
Test262-ES6
GET READY FOR ES6

patrick
Text Box
Ecma/TC39/2013/038

Status

 Recent update to website with a few test fixes (Thanks Adobe!)

 Loads of Work Items (test bugs, additional test collateral) tracked on
bugs.ecmascript.org.

 (Un)Official IRC channel set up: irc.mozilla.org #test262.

 Microsoft nearly ready to contribute test cases for let, const, Map,
WeakMap, and Set (modulo some updates for recent spec revisions).

Proposed changes – with patches!

Repository

Refactoring
Branch for ES5

Move ES5 Collateral

to ES6 Locations

ES6 Updates to

Existing Collateral
New ES6 Collateral

Website Changes

Code Changes

 Formalize test262-core members on the wiki

 Website refresh process

 Make algorithm step identification optional

Policy & Procedure

 New Endpoint for test262-es6

 New Landing Page for all ECMAScript-related collateral

Code Changes

Repository Refactoring

Basics

 Proposed by Norbert Lindenberg (bug
id: 575).

 Group suites together – ecma262,
ecma402, best practices – and make
room for future ancillary test suites

 Group test case dependencies
together outside of harnessing.

 Group common harness files together
(preventing duplication), and group all
harness files under one location

 Make generated assets more clear.

Details
New layout:

 tests/ecma402

 tests/ecma262

 tests/bestPractices

 tests/includes

 Any shared test helpers go here. Packager will pick most
specific include available.

 harness/shared

 harness/website

 harness/console

 tools/ (same as today)

 website/ and console/ are auto-generated directories
that won’t be checked in.

 docs/ and external/ untouched.

Branch for ES5

 Goals

 As friction-free as possible for edge ECMAScript collateral

 Clearly delineate ES5 collateral from ES6 collateral.

 Ability to update collateral for ES6 without breaking ES5 collateral.

 Easily integrate fixes between branches

 Proposal

 Once refactor is complete, create ES5 branch.

 ES6 collateral goes into master

 ES5-specific fixes made to off of ES5 branch.

 Collateral fixes that cross versions can will simply be integrated.

ES6 updates to current collateral

 Programmatically move collateral from ES5 to ES6 locations

 Persist ES5 @path attribute (which should match filepath) as @es5id

 Add @es6id attribute that matches new file path

 Note: proposal to refactor/flatten sub-folders of section

(depends on agreed-upon procedures)

Procedure Additions & Updates

Test262 Core

 Has commit rights

 Has access to update the website

 Documented at http://wiki.ecmascript.org/doku.php?id=test262:coreteam

 (Currently only has 3 names, who else has commit rights??)

(Also, pretty sure I completely hosed the wiki creating this page, the index is broken at least)

http://wiki.ecmascript.org/doku.php?id=test262:coreteam

Website Refresh Procedure

 Ensure harness runs in Top 4 rendering engines – Chrome/Opera, FF, IE,
Safari.

 Examine results for drastic changes in pass rates

 Send mail to test262-discuss with changes that will be going live

 Wait 24 (?) hours

 Follow process documented here (modulo previous changes):
http://wiki.ecmascript.org/doku.php?id=test262:submission_process

http://wiki.ecmascript.org/doku.php?id=test262:submission_process

Optional Algorithm Step Designation

 Goal: reduce friction to contribute & reduce friction carrying forward
collateral from previous versions.

 Proposal:

 All tests MUST have either @es5id or @es6id.

 An ID MUST contain a section identifier, and MAY contain an algorithm identifier.

 Drawbacks

 Ensuring 100% coverage becomes much harder.

Work Items

Owner Description

Brian Terlson Repo Refactoring

Brian Terlson Branch for ES6

? Create mapping of ES5 sections to ES6
sections

Brian Terlson Move ES5 collateral to ES6 locations

Everyone Contribute ES6 collateral

Open Questions

 How to create cross-host-compatible collateral for realms and scripts?

 How to verify proxies broadly? Can we leverage existing collateral?

 Strict Mode: harness should run strict-agnostic tests in both modes.

 Harness should hit fast path (ie. run tests in a loop).

 Poisoning of built-ins – can we test this broadly in the harness?

 Others?

