Ecma/TC39/2015/019

ECMAScript 2015
Language Specification

X

andidat

Report Errors and Issues at: https://bugs.ecmascript.org /{ Formatted: English (United States)

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 35, March 4, 2015 Draft

Rue du Rhone 114 CH-1204 Geneva T +41 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2015

oecna

Contents Page
INEFOAUCTION 1.t e etttk b et b bt ee ettt h et et nb bt ea e s b bttt e st et et e e e ennenn vii
1 STol 0] o= TP TP P PP PP PPPRPPPRPP 1
2 Conformance

3 Normative references

4 Overview .2
4.1 Web Scripting3
4.2 ECMAScript Overview. .3
4.2.1 Objects e .4
4.2.2 The Strict Variant of ECMAScript .. .5
4.3 Terms and definitions5
4.4 Organization of This Specification .9
5 Notational Conventions .. 9
5.1 Syntactic and Lexical Grammars .9
5.1.1 Context-Free Grammars9
5.1.2 The Lexical and RegExp Grammars. .. 10
5.1.3 The Numeric String Grammar

5.1.4 The Syntactic Grammar

5.1.5 Grammar Notation.......

5.2 Algorithm Conventions

5.3 Static Semantic Rules.............

6 ECMAScript Data Types and Values .. 18
6.1 ECMAScript Language Types........ .18
6.1.1 The Undefined Type...........

6.1.2 The Null Type

6.1.3 The Boolean Type

6.1.4 The String Type......

6.1.5 The Symbol Type...

6.1.6 The Number Type..

6.1.7 The Object Type

6.2 ECMAScript Specification Types......

6.2.1 The List and Record Specification Type

6.2.2 The Completion Record Specification Type....

6.2.3 The Reference Specification Type.................

6.2.4 The Property Descriptor Specification Type...

6.2.5 The Lexical Environment and Environment Record Specification Types

6.2.6 DAA BIOCKS iu....iftiiiiiiiiiiiiiiiciei et e e e

7 Abstract Operations

7.1 Type Conversion

7.1.1 ToPrimitive (input [, PreferredType]). .
7.1.2 ToBoolean (argument).. .. 40
7.1.3 ToNumber (argument)... .41
7.1.4 Tolnteger (argument)

7.1.5 TolInt32 (argument)

7.1.6 ToUint32 (argument)

7.1.7 ToIntl6 (argument)....

7.1.8 ToUint16 (argument)

© Ecma International 2015

7.1.9

7.1.10
7.1.11
7.1.12
7.1.13
7.1.14
7.1.15
7.1.16

721
7.2.2
723
724
7.25
7.2.6
727
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12
7.2.13

7.3.1
7.3.2
733
734
7.35
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.3.18
7.3.19
7.3.20
7.3.21
7.3.22

741
7.4.2
743
7.4.4
745
7.4.6
7.4.7
748
7.4.9

oecna

TOINE8 (ArQUMENT) et e e s
ToUint8 (argument)
ToUint8Clamp (argument)
ToString (argument).........
ToObject (argument)........
ToPropertyKey (argument).
TolLength (argument)
CanonicalNumericlndexString (argument)
Testing and Comparison Operations
RequireObjectCoercible (argument)
ISArray (argument)ccccoeeereennnn.
IsCallable (argument).
IsConstructor (argument)
IsExtensible (O)................
Isinteger (argument)
IsPropertyKey (argument)
IsRegExp (argument)....
SameValue(x, y)
SameValueZero(x, y)
Abstract Relational Comparison.
Abstract Equality Comparison.
Strict Equality Comparison
Operations on Objects
Get (O, P) coevveie
GetV (V,P) oo
Set (O, P, V, Throw)
CreateDataProperty (O, P, V)
CreateMethodProperty (O, P, V).....
CreateDataProperty OrThrow (O, P, V)..
DefinePropertyOrThrow (O, P, desc)
DeletePropertyOrThrow (O, P)
GetMethod (O, P)
HasProperty (O, P)
HasOwnProperty (O, P)
Call(F, V, [argumentsList]).
Invoke(O,P, [argumentsList])
Construct (F, [argumentsList], [newTarget])
SetintegrityLevel (O, level)
TestIntegrityLevel (O, level)......
CreateArrayFromList (elements)
CreateListFromArrayLike (obj [, elementTypes])
OrdinaryHasInstance (C, O)........cccccovveiieiieieeenenn.
SpeciesConstructor/(O, defaultConstructor) .
EnumerableOwnNames (O) ..
GetFunctionRealm (obj)......
Operations on lterator Objects
Getlterator (obj, method)
IteratorNext (iterator, value)
IteratorComplete (iterResult)..
IteratorValue (iterResult).....
IteratorStep (iterator).....
IteratorClose(iterator, completion).
CreatelterResultObject (value, done).
CreateListlterator (list)
CreateCompoundlterator (iteratorl, ItErator2)ccoveieeiieiieiieie ettt e

© Ecma International 2015

»ecnd

Executable Code and EXECULION CONEXTScciiiiiiiiiiiiiiieiiee ettt e 62
Lexical Environments
Environment Records.....
Lexical Environment Operations
Code Realms...
CreateRealm ()ccccceevrnen.
Createlntrinsics (realmRec)...
SetRealmGlobalObject (realmRec, globalob])
SetDefaultGlobalBindings (realmRec)
Execution Contexts
ResolveBinding (name)
GetThisEnvironment ()...
ResolveThisBinding ()
GetNewTarget ().......
GetGlobalObject ()
Jobs and Job Queues
EnqueueJob (queueName, job, arguments)
NextJob result
ECMAScript Initialization()
InitializeHostDefinedRealm (realm)

Ordinary and Exotic Objects Behaviours
Ordinary Object Internal Methods and Internal Slots
[[GetPrototypeOf]] ()
[[SetPrototypeOf]] (V) .
[[1sExtensible]] ()
[[PreventExtensions]] ().
[[GetOwnProperty]] (P)
[[DefineOwnProperty]] (P, Desc)
[[HasProperty]1(P)
[
[
[
[

[Get]] (P, Receiver)..
[Set]] (P, V, Receiver)
[Delete]] (P) .eeuueene...
[Enumerate]] ().
[[OwnPropertyKeys]] ()
ObjectCreate(proto, |nternaISIotsL|st) ..
OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalSlotsList).
GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)
ECMAScript Function Objects.... s
[[Call]] (thisArgument, argumentsList) ..
[[Construct]] (argumentsList, newTarget)
FunctionAllocate (functionPrototype, strict [functlonKmd])
Functionlinitialize (F, kind, ParameterList, Body, Scope)
FunctionCreate (kind, ParameterList, Body, Scope, Strict, prototype)
GeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict) .
AddRestrictedFunctionProperties (F, realm)cccoevvvnne
MakeConstructor (F, writablePrototype, prototype)
MakeClassConstructor (F)
MakeMethod (F, homeObject).............
SetFunctionName (F, name, prefix)
FunctionDeclarationinstantiation(func, argumentsList).
Built-in Function Objects
[[Call]] (thisArgument, argumentsList)
[[Construct]] (argumentsList, newTarget)
CreateBuiltinFunction(realm, steps, prototype, internalSlotsList)
Built-in Exotic Object Internal Methods and Slots

© Ecma International 2015 iii

9.4.1
9.4.2
9.4.3
9.4.4
9.45
9.4.6

951
9.5.2
953
954
955
9.5.6
9.5.7
958
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13
9.5.14
9.5.15

10
101
10.1.1
10.1.2
10.2
10.2.1
10.2.2

11
111
11.2
11.3
114
115
11.6
116.1
11.6.2
11.7
11.8
11.8.1
11.8.2
11.8.3
11.8.4
11.85
11.8.6
11.9
11.9.1
11.9.2

12
121
1211
12.1.2
12.1.3

oecna

Bound Function EXOtiC ODJECESc.coiiiiiiiiiiiiiiic e 103
Array Exotic Objects
String Exotic Objects ..
Arguments Exotic Objects....
Integer Indexed Exotic Objects......
Module Namespace Exotic Objects
Proxy Object Internal Methods and Internal Slots.
[[GetPrototypeOf]] ()
[[SetPrototypeOf]] (V)
[[IsExtensible]] ()
[[PreventExtensions]] ().
[[GetOwnProperty]] (P) ...
[[DefineOwnProperty]] (P, Desc).
[[HasProperty]] (P)
[[Get]] (P, Receiver)
[[Set]] (P, V, Receiver)
[[Delete]] (P)ce.....
[[Enumerate]] ().........
[[OwnPropertyKeys]] () ..
[[Call]] (thisArgument, argumentsList) ..
[[Construct]] (argumentsList, newTarget)
ProxyCreate(target, handler)

ECMAScript Language: Source Code
Source Text .. .
Static Semantics: UTF16Encoding (cp).
Static Semantics: UTF16Decode(lead, trail)
Types of Source Code
Strict Mode Code
Non-ECMAScript Functions

ECMAScript Language: Lexical Grammar
Unicode Format-Control Characters
White Space fieieeieeieeiesdeennne.
Line Terminators
Comments

Names and Keywords
Identifier Names
Reserved Words .
Punctuators
Literals
Null Literals ..
Boolean Literals..
Numeric Literals..
String Literals...q.....
Regular Expression Literals...........

Template Literal Lexical Components
Automatic Semicolon Insertion
Rules of Automatic Semicolon Insertion ...

Examples of Automatic Semicolon Insertion

ECMAScript Language: Expressions
Identifiers
Static Semantics: Early Errors...
Static Semantics: BoundNames
Static Semantics: IsValidSimpleAssignmentTarget

© Ecma International 2015

12.1.4
12.1.5
12.1.6
12.2

12.2.0
1221
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9
12.3

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.3.8
12.4

12.4.1
12.4.2
12.4.3
12.4.4
12.45
125

125.1
12.5.2
12.5.3
12.5.4
1255
12.5.6
12.5.7
12.5.8
1259

12.5.10 Unary - Operator ...
12.5.11 Bitwise NOT Operator (~)
12.5.12 Logical NOT Operator (!)

12.6

12.6.1
12.6.2
12.6.3
12.7

12.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.8

128.1

oecmd

Static Semantics: StringValue
Runtime Semantics: BindinglInitialization
Runtime Semantics: Evaluation
Primary Expression..
Semantics...............
The this Keyword ...
Identifier Reference..
Literals
Array Initializer
Object Initializer
Function Defining Expressions .
Regular Expression Literals
Template Literals
The Grouping Operator...
Left-Hand-Side Expressions
Static Semantics
Property Accessors .
The new Operator
Function Calls
The super Keyword.
Argument Lists ...
Tagged Templates.
Meta Properties......
Postfix EXpressions.................
Static Semantics: Early Errors..
Static Semantics: IsFunctionDefinition.........

Static Semantics: IsValidSimpleAssignmentTarget..
Postfix Increment Operator

Postfix Decrement Operator. 178
Unary Operators ..., 178
Static Semantics: Early Errors.. .178

Static Semantics: IsFunctionDefinition

Static Semantics:. IsValidSimpleAssignmentTarget ..
The delete Operator ...
The void Operator
The typeof Operator
Prefix Increment Operator.
Prefix Decrement Operator...
Unary + Operator ...

181
181

.182
Multiplicative Operators182
Static Semantics: IsFunctionDefinition182
Static Semantics: IsValidSimpleAssignmentTarget.. .182
Runtime Semantics: Evaluation .182
Additive Operatorscccceeeerueenne. .184
Static Semantics: IsFunctionDefinition184
Static Semantics: IsValidSimpleAssignmentTarget..
The Addition operator (+)
The Subtraction Operator (-) ...
Applying the Additive Operators to Numbers...
Bitwise Shift Operators
Static Semantics: IsFunctionDefinition

© Ecma International 2015 \"

oecha

12.8.2 Static Semantics: IsValidSimpleAssignmentTarget ..
12.8.3 The Left Shift Operator (<<)
12.8.4 The Signed Right Shift Operator (>>)...
12.8.,5 The Unsigned Right Shift Operator (>>>)
12.9 Relational Operators
12.9.1 Static Semantics: IsFunctionDefinition
12.9.2 Static Semantics: IsValidSimpleAssignmentTarget..
12.9.3 Runtime Semantics: Evaluation...........cccccooevieneenns
12.9.4 Runtime Semantics: InstanceofOperator(O, C)..
12.10 Equality Operatorsc.cccceoveeevrcrercnenenne
12.10.1 Static Semantics: IsFunctionDefinition
12.10.2 Static Semantics: IsValidSimpleAssignmentTarget ..
12.10.3 Runtime Semantics: Evaluation
12.11 Binary Bitwise Operators...............
12.11.1 Static Semantics: IsFunctionDefinition.................
12.11.2 Static Semantics: IsValidSimpleAssignmentTarget ..
12.11.3 Runtime Semantics: Evaluation
12.12 Binary Logical Operators...
12.12.1 Static Semantics: IsFunctionDefinition
12.12.2 Static Semantics: IsValidSimpleAssignmentTarget ..
12.12.3 Runtime Semantics: Evaluation.
12.13 Conditional Operator (?:) ...
12.13.1 Static Semantics: IsFunctionDefinition
12.13.2 Static Semantics: IsValidSimpleAssignmentTarget
12.13.3 Runtime Semantics: Evaluation
12.14 Assignment Operators
12.14.1 Static Semantics: Early Errors
12.14.2 Static Semantics: IsFunctionDefinition.
12.14.3 Static Semantics: IsValidSimpleAssignmentTarget ..
12.14.4 Runtime Semantics: Evaluation
12.14.5 Destructuring Assignment ...
12.15 Comma Operator (,) ...
12.15.1 Static Semantics: . IsFunctionDefinition
12.15.2 Static Semantics: IsValidSimpleAssignmentTarget ..
12.15.3 Runtime Semantics: Evaluation

13 ECMAScript Language: Statements and DeclarationsS..........ccoocvvviiiiiieii e 204
13.0 Statement Semantics
13.0.1 Static Semantics: ContainsDuplicateLabels
13.0:2 Static Semantics: ContainsUndefinedBreakTarget
13.0.3 Static Semantics: ContainsUndefinedContinueTarget .
13.0.4 Static Semantics: DeclarationPart
13.0.5 Static Semantics: VarDeclaredNames...
13.0.6 Static Semantics: VarScopedDeclarations
13.0.7 Runtime Semantics: LabelledEvaluation
13.0.8 Runtime Semantics: Evaluation
131
13.1.1 Static Semantics: Early Errors
13.1.2 Static Semantics: ContainsDuplicateLabels
13.1.3 Static Semantics: ContainsUndefinedBreakTarget
13.1.4 Static Semantics: ContainsUndefinedContinueTarget .
13.1.5 Static Semantics: LexicallyDeclaredNames
13.1.6 Static Semantics: LexicallyScopedDeclarations
13.1.7 Static Semantics: TopLevelLexicallyDeclaredNames ..
13.1.8 Static Semantics: TopLevelLexicallyScopedDeclarations

vi © Ecma International 2015

oecmd

13.1.9 Static Semantics: TopLevelVarDeclaredNames .. 210
13.1.10 Static Semantics: TopLevelVarScopedDeclarations.
13.1.11 Static Semantics: VarDeclaredNames
13.1.12 Static Semantics: VarScopedDeclarations....
13.1.13 Runtime Semantics: Evaluation
13.1.14 Runtime Semantics: BlockDeclarationInstantiation(code, env)
13.2 Declarations and the Variable Statement
13.2.1 Let and Const Declarations
13.2.2 Variable Statement
13.2.3 Destructuring Binding Patterns....
13.3 Empty Statementccccceeeenne
13.3.1 Runtime Semantics: Evaluation
13.4 Expression Statement
13.4.1 Runtime Semantics: Evaluatlon
13.5 Theif Statement
13.5.1 Static Semantics: Early Errors
13.5.2 Static Semantics: ContainsDuplicateLabels
13.5.3 Static Semantics: ContainsUndefinedBreakTarget
13.5.4 Static Semantics: ContainsUndefinedContinueTarget
13.5.5 Static Semantics: VarDeclaredNames
13.5.6 Static Semantics: VarScopedDeclarations
13.5.7 Runtime Semantics: Evaluation
13.6 lteration Statements
13.6.0 Semantics.........c.ceeurune . 227
13.6.1 The do-while Statement ... 228
13.6.2 The while Statement... . 229
13.6.3 Thefor Statement................. . 230
13.6.4 Thefor -in and for -of Statements . 233
13.7 Thecontinue Statement
13.7.1 Static Semantics: Early Errors
13.7.2 Static Semantics: ContalnsUndefmedContlnueTarget.

... 224
.. 224

. 227

. 240
13.7.3 Runtime Semantics: Evaluation 240

. 240
.. 241

13.8 The brea k Statement...........c......
13.8.1 Static Semantics: Early Errors ..
13.8.2 Static Semantics: ContainsUndefinedBreakTarget
13.8.3 Runtime Semantics: Evaluation ..
13.9 Thereturn Statement
13.9.1 ~Runtime Semantics: - Evaluation ..
13.10 The with Statement..................
13.10.1 Static Semantics: Early Errors
13.10.2 Static Semantics: ContainsDuplicateLabels
13.10.3 Static Semantics: ContainsUndefinedBreakTarget
13.10.4 Static Semantics: ContainsUndefinedContinueTarget
13.10.5 Static Semantics: VarDeclaredNames
13.10.6 Static Semantics: VarScopedDeclarations.
13.10.7 Runtime Semantics: Evaluation
13.11 The switch Statement
13.11.1 Static Semantics: Early Errors
13.11.2 Static Semantics: ContainsDuplicateLabels
13.11.3 Static Semantics: ContainsUndefinedBreakTarget....
13.11.4 Static Semantics: ContainsUndefinedContinueTarget .
13.11.5 Static Semantics: LexicallyDeclaredNames.....
13.11.6 Static Semantics: LexicallyScopedDeclarations
13.11.7 Static Semantics: VarDeclaredNames

... 243

.244
. 244
.244
. 245
. 246

© Ecma International 2015 vii

oecha

13.11.8 Static Semantics

13.11.9Runtime Semantics:
Runtime Semantics: CaseSelectorEvaluation....
Runtime Semantics: Evaluation
13.12 Labelled Statements

13.11.10
13.11.11

13.12.1 Static Semantics:

13.12.2 Static Semantics:
13.12.3 Static Semantics:
13.12.4 Static Semantics:
13.12.5 Static Semantics:
13.12.6 Static Semantics:
13.12.7 Static Semantics:
13.12.8 Static Semantics:

. VarScopedDeclarations
CaseBlock Evaluation

Early Errors
ContainsDuplicateLabels
ContainsUndefinedBreakTarget
ContainsUndefinedContinueTarget .
IsLabelledFunction (stmt)
LexicallyDeclaredNames
LexicallyScopedDeclarations
TopLevelLexicallyDeclaredNames ..

13.12.9 Static Semantics: TopLevelLexicallyScopedDeclarations . .253
13.12.10 Static Semantics: TopLevelVarDeclaredNames........... .253
13.12.11 Static Semantics: TopLevelVarScopedDeclarations .253
13.12.12 Static Semantics: VarDeclaredNames.............. .253
13.12.13 Static Semantics: VarScopedDeclarations .254
13.12.14 Runtime Semantics: LabelledEvaluation . 254
13.12.15 Runtime Semantics: Evaluation ...

13.13 The throw Statement
13.13.1Runtime Semantics: Evaluation
13.14 Thetry Statement

13.14.1 Static Semantics:
13.14.2 Static Semantics
13.14.3 Static Semantics
13.14.4 Static Semantics

13.14.5 Static Semantics:

13.14.6 Static Semantics

13.14.7 Runtime Semantics: CatchClauseEvaluation
13.14.8 Runtime Semantics: Evaluation

13.15 The debugger st

13.15.1 Runtime Semantics: Evaluation

14
141
14.1.1
14.1.2
1413
14.14
14.15
14.1.6
14.1.7
14.1.8
14.1.9

Static Semantics:

viii

ECMAScript Language: Functions and Classes ...
Function Definitions
Directive Prologues and the Use Strict Directiv

Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
14.1.10 Static Semantics:
14.1.11 Static Semantics:
14.1.12 Static Semantics:
14.1.13 Static Semantics:
14.1.14 Static Semantics:
14.1.15 Static Semantics:
14.1.16 Static Semantics:
14.1.17 Static Semantics:
14.1.18 Runtime Semantics: EvaluateBody
14.1.19Runtime Semantics: lteratorBindinglnitialization

Early Errors
: ContainsDuplicateLabels
: ContainsUndefinedBreakTarget
: ContainsUndefinedContinueTarget ..
VarDeclaredNames
: VarScopedDeclarations..

atement

Early Errors
BoundNames
Contains
ContainsExpression
Expected ArgumentCount..
Haslnitializer
HasName....
IsAnonymousFunctionDefini
IsConstantDeclaration
IsFunctionDefinition.
IsSimpleParameterList
IsStrict
LexicallyDeclaredNames
LexicallyScopedDeclarations .
VarDeclaredNames
VarScopedDeclarations..

© Ecma International 2015

secma

14.1.20 Runtime Semantics: InstantiateFunctionObject ..
14.1.21 Runtime Semantics: Evaluation ..
14.2 Arrow Function Definitions
14.2.1 Static Semantics: Early Errors
14.2.2 Static Semantics:
14.2.3 Static Semantics:
14.2.4 Static Semantics:
14.2.5 Static Semantics:
14.2.6 Static Semantics:
14.2.7 Static Semantics:
14.2.8 Static Semantics:
14.2.9 Static Semantics:
14.2.10 Static Semantics:
14.2.11 Static Semantics:
14.2.12 Static Semantics:
14.2.13 Static Semantics:
14.2.14Runtime Semantics: lteratorBindinglnitialization .
14.2.15 Runtime Semantics: EvaluateBody
14.2.16 Runtime Semantics: Evaluation
14.3 Method Definitions..........ccccc.....
14.3.1 Static Semantics:
14.3.2 Static Semantics:
14.3.3 Static Semantics:
14.3.4 Static Semantics:
14.3.5 Static Semantics:
14.3.6 Static Semantics:
14.3.7 Static Semantics:
14.3.8 Runtime Semantics: DefineMethod.................

14.3.9 Runtime Semantics: PropertyDefinitionEvaluation
14.4 Generator Function Definitions.....
14.4.1 Static Semantics:
14.4.2 Static Semantics:
14.4.3 Static Semantics:
14.4.4 Static Semantics:
14.4.5 Static Semantics:
14.4.6 Static Semantics:
14.4.7 Static Semantics:
14.4.8 Static Semantics:
14.4.9 Static Semantics:
14.4:10 Static Semantics:
14.4.11 Runtime Semantics: EvaluateBody
14.4.12 Runtime Semantics: InstantiateFunctionObject..
14.4.13 Runtime Semantics: PropertyDefinitionEvaluation
14.4.14 Runtime Semantics: Evaluation ..

145 Class Definitions

14.5.1 Static Semantics:
14.5.2 Static Semantics:
14.5.3 Static Semantics:
14.5.4 Static Semantics:
14.5.5 Static Semantics:
14.5.6 Static Semantics:
14.5.7 Static Semantics:
14.5.8 Static Semantics:
14.5.9 Static Semantics:
14.5.10 Static Semantics:

© Ecma International 2015

BoundNames ..
Contains
ContainsExpression
CoveredFormalsList
ExpectedArgumentCount....
Haslnitializer ...
HasName.........
IsSimpleParameterList ..
LexicallyDeclaredNames.....
LexicallyScopedDeclarations
VarDeclaredNames
VarScopedDeclarations.......

Early Errors
ComputedPropertyContains
ExpectedArgumentCount....
HasComputedPropertyKey .
HasDirectSuper ..
PropName........
SpecialMethod

Early Errors..
BoundNames..
ComputedPropertyContains
Contains
HasComputedPropertyKey .
HasDirectSuper ..
HasName.......
IsConstantDeclaration
IsFunctionDefinition ...
PropName ...

Early Errors..
BoundNames ..
ConstructorMethod..

ContainNscccvveereeieeeene 282
ComputedPropertyContains . 282
HasName........ccccoooeenieeenns 283

IsConstantDeclaration...
IsFunctionDefinition
ISStatiC..cveeeeeeieeecee e .283
NonConstructorMethodDefinitioNSccoviiiiiii e ... 284

oecna

14.5.11 Static Semantics: PrototypePropertyNameListccocoviiiiiiiiiiiniii s 284
14.5.12 Static Semantics: PropName .
14.5.13 Static Semantics: StaticPropertyNameList .
14.5.14 Runtime Semantics: ClassDefinitionEvaluation
14.5.15 Runtime Semantics: BindingClassDeclarationEvaluation.
14.5.16 Runtime Semantics: Evaluation
14.6 Tail Position Calls.......c.cccoovveriiennnnne.

14.6.1 Static Semantics: IsInTa|IP03|t|on(nonterm|nal)
14.6.2 Static Semantics: HasProductionInTailPosition
14.6.3 Runtime Semantics: PrepareForTaiICaII)

15

15.1
15.1.1 Static Semantics: Early Errors
15.1.2 Static Semantics: IsStrict
15.1.3 Static Semantics: LexicallyDeclaredNames....
15.1.4 Static Semantics: LexicallyScopedDeclarations ..
15.1.5 Static Semantics: VarDeclaredNames....
15.1.6 Static Semantics: VarScopedDeclarations..
15.1.7 Runtime Semantics: ScriptEvaluation
15.1.8 Runtime Semantics: GlobalDeclarationInstantiation (script, env)
15.1.9 Runtime Semantics: ScriptEvaluationJob (sourceText)
15.2 Modules
15.2.1 Module Semantics.
15.2.2 Imports.
15.2.3 Exports ...

16 Error Handling and Language Extensions ...
16.1 Forbidden Extensions

17 ECMAScript Standard BUilt=-in ODJECES ...l e

18 The Global Object
18.1 Value Properties of the Global Object..

18.1.1 Infinity..

18.1.2

18.1.3

18.2 Function Properties of the Global Object

18.2.1 eval (x)
18.2.2 isFinite (number).
18.2.3 isNaN (number)......
18.2:4 parseFloat (string) ...
18.2.5 parselnt (string , radix).
18.2.6 URI Handling Functions
18.3 Constructor Properties of the Global ObJect
18.3.1 Array (..
18.3.2 ArrayBuffer (
18.3.3 Boolean (...
18.3.4 DataView (...
18.3.5 Date(...).
18.3.6 Error(...).
18.3.7 EvalError (...
18.3.8 Float32Array (. ..
18.3.9 Float64Array (. ..
18.3.10 Function (...
18.3.11 Int8Array (.. .)....
18.3.12 Int16Array (. ..

X © Ecma International 2015

»echna

BRI R gL 7 N 4 -\ (R PPN 332
18.3.14 Map (.. . .
18.3.15 Number (. .
18.3.16 Object (. . .
18.3.17 Proxy (. . .
18.3.18 Promise (. ..
18.3.19 RangekError (. ..
18.3.20 ReferenceError (.. .)..
18.3.21 RegEXp (. ..)......

18.3.22Set (...)....
18.3.23 String (. . .
18.3.24 Symbol (...)..
18.3.25 SyntaxError (..
18.3.26 TypeError (.
18.3.27 Uint8Array (. .)
18.3.28 U|nt8CIampedArray (
18.3.29 Uint16Array (. ..).....
18.3.30 Uint32Array (.. .)..
18.3.31 URIError (.. .)
18.3.32 WeakMap (. . .
18.3.33 WeakSet (. . .
18.4 Other Properties of the Global Object.......................
18.4.1 JSON
18.4.2 Math
18.4.3 Reflect

19 Fundamental Objects
19.1 Object Objects
19.1.1 The Object Constructor
19.1.2 Properties of the Object Constructor..
19.1.3 Properties of the Object Prototype Object
19.1.4 Properties of Object Instances
19.2 Function Objects
19.2.1 The Function Constructor
19.2.2 Properties of the Function Constructor
19.2.3 Properties of the Function Prototype Object
19.2.4 Function Instances
19.3 Boolean Objects...........
19.3.1 .The Boolean Constructor ..
19.3.2 Properties of the Boolean Constructor......

19.3.3 Properties of the Boolean Prototype Object
19.3.4 Properties of Boolean Instances
19.4 Symbol Objects
19.4.1 The Symbol Constructor
19.4.2 Properties of the Symbol Constructor....
19.4.3 Properties of the Symbol Prototype Object .
19.4.4 Properties of Symbol Instances
19.5 Error ObjectS.....cccevvivvernnnnns
19.5.1 The Error Constructor
19.5.2 Properties of the Error Constructor
19.5.3 Properties of the Error Prototype Object
19.5.4 Properties of Error Instances...........ccccoeu..
19.5.5 Native Error Types Used in This Standard
19.5.6 NatiVEEITOr ODJECE SEIUCTUTE.....cviiiiiiiiiiiiiee et ettt e re et s aen e e

20 NI TGV Lo B =SS OR

© Ecma International 2015 Xi

20.1

20.1.1
20.1.2
20.1.3
20.1.4
20.2

20.2.1
20.2.2
20.3

20.3.1
20.3.2
20.3.3
20.3.4
20.3.5

21
21.1
2111
21.1.2
21.1.3
21.1.4
21.15

21.2.1
21.2.2

21.2.6

Xii

oecna

NUMBEI ODJECES ..ot s
The Number Constructor .
Properties of the Number Constructor....
Properties of the Number Prototype Object.
Properties of Number Instances.
The Math Object........cccocovvciiiirnenns
Value Properties of the Math Object.
Function Properties of the Math Object
Date Objects
Overview of Date Objects and Definitions of Abstract Operations
The Date Constructor
Properties of the Date Constructor
Properties of the Date Prototype Object.
Properties of Date Instances

Text Processing
String Objects
The String Constructorc.cceue..
Properties of the String Constructor....
Properties of the String Prototype Object .
Properties of String Instances
String lterator Objects
RegExp (Regular Expression) Objects.
Patterns ...,
Pattern Semantics

The RegExp Constructor
Properties of the RegExp Constructor....
Properties of the RegExp Prototype Object .
Properties of REGEXP INSLANCESoiiiiiieihee ittt ettt et e e snee e seeen

Indexed Collections
Array Objects
The Array Constructor
Properties ofithe Array Constructor.
Properties of the Array Prototype Object ..
Properties of Array Instances
Array lterator Objects
TypedArray Objects
The %TypedArray% Intrinsic Object
Properties of the %TypedArray% Intrinsic Object.
Properties of the %TypedArrayPrototype% Object ..
The TypedArray Constructors
Properties of the TypedArray Constructors.
Properties of TypedArray Prototype Objects
Properties of TypedArray Instances.

Keyed Collection ...
Map Objects
The Map Constructor
Properties of the Map Constructor ...
Properties of the Map Prototype Object
Properties of Map Instances..............
Map lterator Objects...........
Set Objects...
The Set Constructor..............
Properties of the Set Constructor.....
Properties of the Set Prototype Object

© Ecma International 2015

»ecnd

23.2.4
23.2.5
23.3

23.3.1
23.3.2
23.3.3
23.3.4
23.4

23.4.1
23.4.2
2343
23.4.4

24
24.1
24.1.1
24.1.2
24.1.3
24.1.4
2415
24.2
24.2.1
24.2.2
24.2.3
24.2.4
2425
24.3
243.1
24.3.2
24.3.3

25
25.1
25.1.1
25.1.2
25.2
25.2.1
25.2.2
25.2.3
25.2.4
253
253.1
25.3.2
25.3.3
25.4
25.4.1
25.4.2
25.4.3
25.4.4
25.4.5
25.4.6

26
26.1
26.1.1
26.1.2
26.1.3

Properties 0f Set INSTANCEScccciiiiiiiii e 496
Set Iterator Objects
WeakMap Objects............

The WeakMap Constructor
Properties of the WeakMap Constructor ..
Properties of the WeakMap Prototype Ob]ect
Properties of WeakMap Instances
WeakSet Objects
The WeakSet Constructor
Properties of the WeakSet Constructor.....
Properties of the WeakSet Prototype Object
Properties of WeakSet Instances 503

Structured Data
ArrayBuffer Objects
Abstract Operations For ArrayBuffer Objects
The ArrayBuffer Constructorc.ccecveiens
Properties of the ArrayBuffer Constructor...
Properties of the ArrayBuffer Prototype Object .
Properties of the ArrayBuffer Instances.......
DataView Objects
Abstract Operations For DataView Objects
The DataView Constructorcccecveeenene.
Properties of the DataView Constructor ..

Properties of the DataView Prototype Object
Properties of DataView Instances
The JSON Objectcccooevvvvrinennnn.
JSON.parse (text [, reviver])
JSON.stringify (value [, replacer [, space]])
JSON [@@toStringTag]

Control Abstraction Objects
lterationdeeeeienieiicis
Common lIteration Interfaces
The %lteratorPrototype% Objec
GeneratorFunction Objects............
The GeneratorFunction Constructor...

Properties of the GeneratorFunction Constructor
Properties of the GeneratorFunction Prototype Object..
GeneratorFunction Instances
Generator Objects
Properties of Generator Prototype
Properties of Generator Instances
Generator Abstract Operations ..
Promise Objects
Promise Abstract Operations..
Promise JOBS ...
The Promise Constructor
Properties of the Promise Constructor
Properties of the Promise Prototype Object
Properties of Promise Instances

Reflection
The Reflect Object.
Reflect.apply (target, thisArgument, argumentsList)....
Reflect.construct (target, argumentsList [, newTarget])..
Reflect.defineProperty (target, propertyKey, attributes)

© Ecma International 2015 xiii

oecna

26.1.4 Reflect.deleteProperty (target, propertyKey) ... e 540
26.1.5 Reflect.enumerate (target) .

26.1.6 Reflect.get (target, propertyKey [, receiver])
26.1.7 Reflect.getOwnPropertyDescriptor (target, propertyKey)
26.1.8 Reflect.getPrototypeOf (target)...
26.1.9 Reflect.has (target, propertyKey).
26.1.10 Reflect.isExtensible (target).....
26.1.11 Reflect.ownKeys (target)
26.1.12 Reflect.preventExtensions (target)
26.1.13 Reflect.set (target, propertyKey, V[, receiver]).. .
26.1.14 Reflect.setPrototypeOf (target, proto)......... 542
26.2 Proxy Objects.....cccocviviiieiiiniieiee e 542
26.2.1 The Proxy Constructor
26.2.2 Properties of the Proxy Constructor
26.3 Module Namespace Objects
26.3.1 @@toStringTag
26.3.2 [@@iterator] ()

Annex A (informative) Grammar Summary
Al Lexical Grammar
A2 Expressions
A3 Statements
A4 Functions and Classes
A5 Scripts and Modules
A.6 Number CONVersionsc.cccoeevesies

A7 Universal Resource Identifier Character Classes...
A.8 Regular Expressions

Annex B (normative) Additional ECMAScript Featuresfor Web Browsers
B.1 Additional Syntax
B.1.1 Numeric Literals
B.1.2 String Literals......c..

B.1.3 HTML-like Comments............
B.1.4 Regular Expressions Patterns .
B.2 Additional Built-in Properties............
B.2.1 Additional Properties of the Global Object...
B.2.2 Additional Properties of the Object.prototype Object
B.2.3 Additional Properties of the String.prototype Object
B.2.4 Additional Properties of the Date.prototype Object
B.2.5 < Additional Properties of the RegExp.prototype Object
B.3 Other Additional Features
B.3.1 " __proto__ Property Names in Object Initializers
B.3.2 Labelled Function Declarations
B.3.3 Block-Level Function Declarations Web Legacy Compatibility Semantlcs
B.3.4 FunctionDeclarations in IfStatement Statement Clauses ..
B.3.5 VariableStatements in Catch blocks

Annex C (informative) The Strict Mode 0f ECMASCIIPL......cciiiiiiiiiiiiiiiees e e 585
Annex D (informative) Corrections and Clarifications in Edition 6 with Possible Compatibility
0] = Lo3 SO PP O PP PP UPRTPPPPROPION 587

Annex E (informative) Additions and Changes That Introduce Incompatibilities with Prior
Lo 11 0 T 588

Xiv © Ecma International 2015

© Ecma International 2015

c2echd

Introduction

This is the sixth edition of ECMAScript Language Specification. Since publication of the first edition in 1997,

ECMAScript has grown to be one of theworld 6s most wi dely used gener al purpose programming | anguages.

is best known as the language embedded in web browsers but has also been widely adopted for server and
embedded applications. The sixth edition is the most extensive update to ECMAScript since the publication of
the first edition in 1997.

Goals for the sixth edition include providing better support for large applications, library creation, and for use
of ECMAScript as a compilation target for other languages. Some of its major enhancements include modules,
class declarations, lexical block scoping, iterators and generators, promises for asynchronous programming,
destructuring patterns, and proper tail calls. The ECMAScript library of built-ins has been expanded to support
additional data abstractions including maps, sets, and arrays of binary numeric values as well as additional
support for Unicode supplemental characters in strings and regular expressions. The built-ins are now
extensible via subclassing.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for

publication. However, this was preceded by significant experimentation and language enhancement design

efforts dating to the publication of the third edition in 1999. In a very real sense, the completion of the sixth

edition is the culmination of a fifteen year effort. Dozens of individuals representing many organizations have

made very significant contributions within TC39 to the development of this edition and the prior editions. In

additional,a vi brant i nfor mal community has emerged supporting TC39606s
has reviewed numerous drafts, filed thousands of bug reports; performed implementation experiments,

contributed test suites, and educate the world-wide developer community about ECMAScript. Unfortunately, it

is impossible to identify and acknowledge every person and organization who has contributed to this effort.

New uses and requirements for ECMAScript continue to emerge. The sixth edition provides the foundation for
regular, incremental language and library enhancements.

Allen Wirfs-Brock
ECMA-262, 6t Edition Project Editor

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

Xvi © Ecma International 2015

ECMAScr i

pt

ef f

~2echd

ECMA-262 Edition History

This Ecma Standard is based on several originating technologies, the most well-known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that companyds Navigator 2 brOwsdrsrfronwNetscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition-of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the. fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation future language growth. The third edition of the ECMAScript standard was adopted by
the Ecma General Assembly of December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World
Wide Web where it has become the programming language that is supported by essentially all web browsers.
Significant work was done to develop a fourth edition of ECMAScript. However, that work was not completed
and not published? as the fourth edition of ECMAScript but some of it was incorporated into the development
of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5" edition) codified de facto interpretations of the
language specification that have become common among browser implementations and added support for
new features that had emerged since the publication of the third edition. Such features include accessor
properties, reflective creation and inspection of objects, program control of property attributes, additional array
manipulation functions, support for the JSON object encoding format, and a strict mode that provides
enhanced error checking and program security. The Fifth Edition was adopted by the Ecma General Assembly
of December 2009.

The Fifth Edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved
as international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor
corrections and is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General
Assembly.of June 2011.

INote: Please note that for ECMAScri pt -2B6d2 tEdoint i40nt hded Ewtansa
used in the Ecma publicati-2®2 pEdicteisen dheaef ane EABEMANt ernati onal

exist.

© Ecma International 2015 XVii

t

has

appeared

rset saenrdvaerdd bnuwtmbreor

n

al

i ECMA
publication

sult

does

c2echd

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared; copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this. document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns.during this time.

This document and the information contained herein..is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

xviii © Ecma International 2015

secma

ECMAScript 2015 Language Specification

1 Scope
This Standard defines the ECMAScript 2015 general purpose programming language.
2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described inthis specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the
Unicode Standard, Version 5.1.0 or later and ISO/IEC 10646: If the adopted ISO/IEC 10646-1 subset
is not otherwise specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript that provides an application programming interface that
supports programs that need to adapt to the linguistic and cultural conventions used by different
human languages and countries must implement the interface defined by the most recent edition of
ECMA-402 that is compatible with this specification.

A conforming implementation of ECMAScript. may provide additional types, values, objects,
properties, and functions beyond those described in.this specification. In particular, a conforming
implementation of ECMAScript may provide properties not describedin this specification, and values
for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not
described in this specification. In particular, a conforming implementation of ECMAScript may support
program syntax that.makes use of the ffuture reserved wordso listed in subclause 11.6.2.2 of this
specification.

A conforming implementation of ECMAScript must-not implement any extension that is listed as a
Forbidden Extension in subclause 16.1.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

IEEE Std 754-2008: IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and Electronic
Engineers, New York(2008)

ISO/IEC 10646:2003: Information Technology i Universal Multiple-Octet Coded Character Set (UCS)
plus Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus
additional amendments and corrigenda, or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor.
http://www.unicode.org/versions/latest

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor.
http://www.unicode.org/reports/tr15/

© Ecma International 2015

http://www.unicode.org/versions/latest
http://www.unicode.org/reports/tr15/

secmad

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or
successor. http://www.unicode.org/reports/tr31/

ECMA-402, ECMAScript 2015 Internationalization API Specification.
http://www.ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
http://www.ecma-international.org/publications/standards/Ecma-404.htm

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for® performing computations and
manipulating computational objects within a host environment. ECMAScript as defined here is not
intended to be computationally self-sufficient; indeed, there are no provisions in this specification for
input of external data or output of computed results. Instead, it is expected that the computational
environment of an ECMAScript program will provide not only the objects and other facilities described
in this specification but also certain environment-specific objects, whose description and behaviour
are beyond the scope of this specification except to<indicate that they may provide certain properties
that can be accessed and certain functions that can be called from-an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used
as a general purpose programming language. A scripting language is a programming language that
is used to manipulate, customize, and automate the facilities of an existing system. In such systems,
useful functionality is already available through a user. interface, and. the scripting language is a
mechanism for exposing that functionality to program control..In this way, the existing system is said
to provide a host environment of objects and facilities, which completes the capabilities of the scripting
language. A scripting language..is intended for use by both professional and non-professional
programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to
enliven Web pages in browsers and to perform server computation as part of a Web-based client-
server architecture. ECMAScript.iS now used to provide core scripting capabilities for a variety of host
environments. Therefore the core language is specified in this document apart from any particular
host environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of
programming tasks in many different environments and scales. As the usage of ECMAScript has
expanded, so has the features and facilities it provides. ECMAScript is now a fully featured general
propose programming language.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in
particular C, Javad, Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages i C.

Gosling, James, Bill Joy and Guy Steele. The Java® Language Specification. Addison Wesley
Publishing Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 227i 241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.

2 © Ecma International 2015

[Formatted: French (Switzerland)

[Field Code Changed

http://www.unicode.org/reports/tr31/
http://www.ecma-international.org/publications/standards/Ecma-402.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

secma

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for
instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames,
history, cookies, and input/output. Further, the host environment provides a means to attach scripting
code to events such as change of focus, page and image loading, unloading, error and abort,
selection, form submission, and mouse actions. Scripting code appears within the HTML and the
displayed page is a combination of user interface elements and fixed and computed text and images.
The scripting code is reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects
representing requests, clients, and files; and mechanisms to lock and share data. By using browser-
side and server-side scripting together, it is possible to distribute computation between the client and
server while providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment,
completing the ECMAScript execution environment.

4.2 ECMAScript Overview

The following is an informal overview of ECMAScriptd not all parts of the language are described.
This overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities. are provided by objects, and an
ECMAScript program is a cluster of communicating objects. In ECMAScript, an object is a collection
of zero or more properties each with attributes that determine how each property can be usedd for
example, when the Writable attribute for a property is set to false, any attempt by executed
ECMAScript code to assign a different value to the property fails. Properties are containers that hold
other objects, primitive values, or functions. A primitive value is a member of one of the following
built-in types: Undefined, Null, Boolean, Number, String, and Symbol; an object is a member of the
built-in type Object; and‘a functionis a callable object. A function that is associated with an object via
a property is called amethod.

ECMAScript defines a collection’ of built-in._objects that round out the definition of ECMAScript
entities. These built-in objects include the global object; objects that are fundamental to the runtime
semantics of the language including Object, Function, Boolean, Symbol, and various Error objects;
objects that represent and manipulate numeric values including Math, Number, and Date; the text
processing objects String and RegExp; objects that are indexed collections of values including Array
and nine different kinds of Typed Arrays whose elements all have a specific numeric data
representation; keyed collections including Map and Set objects; objects supporting structured data
including the JSON object, ArrayBuffer, and DataView; objects supporting control abstractions
including. generator functions and Promise objects; and, reflection objects including Proxy and
Reflect.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary
operations, multiplicative operators, additive operators, bitwise shift operators, relational operators,
equality operators, binary bitwise operators, binary logical operators, assignment operators, and the
comma operator.

Large ECMAScript programs are supported by modules which allow a program to be divided into
multiple sequences of statements and declarations. Each module explicitly identifies declarations it
uses that need to be provided by other modules and which of its declarations are available for use by
other modules.

[ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to
serve as an easy-to-use scripting language. For example, a variable is not required to have its type

© Ecma International 2015

[Formatted: French (Switzerland)

secma

declared nor are types associated with properties, and defined functions are not required to have their
declarations appear textually before calls to them.

4.2.1 Objects

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not
fundamentally class-based such as those in C++, Smalltalk, or Java. Instead objects may be created
in various ways including via a literal notation or via constructors which create objects and then
execute code that initializes all or part of them by assigning initial values to their properties. Each

constructor is a functi on prdtolypet 0 h 4 $ aised tp smplememntt y named

prototype-based inheritance and shared properties. Objects are created by using constructors in
new expressions; for example, new Date(2009,11) creates a new Date object. Invoking a
constructor without using new has consequences that depend on the constructor. For example,
Date() produces a string representation of the current date and time rather than an object.

Every object created by a constructor prhtaype)@the i mpl i ci t

value of its constructord sprotbtype o pr oper ty. Furthermore, -aul
implicit reference to its prototype, and so on; this is called the prototype chain. When a reference is
made to a property in an object, that reference is to the property of that name in the first object in the
prototype chain that contains a property of that name. In other words, first the object mentioned
directly is examined for such a property; if that object contains the named property, that is the property
to which the reference refers; if that object does not contain the named property, the prototype for that
object is examined next; and so on.

) ' CF implicit prototypelink
prototype CFP .
P11

explicit prototype prope
- CFP1 p P Type property

ofs of of, - of. S

gl il ql el ol
g2 oz = o2 e et

Figure 13 Object/Prototype Relationships

In a class-based object-oriented language, in general, state is carried by instances, methods are
carried by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and
methods are carried by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that
property and its value. Figure 1 illustrates this:

prototype

4 © Ecma International 2015

reference

may

have

(call ed

a

non

secma

CF is a constructor (and also an object). Five objects have been created by using new expressions:

cf1, cf2, cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed

lines represent the implicit prototype relationship; so, for example, cfs6 s prot €kyThe i s

constructor, CF, has two properties itself, named P1 and P2, which are not visible to CFp, cf1, cf2, cfs,

cfa, or cfs. The property named CFP1in CFp is shared by cfi, cf2, cfs, cfs, and cfs (but not by CF), as

are any properties found inCF,6s i mpl i cit prototypel,ghaiCFPLNdtiecet are not named
that there is no implicit prototype link between CF and CFp.

Unlike most class-based object languages, properties can be added to objects dynamically by

assigning values to them. That is, constructors are not required to name or assign values to all or any

oftheconstruct ed obj ectds properties. I nn the above diagram, one could add
cfi, cfz, cfs, cfs, and cfs by assigning a new value to the property in CFp.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like
abstractions based upon a common pattern of constructor functions, prototype objects, and methods.
The ECMAScript built-in objects themselves follow such a class-like pattern. Beginning with the sixth
edition, the ECMAScript language includes syntactic class’ definitions that permit programmers to
concisely define objects that conform to the same class-like abstraction pattern used by the built-in
objects.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to
restrict their usage of some features available in the language. They might do so in the interests of
security, to avoid what they consider to be error-prone features, to get enhanced error checking, or for
other reasons of their choosing. In support of this possibility, ECMAScript defines a strict variant of the
language. The strict variant of the language excludes some specific syntactic and semantic features
of the regular ECMAScript language and modifies the detailed semantics of some features. The strict
variant also specifies additional-error conditions that'must be reported by throwing error exceptions in
situations that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict
mode selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at
the level of individual ECMAScript source text.units. Because strict mode is selected at the level of a
syntactic source text unit, strict mode only imposes restrictions that have local effect within such a
source text unit. Strict mode does not restrict or modify any aspect of the ECMAScript semantics that
must operate consistently across multiple source text units. A complete ECMAScript program may be
composed of both strict mode and. non-strict mode ECMAScript source text units. In this case, strict
mode only applies when actually executing code that is defined within a strict mode source text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as
defined by this specification. In addition, an implementation must support the combination of
unrestricted and strict mode source text units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

431

type
set of data values as defined in clause 6 of this specification

© Ecma International 2015 5

oecnd

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, Symbol, or String as defined in clause
6

NOTE A primitive value is a datum that is represented directly at the lowest level of the language
implementation.

433
object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the
null value.

4.3.4

constructor

function object that creates and initializes objects

NOTE The value of @rotatypen sot rpurcotpoerrdtsy fii s a prototype object that is used to implen
inheritance and shared properties.

4.35

prototype

object that provides shared properties for.other. objects

NOTE When a constructor creates an object, t pratotypeo boj ect i mplicitly references t he
property for the purpose of resol vi pmototyper dp eprtoyp erbet fyerceanc e s . The constructorods f

referenced by the program expression constructor .prototype and properties added to an objectos
prototype are shared, through inheritance, by all objects sharing the prototype. Alternatively, a new object may be
created with an explicitly specified prototype by using the Object.create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all
objects.

4.3.7

exotic object

object that does not have the default behaviour for one or more of the essential internal methods that
must be supported by all objects.

NOTE Any object that is not an ordinary object is an exotic object.
4.3.8

standard object

object whose semantics are defined by this specification

4.3.9

built-in object

object specified and supplied by an ECMAScript implementation

NOTE Standard built-in objects are defined in this specification. An ECMAScript implementation may specify
and supply additional kinds of built-in objects. A built-in constructor is a built-in object that is also a constructor.

6 © Ecma International 2015

o2eChna

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4311
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14
Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a
Boolean value as an argument. The resulting object has an internal slot whose value is the Boolean value. A
Boolean object can be'coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents
asingle 16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the
values except that they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String
value as an argument. The resulting object has an internal slot whose value is the String value. A String object
can be coerced to a String value by calling the String constructor as a function (21.1.1.1).

4.3.20

Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

© Ecma International 2015

oecnd

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.21
Number type

set of all possible Number values includingthe s pec-a-BUmli&od (NaN) val ue,

and negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a‘new expression, supplying a
Number value as an argument. The resulting object has an internal slot whose value is the Number value. A

Number object can be coerced to a Number value by calling the Number constructor as.a function (

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24
NaN
number value thatisanl EEE 7 5a&N uirNtogr 0 v.al ue

4.3.25
Symbol value
primitive value that represents a unique, non-String Object property key

4.3.26
Symbol type
set of all possible Symbol values

4.3.27
Symbol object
member of the Object type that is an instance of the standard built-in Symbol constructor

4.3.28
function
member of the Object type that may be invoked as a subroutine

20.1.1.1).

NOTE In addition to its properties, a function contains executable code and state that determine how it

behaves when invoked. A functionds code may

4.3.29
built-in function
built-in object that is a function

or may not

NOTE Examples of built-in functions include parseint and Math.exp . An implementation may provide

implementation-dependent built-in functions that are not described in this specification.

4.3.30
property

part of an object that associates a key (either a String value or a Symbol value) and a value.

NOTE Depending upon the form of the property the value may be represented either directly as a data value

(a primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

8 © Ecma International 2015

be

positive

written

n

infinity,

ECMAScript.

o2eChna

4331
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this
value.

4.3.32
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may
specify and provide other additional built-in methods.

4.3.33

attribute

internal value that defines some characteristic of a property

4.3.34

own property

property that is directly contained by its object

4.3.35

inherited property

property of an object that is not an own' property but is a property (either own or inherited) of the
objectods prototype

4.4 Organization of This Specification

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 61 9 define the execution.environment within which ECMAScript programs operate.

Clauses 101 16 define the actual ECMAScript programming language including its syntactic encoding
and the execution semantics of all language features.

Clauses 171 26 define the ECMAScript standard library. It includes the definitions of all of the standard
objects that are available for use by ECMAScript programs as they execute.

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal
symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified

alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side
along with zero or more terminal symbols.

© Ecma International 2015

secma

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a
given context-free grammar specifies a language, namely, the (perhaps infinite) set of possible
sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the
sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 11. This grammar has as its terminal symbols
Unicode code points that conform to the rules for SourceCharactedefined in 10.1. It defines a set of
productions, starting from the goal symbol InputElementDiy InputElementemplateTail or
InputElementRegExmr InputElementRegExirTemplateTail that describe how sequences of such code
points are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic

grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words,

identifiers, literals, and punctuators of the ECMAScript language: Moreover, line terminators, although

not considered to be tokens, also become part of the stream of input elements and guide the process

of automatic semicolon insertion (11.9). Simple white space and single-line comments are discarded

and do not appear in the stream of input elements for the syntactic grammar. A MultiLineComment

(that i s, a commeén/to ofegtamell Eesmofi whet her it spans more than one |line
likewise simply discarded if it contains no line terminator; but if a‘MultiLineCommentontains one or

more line terminators, then it is replaced by a single line terminator, which becomes part of the stream

of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 21:2.1. This grammar also has as its terminal symbols
the code points as defined by SourceCharacterlt defines a set of productions, starting from the goal
symbol Pattern that describe how sequences of code points.are translated into regular expression
patterns.

Productions of the lexicaland RegExp grammars are distinguiashed by having two col ons
separating punctuation.The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the
part of the lexical grammar having to do with numeric literals and has as its terminal symbols
SourceCharacterT his.grammar appears in 7.1.3.1.

Productions of the numeric string grammar are distinguished by havi ng threé asl ons f
punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar-for ECMAScript is given in clauses 11, 12, 13, 14, and 15. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of
productions, starting from two alternative goal symbols Script and Module that describe how
sequences of tokens form syntactically correct independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScript Scriptor Module it is first converted
to a stream of input elements by repeated application of the lexical grammar; this stream of input
elements is then parsed by a single application of the syntactic grammar. The input stream is
syntactically in error if the tokens in the stream of input elements cannot be parsed as a single
instance of the goal nonterminal (Scriptor Modulg), with no tokens left over.

Productions of the syntactic grammar :0araes o¢iuntcitru@uiioomed by having just on

10 © Ecma International 2015

secma

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is not a complete account of which
token sequences are accepted as a correct ECMAScript Script or Module Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only
semicolons were added to the sequence in certain places (such as before line terminator characters).
Furthermore, certain token sequences that are described by the grammar are not considered
acceptableifalinet er mi nat or character appears in certain flawkwardo pl aces.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalized productions that
permit token sequences that do not form a valid ECMAScript Script or Module For example, this
technique is used for object literals and object destructuring patterns. In such cases a more restrictive
supplemental grammar is provided that further restricts the acceptable token sequences. In certain
contexts, when explicitly specified, the input elements corresponding to such a production are parsed
again using a goal symbol of a supplemental grammar. The input stream is syntactically in error if the
tokens in the stream of input elements parsed by a cover grammar cannot be parsed as a single
instance of the corresponding supplemental goal symbol, with no tokens left over.

5.1.5 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars are shown in fixed width
font, both in the productions of the grammars and.throughout this_specification whenever the text
directly refers to such a terminal symbol. These are to appear.in a script exactly as written. All
terminal symbol code points specified in this way are to be understood as the appropriate Unicode
code points from the Basic Latin range, as opposed to any similar-looking code points from other
Unicode ranges.

Nonterminal symbols are shown in italic type. The. definition of a nonterminal (also called a
fi pr od u dstinirodluced)by the name of the nonterminal. being defined followed by one or more
colons. (The number of colons indicates to which grammar the production belongs.) One or more
alternative right-hand sides for.the nonterminal then follow on succeeding lines. For example, the
syntactic definition:

WhileStatement
while (' Expressior) Statement

states that the nonterminal WhileStatementepresents the token while , followed by a left parenthesis
token, followed by an Expression followed by a right parenthesis token, followed by a StatementThe
occurrences of Expressionand. Statementare themselves nonterminals. As another example, the
syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList, AssignmentExpression

states that an. ArgumentListmay represent either a single AssignmentExpesionor an ArgumentList
followed by a comma, followed by an AssignmentExpressioithis definition of ArgumentLists recursive,
that is, it is defined in terms of itself. The result is that an ArgumentListmay contain any positive
number of arguments, separated by commas, where each argument expression is an
AssignmentExpressioBuch recursive definitions of nonterminals are common.

The subscriopt,edwhsiufhf ilxayl appear after a terminal or nonterminal, i ndicat
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one
that omits the optional element and one that includes it. This means that:

VariableDeclaration:
Bindindgdentifier Initializerop

© Ecma International 2015 11

secmad

is a convenient abbreviation for:

VariableDeclaation :
Bindinddentifier
Bindingdentifier Initializer

and that:

IterationStatement
for(LexicalDeclaration Expressiopy ; Expressiopy) Statement

is a convenient abbreviation for:

IterationStatement
for (LexicalDeclaration ; Expressiopy) Statement
for(LexicalDeclaration Expression; Expressiop,) Statement

which in turn is an abbreviation for:

IterationStatement
for (LexicalDeclaration;) Statement
for (LexicalDeclaration; Expressior) Statement
for (LexicalDeclaration Expression;) Statement
for (LexicalDeclaration Expression; Expressior) - Statement

S0, in this example, the nonterminal IterationStatemerdctually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form fjparameterss® , Whi ¢ h may
appear as a suffix to the nonterminal symbol defined by the production. fparametersO may be either a

single name or a comma separated list of names. A parameterized production is shorthand for a set of

productions defining all. combinations of the parameter names, preceded by an underscore, appended

to the parameterized .nonterminal symbol. This means that:

StatementLigeturn) -
ReturnStatement
ExpressionStatement

is a convenient abbreviation for:

StatementList
ReturnStatement
ExpressionStatement

StatementList_Return
ReturnStatement
ExpressionStatement

and that:

StatementLigeturn, in) :
ReturnStatement
ExpressionStatement

is an abbreviation for:

12 © Ecma International 2015

o2eChna

StatementList
ReturnStatement
ExpressionStatement

StatementList_Return
Return$atement
ExpressionStatement

StatementList_In
ReturnStatement
ExpressionStatement

StatementList_Return_in
ReturnStatement
ExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily
referenced in a complete grammar.

References to nonterminals on the right-hand side of a production can also be parameterized. For
example:

StatementList
ReturnStatement
ExpressionStatement
is equivalent to saying:
StatementList
ReturnStatement
ExpressionStateent_In
A nonterminal reference may have both a parameter list and an ;0 s uFbrfexample:

VariableDeclaration:
Bindingdentifier Initializer jinjopt

is an abbreviation for:
VariableDeclaration:
Bindingdentifier
Bindinddentifier Initializer_In
Prefixing a parameter name with f0on a right-hand side nonterminal reference makes that parameter
value dependent upon<the occurrence of the parameter name on the reference to the current
p r o d u cléftthand side symbol. For example:

VariableDeclaratioRy :
Bindingdentifier Initializerjzin

is an abbreviation for:

VariableDeclaration:
Bindingdentifier Initializer

VariableDeclaration In :
Bindinddentifier Initializer_In

© Ecma International 2015

13

oecnd

If a right-hand side alternative is prefixed with fi+parameter]0 that alternative is only available if the

named parameter was used in referenci nmghthameksidpr oducti ondés nonter minal sy
alternative is prefixed with fi~parameter]0 that alternative is only available if the named parameter was
notusedinreferencing t he producti ondés nonterminal symbol. This means that:

StatementLigteturn) :
[+Retur] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList
ExpressionStatement

StatementList_Return
ReturnStatement
ExpressionStatement

and that

StatementLigketurn)

[~Returd ReturnStatement
ExpressionStatement
is an abbreviation for:

StatementList
ReturnStatement
ExpressionStatement

StatementList_Return
ExpressionStatement

When theoneofddd ofi |l ow t he col on(s,)they sinifiathageach mfleer def i ni ti on
terminal symbols on the following line or lines.is _an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

NonZeroDigit::-one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::

N~

©oO~NO U~ W

I f the [epplyl0 aa pp diar s -kasd sidehota produgtibrt, it indicates that the production's
right-hand side contains no terminals or nonterminals.

14 © Ecma International 2015

secma

I f t h e [qpkhheadisseld0 fiagrpin the right-hand side of a production, it indicates that the
production may not be used if the immediately following input token is a member of the given set The
setcan be written as a list of terminals enclosed in curly brackets. For convenience, the set can also
be written as a nonterminal, in which case it represents the set of all terminals to which that
nonterminal could expand. If the setconsists of a single terminal the phrase filookahead i terminald may
be used.

For example, given the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
n [lookahead 1 {1, 3,5, 7, 9}] DecimalDigits
DecinalDigit [lookahead T DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a
decimal digit not followed by another decimal digit.

I f t h e [np hneT@nsnaorhefeld app e ar s. -hand sidehad a prddgtion of the syntactic
grammar, it indicates that the production is a restricted production: it may not be used if a
LineTerminatoroccurs in the input stream at the indicated position..For example, the production:

ThrowStatement
throw [no LineTerminatohere] Expression

indicates that the production may not be used if ‘@ LineTerminatoroccurs in the script between the
throw token and the Expression

Unless the presence of a LineTerminatoris forbidden by a restricted production, any number of
occurrences of LineTerminatomay appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the script.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to
be a multi-code point token, it represents the sequence of code points that would make up such a
token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
p hr atkuenotd. an d tcétiegrthe expadsions to be excluded. For example, the production:

Identifier ::
IdentifierNamebut not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of code points that could
replace IdentifierName provided that the same sequence of code points could not replace
ReservedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases
where it would be impractical to list all the alternatives:

© Ecma International 2015

\\ Formatted: ~German (Switzerland)

15

secma

SourceCharacter:
any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are
used to precisely specify the required semantics of ECMAScript language constructs. The algorithms
are not intended to imply the use of any specific implementation technique. In practice, there may be
more efficient algorithms available to implement a given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters
must be providedaspart of t he al g mordetfth faciitate thegr tisie im multiple parts of
this specification, some algorithms, called abstract operations, .are named and written in
parameterized functional form so that they may be referenced by name from within other algorithms.
Abstract operations are typically referenced using a functional application style such as
operationName(rgl, arg2). Some abstract operations are treated as polymorphically dispatched
methods of class-like specification abstractions. Such method-like abstract operations are typically
referenced using a method application style such as someValu®perationName(gl, arg2).

Algorithms may be associated with productions of one of the ECMAScript grammars. A production
that has multiple alternative definitions will typically have a distinct algorithm for each alternative.
When an algorithm is associated with a grammar production, it may reference the terminal and
nonterminal symbols of the production alternative as if they were parameters of the algorithm. When
used in this manner, nonterminal symbols. refer to the actual alternative definition that is matched
when parsing the source text.

When an algorithm is associated with a production alternative, the alternative is typically shown
withoutany fA[] 0 grammar annotations. Such annota
the alternative and have no effect on the associated semantics for the alternative.

Unless explicitly specified otherwise, all chain productions have an implicit definition for every
al gorithm_ t hat might be ahamlsideendntetmmmal. e antplicipdefimition
simply reapplies the same algorithm name with
sole right-hand side nonterminal® and- then returns the result. For example, assume there is a
production:

Block:
{ StatementLisk

but there is no corresponding Evaluation algorithm that is explicitly specified for that production. If in
some algorithm there is a statement of the for m Retufin the result of evaluatijocko i t i s
an Evaluation algorithm exists of the form:

Runtime Semantics: Evaluation

Block: { StatementLisk

1. Return theresultof evaluatingStatementList

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are
indented and may themselves be further divided into indented substeps. Outline numbering
conventions are used to identify substeps with the first level of substeps labelled with lower case
alphabetic characters and the second level of substeps labelled with lower case roman numerals. If
more than three levels are required these rules repeat with the fourth level using numeric labels. For
example:

tions should only affect

ctionods
the same

i mplicit

16 © Ecma International 2015

eft
parameters, i f

that

td

o2eChna

1. Top-levelstep «
a. Substep
b. Substep
i. Subsubstep

1. Subsubsubste
a. Subsubsubsubstep

i. Subsubsubsubsubstep
A step or substep may be written as an difao
substeps are only applied if the predicate is
apredc ate that is the negation of the preceding

A step may specify the iterative application of its substeps.

Astept hat begi ns assertshn irvakians cendition of'its algorithm. Such assertions are
used to make explicit algorithmic invariants that would otherwise be implicit. Such assertions add no
additional semantic requirements and hence need not be checked by an implementation. They are
used simply to clarify algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the
mathematical functions defined later in this clause should always be understood as computing exact
mathematical results on mathematical real numbers, which. unless otherwise noted do not include
infinities and do not include a negative zero that is distinguished from positive zero. Algorithms in this
standard that model floating-point arithmetic include explicit steps, where necessary, to handle
infinities and signed zero and to perform rounding. If a mathematical operation or function is applied to
a floating-point number, it should be understood as being applied to the exact mathematical value
represented by that floating-point number; such a floating-point number must be finite, and if it is +0 or
- 0 then the corresponding mathematical value is simply-O.

The mathematical function-abs§) produces the absolute value of x, which is -x if X is negative (less
than zero) and otherwise'is X itself.

The mathematical function sign() produces 1 if x is'positive and - 1 if x is negative. The sign function is
not used in this standard for cases when xis.zero.

The mathematical function min(xs, X, .., X,) produces the mathematically smallest of x; through x,. The
mathematical function max(x, X, .., X)) produces the mathematically largest of x through x.. The
domain and range of these mathematical functions include +& and - &.

T he n o tmddiloyny rtfust be finite and nonzero) computes a value k of the same sign as y (or
zero) such that absk) < absf) andx- k =q3 y for some integer g.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not
larger than x.

NOTE floor(x) =x- (xmodulo 1)
5.3 Static Semantic Rules
Context-free grammars are not sufficiently powerful to express all the rules that define whether a
stream of input elements form a valid ECMAScript Script or Modulethat may be evaluated. In some
situations additional rules are needed that may be expressed using either ECMAScript algorithm

conventions or prose requirements. Such rules are always associated with a production of a grammar
and are called the static semantics of the production.

© Ecma International 2015

[Formatted: Keepwith next

predicate that conditi
subst ey

true.

i

fo

If a step
predicat e

17

or
step

at

ons

t

he

secma

Static Semantic Rules have names and typically are defined using an algorithm. Named Static
Semantic Rules are associated with grammar productions and a production that has multiple
alternative definitions will typically have for each alternative a distinct algorithm for each applicable
named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a
definition for a static semantic rule named Containswhich takes an argument named symbolwhose
value is a terminal or nonterminal of the grammar that includes the associated production. The default
definition of Containss:

1. For each terminal andonterminalgrammar symbolsym in the definition of this production do
a. If symis the same grammaymbolassymbo] returntrue.
b. If symis anonterminal then
i. Letcontainedbe theresultof symContainssymbol
ii. If containedis true, returntrue.
2. Returnfalse

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early.error rules define early error
conditions (see clause 16) that are associated with specific grammar productions. Evaluation of most
early error rules are not explicitly invoked within the ‘algorithms of this specification. A conforming
implementation must, prior to the first evaluation of a Script validate all of the early error rules of the
productions used to parse that Script If any of the early error rules are violated the Scriptis invalid and
cannot be evaluated.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The
possible value types are exactly those defined in this clause. Types are further subclassified into
ECMAScript language types and specification types.

Within this specification, the notatio n Tyfe)d0 i s used as the tygerofixoh amhdéepéeo r i A
refers to the ECMAScript language and.specification types defined in this clause. When the term
Aemptyodo is used as if it was naming a vad.ue, it is equivalent to saying
6.1 ECMAScript Language Types

An _ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null,
Boolean, String, Symbol, Number, and Object. An ECMAScript language value is a value that is
characterized by an ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been
assigned a value has the value undefined.

6.1.2 The Null Type
The Null type has exactly one value, called null.
6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

18 © Ecma International 2015

secma

6.1.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer

val ues (fiel ementsod) . The String type is generally

ECMAScript program, in which case each element in the String is treated as a UTF-16 code unit
value. Each element is regarded as occupying a position within the sequence. These positions are
indexed with nonnegative integers. The first element (if any) is at index 0, the next element (if any) at
index 1, and so on. The length of a String is the number of elements (i.e., 16-bit values) within it. The
empty String has length zero and therefore contains no elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16
code unit. However, ECMAScript does not place any restrictions or requirements on the sequence of
code units in a String value, so they may be ill-formed when interpreted as UTF-16 code unit
sequences. Operations that do not interpret String contents -treat them as sequences of
undifferentiated 16-bit unsigned integers. The function Str ing.prototype.normalize (see
21.1.3.12) can be used to explicitly normalize a string value. String.prototype. localeCompare
(see 21.1.3.10) internally normalizes strings values, but no-other operations implicitly. normalize the
strings upon which they operate. Only operations that are ‘explicitly specified to be language or locale
sensitive produce language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-
performing as possible. If ECMAScript source text is in Normalized Form C, string literals are guaranteed to also
be normalized, as long as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:

1 Acode unitin the range 0 to 0xXD7FFor in the range 0XE000to OXFFFFis interpreted as a code
point with the same value.

1 A sequence of two code units, where the first code unit ¢l is in the range 0xD800to OXDBFF
and the second code unit €2 is in the range 0xDCOO0to OXDFFF, is a surrogate pair and is
interpreted as a.code point with the value (c1 - 0xD800Q x 0x400+ (c2i 0xDCO0Q + 0x10000

1 A code unit that is in the range 0xD800to OXDFFF, but is not part of a surrogate pair, is
interpretedas a code point with the same value.

6.1.5 The Symbol Type

The Symboal type is the set of all non-String values that may be used as the key of an Object property
(6.1.7).

Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined
or a String value.

6.1.5.1 Well-known Symbols

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this
specification. They are typically used as the keys of properties whose values serve as extension
points of a specification algorithm. Unless otherwise specified, well-known symbols values are shared
by all Code Realms (8.2).

Within this specification a well-known symbol is referred to by using a notation of the form @@name,
where finameodo is oneTablél.the values I|isted in

© Ecma International 2015

used

19

represent

secma

Table 18 Well-known Symbols

Specification Name

[[Description]]

Value and Purpose «

@ @haslInstance

"Symbol.hasInstance"”

A method that determines if a constructor
object recognizes an object as one of the
constructorés i nstan
semantics of the instanceof operator.

@@isConcatSpreadabl{ "Symbol.isConcatSpreadable” A Boolean valued property that if true indicates
that an object should be flattened to its array
elements by Array:prototype.concat

@@iterator "Symbol.iterator" A method that returns the default Iterator for
an object. Called by the semantics of the for-of
statement:

@@match "Symbol.match " A regular expression method that matches the
regular expression against a string. Called by
the String.prototype.match method.

@@replace "Symbol.replace " A regular expression method that replaces
matched substrings of a string. Called by the
String.prototype.replace method.

@@search "Symbol.search” A regular expression method that returns the
index within a string that matches the regular
expression. Called by the
String.prototype.search method.

@@species "Symbol.species" A function valued property that is the
constructor function that is used to create
derived objects.

@@split "Symbol:split* A regular expression method that splits a
string at the indices that match the regular
expression. Called by the
String.prototype.split method.

@ @toPrimitive "Symbol.toPrimitive* A method that converts an object to a
corresponding primitive value. Called by the
ToPrimitive abstract operation.

@@toStringTag "Symbol.toString Tag" A String valued property that is used in the
creation of the default string description of an
object. Accessed by the built-in method
Object.prototype.toString .

@@unscopables "Symbol.unscopables" An object valued property whose own property

names are property names that are excluded
from the with environment bindings of the
associated object.

[Formatted Table

6.1.6 The Number Type

The Number type has exactly 1843773687445481062@that is, 264 25%+3) values, representing the
double-precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-

Point Arithmetic, except that the 900719925474099@that is, 2%- 2)

di st taiNautmb@Naotof al

the IEEE Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN
value is produced by the program expression NaN) In some implementations, external code might be
able to detect a difference between various Not-a-Number values, but such behaviour is

20

© Ecma International 2015

ues

o2eChna

implementation-dependent; to ECMAScript code, all NaN values are indistinguishable from each
other.

NOTE The bit pattern that might be observed in an ArrayBuffer (see 24.1) after a Number value has been
stored into it is not necessarily the same as the internal representation of that Number value used by the
ECMAScript implementation.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these
values are also referred to for expository purposes by the symbols +& and - &, respectively. (Note that
these two infinite Number values are produced by the program expressions +Infinity (or simply
Infinity) and - Infinity)

The other 1843773687445481064hat is, 254 2%9) values are called the finite numbers. Half of these
are positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also
referred to for expository purposes by the symbols +0 and - 0, respectively. (Note that these two
different zero Number values are produced by the program expressions +0 (or simply 0) and.- 0.)

The 184377368744548106Zthat is, 264 253 2) finite nonzero values-are of two kinds:
1842872967520006963that is, 284 254 of them are normalized, having the form

s3 m3 2°

where sis +1 or -1, mis a positive integer less than 2° but not less than 2%, and e is an integer
ranging from - 1074to 971, inclusive.

The remaining 900719925474099@hat is, 25- 2) values are denormalized, having the form

s3 m3 2°

where sis +1 or - 1, mis a positive integer.less than 2%, and eis - 1074

Note that all the positive and negative integers whose magnitude is no greater than 25 are
representable in'the Number type (indeed, the integer 0 has two representations, +0 and - 0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of
the two forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the p h r atheeNurfiber value fokd w hjerepeesents an exact nonzero real
mathematical quantity (which might even be an irrational number such as p) means a Number value
chosen in the following manner. Consider the set of all finite values of the Number type, with -0
removed and with two additional values added to it that are not representable in the Number type,
namely 2102 (whichis +13 2533 2979 and - 21924 (which is -1 3 2533 2973, Choose the member of this
set that is closest in value to x. If two values of the set are equally close, then the one with an even
significand is chosen; for this purpose, the two extra values 2124 and - 2192 are considered to have
even significands. Finally, if 21°% was chosen, replace it with +a; if - 219 was chosen, replace it with
-o; if +0 was chosen, replace it with - 0 if and only if x is less than zero; any other chosen value is
used unchanged. The result is the Number value for x. (This procedure corresponds exactly to the
behaviour of the | EefHes®BwWNONA mowred)t o nea

Some ECMAScript operators deal only with integers in specific ranges such as - 2% through 231,
inclusive, or in the range 0 through 2!¢- 1, inclusive. These operators accept any value of the Number

© Ecma International 2015

21

oecnd

type but first convert each such value to an integer value in the expected range. See the descriptions
of the numeric conversion operations in 7.1.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

1 A data property associates a key value with an ECMAScript language value and a set of
Boolean attributes.

1 An accessor property associates a key value with one or two accessor functions, and a set of
Boolean attributes. The accessor functions are used to store.or retrieve an ECMAScript
language value that is associated with the property.

Properties are identified using key values. A property key value is either an ECMAScript String value
or a Symbol value. All String and Symbol values, including the empty string, are valid as property
keys. A property name is a property key that is a String value:

An integer index is a String-valued property key that is a canonical numeric String (see 7.1.16) and
whose numeric value is either +0 or a positive integer O 5% 1. Anarray index is an integer index
whose numeric value i is in the range +0 1©2% 1.

Property keys are used to access properties and their values. There are two kinds of access for
properties: get and set, corresponding tovalue retrieval and assignment, respectively. The properties
accessible via get and set access includes both own properties that are a direct part of an object and
inherited properties which are provided by another associated object via a property inheritance
relationship. Inherited properties may be either own or inherited properties of the associated object.
Each own property of an object must each have a key-value that is distinct from the key values of the
other own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in
their semantics for_accessing and manipulating their properties. Ordinary objects are the most
common form of objects and have the default object semantics. An exotic object is any form of object
whose property semantics differ in any way from the default semantics.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data
property associates a key value with the attributes listed in Table 2.

22 © Ecma International 2015

secma

Table 2 8 Attributes of a Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript | The value retrieved by a get access of the property.
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the
propertyds [[Value]] attrib
[[Enumerable]] Boolean If true, the property will be enumerated by a for-in

enumeration (see 13.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] | Boolean If false, attempts to delete the property, change the
property to be an .accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 3.

Table 36 Attributes of an Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or | If the value is an-Object it must be a function Object. The
Undefined functionods [[CalTable p)isicalied avithara

empty arguments list to retrieve the property value each
time a get access of the property is performed.

[[Set]] Object or | If the value is an Object it must be a function Object. The
Undefined functionds [[CalTable p)isicalied avithara
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 13.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] | Boolean If false, attempts to delete the property, change the
property to be a data property, or change its attributes will
fail.

If the initial values of ap r 0 p eattribytes sre not explicitly specified by this specification, the default
value defined in Table 4 is used.

Table 4 8 Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

© Ecma International 2015

secma

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods.
Each object in an ECMAScript engine is associated with a set of internal methods that defines its
runtime behaviour. These internal methods are not part of the ECMAScript language. They are
defined by this specification purely for expository purposes. However, each object within an
implementation of ECMAScript must behave as specified by the internal methods associated with it.
The exact manner in which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values.may perform different
algorithms when a common internal method name is invoked upon them. That actual object upon
which an internal methodisinvoked i s the fit ar l§ atruatime, the impienentation
of an algorithm attempts to use an internal method of an object that the object does not support, a
TypeError exception is thrown.

Internal slots correspond to internal state that is associated with objects and used by various
ECMAScript specification algorithms. Internal slots are not object properties and. they are not
inherited. Depending upon the specific internal slot specification, such state may consist of values of
any ECMAScript language type or of specific ECMAScript specification type values. Unless explicitly
specified otherwise, internal slots are allocated as part of the process of creating an object and may
not be dynamically added to an object. Unless specified otherwise, the initial value of an internal slot
is the value undefined. Various algorithms within this specification create objects that have internal
slots. However, the ECMAScript language provides no direct way to associate internal slots with an
object.

Internal methods and internal slots are identified within this specification using names enclosed in
double square brackets [[]].

Table 5 summarizes the essential internal methods used by this specification that are applicable to all
objects created or manipulated by ECMAScript code. Every object must have algorithms for all of the
essential internal methods. However, all objects do not necessarily use the same algorithms for those
methods.

T h eSigriatured ¢ o.| urable 5 anid other similar tables describes the invocation pattern for each
internal method. The invocation pattern always includes a parenthesized list of descriptive parameter
names. If a parameter name:is the same as an ECMAScript type name then the name describes the
required type of the parameter value. If an internal method explicitly returns a value, its parameter list
is f£ol'lowed by .t he syamb o kthe rdti¥rded \@lned The type namgspused in
signatures refer to the types defined.in clause 6 augmented by the following additional names. fanyo
means the value may be any ECMAScript language type. An internal method implicitly returns a
Completion Record as described in 6.2.2. In addition to its parameters, an internal method always has
access to the object that is the target of the method invocation.

ocaton.

24 © Ecma International 2015

o2eChna

Table 58 Essential Internal Methods

Internal Method

Signature

Description <

[[GetPrototypeOf]]

() Y Object or Null

Determine the object that provides inherited
properties for this object. A null value indicates tha
there are no inherited properties.

[[SetPrototypeOf]]

(Object or Null) Y Boolean

Associate with this object another object that}
provides inherited properties. Passing null indicates|
that there are no inherited properties. Returns true
indicating that the operation was completed
successfully or false indicating that the operation|
was not successful.

[[IsExtensible]]

() Y Boolean

Determine whether it is permitted to add additional
properties to this object.

[[PreventExtensions]]

() Y Boolean

Control whether new properties may be added to this|
object. Returns true if the operation was successful
or false'if the operation was unsuccessful.

[[GetOwnProperty]]

(propertyKey) Undefined or
Property Descriptor

Return a Property Descriptor for the own property of]
this object whose key is propertyKey, orundefined if
no such property exists.

[[HasProperty]]

(propertyKey) Y Boolean

Return a Boolean value indicating whether this object]
already has either an own or inherited property|
whose key is propertyKey.

[[Get]]

(propertyKey, Receiver) Y any

Return the value of the property whose key ig
propertyKey from this object. If any ECMAScript code]
must be executed to retrieve the property value,
Receiver is used as the this value when evaluating
the code.

([Set]]

(propertyKey,value, Receiver)
Y Boolean

Set the value of this object property whose key is
propertyKey to value. If any ECMAScript code musf]
be executed to set the property value, Receiver ig
used as the this value when evaluating the code.
Returns true if that the property value was set or]
false if that it could not be set.

[[Delete]]

(propertyKey) Y Boolean

Remove the own property whose key is propertyKe!
from this object . Return false if the property was nof
deleted and is still present. Return true if the property|
was deleted or is not present.

[[DefineOwnProperty]]

(propertyKey,PropertyDescriptor)
Y. Boolean

Create or alter the own property, whose key is
propertyKey, to have the state described b
PropertyDescriptor. Return true if that the property|
was successfully created/updated or false if thel
property could not be created or updated.

[[Enumerate]]

()Y Object

Return an iterator object that produces the keys of]
the string-keyed enumerable properties of the object.

[[OwnPropertyKeys]]

(Y List of propertyKey

Return a List whose elements are all of the own
property keys for the object.

Table 6 summarizes additional essential internal methods that are supported by objects that may be
called as functions. A function object is an object that supports the [[Call]] internal methods. A

[Formatted Table

[Formatted: Left

[Formatted: Left

gconstructor (also referred to as a gonstructor function) is a function object that supports the [Formaned: Font: Italic

[[Construct]] internal method. [Formatted: Font: Italic

© Ecma International 2015 25

secma

Table 6 & Additional Essential Internal Methods of Function Objects

Internal Method | Signature Description b
[[Call]] (any, a List of any) Executes code associated with this object. Invoked via a <
Y any function call expression. The arguments to the internal

method are a this value and a list containing the
arguments passed to the function by a call expression.
Objects that implement this internal method are callable.

[[Construct]] (a List of any, Object) | Creates an object. Invoked via the new or super
Y Object operators. The first arguments to the internal method is
a list containing the arguments of the operator. The
second argument is the objectto which the new operator
was initially applied. Objects that implement this internal
method are called constructors. A Function object is not
necessarily a constructor and such non-constructor
Function objects do not have a [[Construct]] internal
method.

The semantics of the essential internal methods for ordinary objects and standard exotic objects are
specified in clause 9. If any specified use of an internal method of an exotic object is not supported by
an implementation, that usage must throw a TypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an' ECMAScript engine must conform to the list of invariants
specified below. Ordinary ECMAScript Objects as.well as all standard exotic objects in this
specification maintain these invariants. ECMAScript Proxy objects maintain these invariants by means
of runtime checks on the result of traps invoked on the [[ProxyHandler]] object.

Any implementation provided exotic. objects must also maintain these invariants for those objects.
Violation of these invariants may cause ECMAScript code to have unpredictable behaviour and create
security issues. However, violation of these invariants must never compromise the memory safety of
an implementation.

An implementation must not allow these invariants to be circumvented in any manner such as by
providing alternative interfaces that implement the functionality of the essential internal methods
without enforcing their invariants.

Definitions:
0. The target of an internal method is the object upon which the internal method is called.
0 A target is non-extensible if it has been observed to return false from its [[ISExtensible]]

internal method, or true from its [[PreventExtensions]] internal method.

A non-existent property is a property that does not exist as an own property on a non-

extensible target.

0 All references to SameValue are according to the definition of SameValue algorithm specified
in7.2.9.

O«

[[GetPrototypeOf]] ()

0 The Type of the return value must be either Object or Null.
0 If target is non-extensible, and [[GetPrototypeOf]] returns a value v, then any future calls to
[[GetPrototypeOf]] should return the SameValue as v.
NOTE An o b jpetotypd shain should have finite length (that is, starting from any object, recursively

applying the [[GetPrototypeOf]] internal method to its result should eventually lead to the value null). However,
this requirement is not enforceable as an object level invariant if the prototype chain includes any exotic objects

26 © Ecma International 2015

[Formatted Table

[Formatted: Left

secma

that do not use the ordinary object definition of [[GetPrototypeOf]]. Such a circular prototype chain may result in
infinite loops when accessing object properties.

[[SetPrototypeOf]] (V)

0 The Type of the return value must be Boolean.
0 If target is non-extensible, [[SetPrototypeOf]] must return false, unless V is the SameValue as
the targetdés observed [[GetPrototypeOf]] v

[[PreventExtensions]] ()

0 The Type of the return value must be Boolean.
0 If [[PreventExtensions]] returns true, all future calls to [[IsExtensible]] on the target must return
false and the target is now considered non-extensible.

[[GetOwnProperty]] (P)

0 The Type of the return value must be either Property Descriptor or Undefined.

0 |If the Type of the return value is Property Descriptor, the return value must be a complete
property descriptor (see 6.2.4.6).

0 |If a property P is described as a data property with Desc.[[Value]] equal to v and

Desc.[[Writable]] and Desc.[[Configurable]]<are both false, then the SameValue must be
returned for the Desc.[[Value]] attribute of the property on all future calls to
[[GetOwnProperty]] (P).

o I f Pos attributes ot her t ér dime dr [f We iproperty| neght]

di sappear, theniPbs [[Configurable]] attri

0 If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute
must be true.

0 If the target is non-extensible and P'is non-existent, then all future calls to [[GetOwnProperty]]
(P) on the target must describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return
undefined).

NOTE As a consequence of the third invariant, if a property is described as a data property and it may
return different values over time, then either or both of the Desc.[[Writable]] and Desc.[[Configurable]] attributes
must be true even if no mechanism to change the value is exposed via the other internal methods.

[[DefineOwnProperty]] (P, Desc)

The Type of the return value must be Boolean.

[[DefineOwnProperty]] must return false if P has previously been observed as a non-

configurable own property of the target, unless either:

1. P is a non-configurable writable own data property. A non-configurable writable data
property can be changed into a non-configurable non-writable data property.

2. Al attributes in Desc are the SameVal ue

0 [[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-

existent own property. That is, a non-extensible target object cannot be extended with new

properties.

O¢ O«

[[HasPropertyl] (P)

0 The Type of the return value must be Boolean.
0 If P was previously observed as a non-configurable data or accessor own property of the
target, [[HasProperty]] must return true.

[[Get]] (P, Receiver)

0 If P was previously observed as a non-configurable, non-writable own data property of the
target with value v, then [[Get]] must return the SameValue.

0 If P was previously observed as a non-configurable own accessor property of the target
whose [[Get]] attribute is undefined, the [[Get]] operation must return undefined.

© Ecma International 2015

y

al ue.
ma
but e

change

mu st b e

Po6s

attri

27

oV
true.

butes.

secma

[[Set]] (P, V, Receiver)

0 The Type of the return value must be Boolean.

0 If P was previously observed as a non-configurable, non-writable own data property of the
target, t hen [[Set]] must return false unless

0 |If P was previously observed as a non-configurable own accessor property of the target

whose [[Set]] attribute is undefined, the [[Set]] operation must return false.

[[Delete]] (P)

0 The Type of the return value must be Boolean.
0 If P was previously observed to be a non-configurable own data or.accessor property of the
target, [[Delete]] must return false.

[[Enumerate]] ()

0 The Type of the return value must be Object.

[[OwnPropertyKeys]] ()

0 The return value must be a List.

0 The Type of each element of the returned List is either String or Symbol.

0 The returned List must contain at least the keys of all non-configurable own properties that
have previously been observed.

0 If the object is non-extensible, the returned List must contain only the keys of all own

properties of the object that are observable using [[GetOwnProperty]].

[[Construct]] ()

0 The Type of the return value must be Object.
6.1.7.4 Well-Known Intrinsic Objects
Well-known intrinsics .are built-in objects that are explicitly referenced by the algorithms of this
specification and which usually have Realm specific identities. Unless otherwise specified each
intrinsic object actually corresponds to a set of similar objects, one per Realm.
Within this specification a reference such as %name% means the intrinsic object, associated with the
current Realm;-corresponding to the name. Determination of the current Realm and its intrinsics is
described in 8.1.2.5. The well-known intrinsics are listed in Table 7.

Table 76 Well-known Intrinsic Objects

V is the SameValue as

Intrinsic Name Global Name ECMAScript Language < [Formaned Table
Association) [Formatted: Left
%Array% Array The Array constructor (22.1.1)
%ArrayBuffer% ArrayBuffer The ArrayBuffer constructor
(24.1.2)
%ArrayBufferPrototype% ArrayBuffer.prototype The initial value of the prototype <« [Formatted Table

data property of %ArrayBuffer%.

%ArraylteratorPrototype% The prototype of Array iterator

objects (22.1.5)

%ArrayPrototype% Array.prototype The initial value of the prototype

data property of %Array% (22.1.3)

%ArrayProto_values% Array.prototype.values The initial value of the values
data property of

28 © Ecma International 2015

o2eChna

Intrinsic Name Global Name ECMAScript Language + [Formaned; Left
Association [Formatted Table
%ArrayPrototype% (22.1.3.29)

%Boolean% Boolean The Boolean constructor (19.3.1)

%BooleanPrototype% Boolean.prototype The initial value of the prototype
data property of %Boolean%
(19.3.3)

%DataView% DataView The DataView constructor
(24.2.2)

%DataViewPrototype% DataView.prototype The initial value of the prototype <« [Formatted Table
data property of %DataView%.

%Date% Date The Date constructor (20.3.2)

%DatePrototype% Date.prototype The initial value of the prototype <« {Formaned Table
data property of %Date%.

%decodeURI% decodeURI The decodeURI function (18.2.6.2).

%decodeURIComponent% decodeURIComponent The decodeURIComponent « [Formaned: Left
function (18.2.6.3).

%encodeURI% encodeURI The encodeURI function « [Formaned; Left
(18.2.6.4).

%encodeURIComponent% encodeURI.Component The encodeURI Component < [Formaned: Left
function (18.2.6.5).

%Error% Error The Error constructor (19.5.1)

%ErrorPrototype% Error.prototype The initial value of the prototype <« [Formatted Table
data property of %Error%.

%eval% eval The eval function (18.2.1).

%EvalError% EvalError The EvalError constructor
(19.5.5.1)

%EvalErrorPrototype% EvalError.prototype The initial value of the prototype « [Formaned Table
property of %EvalError%

%Float32Array% Float32Array The Float32Array constructor
(22.2)

%Float32ArrayPrototype% Float 32Array.prototype The initial value of the protot ype [Formaned Table
data property of %Float32Array%.

%Float64Array% Float64Array The Float64Array constructor < [Formaned: Keepwith next
(22.2)

%Float64ArrayPrototype% Float 64Array.prototype The initial value of the prototype < [Formaned Table
data property of %Float64Array%.

%Function% Function The Function constructor
(19.2.1)

%FunctionPrototype% Function.prototype The initial value of the prototype <« [Formaned Table

data property of %Function%.

%Generator%

The initial value of the prototype
property of %GeneratorFunction%

© Ecma International 2015

29

secma

Intrinsic Name Global Name ECMAScript Language -~ [Formaned; Left
- Association [Formatted Table

%GeneratorFunction% The constructor of generator
objects (25.2.1)

%GeneratorPrototype% The initial value of the prototype <« [Formaned Table
property of %Generator%

%Int8Array% Int8Array The Int8Array constructor (22.2)

%Int8ArrayPrototype% Int8Array.prototype The initial value of the prototype <+ [Formatted: Keepwith next
data property of %Int8Array%. ‘ [Formatted Table

%Int16Array%

Int16Array

The _Int16Array
(22:2)

constructor

%Int16ArrayPrototype% Int16Array.prototype The initial value of the prototype < [Formatted Table
data property of %Int16Array%.

%Int32Array% Int32Array The Int32Array constructor
(22.2)

%Int32ArrayPrototype% Int32Array.prototype The initial value of the prototype <« [Formatted Table
data property of %Int32Array%.

%isFinite% isFinite The isFinite function (18.2.2).

%isNaN% isNaN The isNaN function (18.2.3).

%lteratorPrototype% An object that all standard built-in
iterator objects indirectly inherit
from.

%JSON% JSON The JSONobject (24.3)

%Map% Map The Mapconstructor (23.1.1)

%MaplteratorPrototype% The prototype of Map iterator
objects (23.1.5)

%MapPrototype% Map.prototype The initial value of the prototype <« [Formaned Table
data property of %Map%.

%Math% Math The Math object (20.2)

%Number% Number The Number constructor (20.1.1)

%NumberPrototype% Number.prototy pe The initial value of the prototype <« [Formaned Table
property of %Number%

%0bject% Object The Object constructor (19.1.1)

%ObjectPrototype% Object.prototype The initial value of the prototype
data property of %Object%.
(19.1.3)

%OhjProto_toString% Objept.prototype. The initial value of the toString < [Formatted: Keepwith next

toString data property of

%O0ObjectPrototype% (19.1.3.6)

%parseFloat% parseFloat The parseFloat function <« [Formaned: Left
(18-2-4)- ‘ [Formatted Table

%parselnt% parselnt The parseint function (18.2.5).

%Promise% Promise The Promise constructor (25.4.3)

%PromisePrototype% Promise.prototype The initial value of the prototy pe [Formaned Table

data property of %Promise%.

30

© Ecma International 2015

secma

Intrinsic Name Global Name ECMAScript Language -~
Association

%Proxy% Proxy The Proxy constructor (26.2.1)

%RangeError% RangeError The RangeError constructor

(19.5.5.2)

[Formatted: Left

) [Formatted Table

%RangeErrorPrototype%

RangeError.prototype

The initial value of the prototype <
property of %RangeError%

[Formatted Table

%ReferenceError% ReferenceError The ReferenceError constructor [Formaned; Keepwith next
(19.5.5.3)
%ReferenceErrorPrototype% ReferenceError. The initial value of the prototype <« [Formaned Table
prototype property of %ReferenceError%
%Reflect% Reflect The Reflect. object (26.1) Formatted: Font: (Default) Courier New, Bold, Complex
Script Font: Courier New, Bold
%RegExXp% RegExp The RegExp constructor (21.2.3)

%RegExpPrototype%

RegExp.prototype

The initial value of the prototype <«
data property of %RegExp%.

%Set%

Set

The Set constructor (23.2.1)

%SetlteratorPrototype%

The prototype of Set iterator
objects (23.2.5)

[Formatted Table

%SetPrototype%

Set.prototype

The initial value of the prototype <«
data property of %Set%.

%String%

String

The String constructor (21.1.1)

%StringlteratorPrototype%

The prototype of String iterator
objects (21.1.5)

[Formatted Table

%StringPrototype%

String.prototype

The initial value of the prototype <«
data property of %String%.

%Symbol%

Symbol

The Symbol constructor (19.4.1)

%SymbolPrototype%

Symbol. prototype

The initial value of the prototype
data property of %Symbol%.
(19.4.3)

%SyntaxError%

SyntaxError

The SyntaxError constructor
(19.5.5.4)

[Formatted Table

%SyntaxErrorPrototype%

SyntaxError.prototype

The initial value of the prototype <«
property of %SyntaxError%

%ThrowTypeError% A function object that
unconditionally throws a new
instance of %TypeError%.

%TypedArray% The super class of all typed Array

constructors (22.2.1)

[Formatted Table

%TypedArrayPrototype%

The initial value of the prototype <«
property of %TypedArray%

%TypeError%

TypeError

The TypeError constructor
(19.5.5.5)

[Formatted Table

%TypeErrorPrototype%

TypeError.prototype

The initial value of the prototype <
property of %TypeError%

%Uint8Array%

Uint8Array

The Uint8Array constructor

© Ecma International 2015

[Formatted Table

31

secma

Intrinsic Name Global Name ECMAScript Language - [Formarted Table
Association) [Formatted: Left
(22.2)

%Uint8ArrayPrototype% Uint8Array.prototype The initial value of the prototype <« [Formaned Table
data property of %Uint8Array%.

%Uint8ClampedArray% Uint8ClampedArray The Uint8ClampedArray
constructor (22.2)

%Uint8ClampedArrayPrototype% | Uint8ClampedAr ray. The initial value of the prototype < [Formaned Table

prototype data property of

%Uint8ClampedArray%.

%Uint16Array% Uint16Array TheUintl6Array constructor
(22.2)

%Uint16ArrayPrototype% Uint16Array.prototype The initial value of the protot ype [Formaned Table
data property of %Uint16Array%.

%Uint32Array% Uint32Array The Uint32Array constructor
(22.2)

%Uint32ArrayPrototype% Uint32Array.prototype The initial value of the prototype < [Formaned Table
data property of %Uint32Array%.

%URIError% URIError The URIError constructor
(19.5.5.6)

%URIErrorPrototype% URIError.prototype The initial value of the prototype < [Formatted Table
property of %URIError%

%W eakMap% WeakMap The WeakMapconstructor (23.3.1)

%W eakMapPrototype% WeakMap.prototype The initial value of the prototype « {Formaned Table
data property of %W eakMap%.

%W eakSet% WeakSet The WeakSet constructor (23.4.1)

%W eakSetPrototype% WeakSet.prototype The initial value of the prototype <« {Formaned Table
data property of %W eakSet%.

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the
semantics of ECMAScript language constructs and ECMAScript language types. The specification
types. are Reference, List, Completion, Property Descriptor, Lexical Environment, Environment
Record, and Data Block. Specification type values are specification artefacts that do not necessarily
correspond to any specific entity within an ECMAScript implementation. Specification type values may
be used to describe intermediate results of ECMAScript expression evaluation but such values cannot
be stored as properties of objects or values of ECMAScript language variables.

6.2.1 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 12.3.6) in new expressions, in
function calls, and in other algorithms where a simple ordered list of values is needed. Values of the
List type are simply ordered sequences of list elements containing the individual values. These
sequences may be of any length. The elements of a list may be randomly accessed using 0-origin
indices. For notational convenience an array-like syntax can be used to access List elements. For
example, arguments[2] is shorthand for saying the 3 element of the List arguments.

32 © Ecma International 2015

secma

For notational convenience within this specification, a literal syntax can be used to express a new List
value. For example, «1, 2» defines a List value that has two elements each of which is initialized to a
specific value. A new empty List can be expressed as «».

The Record type is used to describe data aggregations within the algorithms of this specification. A
Record type value consists of one or more named fields. The value of each field is either an
ECMAScript value or an abstract value represented by a name associated with the Record type. Field
names are always enclosed in double brackets, for example [[value]].

For notational convenience within this specification, an object literal-like syntax can be used to
express a Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a
Record value that has three fields, each of which is initialized to a specific'value. Field name order is
not significant. Any fields that are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record
value. For example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthand
f or At hRnamadffield?] b 6 .

Schema for commonly used Record field combinations-may be named, and that name may be used
as a prefix to a literal Record value to identify the specific kind of aggregations that is being described.
For example: PropertyDescriptor{[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

6.2.2 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow
such as the behaviour of statements (break , continue. , return and.throw) that perform nonlocal
transfers of control.

Values of the Completion type are Record values whose fields are defined as by Table 8.

Table 8 6 Completion Record Fields

Field Name | Value Meaning «
[ltypell One of normal, break, continue, return, | The type of completion that occurred.
or throw
[[value]] any. ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript string or empty The target label for directed control transfers.

[Formatted Table

The term fAabrupt compl et i on fitype]ledlue otiser thaonoenmaly c ompl et i on wi t h

6.2.2.1 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:
1. Retum NormalCompletiofargumeny.
Is a shorthand that is defined as follows:

1. ReturnCompletio{[[type]]: normal, [[value]]: argument [[target]]:empty}.
6.2.2.2 Implicit Completion Values
The algorithms of this specification often implicitly return Completion Records whose [[type]] is

normal. Unless it is otherwise obvious from the context, an algorithm statement that returns a value
that is not a Completion Record, such as:

© Ecma International 2015

33

a

secma

1. Return"Infinity".
Generally means the same thing as:

1. ReturnNormalCompletiof'Infinity").

Arelurdo st atement without a value in an algorithm step means the same thin
1. ReturnNormalCompletiofundefined).
Similarly, any reference to a Completion Record value that is in a context that does not explicitly

require a complete Completion Record value is equivalent to an explicit reference to the [[value]] field
of the Completion Record value unless the Completion Record is an abrupt.completion.

6.2.2.3 Throw an Exception

Algorithms steps that say to throw an exception, such as
1. ThrowaTypeError exception
mean the same things as:

1. ReturnCompletiod[[type]]: throw, [[value]liia newly createdypeError object,
[[target]]:empty}.

6.2.2.4 ReturnifAbrupt

Algorithms steps that say
1. ReturnifAbrup{argumeny.
mean the same thing as:

1. If argumentis an abrupt completigrreturnargument
2. Else ifargumentis a Completion Recordet argumentbe argument][value]].

6.2.3 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete , typeof , the
assignment operators, the super’ keyword and other language features. For example, the left-hand operand of
an assignment is expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the
basevalue, the referenced namand the Boolean valued strict referenceflag. The basevalue is either
undefined, an Object, a Boolean, a String, a Symbol, a Number, or an environment record (8.1.1). A
base value of undefined indicates that the Reference could not be resolved to a binding. The
referenced namis a String or Symbol value.

A Super Reference is‘a Reference that is used to represents a name binding that was expressed
using the super keyword. A Super Reference has an additional thisValuecomponent and its basevalue
will never be an environment record.

The following abstract operations are used in this specification to access the components of
references:

GetBase(V). Returns the basevalue component of the reference V.

GetReferencedName(V). Returns the referenced nameomponent of the reference V.
IsStrictReference(V). Returns the strict referenceélag component of the reference V.
HasPrimitiveBase(V). Returns true if Type(basg is Boolean, String, Symbol, or Number.
IsPropertyReference(V). Returns true if either the base value is an object or
HasPrimitiveBase(V) is true; otherwise returns false

= =a =4 —a -8

34 © Ecma International 2015

o2eChna

1
f

IsUnresolvableReference(V). Returns true if the basevalue is undefined and false otherwise.
IsSuperReference(V). Returns true if this reference has a thisValuecomponent.

The following abstract operations are used in this specification to operate on references:

6.2.3.1

arONE

GetValue (V)

ReturnlfAbrupt{).

If Type(V) is not Reference, retuiv.

Let basebe GetBase().

If IsUnresolvableReferenc¥], throw aReferenceError excepton.

If IsPropertyReferenc®), then

a. If HasPrimitiveBase) is true, then
i. Assert: In this caséhasewill never benull or undefined.
ii. Letbase beToObjectpasg.

b. Returnbase[[Get]](GetReferencedNam¥), GetThisValueY)).

6. Elsebasemust be an environmenécord,
a. ReturnbaseGetBindingValuéGetReferencedNam¥, IsStrictReference()) (see8.1.1).

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation
and the ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of
the object.
6.2.3.2 PutValue (V, W)

1. ReturnifAbrupty).

2. ReturnIfAbrupt).

3. If Type(V) is not Reference, throwReferenceError exception.

4. Letbasebe GetBas&().

5. If IsUnresolvableReferencé), then

NOTE

ordinary object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.3.3

1.
2.

3.

a. If IsStrictReferencey) istrue, then
i. Throw ReferenceError exception.

b. LetglobalObjbe GetGlobalObje¢}.

c. ReturnSet@lobalObjGetReferencedNam¥), W, false).

Else if IsPropertyReferencé); then

a. If HasPrimitiveBasé{) istrue, then

i. Assert: In this caséhasewill never benull or undefined.

ii. Setbase to ToObjectpase.

Let succeededbe base[[Set]](GetReferencedNam¥], W, GetThisValueY)).

ReturnifAbruptéucceeded

If succeededs false andIsStrictReferenc@/) is true, throwa TypeError exception

e. Return.

Elsebasemust be an environment record.

a. ReturnbaseSgetMutableBindin¢GetReferencedNam¥), W, IsStrictReferenc&()) (see
8.1.1).

aogo

The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the

GetThisValue (V)

Assert:IsPropertyReferenc¥j is true.

If IsSupeRefeaencel), then

a. Return the value of ththisValuecomponent of the referendé
Return GetBas&().

© Ecma International 2015

35

secma

6.2.3.4 InitializeReferencedBinding (V, W)

ReturnlfAbrupt).

ReturnIfAbruptiv).

Assert:Type(V) is Reference
Assert:IsUnresolvableReferencé) is false

Let basebe GetBase\).

Assert:baseis an Envionment Record.
ReturnbaselnitializeBinding(GetReferencedNam¥), W).

NoorwbhpE

6.2.4 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property

attributes. Values of the Property Descriptor type are Records. Each fi el dés name i s an
and its value is a corresponding attribute value as specified in 6.1.7.1. In addition, any field may be

present or absent. The schema name used within this spegification to tag literal descriptions of
Property Descriptor records<is fAPropertyDescriptoro.

Property Descriptor values may be further classified-as data Property Descriptors and accessor
Property Descriptors based upon the existence or use of certain fields. A data Property Descriptor is
one that includes any fields named either [[Value]] or [[Writable]]. An accessor Property Descriptor is
one that includes any fields named either [[Get]] or [[Set]]. Any-Property Descriptor may have fields
named [[Enumerable]] and [[Configurable]]. A Property Descriptor value may not be both a data
Property Descriptor and an accessor Property Descriptor; however, it may be neither. A generic
Property Descriptor is a Property Descriptor value that is neither a data Property Descriptor nor an
accessor Property Descriptor. A fully populated Property Descriptor is one that is either an accessor
Property Descriptor or a data Property Descriptor and that has all of the fields that correspond to the
property attributes defined in either Table 2 or Table 3.

The following abstract operations are used in this specification to operate upon Property Descriptor
values:

6.2.4.1 IsAccessorDescriptor (\Desc)
When the abstract operationIsAccessorDescriptor is called with Property Descriptor Des¢ the

following steps are taken:

1. <If Descis undefined, returnfalse.
2. If both Desc[[Get]] andDesc[[Set]] are absentreturnfalse
3. Returntrue.

6.2.4.2 . IsDataDescriptor (Desc)
When the abstract operation IsDataDescriptor is called with Property Descriptor Desg the following

steps are taken:

1. |If Descis undefined, returnfalse.
2. If both Desc[[Value]] andDesc[[Writable]] are absentreturnfalse
3. Returntrue.

6.2.4.3 IsGenericDescriptor (Desc)
When the abstract operation IsGenericDescriptor is called with Property Descriptor Desg the following

steps are taken:

1. If Descis undefined, returnfalse.
2. If IsAccessorDescriptoE{esq and IsDataDescriptobesq are bothfalse, returntrue.
3. Retun false

36 © Ecma International 2015

attri

but e

name

secma

6.2.4.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with Property Descriptor Des¢ the
following steps are taken:

1. |If Descis undefined, returnundefined.
2. LetobjbeObjectCreat@ ObjectPrototype%).
3. Assert:objis an extensible ordinary object with no own properties.
4. |If Deschas a [[Value]] field then
a. Call CreateDataPropertgbj, "value ", Desc[[Value]]).
If Deschas a [[Writable]] field then
a. Call CreateDataPropertgbj, "writable ", Desc[[Writable]]).
6. If Deschas a [[Get]] field then
a. Call CreateDataPropertgbj, "get", Desc[[Get]]).
7. |If Deschas a [[Set]] field then
a. Call CreateDataPropertgbj, "set ", Desc[[Set]])
8. If Deschas an [[Enumerable]] fieldhen
a. Call CreateDataPropertgbj, "enumerable ", Desc[[Enumerable]].
9. If Deschas a [[Configurable]] fieldthen
a. Call CreateDataPropertgbj, "configurable ", Desc[[Configurable]).
10. Assert: all of the above CreateDataProperty operations rétuen
11. Returnobij.

o

6.2.45 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is.called with object Obj, the following steps are
taken:

1. ReturnIfAbruptQbj).

2. If Type(Obj) is not Object throw dypeError exception.

3. Letdescbe a new Property Descriptor that initially has no fields.
4. If HasPropertyQbj, "enumerable ") is true, then

a. LetenumbeToBooleanGeiObj, "enumerable ")).
b. ReturnlfAbrupténun).
c. Set the [[Enumerable]] field adescto enum
5. If HasPropertyQbj; "configurable ") is true, then
a. Letconf be ToBooleanGet{Obj, "configurable ").
b. RetunlfAbrupt(conf).
c. Set the [[Configurable]] field oflescto conf
6. If HasPropertyQbj, "value ").is true, then
a. Letvaluebe GefObj, "value ").
b. ReturnifAbruptfalue.
c.. Set the [[Value]] field ofdescto value
7. If HasPropertyQbj, "writable ") istrue, then
a. Letwritable be ToBooleanGet(Obj, "writable ")).
b. ReturnlfAbruptfvritable).
c. Set the [[Writable]] field ofdescto writable.
8. If HasPropertyQbj, "get ") is true, then

a. Letgetterbe GefObj, "get ").

b. ReturnifAbrupt@etten.

c. If IsCallablegette) is false andgetteris notundefined, throwa TypeError exception.
d. Set the [[Get]] field ofdescto getter.

9. If HasPropertyQbj, "set ") is true, then
a. Letsetterbe Ge{Obj, "set ").
b. ReturnlfAbruptéetter).
c. If IsCallablegette) is false andsetteris notundefined, throwa TypeError exception.

© Ecma International 2015

secma

d. Set the [[Set]] field ofdescto setter
10. If eitherdesc[[Get]] or desc[[Set]] are present, then

a. |If eitherdesc[[Value]] or desc[[Writable]] are presentthrowa TypeError exception.
11. Returndesc

6.2.4.6 CompletePropertyDescriptor (Desc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Descthe
following steps are taken:

1. ReturnlfAbruptDesq.
2. Assert:Descis a Property Descriptor
3. Letlike be Record{[[Value]]: undefined, [[Writable]]: false [[Get]]: undefined, [[Set]]:
undefined, [[Enumerable]]:false [[Configurable]]: false}.
4. If either IsGenericDescriptddesq or IsDataDescriptqiDesq.is true, then
a. If Descdoes not have a [[Value]] field, sBtesc[[Value]] to like.[[Value]].
b. If Descdoes not have a [[Writable]] field, sBtesc[[Writable]] to like.[[Writable]].
5. Else,
a. If Descdoes not have a [[Get]] field, sBtesc[[Get]] to like.[[Get]].
b. If Descdoes not have a [[Set]] field, sBesc[[Set]] to like.[[Set]].
6. If Descdoes no have an [[Enumerable]] field, setesc[[Enumerable]] tdike.[[Enumerable]].
7. If Descdoes not have a [[Configurable]] field, deesc[[Configurable]] to
like.[[Configurable]].
8. ReturnDesc

6.2.5 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types. are used to explain the behaviour of name
resolution in nested functions and blocks. These types and the operations upon them are defined in
8.1.

6.2.6 Data Blocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8
bit) numeric values. A Data Block/value is created with a fixed number of bytes that each have the
initial value 0.

For notational-convenience within this specification, an array-like syntax can be used to express to the
individual bytes of a Data Block value. This notation presents a Data Block value as a 0-origined
integer indexed sequence of bytes. For example, if dbis a 5 byte Data Block value then dbf2] can be
used to express access toits 3 byte.

The following abstract operations are used in this specification to operate upon Data Block values:
6.2.6.1 * CreateByteDataBlock(size)

When the abstract operation CreateByteDataBlock is called with integer argument size the following
steps are taken:

1. Assert:sizéd0 .

2. Letdbbe a new Data Block value consistingsiZebytes If it is impossible to create such a
Data Block throwa RangeError exception.

3. Set all of the bytes afbto 0.

4. Returndb.

6.2.6.2 CopyDataBlockBytes(toBlock, tolndex, fromBlock, fromindex, count)

When the abstract operation CopyDataBlockBytes is called the following steps are taken:

38 © Ecma International 2015

secma

Assert:fromBlockandtoBlockare distinct Data Block values.
Assert:fromindex tolndex andcountare positive integer values.
Let fromSizebe the number of bytes fnomBlock
Assert:fromIndexcountOfromSize

Let toSizebe the number of bytes oBlock
Assert:tolndex-countOtoSize

Repeat, whilecount0

a. SettoBlocKtolndeX to the value ofromBlocKfromindey.
b. Incrementtolndexandfromindexeach by 1.

c. Decrementountby 1.

8. ReturnNormalCompléion(empty)

NoakwdhpE

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid
the specification of the semantics of the ECMAScript language. Other, more specialized abstract
operations are defined throughout this specification.

7.1 Type Conversion

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the
semantics of certain constructs it is useful to define a set of conversion abstract operations. The
conversion abstract operations are polymorphic; they can accept a value of any ECMAScript
language type or of a Completion Recordvalue. But no other specification types are used with these
operations.

7.1.1 ToPrimitive (input [, PreferredType])

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType
The abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is
capable of converting to more than one primitive type, it may use the optional hint PreferredTypeto
favour that type. Conversion occurs according to Table 9:

Table 9 & ToPrimitive Conversions

Input Type Result “

Completion Record. | If inputis an abrupt completion, return input Otherwise return
ToPrimitive(input[[value]]) also passing the optional hint PreferredType

Undefined Return input

Null Return input

Boolean Return input

Number Return input

String Return input

Symbol Return input

Object Perform the steps following this table.

When Type(nput) is Object, the following steps are taken:

If PreferredTypevas not passed, l&iint be"default

Else if PreferredTypés hint String, lethint be "string
ElsePreferredTypéds hint Number, lehint be"number ".
Let exoticToPrim be GetMethod{nput, @ @toPrimitive)

ReturnlfAbruptéxoticToPrin).

arONE

© Ecma International 2015

[Formatted Table

39

secma

6. If exoticToPrimis notundefined, then
a. Letresultbe Cal(exoticToPrim input, «hint»).
b. ReturnifAbruptfesulf).
c. If Type(result) is not Object returnresult
d. Throw aTypeError exception.
7. If hintis "default ", let hint be"number".
8. Return OrdinaryToPrimitive(put hint).

When the abstract operation OrdinaryToPrimitive is called with arguments O and hint, the following

steps are taken:

1. Assert: TypeQ) is Object
2. Assert: Typefiint) is String and & value is eithetstring " or "number ".

3. If hintis "string

", then

a. Let methodNamebe «"toString , "valueOf "».

4. Else,

a. Let methodNamebe «"valueOf ", "toString »{
5. For eachnamein methodNames List order, do
a. Let methodbe Ge(O, namg.
b. ReturnifAbrupt(method.
c. If IsCallablefmethod is true, then
i. Letresultbe Cal{method O).
ii. ReturnlfAbruptgesult).
iii. If Type(result) is not Object returnresult
6. Throw aTypeError exception.

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number.
However, objects may over-ride this behaviour by defining a @@toPrimitive method. Of the objects defined in

this specification only Date objects (see 20.3.4.45) and Symbol objects (see 19.4.3.4) over-ride the default
ToPrimitive behaviour. Date objects treat no hint as if the hint were String.

7.1.2 ToBoolean (argument)

The abstract operation ToBoolean /converts argumentto a value of type Boolean according to Table

10:

Table 108 ToBoolean Conversions

Argument Type Result

Completion Record | If argumentis. an abrupt completion, return argument Otherwise return
ToBoolean(argumenf[value]]).

Undefined Return false.

Null Return false.

Boolean Return argument

Number Return false if argumentis +0, - 0, or NaN; otherwise return true.

String Return false if argumentis the empty String (its length is zero); otherwise
return true.

Symbol Return true.

Object Return true.

40

“ [Formatted

Table

© Ecma International 2015

secma

7.1.3 ToNumber (argument)

The abstract operation ToNumber converts argumento a value of type Number according to Table 11:

Table 118 ToNumber Conversions

Argument Type Result
Completion Record | If argumentis an abrupt completion, return argument Otherwise return
ToNumber(argumen{[value]]).
Undefined Return NaN.
Null Return +0.
Boolean Return 1 if arguments true. Return +0 if arguments false.
Number Return argument(no conversion).
String See grammar and conversion algorithm below.
Symbol Throw a TypeError exception.
Object Apply the following steps:
1. LetprimValuebe ToPrimitivergument hint Number).
2. Return ToNumbegrimValue.
7.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to.the input String interpreted as a
sequence of UTF-16 encoded code points (6.1.4). If the grammar cannot interpret the String as an
expansion of StringNumericLiteralthen the result of ToNumber is NaN.

NOTE The terminal symbols of this grammar are all composed of Unicode BMP code points so the result
will be NaN if the string contains the UTF-16 encoding of any supplementary code points or any unpaired
surrogate code points

Syntax

StringNumericLiterat.:
StrWhiteSpceyt
StrWhiteSpacg: StrNumericLiteral StrWhiteSpage

StrWhiteSpace:
StrWhiteSpaceChar StrWhiteSpace

StrWhiteSpaceChar:
WhiteSpace
LineTerminator

StrNumericLiterat::
StrDecimalLiteral
BinaryIntegerLiteral
OctallntegerLiteral
HexIntegerLiteal

© Ecma International 2015

[Formatted Table

41

secmad

StrDecimallLiteral:::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiterat:
Infinity
DecimalDigits. DecimalDigits,: ExponentPag:
. DecimalDigits ExponentPay:
DecimalDigits ExponentPayg:

DecimalDigits::: [Formatted: ~German (Switzerland)
DecimalDigit
DecimalDigits DecimalDigit
DecimalDigit::: one of
0123456789
ExponentPart::
Exponentindicator Signedinteger
Exponentindicator:: one of
£ E \\Formatted: German (Switzerland)

Signedinteger::
DecimalDigits
+ DecimalDigits
- DecimalDigts

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for
numeric literals (11.8.3)

NOTE Some differences should be noted between the syntax of a StringNumericLiteraland a NumercLiteral
(see 11.8.3):
1 A StringNumericLiteraimay include leading and/or trailing white space and/or line terminators.

1 A StringNumericLiterakhat is decimal may have any number of leading O digits.

1 A StringNumericLiterakhat is decimal may include a + or - to indicate its sign.

1 A StringNumericLiterakhat is empty or contains only white space is converted to +0.

1 Infinity and. 1 Infinity are recognized as a StringNumericLiteralbut not as a NumericLiteral

7.1.3.1.1 Runtime Semantics: MV0 s

The conversion of a String to a Number value is similar overall to the determination of the Number
value for a numeric literal (see 11.8.3), but some of the details are different, so the process for
converting a String numeric literal to a value of Number type is given here. This value is determined in
two steps: first, @ mathematical value (MV) is derived from the String numeric literal; second, this
mathematical value is rounded as described below. The MV on any grammar symbol, not provided
below, is the MV for that symbol defined in 11.8.3.1.

The MV of StringNumericLiterat:: [empty] is O.

The MV of StringNumericLiterat:: StrWhiteSpaces 0.

The MV of StringNumericLiteral::: StrWhiteSpacg: StrNumericLiteralStrWhiteSpacg: is the MV of
StrNumericLiteral no matter whether white space is present or not.

The MV of StrNumericLiteral:: StrDecimalLiteralis the MV of StrDecimalLiteral

The MV of StrNumericLiteral:: BinaryintegerLiteralis the MV of BinaryIntegerLiteral

The MV of StrNumericLiteral:: OctalintegerLiteralis the MV of OctalintegerLiteral

= = o = = ==

42 © Ecma International 2015

secma

The MV of StrNumericLiteral:: HexIntegerLiterais the MV of HexIntegerLiteral

The MV of StrDecimalLiteral::: StrUnsignedDecimalLiteras the MV of StrUnsignedDecimalLiteral

The MV of StrDecimalLiteral::: + StrUnsignedDecimalLiterab the MV of StrUnsignedDecimalLiteral

The MV of StrDecimalliteral ::: - StrUnsignedDecimalLiteralis the negative of the MV of

StrUnsignedDecimalLiteral(Note that if the MV of StrUnsignedDecimalLiterais O, the negative of

this MV is also 0. The rounding rule described below handles the conversion of this signless

mathematical zero to a floating-point +0 or - 0 as appropriate.)

1 The MV of StrUnsignedDecimiLiteral ::: Infinity is 1099 (a value so large that it will round to

+a).

The MV of StrUnsignedDecimalLiteral:: DecimalDigits is the MV of DecimalDigits

 The MV of StrUnsignedDecimallLiterat:: DecimalDigits. DecimalDigits is the MV of the first
DecimalDigitsplus (the MV of the second DecimalDigitstimes 10 "), where nis the number of code
points in the second DecimalDigits

1 The MV of StrUnsignedDecimallLiteral:: DecimalDigits ExponentPartis the MV of DecimalDigits
times 10, whereeis the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiteral:: DecimalDigits .DecimalDigits ExponentParis (the MV of
the first DecimalDigitsplus (the MV of the second DecimalDigitstimes 10 ") times 10%, where n is
the number of code points in the second DecimalDigits and e is the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiteral:: . DecimalDigits is the MV of DecimalDigits times 10",
where n is the number of code points in DecimalDigis.

1 The MV of StrUnsignedDecimalLiteral:: . DecimalDigits ExpoantPartis the MV of DecimalDigits
times 10> ", where n is the number of code points in DecimalDigits and eis the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiterat: DecimalDigitsis the MV of DecimalDigits

T The MV of StrUnsignedDecimallLiteral:: DecimalDigits ExponentPartis the MV of DecimalDigits

times 10°, where eis the MV of ExponentPart

= = —a A

=a

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of
the Number type. If the MV is 0;then the rounded.value is +0 unless the first non white space code
pointi n the Stasing -6umeni whi thecak ei-6.0Dierwise,tha meded
value must be the Number value for the MV (in the sense defined in 6.1.6), unless the literal includes
a StrUnsignedDecimalLiterabnd the literal has more than 20 significant digits, in which case the
Number value may be either the Number value for the MV of a literal produced by replacing each
significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th
digit position: Adigit is significant if it is not part of an ExponentParand

9« itis not O; or
i there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its
right.

7.1.4 Tolnteger (argument)

The abstract operation/Tolnteger converts argumentto an integral numeric value. This abstract
operation functions as follows:

Let numberbe ToNumbefargumeny.

ReturnlfAbruptiumbej.

If numberis NaN, return+0.

If numberis +0, -0, +&, or - &, returnnumber

Return thenumber value that is the same signmsmberand whose magnitude is
floor(absumbe)).

apwNE

© Ecma International 2015

val

ue

43

oecnd

7.1.5 Tolnt32 (argument)

The abstract operation Tolnt32 converts argumentto one of 2%2 integer values in the range - 2%
through 23%- 1, inclusive. This abstract operation functions as follows:

1. Letnumberbe ToNumbefargumeny.

2. ReturnlfAbruptumbej.

3. If numberis NaN, +0, -0, +o, or- @, return+0.

4. Letintbethemathematical value that is the same sigmamberand whose magnitude is
floor(absumbe)).

Let int32bit beint modulo 22

If int32bit O 231, returnint32bit- 232, otherwise returint32bit.

oo

NOTE Given the above definition of Tolnt32:

1 The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second
application leaves that value unchanged.

1 ToInt32(ToUint3Zx)) is equal to Tolnt32() for all values of x. (It is to preserve this latter property that +&a
and - @ are mapped to +0.)

1 ToInt32 maps - 0 to +0.

7.1.6 ToUint32 (argument)

The abstract operation ToUint32 converts argumentto one of 232 integer values in the range 0 through
2%2- 1, inclusive. This abstract operation functions as follows:

1. Letnumberbe ToNumbefargumen}.

2. ReturnlfAbruptumbej.

3. If numberis NaN, +0, - 0, +&, or - &, return+0.

4. Letint bethe mathematical value that is the.same signuasberand whose magnitude is
floor(absumbe)).

Let int32bit beint:-modulo 22

Returnint32bit.

oo

NOTE Given the above definition of ToUint32:

1 Step 6 is the only difference between ToUint32.and ToInt32.

1 The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second
application leaves that value unchanged.

1 .~ ToUint32(TolInt32K)) is equal to ToUint32() for all values of x. (It is to preserve this latter property that
+a and - @ are mapped to +0.)

I ToUint32 maps -0 to +0.

7.1.7 Tolntl6 (argument)

The abstract operation ToIntl6 converts argumentto one of 26 integer values in the range - 32768
through 32767 inclusive. This abstract operation functions as follows:

1. Letnumberbe ToNumbefargumeny.

2. ReturnlfAbruptumbej.

3. If numberis NaN, +0, - 0, +a, or-a, return+0.

4. Letintbethe mathematical value that is the same signuasberand whose magnitude is
floor(absiumbe)).

5. Letint16bit beint modulo 28,

6. If int16bit 025 returnintl6bit - 216, otherwise returintl6bit.

44 © Ecma International 2015

o2eChna

7.1.8 ToUint16 (argument)

The abstract operation ToUint16 converts argumentto one of 26 integer values in the range 0 through
261, inclusive. This abstract operation functions as follows:

1.

2.
3.
4

oo

NOTE

1
1

Let numberbe ToNumbefargumeny.

ReturnlfAbruptiumbej.

If numberis NaN, +0, - 0, +&, or- 8, return+0.

Let int bethe mathematical value that is the same signuasberand whose magnitude is
floor(absumbey).

Let int16bit beint modulo 28,

Returnint16bit.

Given the above definition of ToUint16:

The substitution of 216 for 232in step 5 is the only difference between ToUint32 and ToUint16.
ToUint16 maps - 0 to +0.

7.1.9 Tolnt8 (argument)

The abstract operation ToInt8 converts argumentto one of 28 integer values in the range - 128 through
127, inclusive. This abstract operation functions as follows:

1.

2.
3.
4

ow

Let numberbe ToNumbefargumeny.

ReturnifAbruptumbe).

If numberis NaN, +0, - 0, +8, or~8, return+0.

Let int bethe mathematical value that is the same signuasberand whose magnitude is
floor(absumbe)).

Let int8bit beint modulo 2.

If int8bit O27, returnint8bit - 28, otherwise returint8sbit.

7.1.10 ToUint8 (argument)

The abstract operation ToUint8 converts argumentto one of 28 integer values in the range 0 through
255, inclusive. This abstract operation functions as follows:

1.

2.
3.
4

oo

Let numberbe ToNumigr(argumeny.

ReturnIfAbruptfiumbe).

If numberis. NaN, +0, - 0, +a, or- o, return+0.

Let int bethe mathematical value that is the same signuasberand whose magnitude is
floor(absiumbey).

Let int8hit beint modulo 2.

Returnint8bit.

7.1.11 ToUint8Clamp (argument)

The abstract operation ToUint8Clamp converts argumentto one of 28 integer values in the range 0

through 255, inclusive. This abstract operation functions as follows:

1.

3
4
5.
6.
7
8
9
1

Let numberbe ToNumbefargumeny.
ReturnlfAbruptiumbej.

If numberis NaN, return +0.

If number® , feturn+0.

If numberO255, return255.

Let f befloor(numbe).

If f + 0.5< number returnf + 1.

If number< f + 0.5, returnf.

If fis odd returnf + 1.

0. Returnf.

© Ecma International 2015

45

secma

NOTE Note that unlike the other ECMAScript integer conversion abstract operation, ToUint8Clamp rounds
rather than truncates non-integer values and does not convert +8 t00. To Ui nt 8 Cl amp ddes efvremwnd hal f
tie-breaking. This differs from Math.round whi ch does #tiesbeakihg. hal f upo

7.1.12 ToString (argument)

The abstract operation ToString converts argumento a value of type String according to Table 12:

Table 128 ToString Conversions

Argument Type Result « (Formatied Table
Completion Record | If argumentis an abrupt completion, return argument Otherwise return
ToString(argumenf[value]]).
Undefined Return "undefined"
Null Return "null"
Boolean If argumentis true, return "true"
If arguments false, return "false"
Number See 7.1.12.1.
String Return argument « [Formatted Table
Symbol Throw a TypeError exception.
Object Apply the following steps:
1. LetprimValuebe ToPrimitiveargument hint String).
2. Return ToStringdrimValue.

7.1.12.1 ToString Applied to the Number Type

The abstract operation ToString.converts a Number mto String format as follows:

1. If mis NaN, return the StringNaN" .

If mis +0 or- 0, return the String0" .

If mis less.than zero, return the String concatenation of the Strifigand ToString{ m).

If mis + Breturn the StrindInfinity"

Otheawise, letn, k, ands be integers such that? 1, 10-1 ¢ s < 10f, the Number value fos 3

10™-%is m, andk is as small as possible. Note thas the number of digits in the decimal

representation of, thats is not divisible by 10, and that the Easignificant digit ofs is not
necessarily uniquely determined by these criteria.

6. If k¢ n¢ 21, return the String consisting of tkedeunits of the k digits of the decimal
representation a$ (in order, with no leading zeroes), followed byk occurrences of thecode
unit 0x0030(DIGIT ZERO).

7. 10 <n¢ 21, return the String consisting tfe codeunits of the most significanh digits of the
decimal representation sf followed bythe codeunit 0XO02E (FULL STOP), followed by the
codeunits of theremainingk- n digits of the decimal representation ©f

8. If -6 <n¢ 0, return the String consisting of tikedeunit 0x0030(DIGIT ZERO), followed by
the codeunit OX002E (FULL STOB), followed by- n occurrences of theodeunit 0x0030
(DIGIT ZERO), followed by thecodeunits of thek digits of the decimal representation of

9. Otherwise, ifk = 1, return the String consisting of tikedeunit of thesingle digit ofs, followed
by codeunit 0x0065 (LATIN SMALL LETTER E), followed bythe codeunit 0x002B (PLUS
SIGN) or the codeunit 0x002D (HYPHEN-MINUS) according to whethem- 1 is positive or
negative, followed by theodeunits of thedecimal representation of the integer abg() (with
no leading zeroes).

10. Return the String consisting of tltedeunits of themost significant digit of the decimal
representation of, followed bycodeunit 0X002E (FULL STOP), followed by thecodeunits of
theremainingk- 1 digits of the decimal representationoffollowed bycodeunit 0X0065
(LATIN SMALL LETTER E), followed by codeunit 0x002B (PLUS SIGN or the codeunit

agkrwn

46 © Ecma International 2015

