
Test262-ES6
GET READY FOR ES6

patrick
Text Box
Ecma/TC39/2013/038



Status

 Recent update to website with a few test fixes (Thanks Adobe!)

 Loads of Work Items (test bugs, additional test collateral) tracked on 
bugs.ecmascript.org.

 (Un)Official IRC channel set up: irc.mozilla.org #test262.

 Microsoft nearly ready to contribute test cases for let, const, Map, 
WeakMap, and Set (modulo some updates for recent spec revisions).



Proposed changes – with patches!

Repository 

Refactoring
Branch for ES5

Move ES5 Collateral 

to ES6 Locations

ES6 Updates to 

Existing Collateral
New ES6 Collateral

Website Changes

Code Changes

 Formalize test262-core members on the wiki

 Website refresh process

 Make algorithm step identification optional

Policy & Procedure 

 New Endpoint for test262-es6

 New Landing Page for all ECMAScript-related collateral



Code Changes



Repository Refactoring

Basics

 Proposed by Norbert Lindenberg (bug 
id: 575).

 Group suites together – ecma262, 
ecma402, best practices – and make 
room for future ancillary test suites

 Group test case dependencies 
together outside of harnessing.

 Group common harness files together 
(preventing duplication), and group all 
harness files under one location

 Make generated assets more clear.

Details
New layout:

 tests/ecma402

 tests/ecma262

 tests/bestPractices

 tests/includes

 Any shared test helpers go here. Packager will pick most 
specific include available.

 harness/shared

 harness/website

 harness/console

 tools/ (same as today)

 website/ and console/ are auto-generated directories 
that won’t be checked in.

 docs/ and external/ untouched.



Branch for ES5

 Goals

 As friction-free as possible for edge ECMAScript collateral

 Clearly delineate ES5 collateral from ES6 collateral.

 Ability to update collateral for ES6 without breaking ES5 collateral.

 Easily integrate fixes between branches

 Proposal

 Once refactor is complete, create ES5 branch.

 ES6 collateral goes into master

 ES5-specific fixes made to off of ES5 branch.

 Collateral fixes that cross versions can will simply be integrated.



ES6 updates to current collateral

 Programmatically move collateral from ES5 to ES6 locations

 Persist ES5 @path attribute (which should match filepath) as @es5id

 Add @es6id attribute that matches new file path

 Note: proposal to refactor/flatten sub-folders of section

(depends on agreed-upon procedures)



Procedure Additions & Updates



Test262 Core

 Has commit rights

 Has access to update the website

 Documented at http://wiki.ecmascript.org/doku.php?id=test262:coreteam

 (Currently only has 3 names, who else has commit rights??)

(Also, pretty sure I completely hosed the wiki creating this page, the index is broken at least)

http://wiki.ecmascript.org/doku.php?id=test262:coreteam


Website Refresh Procedure

 Ensure harness runs in Top 4 rendering engines – Chrome/Opera, FF, IE, 
Safari.

 Examine results for drastic changes in pass rates

 Send mail to test262-discuss with changes that will be going live

 Wait 24 (?) hours

 Follow process documented here (modulo previous changes):
http://wiki.ecmascript.org/doku.php?id=test262:submission_process

http://wiki.ecmascript.org/doku.php?id=test262:submission_process


Optional Algorithm Step Designation

 Goal: reduce friction to contribute & reduce friction carrying forward 
collateral from previous versions.

 Proposal:

 All tests MUST have either @es5id or @es6id.

 An ID MUST contain a section identifier, and MAY contain an algorithm identifier.

 Drawbacks

 Ensuring 100% coverage becomes much harder.



Work Items

Owner Description

Brian Terlson Repo Refactoring

Brian Terlson Branch for ES6

? Create mapping of ES5 sections to ES6 
sections

Brian Terlson Move ES5 collateral to ES6 locations

Everyone  Contribute ES6 collateral



Open Questions

 How to create cross-host-compatible collateral for realms and scripts?

 How to verify proxies broadly? Can we leverage existing collateral?

 Strict Mode: harness should run strict-agnostic tests in both modes.

 Harness should hit fast path (ie. run tests in a loop).

 Poisoning of built-ins – can we test this broadly in the harness?

 Others?




