error according to these rules. This
rule is recursively applied.
IterationStatement :
for (ForDeclaration in Expression) Statement
for (ForDeclaration of AssignmentExpression) Statement

e It is a Syntax Error if any element of the BoundNames of ForDeclaration also occurs in the
VarDeclaredNames of Statement.

Static Semantics: BoundNames
ForDeclaration : LetOrConst ForBinding
1. Return the BoundNames of ForBinding.
Static Semantics: VarDeclaredNames
IterationStatement : for (LeftHandSideExpression in Expression.) Statement
1. Return the VarDeclaredNames of Statement.
IterationStatement : for (var ForBinding in Expression) Statement
1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames.of Statement.
3. Return names
IterationStatement : for (ForDeclaration in Expression) Statement
1. Return the VarDeclaredNames of Statement.
IterationStatement : for (LeftHandSideExpression of AssignmentExpression) Statement
1. Return the'VarDeclaredNames of Statement.
IterationStatement : for (war ForBinding of AssignmentExpression) Statement
1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VVarDeclaredNames of Statement.
3. Return names
IterationStatement : £or (ForDeclaration of AssignmentExpression) Statement
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Binding Instantiation
With arguments value and environment.
ForDeclaration : LetOrConst ForBinding
1. Foreach element name of the BoundNames of ForBinding do

a. If IsConstantDeclaration of LetOrConst is false, then
i. Call environment’s CreateMutableBinding concrete method with argument name.

© Ecma International 2012 179

secmd

b. Else,
i. Call environment’s CreatelmmutableBinding concrete method with argument name.
2. Return the result of performing Binding Initialisation for ForBinding passing value and environment as the
arguments.

Runtime Semantics: Labelled Evaluation
With argument labelSet.
IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Expression, enumerate,
and labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with LeftHandSideExpression, Statement,
keyResult, assignment, and labelSet.

IterationStatement : for (var ForBinding in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Expression, enumerate,
and labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with ForBinding, Statement, keyResult,
varBinding, and labelSet.

IterationStatement : for (ForDeclaration in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Expression, enumerate,
and labelSet.

2. ReturnIfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with ForDeclaration, Statement, keyResult,
lexicalBinding, and labelSet.

IterationStatement : for (LeftHandSideExpression of AssignmentExpression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with AssignmentExpression,
iterate, and labelSet.

2. ReturnifAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with LeftHandSideExpression, Statement,
keyResult, assignment, and labelSet.

IterationStatement : for (var ForBinding of AssignmentExpression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with AssignmentExpression,
iterate, and labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with ForBinding, Statement, keyResult,
varBinding, and labelSet.

IterationStatement : for (ForDeclaration of AssignmentExpression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with AssignmentExpression,
iterate, and labelSet.

2. ReturnlfAbrupt(keyResult).

3. Return the result of performing For In/Of Body Evaluation with ForDeclaration, Statement, keyResult,
lexicalBinding, and labelSet.

180 © Ecma International 2012

secma

Runtime Semantics: For In/Of Expression Evaluation Abstract Operation

The abstract operation For In/Of Expression Evaluation is called with arguments expr, iterationKind, and
labelSet. The value of iterationKind is either enumerate or iterate.

1. [Let exprRef be the result of evaluating the production that is expr.|

C ed [AWB15112]: NOTE that if this is a for-let, this

2. LetexperValue be GetValue(exprRef).
3. IfexperValue is an abrupt completion,
a. If LoopContinues(experValue,labelSet) is false, then return experValue.
b. Else, return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.
4. If experValue.[[value]] is null or undefined, return Completion {[[type]]: break; [[value]]: empty,
[[target]]: empty}.
Let obj be ToObject(experValue).
If iterationKind is enumerate, then
a. Let keys be the result of calling the [[Enumerate]] internal method of obj with no arguments.
7. Else,
a. Assert iterationKind is iterate.
b. Letiterator be the result of performing Invoke with arguments obj, @ @iterator and an empty List.
c. Letkeys be ToObject(iterator).
8. If keys is an abrupt completion, then
a. If LoopContinues(experValue,labelSet) is false, then return experValue.
b. Assert: keys.[[type]] is continue
c. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: empty}.
9. Return keys.

o a

Runtime Semantics: For In/Of Body Evaluation Abstract Operation

The abstract operation For In/Of Body Evaluation is called with arguments lhs, stmt, keys, IhsKind, and labelSet.
The value of lhsKind is either assignment, varBinding or lexicalBinding.

Let oldEnv be the running execution context’s LexicalEnvironment.

Let noArgs be an empty-List.

Let V = undefined .

Repeat

a. Let nextResult be the result of Invoke(keys, "next').

ReturnlfAbrupt(nextResult).

If Type(nextResult) is not Object, then throw a TypeError exception.

Let done be IteratorComplete(innerResult).

ReturnlfAbrupt(done).

If done is true, then return NormalCompletion(V).

Let nextValue be the result of IteratorValue(nextResult).

ReturnlfAbrupt(nextValue).

If IhsKind is assignment, then

i Assert: lhs is a LeftHandSideExpression.
ii. If Ihs is-neither an ObjectLiteral nor an ArrayLiteral then
1 Let IhsRef be the result of evaluating lhs (it may be evaluated repeatedly).
2. Let status be the result of performing PutValue(lhsRef, nextValue).
iii. Else
1. Let AssignmentPattern be the parse of the source code corresponding to Ihs using
AssignmentPattern as the goal symbol.
LLet rval be ToObject(nextValue) |

o

—Feme oo

places the evaluation of the AssignmentExpression outside
the scope of the bindings. Perhaps in should be within that
scope and subject to TDZ checks on the bond values.

Commented [AWB6113]: Note a continue in the initializer
expression is just like a break

Commented [AWB6116]: Break/continue in the expression
works normally (future for do {} or block lamda expressions)

Commented [AWB6117]: Note a continue in the initializer
expression is just like a break

Commented [AWB6119]: Completion value reform

C ed [AWB15120]: Recent destructuring assign

2.
3. If rval is an abrupt completion, then let status be rval.
4. Else, let status be the result of performing Destructuring Assignment Evaluation of
AssignmentPattern using rval as the argument.
j. Else if IhsKind is varBinding, then
i. Assert: lhs is a ForBinding.
il Let status be the result of performing Binding Initialisation for lhs passing nextValue and
undefined as the arguments.
k. Else,

© Ecma International 2012 181

changes probably mean that this turns into a throw if
nextValue is not an Object.

Commented [AWB6121]: ToDo, update this to return a
completion value

secmd

i. Assert lhsKind is lexicalBinding.
ii. Assert: lhs is a ForDeclaration.
iii. Let iterationEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the
argument.
iv. Perform Binding Instantiation for lhs passing nextValue and iterationEnv as arguments.
V. Let status be NormalCompletion(empty)
vi. Set the running execution context’s LexicalEnvironment to iterationEnv.
I. If status.[[type]] is normal, then
i Let status be the result of evaluating stmt.
ii. If status.[[type]] is normal and status.[[value]] is not empty, then
1. LetV = status.[[value]].
m. Set the running execution context’s LexicalEnvironment to oldEnv.
n. If status is an abrupt completion and LoopContinues(status,labelSet) is false, then return status.

12.7 The continue Statement

Syntax
ContinueStatement :

continue ;

continue [no LineTerminator here] Identifier ;
Static Semantics

Static Semantics: Early Errors

ContinueStatement : continue ;

e It is a Syntax Error_if-this production is not nested, directly or indirectly (but not crossing
function boundaries), within an IterationStatement.

ContinueStatement : continue [no LineTerminator here] ldentifier ;

e It is a Syntax Error if Identifier does not appear in the CurrentLabelSet of an enclosing (but
not crossing function boundaries) IterationStatement.

Runtime Semantics

Runtime'Semantics: Evaluation

ContinueStatement : continue ;

1. Return Completion {[[type]]: continue, [[value]]: empty, [[target]]: empty}.
ContinueStatement : continue [no LineTerminator here] Identifier ;

1. Return Completion {[[type]]: continue, [[value]]: empty, [[target]]: Identifier}.
12.8 The break Statement

Syntax
BreakStatement :

break ;

break [no LineTerminator here] ldentifier ;
Static Semantics

Static Semantics: Early Errors

182 © Ecma International 2012

Commented [AWB11122]: Need to understand why result
of previous step is ignored. See bug 811

secma

BreakStatement : break ;
e It is a Syntax Error if this production is not nested, directly or indirectly (but not crossing
function boundaries), within an IterationStatement or a SwitchStatement.
BreakStatement : break [no LineTerminator here] Identifier ;

e Itis a Syntax Error if Identifier does not appear in the CurrentLabelSet of an enclosing (but
not crossing function boundaries) Statement.

Runtime Semantics

Runtime Semantics: Evaluation

BreakStatement : break ;

1. Return Completion {[[type]]: break, [[value]]: empty, [[target]]:.empty}.
BreakStatement : break [no LineTerminator here] Identifier ;

1. Return Completion {[[type]]: break, [[value]]: empty, [[target]]: Identifier}.
12.9 The return Statement

Syntax

ReturnStatement :
return ;
return [no LineTerminator here] Expression ;

NOTE A return statement causes a function to cease execution and return a value to the caller. If Expression is
omitted, the return value is undefined. Otherwise, the return value is the value of Expression.

Static Semantics
Static Semantics: Early Errors
e Itis a Syntax Error if a return statement is not within a FunctionBody or a GeneratorBody.
Runtime Semantics
Runtime Semantics: Evaluation
ReturnStatement.: return ;
1. Return Completion {[[type]]: return, [[value]]: undefined, [[target]]: empty}.
ReturnStatement : return [no LineTerminator here] Expression ;

Let exprRef be the result of evaluating Expression.
Let exprValue be GetValue(exprRef) |

C ed [AWB9123]: TODO If exprRef is a Reference

ReturnIfAbrupt(exprValue).
Return Completion {[[type]]: return, [[value]]: exprValue, [[target]]: empty}.

EaES NS

12.10 The with Statement

Syntax

WithStatement :
with (Expression) Statement

© Ecma International 2012 183

that invokes a getter we probably should find a way to specify
that the get call is handled as a tail call.

oechna

NOTE Thewith statement adds an object environment record for a computed object to the lexical environment of the
running execution context. It then executes a statement using this augmented lexical environment. Finally, it restores the
original lexical environment.

Static Semantics
Static Semantics: Early Errors
WithStatement : with (Expression) Statement

e Itis a Syntax Error if the code that matches this production is contained in‘strict code.
Static Semantics: VarDeclaredNames
WithStatement : with (Expression) Statement
1. Return the VarDeclaredNames of Statement.
Runtime Semantics
Runtime Semantics: Evaluation
WithStatement : with (Expression) Statement

1. Letval be the result of evaluating Expression.

2. Let obj be ToObject(GetValue(val)).

3. ReturnlfAbrupt(obj).

4. Let oldEnv be the running execution context’s LexicalEnvironment.

5. Let newEnv be the result of calling NewObjectEnvironment passing obj and oldEnv as the arguments.
6. Set the withEnvironment flagof newEnv to true.

7. Set the running executioncontext’s LexicalEnvironment to newEnv.

8. Let C be the result of evaluating Statement.

9. Set the running execution context’s Lexical Environment to oldEnv.

10. Return C.

NOTE No matter how control leaves the embedded Statement, whether normally or by some form of abrupt
completion or exception, the LexicalEnvironment is always restored to its former state.

12.11 The switch Statement

Syntax

SwitchStatement :
switeh (Expression) CaseBlock

CaseBlock :
{ CaseClausesopt }
{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses :
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression : StatementListopt

DefaultClause :
default : StatementListop

184 © Ecma International 2012

secma

Static Semantics

Static Semantics: Early Errors

CaseBlock : { CaseClauses }
e |tis a Syntax Error if the LexicallyDeclaredNames of CaseClauses contains any duplicate entries.
e |t is a Syntax Error if any element of the LexicallyDeclaredNames of CaseClauses also occurs in the

VarDeclaredNames of CaseClauses.

Static Semantics: LexicalDeclarations

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClausesop DefaultClause CaseClausesopt }

If the first CaseClauses is present, let declarations be the LexicalDeclarations of the first CaseClauses.

Else let declarations be a new empty List.

Append to declarations the elements of the LexicalDeclarations of the DefaultClause.

If the second CaseClauses is not present, return declarations.

Else return the result of appending to declarations the elements of the LexicalDeclarations of the second
CaseClauses.

arwn e

CaseClauses : CaseClauses CaseClause

1. Letdeclarations be LexicalDeclarations of CaseClauses.

2. Append to declarations the elements of the LexicalDeclarations of CaseClause.
3. Return declarations.

CaseClause : case Expression : StatementListopt

1. If the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

DefaultClause ;- default : StatementListop

1. If the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

Static Semantics: LexicallyDeclaredNames

CaseBlock : {}

1. Return a new empty List.

CaseBlock : { CaseClausesop DefaultClause CaseClausesopt }

If the first CaseClauses is present, let names be the LexicallyDeclaredNames of the first CaseClauses.
Else let names be a new empty List.

Append to names the elements of the LexicallyDeclaredNames of the DefaultClause.

If the second CaseClauses is not present, return names.

Else return the result of appending to names the elements of the LexicallyDeclaredNames of the second
CaseClauses.

arwnd =

CaseClauses : CaseClauses CaseClause

1. Let names be LexicallyDeclaredNames of CaseClauses.

© Ecma International 2012 185

secmd

2. Append to names the elements of the LexicallyDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementListopt

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.

2. Else return a new empty List.

DefaultClause : default : StatementListop

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.

2. Else return a new empty List.

Static Semantics: VarDeclaredNames
SwitchStatement : switch (Expression) CaseBlock

1. Return the VarDeclaredNames of CaseBlock.
CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClausesopt DefaultClause CaseClausesopt }
Else let names be a new empty List.

Append to names the elements of the VarDeclaredNames of the DefaultClause.
If the second CaseClauses is not present, return names.

arowpE

CaseClauses.
CaseClauses : CaseClauses CaseClause
1. Let names be VarDeclaredNames-of CaseClauses:
2. Append to names the elements-of the VVarDeclaredNames of CaseClause.
3. Return names:

CaseClause : case Expression : StatementListopt

1. If the StatementList is present, return the VVarDeclaredNames of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementListop

1. If the StatementList is'present, return the VarDeclaredNames of StatementList.
2. Else return a new empty List.

Runtime Semantics

Runtime Semantics: Case Block Evaluation
With argument input.

CaseBlock : { CaseClausesopt }

1. LetV=undefined.

2. Let A be the list of CaseClause items in source text order.
3. Letsearching be true.

186

If the first CaseClauses is present, let names be the VarDeclaredNames of the first CaseClauses.

Else return the result of appending to names the elements of the VarDeclaredNames of the second

© Ecma International 2012

Commented [AWB6124]: ES5 breaking change:
completion reform

secma

4. Repeat, while searching is true
a. Let C be the next CaseClause in A. If there is no such CaseClause, return NormalCompletion(V).
b. Let clauseSelector be the result of evaluating C.
c. ReturnIfAbrupt(clauseSelector).
d. Ifinputis equal to clauseSelector as defined by the Strict Equality Comparison Algorithm (11.9.1), then
i. Setsearching to false.
ii. If C has a StatementList, then
1. Evaluate C’s StatementList and let R be the result.
2. ReturnIfAbrupt(R).
3. LetV=R.[[value]].
5. Repeat
a. Let C be the next CaseClause in A. If there is no such CaseClause, return NormalCompletion(V).
b. If C has a StatementList, then
i Evaluate C’s StatementList and let R be the result.
ii. If R.[[value]] is not empty, then let V = R.[[value]].
iii. If R is an abrupt completion, then return Completion {[[type]l: R.[[typell, [[valuel]: V, [[target]]:
R.[[target]]}.

CaseBlock : { CaseClausesopt DefaultClause CaseClausesopt }

Let V = undefined. Commented [AWB6125]: ES5 breaking change:
Let A be the list of CaseClause items in the first CaseClauses, in source text order. completion reform
Let found be false.
Repeat letting C be in order each CaseClause in A
a. Iffound is false, then
i. Let clauseSelector be the result of Case Selector Evaluation of C.
il If clauseSelector is an abrupt completion; then
1. If clauseSelector.[[value]] is empty, then return Completion {[[typell:
clauseSelector.[[type]], [[value]]: undefined, [[target]]: clauseSelector.[[target]]}.
2. Else,return clauseSelector.
iii. If input is equal to clauseSelector as defined by the Strict Equality Comparison Algorithm (11.9.1),
then set found to true.
b. If found is true, then
i Evaluate CaseClause'C and let R be the result.
ii. If R.[[value]] is not empty, then let V = R.[[value]].
iii. If R is an abrupt completion, then return” Completion {[[type]]: R.[[type]], [[value]]: V, [[target]]:
R.[[target]]}.
5. Let foundInB be false:
6. If found is false, then
a. Let B be a new list of the CaseClause items in the second CaseClauses, in source text order.
b. Repeat, letting C be in order each CaseClause in B
i. If foundInB is false, then
1. LetclauseSelector be the result of Case Selector Evaluation of C.
2. IfclauseSelector is an abrupt completion, then
a If clauseSelector.[[value]] is empty, then return Completion {[[type]l:
clauseSelector.[[type]], [[value]]: undefined, [[target]]:
clauseSelector.[[target]]}.
b Else, return clauseSelector.
3. Ifinput is equal to clauseSelector as defined by the Strict Equality Comparison Algorithm
(11.9.1), then set foundInB to true.
ii. If foundInB is true, then
1. Evaluate CaseClause C and let R be the result.
2. If R.[[value]] is not empty, then let V = R.[[value]].
3. If Ris anabrupt completion, then return Completion {[[type]]: R.[[type]], [[value]]: V,
[[target]]: R.[[target]]}.
If foundInB is true, then return NormalCompletion(V).
Evaluate DefaultClause and let R be the result.
If R.[[value]] is not empty, then let V = R.[[value]].
0. IfR is an abrupt completion, then return Completion {[[type]]: R.[[type]l, [[value]]: V, [[target]]: R.[[target]]}.
1. Let B be a new list of the CaseClause items in the second CaseClauses, in source text order.

Eal ol

HB oo~

© Ecma International 2012 187

secmd

12. Repeat, letting C be in order each CaseClause in B (NOTE this is another complete iteration of the second CaseClauses)
b. Evaluate CaseClause C and let R be the result.
c. IfR.[[value]] is not empty, then let V = R.[[value]].
d. IfRis an abrupt completion, then return Completion {[[type]]: R.[[type]], [[value]]: V, [[target]]:

R.[[target]]}.
13. Return NormalCompletion(V).

Runtime Semantics: Case Selector Evaluation
CaseClause : case Expression : StatementListopt

1. Let exprRef be the result of evaluating Expression.
2. Return GetValue(exprRef).

NOTE Case Selector Evaluation does not execute the associated StatementList. It simply evaluates the Expression and
returns the value, which the CaseBlock algorithm uses to determine which StatementList to start executing.

Runtime Semantics: Evaluation
SwitchStatement : switch (Expression) CaseBlock

Let exprRef be the result of evaluating Expression.

Let switchValue be GetValue(exprRef).

ReturnlfAbrupt(switchValue).

Let oldEnv be the running execution context’s LexicalEnvironment.

Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Perform Block Declaration Instantiation using CaseBlock and blockEnv.

Let R be the result of performing Case Block Evaluation of CaseBlock with argument switchValue.
Set the running execution context’s LexicalEnvironment to oldEnv:

Return R.

WoNOG AWM

NOTE No matter how control leaves the SwitchStatement the LexicalEnvironment is always restored to its former state.
CaseClause : case Expression :

1. Return NormalCompletion(empty).

CaseClause : case Expression : StatementList

1. Return the result of evaluating StatementList.

DefaultClause : default:

1. Return NormalCompletion(empty).

DefaultClause : default: StatementList

1. Return the result of evaluating StatementList.

12.12 Labelled Statements

Syntax

LabelledStatement :
Identifier : Statement

NOTE A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled break
and continue statements. ECMAScript has no goto statement. A Statement can be part of a LabelledStatement, which
itself can be part of a LabelledStatement, and so on. The labels introduced this way are collectively referred to as the
“current label set” when describing the semantics of individual statements. A LabelledStatement has no semantic meaning

188 © Ecma International 2012

secma

other than the introduction of a label to a label set. The label set of an IterationStatement or a SwitchStatement initially
contains the single element empty. The label set of any other statement is initially empty.

Static Semantics
Static Semantics: Early Errors
e Itis a Syntax Error if a LabelledStatement is enclosed by a LabelledStatement with the same Identifier as

the enclosed LabelledStatement. This does not apply to a LabelledStatement appearing within the body of
a FunctionDeclaration and a LabelledStatement that encloses, directly or indirectly the
FunctionDeclaration .

Static Semantics: VarDeclaredNames

LabelledStatement : Identifier : Statement

1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Labelled Evaluation

With argument labelSet.

LabelledStatement : Identifier : Statement

[

Let label be the StringValue of Identifier.
2. Let newLabelSet be a new List containing label and the elements of labelSet.
3. If Statement is either LabelledStatement or BreakableStatement, then
a. Let stmtResult be the result of performing Labelled Evaluation of Statement with argument
newLabelSet.
4. Else,
a. Let stmtResult be the result of evaluating Statement.
5. If stmtResult.[[type]] is break and stmtResult.[[target]] is the same value as label, then
a. Letresult be NormalCompletion(stmtResult.[[value]]).
6. Else,
a. Let result be stmtResult.
7. Return result.

Runtime Semantics: Evaluation
LabelledStatement : Identifier : Statement

3. LetnewlLabelSet bea new empty List.
4. Return the result of performing Labelled Evaluation of this LabelledStatement with argument newLabelSet.

12.13 The throw Statement

Syntax

ThrowStatement :
throw [no LineTerminator here] Expression ;

Runtime Semantics: Evaluation

The production ThrowStatement : throw [no LineTerminator here] Expression ; is evaluated as follows:

© Ecma International 2012 189

secma

Let exprRef be the result of evaluating Expression.

Let exprValue be GetValue(exprRef).

ReturnlfAbrupt(exprValue).

Return Completion {[[type]]: throw, [[value]]: GetValue(exprRef), [[target]]: empty}.

Eali o o

12.14 The try Statement

Syntax

TryStatement :
try Block Catch
try Block Finally
try Block Catch Finally

Catch :
catch (CatchParameter) Block

Finally :
finally Block

CatchParameter :
Bindingldentifier
BindingPattern

NOTE The try statement encloses a block of.code in which an exceptional condition can occur, such as a runtime«
error or a throw statement. The catch clause provides the exception-handling code. When a catch clause catches an
exception, its CatchParameter is bound to that exception.

Static Semantics

Static Semantics: Early Errors

Catch : catch (CatchParameter) Block

e It is a Syntax Error if any-element of the BoundNames of CatchParameter also occurs in the
LexicallyDeclaredNames of Block.

e [t is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
VarDeclaredNames of Block.

Static Semantics: VarDeclaredNames

TryStatement : try Block Catch

1. Let names be VarDeclaredNames of Block.

2. Append to names the elements of the VarDeclaredNames of Catch.
3. Return names.

TryStatement : try Block Finally

1. Let names be VarDeclaredNames of Block.

2. Append to names the elements of the VarDeclaredNames of Finally.
3. Return names.

TryStatement : try Block Catch Finally

Let names be VarDeclaredNames of Block.

Append to names the elements of the VarDeclaredNames of Catch.

Append to names the elements of the VarDeclaredNames of Finally.
Return names.

rwnpE

190 © Ecma International 2012

[Formatted: Note

Commented [AWB126]: Note that this is a new restriction
that does not exist in ES5

secmd

Catch : catch (CatchParameter) Block
1. Return the VarDeclaredNames of Block.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a

lexical binding is hosted and preinitialised prior to evaluation of its initialiser.

CatchParameter: BindingPattern

1. |Let exceptionObj be ToObject(value). «

2. ReturnIfAbrupt(exceptionObj).|

3. Return the result of performing Binding Initialisation for BindingPattern passing exceptionObj and
environment as the arguments.

Formatted: Outline numbered + Level: 1 + Numbering Style:
1,2,3, ..+ Startat: 1 + Alignment: Left + Aligned at: 0" +
Tab after: 0.25" + Indent at: 0.25"

Commented [AWB10127]: Catching a thrown null or
undefined with a destructuing parameter rethrows a TypeError.
Does this make sense?

Runtime Semantics: Catch Clause Evaluation

with parameter thrownValue

Catch : catch (CatchParameter) Block

[

Let oldEnv be the running execution context’s LexicalEnvironment.

2. Let catchEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
3. For each element argName of the BoundNames of CatchParameter, do

a. Call the CreateMutableBinding concrete method of catchEnv passing argName as the argument.
Let status be the result of performing Binding Initialisation for CatchParameter passing thrownValue and
catchEnv as arguments.

ReturnIfAbrupt(status).

Set the running execution context’s LexicalEnvironment to catchEnv.

Let B be the result of evaluating Block.

Set the running execution context’s LexicalEnvironment to oldEnv.

Return B.

Eal

© NG

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
Runtime Semantics: Evaluation

TryStatement : try Block Catch

1. Let B be the result of evaluating Block.

2. If B.[[type]] is not throw, return B.

3. Return the result of performing Catch Clause Evaluation of Catch with parameter B.[[value]].
TryStatement : try Block Finally

1. Let B be the result of evaluating Block.

2. Let F be the result of evaluating Finally.

3. If F.[[type]] is normal, return B.

4. Return F.

TryStatement : try Block Catch Finally

1. Let B be the result of evaluating Block.

© Ecma International 2012 191

Y,

secmd

2. If B.[[type]] is throw, then

a. Let C be the result of performing Catch Clause Evaluation of Catch with parameter B.value.

3. Else B.[[type]] is not throw,
a. LetCbeB.
4. Let F be the result of evaluating Finally.
5. If F.[[type]] is normal, return C.
6. Return F.

12.15 The debugger statement

Syntax

DebuggerStatement :
debugger ;

Runtime Semantics: Evaluation

NOTE Evaluating the DebuggerStatement production may allow an implementation to cause a breakpoint when run

under a debugger. If a debugger is not present or active this statement has no observable effect.
The production DebuggerStatement : debugger ; is evaluated as follows:
1. If an implementation defined debugging facility is available and enabled, then

a. Perform an implementation defined debugging action.
b. Let result be an implementation defined Completion value.

2. Else

a. Letresult be NormalCompletion(empty).

3. Return result.
13 Functions and Generators
13.1 Function Definitions

Syntax

FunctionDeclaration :

function Bindingldentifier (FormalParameters’) { FunctionBody }

FunctionExpression :

function Bindingldentifieroy (FormalParameters) { FunctionBody }

StrictFormalParameters :
FormalParameters

FormalParameters:
[empty]
FormalParameterList

FormalParameterList :
FunctionRestParameter
FormalsList
FormalsList, FunctionRestParameter

FormalsList :
FormalParameter
FormalsList , FormalParameter

FunctionRestParameter :
. . . Bindingldentifier

192

© Ecma International 2012

secma

FormalParameter :
BindingElement

FunctionBodly :
FunctionStatementList

FunctionStatementList :
StatementListopt

Supplemental Syntax

The following productions are used as an aid in specifying the semantics of certain ECMAScript language
features. They are not used when parsing ECMAScript source code.

FunctionBody :
ThrowTypeError

ThrowTypeError :
[empty]

Static Semantics
Static Semantics: Early Errors

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
and
FunctionExpression : function Bindingldentifieroy (FormalParameters) { FunctionBody }

e Itis a Syntax Error if FunctionBody Contains YieldExpression is true.

e |t is a Syntax Error if IsSimpleParameterList of FormalParameters is false and any element of the
BoundNames of FormalParameters also occurs in‘the VarDeclaredNames of FunctionBody.

e It is a Syntax Error if any element of the BoundNames of FormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.

NOTE The LexicallyDeclaredNames of a FunctionBody does not include identifiers bound using var or function
declarations. Simple parameter lists bind identifiers as VarDeclaredNames. Parameter lists that contain destructuring
patterns, default value initialisers, or arrest parameter bind identifiers as LexicallyDeclaredNames.

StrictFormalParameters : FormalParameters

e~ |tis a Syntax Errorif BoundNames of FormalParameterList contains any duplicate elements.
e |tis a Syntax Error if BoundNames of FormalParameterList contains either "eval” or "arguments”.

FormalParameters : FormalParameterList

e |tis a Syntax Error.if FormalParameters Contains YieldExpression is true.

e It is a Syntax Error if IsSimpleParameterList of FormalParameterList is false and BoundNames of
FormalParameterList contains any duplicate elements.

e |t is a Syntax Error if IsSimpleParameterList of FormalParameterList is false and BoundNames of
FormalParameterList contains either "eval” or "arguments”.

e It is a Syntax Error if the source code matching this production is strict code and BoundNames of
FormalParameterList contains any duplicate elements.

NOTE Multiple occurrences of the same Identifier in a FormalParamterList is only allowed for non-strict functions and
generator functions that have simple parameter lists.

FunctionStatementList : StatementList

e ltis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.

© Ecma International 2012 193

secmd

e [tis a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.

FormalParameter : BindingElement
e [tis a Syntax Error if BindingElement Contains YieldExpression.
Static Semantics: BoundNames
FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.
FormalParameters : [empty]
1. Return an empty List.
FormalParameterList : FormalsList , FunctionRestParameter
1. Let names be BoundNames of FormalsList.
2. Append to names the BoundNames of FunctionRestParameter.
3. Return names.
FormalsList : FormalsList , FormalParameter
1. Let names be BoundNames of FormalsList.
2. Append to names the elements of BoundNames of FormalParameter.
3. Return names.
Static Semantics: Contains
With parameter symbol.
FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return false.
FunctionExpression : function Bindingldentifieroy (FormalParameters) { FunctionBody }
1. Return false.
NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.
Static Semantics: ExpectedArgumentCount
FormalParameters : [empty]
1. ReturnO.
FormalParameterList : FunctionRestParameter
1. Return 0.
FormalParameterList : FormalsList , FunctionRestParameter
1. Return the ExpectedArgumentCount of FormalsList.

NOTE The ExpectedArgumentCount of a FormalParameterList is the number of FormalParameters to the left of either the
rest parameter or the first FormalParameter with an Initialiser. A FormalParameter without an initializer is allowed after the
first parameter with an initializer but such parameters are considered to be optional with undefined as their default value.

194 © Ecma International 2012

secma

FormalsList : FormalParameter

1. If Haslnitialiser of FormalParameter is false return 0
2. Return 1.

FormalsList : FormalsList, FormalParameter

1. Let count be the ExpectedArgumentCount of FormalsList.

2. If Haslnitialiser of FormalsList is true or Haslnitialiser of FormalParameter is true, then return count.
3. Return count+1.

Static Semantics: Haslnitialiser

FormalsList : FormalsList , FormalParameter

1. If Haslnitialiser of FormalsList is true, then return true.
2. Return Haslnitialiser of FormalParameter.

Static Semantics: IsConstantDeclaration
FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return false.

Static Semantics: IsSimpleParameterList
FormalParameters : [empty]

1. Return true.

FormalParameterList : FunctionRestParameter

1. Return false.

FormalParameterList : FormalsList , FunctionRestParameter
1. Return false:

FormalsList : FormalsList , FormalParameter

1. IfIsSimpleParameterList of FormalsList is false, return false.
2. Return IsSimpleParameterList of FormalParameter.

FormalParameter : BindingElement

1. If Haslnitialiser of BindingElement is true, return false.

2. If FormalParameter Contains BindingPattern is true, return false.
3. Return true.

Static Semantics: IsStrict

FunctionStatementList : StatementListop:

1. [lf this FunctionStatementList is contained in strict code or if StatementList is strict code, then return true.

Otherwise, return false.| (c

ed [AWB10128]: Need a better definition

Static Semantics: LexicallyDeclaredNames

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }

© Ecma International 2012 195

oechna

1. Return the BoundNames of Bindingldentifier.
FunctionStatementList : [empty]
1. Return an empty List.
FunctionStatementList : StatementList
1. Return TopLevelLexicallyDeclaredNames of StatementList.
Static Semantics: VarDeclaredNames
FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return an empty List.
FunctionBody : [empty]
1. Return an empty List.
FunctionBody : StatementList
1. Return TopLevelVarDeclaredNames of StatementList.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With parameters value and environment.
NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialised in‘order to deal with the possibility of multiple parameters with the same name.
FormalParameters : [empty]
1. Return NormalCompletion(empty).
FormalParameterList : FunctionRestParameter

1. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value, 0,
and environment as the arguments.

FormalParameterList : FormalsList

1. Return the result of performing Indexed Binding Initialisation for FormalsList using value, 0, and
environment as the arguments.

FormalParameterList : FormalsList , FunctionRestParameter

1. Let restindex be the result of performing Indexed Binding Initialisation for FormalsList using value, 0, and

environment as the arguments.

ReturnlfAbrupt(restindex).

3. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value,
restindex, and environment as the arguments.

N

Runtime Semantics EvaluateBody

With parameter functionObject.

196 © Ecma International 2012

eCnd

FunctionBody : FunctionStatementListopt

1.

Sk wN

The code of this FunctionBody is strict mode code if it is contained in strict mode code or if the Directive Prologue
(14.1) of its FunctionStatementList contains a Use Strict Directive or if any of the conditions in 10.1.1 apply. If the
code of this FunctionBody is strict mode code, FunctionStatementList is evaluated in the following steps as strict
mode code. Otherwise, StatementList is evaluated in the following steps as non-strict mode code.

If FunctionStatementList is not present, then return NormalCompletion(undefined).

Let result be the result of evaluating FunctionStatementList.

If result.[[type]] is return then return NormalCompletion(result.[[value]])

ReturnlfAbrupt(result).

Return NormalCompletion(undefined).

FunctionBody : ThrowTypeError

1.

Throw a TypeError exception.

Runtime Semantics: Indexed Binding Initialisation

With parameters array, nextindex, and environment.

FormalsList : FormalParameter

1

2.
3.

Let status be the result of performing Indexed Binding Initialisation for FormalParameter using array,
nextIndex, and environment as the arguments.

ReturnIfAbrupt(status).

Return nextIndex + 1.

FormalsList : FormalsList , FormalParameter

L
2.
3.

4.
5.

Let lastindex be the result of performing Indexed Binding Initialisation for FormalsList using array,
nextIndex, and environment as the arguments.

ReturnlfAbrupt(lastindex).

Let status be the result of performing Indexed Binding Initialisation for FormalParameter using array,
lastindex, and environment as the arguments.

ReturnIfAbrupt(status).

Return lastIndex + 1.

FunctionRestParameter :.. . . Bindingldentifier

[

O~ wWN

Assert: array is a well formed arguments object and hence it has a valid integer valued "length"

property.

Let status be the result of Get(array, "length").

Let argumentsLength be status.[[value]].

Let A be the result of the abstract operation ArrayCreate with argument 0.

Let n=0;

Repeat, while nextlndex < argumentsLength

a. Let P be ToString(nextindex).

b. Assert: array is a well formed arguments object, hence it must have a property P.

c. Letv be the result of Get(array, P).

d. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and Property
Descriptor {[[Value]]: v.[[value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

e. Letn=n+l.

f. Let nextIndex = nextIndex +1.

Return the result of performing Binding Initialisation for Bindingldentifier using A and environment as

arguments.

Runtime Semantics: InstantiateFunctionObject

With parameter scope.

© Ecma International 2012 197

secmd

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }

1. If the FunctionDeclaration is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

2. Let F be the result of performing the FunctionCreate abstract operation with arguments Normal, FormalParameters,
FunctionBody, scope, and strict.

3. Perform the abstract operation MakeConstructor with argument F.

4. ReturnF.

Runtime Semantics: Evaluation

FunctionDeclaration : function Bindingldentifier (FormalParameters) { FunctionBody }
1. Return NormalCompletion(empty)

FunctionExpression : function (FormalParameters) { FunctionBody. }

1. If the FunctionExpression is contained in strict code or if its FunctionBody is strict code, then. let strict be true.
Otherwise let strict be false.

Let scope be the LexicalEnvironment of the running execution context.

3. Let closure be the result of performing the FunctionCreate abstract operation with arguments Normal,
FormalParameters, FunctionBody, scope, and strict.

Perform the abstract operation MakeConstructor with argument closure.

Return closure.

N

o1~

FunctionExpression : function Bindingldentifier (FormalParameters) { FunctionBody }

1. If the FunctionExpression is contained in strict code or if its FunctionBody is strict code, then let strict be true.
Otherwise let strict be false.

2. Let funcEnv be the result of calling NewDeclarativeEnvironment passing the running execution context’s Lexical
Environment as the argument

3. LetenvRec be funcEnv’seénvironment record.

4. Let name be StringValue of Bindingldentifier.

5. Call the CreatelmmutableBinding concrete method of envRec passing name as the argument.

6. Let closure be the result of performing the FunctionCreate abstract operation with arguments Normal,

FormalParameters, FunctionBody, funcEnv, and strict.
7. Perform the abstract operation MakeConstructor with argument closure.
8. Call the'InitializeBinding concrete method of envRec passing name and closure as the arguments.
9. Return NormalCompletion(closure).

NOTE1 The Bindingldentifier in a FunctionExpression can be referenced from inside the FunctionExpression's
FunctionBody to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Bindingldentifier in
a FunctionExpression cannot be referenced from and does not affect the scope enclosing the FunctionExpression.

NOTE2 A prototype property is automatically created for every function defined using a FunctionDeclaration or
FunctionExpression, to allow for the possibility that the function will be used as a constructor.

13.2 Arrow Function Definitions

Syntax
ArrowFunction :
ArrowParameters => ConciseBody

ArrowParameters :
Bindingldentifier
CoverParenthesisedExpressionAndArrowParameterList

198 © Ecma International 2012

secma

ConciseBody :
[lookahead ¢ { { }] AssignmentExpression
{ FunctionBody }

Supplemental Syntax

When processing the production ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList the
following grammar is used to refine the interpretation of CoverParenthesisedExpressionAndArrowParameterList.

ArrowFormalParameters :
(StrictFormalParameters)

Static Semantics
Static Semantics: Early Errors
ArrowFunction : ArrowParameters => ConciseBody
e |t is a Syntax Error if any element of the BoundNames of ArrowParameters also. occurs in the
VarDeclaredNames of ConciseBody.
e It is a Syntax Error if any element of the BoundNames of ArrowParameters also occurs in the
LexicallyDeclaredNames of ConciseBody.

ArrowParameters : Bindingldentifier

e Itis a Syntax Error if the StringValue of the sole element of the BoundNames of Bindingldentifier is eval
Or arguments.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList
e Itis a Syntax Errorif the lexical token sequence matched by
CoverParenthesisedExpressionAndArrowParameterList cannot be parsed with no tokens left over using
ArrowFormalParameters as the goal symbol.
e Itis a Syntax Error if any early errors are present for CoveredFormalsList of
CoverParenthesisedExpressionAndArrowParameterList.

ConciseBody : [lookahead & { { }] AssignmentExpression

o Itis a Syntax Error if AssignmentExpression Contains YieldExpression.

Static Semantics: BoundNames
ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Letformals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the BoundNames of formals.

Static Semantics: Contains
With parameter symbol.
ArrowFunction : ArrowParameters => ConciseBody
1. If symbol is neither super or this, then return false.

2. If ArrowParameters Contains symbol is true, return true;
3. Return ConciseBody Contains symbol .

© Ecma International 2012 199

secmd

NOTE Normally, Contains does not look inside most function forms However, Contains is used to detect this and
super usage within an ArrowFunction.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return formals Contains symbol.

Static Semantics: CoveredFormalsList
ArrowParameters : Bindingldentifier
1. Return Bindingldentifier.

CoverParenthesisedExpressionAndArrowParameterList :
(Expression)

()
(... ldentifier)
(Expression , ... Identifier)

1. Return the result of parsing the lexical token stream matched by
CoverParenthesisedExpressionAndArrowParameterList using ArrowFormalParameters as the goal symbol.

Static Semantics: ExpectedArgumentCount

ArrowParameters : Bindingldentifier

2. Return 1.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the ExpectedArgumentCount of formals.

Static Semantics: IsSimpleParameterList

ArrowParameters : Bindingldentifier

1. Return'true.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the IsSimpleParameterList of formals.

Static Semantics: LexicallyDeclaredNames
ConciseBody : [lookahead & { { }] AssignmentExpression
1. Return an empty List.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With parameters value and environment.
NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the

initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialised in order to deal with the possibility of multiple parameters with the same name.

200 © Ecma International 2012

secma

ArrowParameters : Bindingldentifier

1. Return the result of performing Binding Initialisation for Bindingldentifier using value and environment as
the arguments.

ArrowParameters : CoverParenthesisedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesisedExpressionAndArrowParameterList.
2. Return the result of performing Binding Initialisation of formals with arguments value and environment.

Runtime Semantics EvaluateBody
With parameter functionObject.
ConciseBody : [lookahead ¢ { { }] AssignmentExpression

1. [The code of this ConciseBody is strict mode code if it is contained in strict mode code or if any of the conditions in
10.1.1 apply If the code of this ConciseBody is strict mode code, AssignmentExpression is evaluated in the
following steps as strict mode code. Otherwise, AssignmentExpression is evaluated in the following steps as non-
strict mode code.

Let exprRef be the result of evaluating AssignmentExpression.

Let exprValue be GetValue(exprRef).

Commented [AWB7129]: TODO, need to resolve whether
or not ArrowBodies are always strict

Ci ed [AWB9130]: TODO If exprRef is a Reference

If exprValue.[[type]] is return then return NormalCompletion(exprValue.[[value]]).
ReturnlfAbrupt(exprValue).
Return NormalCompletion(exprValue).

ok wWN

NOTE In the absence of extensions to this specification, the test is step 4 will never be true.
Runtime Semantics: Evaluation
ArrowFunction : ArrowParameters => ConciseBody

Let strict be true.

Let scope be the LexicalEnvironment of the running execution context.

Let parameters be CoveredFormalsList of ArrowParameters.

Let closure be the result of performing the FunctionCreate abstract operation with arguments Arrow, parameters,
ConciseBody, scope, and strict.

5. Return closure.

NSNS

NOTE Even though an ArrowFunction may contain references to super, the FunctionCreate call in step 3 is not
passed the optional homeObject and methodName parameters. An ArrowFunction that references super is always contained
within a non-ArrowFunction and the necessary state to implement super is accessible via the scope that is captured by the
function object of the ArrowFunction.

[13.3 Method Definitions

Syntax

MethodDefinition :
PropertyName (StrictFormalParameters) { Func