

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

PC Document1 05.01.2018 08:55:00

Minutes of the: 46th meeting of Ecma TC39

in: Santa Clara, CA, USA

on: 27-29 May 2015

1 Opening, welcome and roll call

1.1 Opening of the meeting (Mr. Neumann)

Mr. Neumann has welcomed the delegates at the Netflix office in Los Gatos, USA.

Companies / organizations in attendance:

Mozilla, Google, Microsoft, IBM, Intel, jQuery, Facebook, Netflix, Indiana University PayPal,
Yahoo!

1.2 Introduction of attendees

Jordan Harband (invited expert – Airbnb)

John Neumann – Chair

Allen Wirfs-Brock – Mozilla

Yehuda Katz – jQuery

Adam Klein – Google

Brian Terlson – Microsoft

Sebastian Markbage – Facebook

Jeff Morrison – Facebook

Lee Byron

Dave Herman – Mozilla

Kevin Smith

Brendan Eich

Mark Miller – Google

Jafar Husain – Netflix

Istvan Sebestyen – part time on phone

Sam Tobin-Hochstadt – Indiana University

Daniel Ehrenberg

John McCutchan

Simon Kaegi – IBM

Peter Jensen – Intel

Dan Gohman

Michael Ficarra (invited expert – Shape Security

Waldemar Horwat – Google

Chip Morningstar – PayPal

Ecma/TC39/2015/035
Ecma/GA/2015/067

http://www.ecma-international.org/

2

Eric Ferriauolo – Yahoo!

Stefan Penner

Paul Leathers

Jonathan Turner – Microsoft

Matt Sweeney – Netflix

Miško Hevery – Google

Alex Russell – Google

May 27 2015:

Brian Terlson (BT), Allen Wirfs-Brock (AWB), John Neumann (JN), Jeff Morrison (JM),
Sebastian Markbage (SM), Yehuda Katz (YK), Dave Herman (DH), Sam Tobin-Hochstadt
(STH), Lee Byron (LB), Kevin Smith (KS), Daniel Ehrenberg (DE), John McCutchan (JM),
Dan Gohman (DG), Brendan Eich (BE), Adam Klein (AK), Jordan Harband (JHD), Mark
Miller (MM), Michael Ficarra (MF), Waldemar Horwat (WH), Chip Morningstar (CM), Simon
Kaegi (SK), Peter Jensen (PJ), Eric Farriauolo (EF), Stefan Penner (SP), Paul Leathers
(PL), Jonathan Turner (JT), Matt Sweeney (MS)

May 28 2015:

Brian Terlson (BT), Allen Wirfs-Brock (AWB), John Neumann (JN), Jeff Morrison (JM),
Sebastian Markbage (SM), Yehuda Katz (YK), Dave Herman (DH), Sam Tobin-Hochstadt
(STH), Kevin Smith (KS), Daniel Ehrenberg (DE), Adam Klein (AK), Jordan Harband (JHD),
Jafar Husain (JH), Mark Miller (MM), Michael Ficarra (MF), Chip Morningstar (CM), Simon
Kaegi (SK), Peter Jensen (PJ), Eric Farriauolo (EF), Stefan Penner (SP), Paul Leathers
(PL), Jonathan Turner (JT), Brendan Eich (BE), Dan Gohman (DG), Miško Hevery (MH),
Matt Sweeney (MS), Istvan Sebestyen (IS)

May 29 2015:

Allen Wirfs-Brock (AWB), John Neumann (JN), Jeff Morrison (JM), Sebastian Markbage
(SM), Yehuda Katz (YK), Dave Herman (DH), Sam Tobin-Hochstadt (STH), Kevin Smith
(KS), Daniel Ehrenberg (DE), Adam Klein (AK), Jordan Harband (JHD), Jafar Husain (JH),
Mark Miller (MM), Michael Ficarra (MF), Chip Morningstar (CM), Simon Kaegi (SK), Peter
Jensen (PJ), Eric Farriauolo (EF), Stefan Penner (SP), Paul Leathers (PL), Jonathan Turner
(JT), Brendan Eich (BE), Dan Gohman (DG), Miško Hevery (MH), Matt Sweeney (MS)

1.3 Host facilities, local logistics

On behalf of Netflix Jafar Husain and Matt Sweeney welcomed the delegates and
explained the logistics.

2 Adoption of the agenda (2015/033-Rev2)

The agenda was approved as posted on the github:

Agenda for the: 46th meeting of Ecma TC39

1. Opening, welcome and roll call

i. Opening of the meeting (Mr. Neumann)

ii. Introduction of attendees

iii. Host facilities, local logistics

2. Adoption of the agenda (TODO: Ref document name)

file://///ecmaweb01/members_area/TC39/2015/tc39-2015-033-Rev2.doc

3

3. Approval of the minutes from March 2015 (TODO: Ref document name)

4. ECMA-262 6th Edition

i. Editor's status report

ii. post GA approval PR??

5. ECMA-402 2nd Edition

6. Post ES6 process, roles. and targets

7. ECMA-262 7th Edition and beyond

i. Module export-from additions - Move to stage 3? Draft Spec (Lee Byron - Facebook)

ii. SIMD.js - Move to stage 2? Docs: Draft Spec, Polyfill, Presentation. (Peter Jensen - Intel,

John Mccutchan - Google, Dan Gohman - Mozilla)

iii. function.next meta-property - Move to Stage 2? Docs: Proposal including spec.

language (Allen)

iv. Observable Nominal Type Strawman, Polyfill. (Jafar Husain - Netflix, Kevin Smith)

v. Relaxed semantics for Promise.resolve nominal check

(https://esdiscuss.org/topic/subclassing-es6-objects-with-es5-syntax#content-50)

vi. Function.prototype.toString revision (Michael Ficarra)

vii. Decorators (Yehuda Katz)

8. Test 262 Status

i. Accuracy tests for Math methods? see also

9. Report from the Ecma Secretariat

10. Date and place of the next meeting(s)

i. July, 28 - 30, 2015 (Redmond, WA - Microsoft)

ii. September 22 - 24, 2015 (Portland, OR - jQuery)

iii. November 17 - 19, 2015 (San Jose - Paypal)

11. Group Work Sessions

i. Value types (Daniel, many)

ii. Extensible operators and literals (Brendan)

12. Closure

3 Approval of minutes from March 2015 (2015/031)

The minutes were approved without modification.

https://github.com/leebyron/ecmascript-more-export-from
http://johnmccutchan.github.io/ecmascript_simd/tc39/simd.html
https://github.com/johnmccutchan/ecmascript_simd
https://github.com/tc39/agendas/blob/master/2015
https://github.com/allenwb/ESideas/blob/master/Generator%20metaproperty.md
https://github.com/allenwb/ESideas/blob/master/Generator%20metaproperty.md
https://github.com/zenparsing/es-observable
https://esdiscuss.org/topic/subclassing-es6-objects-with-es5-syntax#content-50
https://github.com/michaelficarra/Function-prototype-toString-revision
https://github.com/tc39/test262/pull/269#issuecomment-102463312
file://///ecmaweb01/members_area/TC39/2015/tc39-2015-031.doc

4

4 Status of “ES6 Suite” approval at the June 17, 2015 Ecma
GA

4.1 RF “Opt out” for ES6 Release Candidate #1

Mr. Sebestyen reported that the “opt-out” for ES6 has ended on April 25, 2015. No-one has
requested to “opt-out”. So the RF goal is intact.

4.2 RF “Opt out” for ECMA-402 2nd Edition

Mr. Sebestyen reported that the “opt-out” for ECMA-402 2nd Edition has ended on May 26,
2015. No-one has requested to “opt-out”. So the RF goal is intact.

4.3 RF “Opt out” for ECMA-404 1st Edition

There is no change on the in 2013 October approved standard. However, that was approved
under the RAND Ecma patent policy regime. Since the JSON Syntax originally in ECMA-262
Ed. 5 has been moved from ES6 into ECMA-404 in order to assure the RF status of the
entire ES6 Suite TC39 decided to launch an opt out on ECMA-404 immediately, ending on
May 26, 2015. Mr. Sebestyen reported that the “opt-out” for ECMA-404 has ended on May
256 2015. No-one has requested to “opt-out”. So the RF goal is intact.

4.4 ECMA-327 (Compact profile) and ECMA-357 (E4X) matters

Question in the March TC30 meeting: Should they be withdrawn?

ECMA-357 and ES6 will not work together.

TC39 is on the opinion that ECMA-327 and ECMA-357 should be withdrawn.

Mr. Sebestyen has asked the opinion of all Ecma members, in order that final TC39
decision can be made at the current meeting. He reported that no Ecma member has
requested not to withdraw the two standards. So TC39 confirmed that the June 17, 2015 GA
should withdraw these two standards. The two standards will still be accessible on the Ecma
website, but among the withdrawn specifications.

5 ES7 and Test262 Discussions

Most time was spent to progress ES7 related topics.

For details please see Annex 1 in the Technical Notes.

6 Report from the Secretariat

Mr. Sebestyen reported that the GA will also vote if the “experimental” TC39 IPR policy
options (RF Patent and Software Copyright Policy) should become “final” and “Ecma-wide”
policies.

7 Date and place of the next meeting

I. July, 28 - 30, 2015 (Redmond, WA - Microsoft)

II. September 22 - 24, 2015 (Portland, OR - jQuery)

III. November 17 - 19, 2015 (San Jose - PayPal)

8 Closure

Mr. Neumann thanked the TC39 meeting participants for their hard work. TC39 has reached
an important new mail stone by finishing and approving ES6. Many thanks to Mr. Wirfs-Brock,
the editor of ES6 for his hard work. Also many thanks to Mr. Waldron, the Editor of ECMA-402
2nd Edition.

5

Many thanks for the technical note takers in Annex 1.

Many thanks to the host, Netflix for the organization of the meeting and the excellent meeting
facilities and dinner. Many thanks in particular to Mr. Husain and Mr. Sweeney. Many thanks
also to Ecma International for the social event.

6

Annex 1

Technical Notes

May 27 2015 Meeting Notes

Brian Terlson (BT), Allen Wirfs-Brock (AWB), John Neumann (JN), Jeff Morrison (JM),

Sebastian Markbage (SM), Yehuda Katz (YK), Dave Herman (DH), Sam Tobin-Hochstadt

(STH), Lee Byron (LB), Kevin Smith (KS), Daniel Ehrenberg (DE), John McCutchan (JM),

Dan Gohman (DG), Brendan Eich (BE), Adam Klein (AK), Jordan Harband (JHD), Mark

Miller (MM), Michael Ficarra (MF), Waldemar Horwat (WH), Chip Morningstar (CM), Simon

Kaegi (SK), Peter Jensen (PJ), Eric Farriauolo (EF), Stefan Penner (SP), Paul Leathers

(PL), Jonathan Turner (JT), Matt Sweeney

Agenda approval.

Consensus / Resolution

So say we all.

Approve minutes from previous meeting

Consensus / Resolution

So say we all.

ES6 Updates (AWB presenting)

AWB: Doing a few cleanups and tweaks to final draft to make it ready to publish. Have

final PDF. AWB: Working on updating Jason's tool to produce HTML version. AWB: Deck

on significant bug fixes (Share slides) AWB: Bug #1: super prop assignment can silently

overwrite non-writable properties (now fixed in spec) AWB: Bug #2: Unintended for-in eval

order change (now fixed in spec) AWB: Bug #3: GeneratorParameter grammar parameter

now eliminated (now fixed in spec -- replaced with early error rules) WH: Wants a copy of

the modified grammar to re-verify the changes in his ES grammar validator BE: can you

put your Common Lisp based validator on Github? WH: I want to. Stay tuned. [May need

7

to get rid of confusing irrelevant extra fluff that accumulated over the years.] AWB: Spec

going to ECMA in 2-3 weeks, will likely be approved by general assembly AWB: Then

going to ISO, changes mostly handled by ECMA secretariat. They will find some real spec

issues. But it takes a year, so it'll be confusing because we'll come out with ECMAScript

2016 by then... AWB: Name is changed to "ECMAScript 2015 Language Specification"

AWB: ES6 is done. AWB: Reminder that a year from now we will be at the same point for

ES2016. At end of Jan next year we have to have a complete ES2016. YK: We expect it to

be light... AWB: Yes, fundamental issue is what's in the spec and when it can come in.

AWB: We don't have a lot of breathing room to get stuff ready for inclusion. AWB: Not

going to be editor anymore. Who will be editor? AWB: Editor is a full-time job.

[debate about form of the standard document] WH: The format of the document plays only

a minor role in what an editor does. The other duties of an editor are still a full-time job.

AWB, BE: Not feasible to switch away from Word for 2016. BT: "Ecmarkup" is being used

for 4 or so ES7 specs, we could rapidly switch over if we chose

tohttp://bterlson.github.io/ecmarkup/ BE: can we generate Word that's good enough for

Ecma and ISO from Ecmarkup? BE: easier to recruit new editor if we have better tooling

and github PR-based helpers -- really want that modern workflow, it'll help productivity

while not eliminating single-final editor role YK, BT: Doing editing as a group would allow

more people to get involved and reduce the amount of work that editors would have to do,

allowing more people to help AWB: Actual document editing took <20% of editor time. The

80% was spent on integration of proposals across the entire spec.

AWB: Jason no longer wants to maintain HTML spec. MF: If we move to EMU, how will

links persist across revisions? BT: EMU requires assigning unique ID to each section

AWB: I'm leaving Mozilla too, but happy to help the new editor out.

?: What needs to live on the ECMA GitHub? WH, AWB: Any contributions need to be in

some format that ECMA can archive, for legal, librarian, and historical needs — imagine

someone needing to track down the history of some contributions 15 years from now. For

individual documents (pdfs, etc.) the simplest way is to send them via the ECMA reflector.

ECMA keeps an archive of those forever. For ongoing things use an ECMA-sanctioned

repository such as ECMA's GitHub.

http://bterlson.github.io/ecmarkup/

8

Module export-from additions (LB presenting)

LB: This proposal fills in a gap and makes things more consistent. Currently, it's

unnecessarily verbose to put together a module. YK: "export v from 'mod';" is confusing;

does it re-export "default", or export a name "v"? YK: Existing syntax for this seems

clearer: "export {default as v} from 'mod';" LB: How about we keep "export default from

'mod';' separately? Everyone seems happy with that.

Resolution: move to stage 2 with two accepted forms:
"export default from 'mod';" and "export * as ns from
'mod'"

SIMD.js Stage 2 (PJ, JM presenting)

PJ: (shows demo of graphics performance with and without SIMD.) BT: (shows similar

demo.) MM: If you do a typeof, what do you get? DE: Will talk about typeof semantics after

presentation. WH: Why is max only on float? That seems gratuitously inconsistent. max is

just as useful on integers, even if you can roll it on your own. MM: From a POLA

perspective, it seems like there should be max on integers as well. JM: Rolling your own

max is simple. BT: Talked about SIMD and ES6 at recent talk, and most questions where

about SIMD. BE: I've gotten the opposite reaction. BT: Developers were interested in

games. SK: Why 128 bits DG: 128bits is a natural size for many operations and was the

largest common size across SIMD architectures we considered CM: Makes sense for

performance use cases, but it seems weird to have the implemention detial bubble up. JM:

Larger can be written on top of 128. MM: Minor API issue: the name swizzle historically

used simillarly to marshal and serialize JM: In graphics programming the name swizzle is

the right choice WH: How does endianness become visible? DG: First lane is always at

offset 0 of the typed array, second follows first lane, etc. The endianness within a lane is

implementation-dependent. (discussion about little endian/big endian) DG: Contents of the

lane are byte order dependent on platform WH: SIMD reinterpret cast will do different

things on different systems? DG: Yes. AWB: You see the same thing with TypedArray.

WH: You have load, load1, load2, load3, but no load6, for instance? DG: You could

imagine what a load6 might be, but not particularly useful. BE: It could be added in the

future. MM: What does xmmintrin.h mean? WH: XMM (a register type in the x86

9

architecture) intrinsics R?: It's a header file that defines an interface that's widely used for

128 operations. In emscripten we have an emulation of it in terms of SIMD.js. DE: Intention

is to represent with value types with wrappers. Typeof returns a string representing the

type for the value object. MM: This is a proposed system defined value types. How does

this work with user-defined value types? BE: If we're going to integrate with main spec, we

might want to roll into user-defined value types. DE: What if we move to stage 2 and we

can still integrate it into user-define value types. AWB: It would be good to not introduce 6

new system value types. WH: Interpreting <, <=, >, >= as always being string comparisons

in current spec text is hostile to value types and other numeric comparisons. (we don't

want 200 < 9). DE: With less-than, I just added a note that it compares it as strings. BE:

We should work on the operators which should be overridable. Don't define future-hostile

semantics -- those that we'll need to change later. DE: Like to make operators which are

eventually overloadable, throw now. WH: The spec has the Int64x2 case but can't find its

definiton. Curious what int64's turn into when extracted. How does that work? DE: Not

defined. There is no way defined to load and store them yet. WH: Defined multiplication by

element-wise ECMAscript multiplication with its rounding of intermediate results > 53 bits.

This is not what SIMD implementation do — they all do strict modular integer arithmetic.

DE: I've added a note asking if this is the direction we want to go. The polyfill uses

Math.imul which is the right solution. (DE will change the spec.) JHD: Are properties of

SIMD supposed to be nonwritable, nonconfigurable? MM: The general style we've agreed

upon is that primordial properties are either configurable or writable. This is important for

initialization of realms, to make it seem like a different kind of realm. DG: I believe that

Firefox JIT can handle that. JM: Should we think about standard modules? DH: While the

module imports are not writable, the module table is. Realm initialization is just as possible

with modules as with configurable/writable properties. You just have to update the table.

DH: It's fine to not have a blocking dependency on modules. We don't have convensions

for standard modules yet. I think it's fine to put SIMD on the global object. JM: It seems like

someone needs to be the first to add a standard module. DH: It's OK if we wait for

userland module convensions to emerge. MM: We can let this proceed to stage 2 without

having to specify in terms of value types or standard modules, with the idea that we will

eventually get there. DG: If we want to get this done in 2015, can we agree to have a

SIMD global? DH: There's nothing wrong with having a global named SIMD and a

standard module for the same thing. MM: With modules standard and loaders not

standard, is it the case that it doesn't give TC39 the option of specifying new things in

10

terms of modules? STH: We want to ship SIMD on a timeline which is not constrained by

the loader spec. MM: I'm convinced, I was just taken by surprise by the implication (that we

couldn't add system modules). AWB: With globals, each realm now has to have all of

these duplications, depending on optimizations. MM: SES has to make sure that none of

the primordials expose mutable state. They have to freeze them, and the only way to do

that is to walk eagerly. DG: What about the large number of SVG bindings? MM: The SVG

bindings are provided through a membrane. DE: Can we provide SIMD through a

membrane? AWB: Not if it's in the ES spec. DH: Can't SES just delete SIMD? (room

laughs) MM: Clarifies the cost in question: traversing the objects and freezing everything.

STH: So generally, adding "n" functions will present this problem for you. MM: Yes, when

"n" is large enough. The way to avoid this overhead is to have a platform-provided way of

creating a new realm that looks like this realm but is frozen. DH: (Notes that such a

capability would have benefits beyond just security.) CM: (To MM) Are you interested in

creating a realm with specific constraints, or general realm initialization? MM: The realm

API is for creating a new realm according to the wishes of the creator of the realm. What

I'm interested in is not the Realm API itself, but have a way to ask the platform for an SES

realm. MM: "SESsiness" BE: "Sessility" (real word)

Resolution: move to stage 2

R?: If you put a NaN into a TypedArray, the spec requries it to be a non-signaling NaN.

Why? AWB: It was copied out of the WebIDL spec. There are only two references, we

could remove those. BE: spec link:http://people.mozilla.org/~jorendorff/es6-draft.html#sec-

setvalueinbuffer BE: proposal is to remove the "if value is NaN..." language and let

different (bit-patterns observable via typed array views as well as SIMD) NaNs be stored

WH: Any thought to UInt SIMD types? uint8 and uint16 are much more useful for pixel

values than int8 and int16. DE: Use a different set of primitives. +, -, * don't care about

signed/unsigned. Use differently named functions to load them or do lane-wise

comparisons. WH: That's awkward, particularly for uint8. Also, some operations can't

easily take different names: <, >=, value-to-string conversions, etc. If I have a pixel color

value of 255, I don't want it to print as -1. DE: Using < on SIMD values makes no sense.

What should it do? WH: The obvious dictionary order comparison of the numeric values.

DE: People won't use it. AWB: Oh yes they will. If it can be done, people will do it. BE:

group resolved already to avoid shipping non-starters...

http://people.mozilla.org/~jorendorff/es6-draft.html#sec-setvalueinbuffer
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-setvalueinbuffer

11

Generator function.next Meta Property (AWB
presenting)

MM: If you allowed function.next within an arrow function inside of a generator, what would

it mean? AWB: It would just mean the same thing that it does outside of the arrow function.

DH: What are the use cases other than getting the first one? AWB: (References example

in repo) DH: But you could do the subsequent capturings with a local variable. AWB: It

allows you to not special-case the first one. DH: This feels like has a little of the ".current"

api from C# iterators. Not sure if it matters. Does this create any GC pressure? AWB: Don't

think so. It's specced so that it's cleared out when the next value comes in. DH: Think you

might just need "function.first" or something, but your (AWB) argument for not special

casing is good. DH: Think it's odd to call it next when you mean previous. BE: writes

"function* gen() [first] {}" as an option DH: No... DH: Could be "function.yield" MM: Writes:

function* addr() {
 try {
 yield;
} finally {
 return function.next;
}
}
let tally = addr();
tally.next(17);
tally.return(5);

AWB: Returns the last value passed to next: 17 MM: Is it the value coming in to "return"

and "throw" or just "next"? AWB: Just "next". DH: That's why you like "next", because it's

only the value passed in with "next". MM: We're agreed that this returns 17. If you resume

with "return" then "function.next" retains the value of the previous resumuption. AWB: Yes.

I entertained this. WH: Any weird interactions with yield? KS: yield primes its generator

with the value undefined. If you write using function.next, you get problems because it will

be primed with an unwanted "undefined" DH: Could "yield " prime the generator with

"function.next"? (discussion about incompatibility with current spec) DH: The code using

yield * is probably pretty low, so we could probably do an errata. DH: The question is

whether the community transpiling and using function can MM: There is a capability leak

concern here, where it's passing to the subgenerator something that's not implied by the

yield * itself. DH: Is that circular? MM: But it's passing something from before when yield *

is evaluated. DH: I'm beginning to think that this is the wrong path (passing in function.next

12

via yield *). AWB: You could create some kind of wrapper if you wanted to pass in the first

value to the subgenerator. MM: Libraries could do this.

yield * wrap(g, function.next);

MM: "wrap" returns an iterator which wraps the generator which primes the subgenerator

with the supplied value. ?: Collect usage data of "wrap" to see if we should change yield.

WH: By the time we get the usage data, it will be too late to fix yield. AWB: We'd end up

with a second form: yield** (general agreement on current yield * behavior) AWB:

Proposing that we move this to stage 2. DH: Don't think that "next" is the right name. YK:

Not sure we can advance a small syntactic thing to stage 2 if we're not sure about the final

syntax because of transpilers. MM: Is it worth taking a few minutes to brainstorm on a

name?

List of _ options for function._: current, previous, last, next, nextarg, pre, step, lastNext, n,

in, lastYield, lastInput, yielding, input, genin, previousValue, gin, gr, now, sent, generation

DH: Want some indication that it's the resumption value. WH: If I were seeing

function.current for the first time, I'd think that it was arguments.callee. BE: What about

"yield.something" AWB, MM: (agree that it would work) DH: There's human ambiguity.

Adding parens around "yield" should not change the meaning. JHD: what do we call the

value passed into Generator#next? we should name that and call this the same thing LB:

Propose "sent" MM: Does anyone object to "sent" CM: Would that be "dissent"? (general

agreement on "sent")

Resolution: advance to stage 2, update proposal to use
"sent"

Test 262 Update (BT presenting)

BT: Test262 is super active. Much es6 coverage now. Strict clean.

DG speaks to Math method test result variation, proposes fdlibm (+/- 1 ulp accuracy for

most methods including sin) [debate about whether to go for precision-based limits or

mandate one particular implementation for reproducibilty]

WH: The state of the art advances. Had we mandated one implementation for

reproducibility in ES1, we'd now be stuck with numeric functions that are inferior in both

13

accuracy and speed than the current state of the art. WH: For some functions, such as

sqrt, it is practical to require correctly rounded exact results. For others there are no known

efficient implementations yet without a bit of tolerance.

DG: In the context that math libraries have the power in ECMAScript to deliver high-quality

results at a variety of performance/precision tradeoffs and can evolve over time, the

committee has three main approaches for the builtin math functions: - Stay with the status

quo. Math functions in the spec are entirely ungoverened. This has been the reality for a

long time and it's not necessarily problematic. - Specify particular implementations for each

function, possibly including algorithms from fdlibm, crlibm, or other places. The main

advantage of this would be that floating point in the spec bit-for-bit reproducible, which is

an interesting property. - Empirically discover maximum error bounds for existing

ECMAScript implementations and specify something around that. What do you prefer?

WH: Efficient and precise standard math libraries do a large amount of bit-banging. They

can't be implemented efficiently in userland ECMAScript code using just +, -, /, etc. They

need additional primitives. DG: We can do everything we need with the existing math

primitives in ECMAScript. It'd be nice to add a few things, like reinterpret cast, but we can

do that with typed arrays if needed.

14

May 28 2015 Meeting Notes

Brian Terlson (BT), Allen Wirfs-Brock (AWB), John Neumann (JN), Jeff Morrison (JM),

Sebastian Markbage (SM), Yehuda Katz (YK), Dave Herman (DH), Sam Tobin-Hochstadt

(STH), Kevin Smith (KS), Daniel Ehrenberg (DE), Adam Klein (AK), Jordan Harband

(JHD), Jafar Husain (JH), Mark Miller (MM), Michael Ficarra (MF), Chip Morningstar (CM),

Simon Kaegi (SK), Peter Jensen (PJ), Eric Farriauolo (EF), Stefan Penner (SP), Paul

Leathers (PL), Jonathan Turner (JT), Brendan Eich (BE), Dan Gohman (DG), Miško

Hevery (MH, Matt Sweeney

Ecma Update (Istvan)

Do we still withdraw E4X and etc?

Consensus / Resolution

Withdraw.

Function.prototype.toString revision (Michael
Ficarra presenting)

MF: presenting https://github.com/michaelficarra/Function-prototype-toString-revision MF:

Let's review the spec for toString YK: How does it deal with default arguments? MF: The

spec currently doesn't say anything about parameters MM: The requirement is that the

returned function string has the same behavior when called YK: Worried about what

implementations do BE: All the known implementations do source recovery

MF: presenting...

Open issues: * function name property * definition on MethodDefinition and

GeneratorMethod is left undefined because how would you define this, new.target and

super--eval'ing it couldn't let them bind properly. However, it's important to leave things

open to implementations to just hold the source code as they do right now. * It would be

better if the spec talked about the result of evaluating [[Call]], rather than the internal steps

https://github.com/michaelficarra/Function-prototype-toString-revision

15

of [[Call]], so it doesn't overspecify. This text seems to use the word 'indistinguishable' in a

way that's specific to that particular paragraph; maybe it should leave the word

'indistinguishable' for what it means in the rest of the spec and use another word here or

refer explicitly to the outcome of the evaluation. * Add an optional FunctionBody after '[

native code]' for the native case (suggested by MM) * Require (in chapter 16) that

implementations generate a SyntaxError for '[native code]'

MF: Discussing the "Else, if func has an [[ECMAScriptCode]] internal slot" clause of the

new spec text AWB: The statements "func was defined using ECMAScript code" and "has

an [[ECMAScriptCode]] internal slot" have the same meaning MF: How do we handle

things that were not created using the Function constructor or written in ECMAScript

code? What if a host-provided exotic object has an [[ECMAScriptCode]] internal slot?

AWB: Then it is, by definition, created by the Function constructor. MM: The first if should

just be "if func has an [[ECMAScriptCode]] internal slot and is callable..." MF: But then you

need a way to distinguish the case where the host environment provides some object that

has an [[ECMAScriptCode]] internal slot? BE: You don't need to, it can be the "else"

clause, along with an Assertion

YK: Back to the goals: what rubric is being used to decide which cases should be defined

to throw a SyntaxError when toStringed? MM: The goal is to avoid the case where toString

doesn't generate an error, but evaling the result doesn't produce equivalent behavior to

calling the function. YK: An alternative design is to provide source recovery. In that case,

the design should be to return whatever the user typed. That obviously violates the

evaluatable requirement.

MF: The proposed change also defines the 'function() { [native code] }' string that must be

returned. YK: Does that mean that the PS4 returns that string for all functions? Or is it non-

conforming. MM: This definition means we're committing to '[native code]' being a syntax

error. CM: Seems brittle, could we prefix the string with something instead? BE: Web code

depends on that specific "[native code]" string -- de-facto standard MF: And the point is to

be easy to parse it (paired braces, brackets, etc)

MF: Proposing moving to stage 1. YK: Don't think we should move to stage 1 as this is the

first time the committee has seen it. BE: This has been discussed on es-discuss, there are

open bugs AWB: The problem goes back to ES6 discussions STH: Yehuda clearly

disagrees with the underlying goals, which is why his complaint should be relevant to

16

whether we move to stage 1 BE: That is a very valid procedural objection; separately, I

don't feel like source recovery is doable

AWB: If the interest is in providing moving functions between address spaces, then maybe

we should do it somewhere other than Function.prototype.toString, which doesn't work for

all cases right now anyway. MM: Why not make toString do that job? AWB: Because it's at

odds with source recovery. YK: As we add more things like 'super' to the language, there

are going to be more and more cases where toString is not going to provide portability.

MM: The cases I care most about are FunctionExpression, ClassExpression,

GeneratorExpression; am open to producing guaranteed SyntaxErrors for things like

GeneratorMethod. CM: But that's still going to put pressure to try to generate things that

work for round-tripping behavior and are further from the source recovery usecase MM:

The de facto standard in ES6 was already to generate an error at eval time for methods,

I'm only trying to make that explicit in the spec YK: I don't want the addition of 'super' in a

method to change the output of a test suite from the source text to a syntax error MM:

What if we inject a guaranteed syntax error [like "[native code]"] in to the toString? Or

alternatively guaranteed that method syntax is a syntax error in an expression. YK: I would

be open to that if it's easy to strip out. AWB: This whole thing bothers me, toString seems

like a debugging/recovery thing, even if it's been historically used with eval. I don't like that,

in a debugging session, toString will not return the source that I typed. CM: It really sounds

like these goals are at odds

(function() { /* hello / }).toString() "function () { / hello / }" (function() { / hello / }).toString()

"function () { / hello / }" (function(foo) { / hello / }).toString() "function (foo) { / hello */ }"

JHD: Function.prototype.toString.call({foo() { return foo }}.foo) in firefox returns

"function foo() { return foo }" but in v8/chrome returns "foo() { return foo }" which are not

functionally equivalent JHD:

also,Function.prototype.toString.call(Object.getOwnPropertyDescriptor({get a() { return

3 }}, 'a').get) in FF returns "function () { return 3 }" but v8/chrome returns "

YK: Can we agree that source recovery should be a goal of this proposal? MF: It wasn't

originally my goal in putting together this presentation. MM: I agree that implementations

seem to be aiming for that goal, though it's not a goal of mine. SP: Another use case is

detecting what features a function is using (say, 'super') MM: The injected syntax error

solution supports that use case

17

MM: I only care about a certain set of cases YK: What about arrow functions?

[...lunchtime discussion...]

YK: There are a set of things that do not have unserializable state (FunctionExpression,

ClassExpression, GeneratorFunctionExpression, and some declaration forms of those).

There a whole other set of forms (arrow functions, concise methods) that may have

unserializable state. YK: The proposal is to add a new predicate (strawman:

"Reflect.isPortable") that can be used to determine which of these forms a given function

falls into. YK: The predicate could even return more information, such as a list of free

variables in the function. YK: Given the above predicate, I am satisfied that moving MF's

toString proposal to stage 1 will satisfy both the source recovery use cases and MM's

portability uses cases.

Resolution

Move MF's Function.prototype.toString proposal to stage 1, with a dependency on the

Reflect.isPortable predicate (which is effectively a stage 0 proposal) and an added goal of

supporting the source recovery use cases.

Decorators (Yehuda Katz, Jonathan Turner)
(Need slides)

YK: Used to be against decorating function decls which hoist. Also, having decorators on

exprs and decls was bad. However, I've come to peace with hoisting the execution of the

decorator expression. Seems plausible. AWB: Function declarations are created before

there's any environment. If you introduce something that can execute at that time it

changes all of the semantics. YK: This is hard. We need to think hard. What Allen said was

true. DH: We shouldn't rathole for too long on what the answer is because we don't have

one yet. There is no obvious right answer. Easiest not to support this at all, but this is a

mistake - people want to use function declarations, and if decorators don't work on function

declarations, people won't use function decls. We have a few tools - 1 is imports. YK: The

semantics will be rough no matter what. We can prototype and see if in real world code

this is a problem. JM: Prototyping is great but it doesn't find footguns well because it's a

small module. JT: We can put it in typescript. We get good feedback. If it's just in

18

experimental, it's possible to remove later. AWB: Clarifying module initialization: when a

module is instantiated, one of the first thing that happens before it finds any imports, it

instantiates any function declarations. DH: You could observe that a binding isn't initialized

yet. Could introduce TDZ? [Problem: If you make a let binding and refer to that in a

decorator parameter, you will hit a TDZ] AWB: Creates opportunity for fatal circularities

that weren't a problem before. YK: We should get our transipler friends to try it out and

see. DH: There needs to be work on this... need a plausible design. YK: I agree. AWB:

Would it be an acceptable semantics if we can't figure it out we say that decorated decls

don't hoist? DH: Sure. There will be inconsistencies any way. YK: People depend on

hoisting. What it would mean is that occasionally their code wouldn't work and they

wouldn't use decorators. Maybe that's ok. AWB: Maybe that's ok! Could be same as

classes. Could have good error message.

[Presents on parameter decorators] YK: Parameter decorators work on Parameter

descriptors. JM: Couldn't I just decorate the entire function and use the reflective API to

touch the parameters? JT: Yes. AWB: What do we statically know and what is knowable

dynamically. Do we statically know there is a formal parameter named "f"? YK: You can't

change type or name of the parameter descriptor. The main thing is metadata. Possibly

wrapping the default expression. AWB: Root of the question is about the fact that a

function definition starting with name and parameers through the body is something that is

statically analyzed as a unit independent of evaluation. This injects in essence evaluation

semantics into the middle of the static analysis... YK: I Wouldn't think of it that way. I would

think about it that you create a function in the first step and then you go through the formal

parameters and get their descriptors and you could modify them, but the modifications you

can make are limited to things we can accept. AWB: Ok, different question. Last question

assumed the decorator was evaluated at func definition time. But another way is that they

are evaluated on each invocation. YK: One goal of decorators is that they don't introduce

call-time overhead. BE: Need to clearly define the evaluation model. YK: Started with the

reflection API as I'd like to desugar to two reflection APIs. AWB: Here's the trap: If I wanted

to write a static compiler for ECMAScript, how does this impact those uses? YK: The

simplest thing this is doing is adding metadata which seems equivalent to adding to

weakmap. AWB: If evaluation happens after the class... if it doesn't require anything at

compilation time... YK: I think that's a sticky question.. AWB: It looks like it's inside the

function. YK: It's outside. AWB: What's the scope of param decorators? Are params in

19

scope like they are with defaults. YK: All decorators, no matter where they are placed

inside the class body, have the scope of the outer scope. It's possibly confusing. AWB: I

think it's totally confusing. BE: It seems confusing. BE: ARB sees wanting decorators on

static constructs like modules and other decls. There is a tension between static and

dynamic. YK: In practice the case that Allen mentions won't happen. YK: Originally thought

that param decorators didn't fit into this, but everyone wants this so... AWB: What about

destructuring? JT: (Answering what is done in TS) Param decorators have outer scope.

AWB: Violates rule we had in ES6. YK: Need to work out the semantics. AWB: What about

patterns [destructuring bind]? JT: I think TS doesn't allow now. DE: Must be hard to even

reflect on destructuring bind AWB: It would be bad if the decorators worked only some of

the time, and then not on destructuring bind. Good to capture all the hard problems.

[Discussion between AWB/YK Regarding when evaluation occurs for various decorator

constructs] JT: Imagine we had a reflect.decorate API that was capable of composing for

you. The other way would be to form a decorator pipeline of sorts. YK: Completely

replacing a class with a new class seems bad. JT: We want to create a reflect API for self-

hosting decorators with a step-by-step thing. [More presentation and discussion missing

from here]

Observable Nominal Type (JH, KS)

JH: Presenting slides TODO(JH): add link Issues with async generator proposal

[expanding on bits where slides are terse]:

• General agreement that async function* should return an "async iterator" instead of

an Observable, as observabe's push model is not necessarily asynchronous,

example being sync DOM events

Questions on Array.prototype[Symbol.observer] slide: DH: Why the check for falsiness of

iterResult? JH: Just being safe, agree that if |generator| is a real generator it's not possible

for iterResult to be falsy. MM: Why are you calling generator.return()? That's normally

meant for early exit. JH: In this case the generator is being used as a sink, rather than a

source....no, sorry, the slide is wrong [live coding].

Questions on WebSocket slide MF: Why arrow functions? JH: No particular reason, other

than those that refer to 'this'.

20

JH: [...continues...]

SP: What happens when errors occur? Error propogation? JH: When an error occurs in a

Promise, the Promise is "dead". That's not the case with Observables, since other

observers could still be added by subscribing. But an error signals the end of a single

subscription. Every observation ends with either "done" or "error". SP: I think that

subscribe() seems like it conceptually should return a Promise, with the only callback

passed into subscribe() is "next". That would make this compose better with other Promise

code. JH: That's exactly what Observable.prototype.forEach does. But there you don't get

the subscription back, so you can't unsubscribe. Unless you have cancelable Promises.

MM: Alternatively you could return a pair of [subscription, promise] from subscribe(). But

that has the problem that a single subscriber could end the whole observation. SP: OK,

now I'm seeing that this is the same issue as cancelable promises.

side bar: [discussion among YK and MM about having then() return a subscription, and

why we didn't do that] MM: You could have a lower-level operation than then() that returns

a pair of [promise, subscription] where unsubscribing only cancels the particular callback

passed in, not the whole promise. And you could have async functions make use of this,

which makes it not so bad that you have a pair returned. This might provide an answer for

cancelable promises. [TODO(YK, MM): More detail here if you want it pulled out of this

presentation]

...back to Observables...

MM: Does calling unsubscribe() cause return() to be called on the argument to

subscribe()? JH: No, I don't think so...KS? KS: Yes, a well-behaved Observable should call

return(). CM: I don't think that makes sense, return() should only be called when the

Observable's stream is complete. MM: Doesn't that break the compositional cleanup

semantics? KS: The way I designed the polyfill was more in line with that thinking [that

return should be called on unsubscribe], will sync up with JH to sort that out.

YK: I think SP was getting at this: we shouild make sure that we [learn the lessons from

Promises] and have error propagation work well.

DH: Comments on Event Composition slide. Trying to describe Hot/Cold language. For

mouse moves, it seems like once you have no more subscribers, you want to stop

21

receiving mouse events. DH: trying to understand hot vs cold observables: mousemove is

an example where once you reach zero subscribers there's no point in continuing to

receive events, so the data source cancels JH: Yes, that's "hot" DH: whereas a cold one

might be like a network fetch where when the subscriber count reaches zero that doesn't

mean you won't have new subscribers and you don't necessarily want to cancel the

underlying request DH: but the decision to be hot vs cold is at the data source, and

Observable combinators are about subscription, so one set of combinators works for both

hot and cold? JH: well yes but there are plenty of combinators and inevitably some only

make sense for hot or cold, and it's IMO more reasonable just to have one set of

combinators and have some that simply don't do anything reasonable when called on the

wrong type of data source; so that's a leaky abstraction but more practical

MM: Proposes Observable.prototype.then(). KS: Considered that in the polyfill, but ran into

possible other things that .then() should do. Will continue consideration.

JH: Continuing Event Composition use cases... MF: These new methods, are you planning

to put them on Observable.prototype? Won't that cause problems if people start

monkeypatching? JH: Yes, something to be considered.

YK: Promises got fast-tracked because of use-cases in ES6 and the DOM. Have you

gotten a lot of feedback from DOM folks that want this? I'd imagine that there would be

people chomping at the bit to use Observables for events. JH: Have only heard a bit from

DOM, regarding filesystem APIs. Not a lot of feedback from that side. YK: In the

meantime, I encourage JH to work on "Observables A+", with a test suite MM: With the

goal of working with other Observable libraries and getting them all on the same page JH:

I've been in discussion with those libraries YK: You don't even have to write the reference

library, but it would help to have lots of examples (IndexedDB, other web APIs) showing

the value, as was done for Promises.

JH: I think it would be nice to explain DOM events in terms of Observables; at the least we

should be able to adapt them.

MM: Naming concern: this name seems close to "Object.observe". If it didn't exist,

"Observable" would be the right name. DE: We could defer this question until one of the

two proposals makes its way further along. JH: Could Object.observe be in terms of

Observables? MM: Would Object.observe folks object to that? AK: I'm probably the best

22

person to speak to that, and it seems like a reasonable thing for Object.observe to be in

terms of Observable JH: Also, ideally "subscribe" would be called "observe" CM: I think

"subscribe" actually has something to recommend it -- gives rise to Subscription as name

for thing you get back (Observation doesn't work, singular) AK: No one is currently working

on pushing Object.observe to stage 3, but I'd be happy to have contributions or feedback.

BE: There are objections to it; some people think it shouldn't be there (see Nov 2014

meeting notes) JH: Including me DE: Let's say neither Object.observe nor Observable can

get to stage 3 until we get some resolution on the naming conflict [General agreement,

moving on]

[lots of discussion about hazards of sync Observables; Observable.prototype.subscribe()

only actually subscribes at the end of the turn to avoid one such hazard (see slide)]

MM: Basically, in Promises, there's a guarantee that the callback is called from a clean

stack. For Observables, the only guarantee is that the callback is not called from the

callback provider's stack. Which is still a pretty good guarantee. JH: Right. We put the

burden on Observables that, if they act synchronously, they be careful that they don't

depend on state that might change while they act. MH: We [Angular] can confirm that this

is a good tradeoff. JH: The motivation for not forcing next() to be scheduled in a new job is

to be maximally efficient.

MM: Something I've expressed before, and I'll reiterate, is that I worry about all this new

syntax, and would like to see some way to use composition to avoid adding new syntax for

each combination of these things. DH: I think the exploration is great, but I also have

concerns about proliferating syntax.

Resolution

Move to stage 1, keeping in mind DOM events especially

23

May 29 2015 Meeting Notes

Allen Wirfs-Brock (AWB), John Neumann (JN), Jeff Morrison (JM), Sebastian Markbage

(SM), Yehuda Katz (YK), Dave Herman (DH), Sam Tobin-Hochstadt (STH), Kevin Smith

(KS), Daniel Ehrenberg (DE), Adam Klein (AK), Jordan Harband (JHD), Jafar Husain (JH),

Mark Miller (MM), Michael Ficarra (MF), Chip Morningstar (CM), Simon Kaegi (SK), Peter

Jensen (PJ), Eric Farriauolo (EF), Stefan Penner (SP), Paul Leathers (PL), Jonathan

Turner (JT), Brendan Eich (BE), Dan Gohman (DG), Miško Hevery (MH, Matt Sweeney

Relaxed semantics for Promise.resolve nominal
check (MM)

MM: presenting

Promise.resolve(arb1).then(arb2, arb3);

MM: The invariant that we are trying to maintain is that in a realm where the primodials are

frozen and arb1, arb2, and arb3 are from an untrusted party, then any code associated

with those objects will be executed in a later turn. Since promises are not frozen, the

invariant can be broken if "then" is overridden on the instance. The invariants can be

maintained by a subclass of Promise.

DefensiblePromise.resolve(arb1).then(arb2, arb3);

The other way that the invariant was broken was with Promise.resolve. Once we added

the newTarget parameter to the Reflect.construct method, that meant that someone could

invoke the Promise constructor with an arbitrary newTarget.

AWB: That could be checked in the Promise constructor code. The constructor could

traverse the prototype chain of the constructor. MM: Because we have the mutability issue

we have to protect the invariants in userland anyway, so I like the proposal from C. Scott

Ananian. Just perform a Get on the "constructor" property of the argument supplied to

"resolve". MM: Do we have species on Promise AWB: Yes MM: Don't think @@species

buys you anything here AWB: But there's a consistency AK: This is a breaking change for

shipping browsers. YK: I would be suprised if there are programs which rely on this edge

case. MM: We should take this into account. Even if there's code subclassing promises,

they would probably not be affected by this change. I would like AWB's opinion on whether

24

we use @@species or constructor. AWB: NewPromiseCapability might use @@species

anyway. KS: Can we confirm? AWB: No, it doesn't use @@species. MM: In that case I

say we use "constructor". AWB: This is a class-side method, @@species is really for

instance chaining. MM:

FooCancellable.resolve(arb1).then(arb2).then(arb3);

@@species of FooCancellable is Cancellable. Using "constructor", the first then is called

on a FooCancellable and the second is called on a Cancellable. That looks correct. AK:

We'll have to look and see if this change breaks anything. (Not asking to postpone.) SP:

Chrome canary is already broken here: class Foo extends Promise {}

Foo.resolve(Promise.resolve()).constructor !== Foo;

Resolution: Change Promise.resolve in ES6
specification to use "constructor" property.

Operator overloading breakout

Slides: http://www.slideshare.net/BrendanEich/extensible-operators-and-literals-for-

javascript

DE: Why not use an implicitly named, lexically scoped object for literals

(literalSuffixTable)? No staging, just runtime lookup. BE: Don't overload ===, instanceof, in

DG: Most operators could be useful for SIMD, except == < <= is probably not a good idea

since it'll return a SIMD vector which is truthy BE: Strict equality is still via a structural

recursive strict equality check not overloadable, or do we want to change that? BE:

Multimethods for dyadic operaors, not double dispatch; see Christian Hansen's work and

Cecil SM: Maybe mangle the name for literals somehow else? [Discussion about how to

handle suffixes with module imports] BE: The hope is that the spec just has to define

operators and literals in a general way. We can have an intermediate step which is value

types.

Value types breakout

DE reviews Niko Matsakis's proposal https://github.com/nikomatsakis/typed-objects-

explainer/blob/master/valuetypes.md

• (I missed first implicit bit that DE identified -- /be)

http://www.slideshare.net/BrendanEich/extensible-operators-and-literals-for-javascript
http://www.slideshare.net/BrendanEich/extensible-operators-and-literals-for-javascript
https://github.com/nikomatsakis/typed-objects-explainer/blob/master/valuetypes.md
https://github.com/nikomatsakis/typed-objects-explainer/blob/master/valuetypes.md

25

• ValueType per-realm registry can only grow, never shrink -- is this ok?

• what if a value from another realm lacks a registry entry for its type? type error or

implicit registry (MM objected?) SM and DE discussion of trade-offs imposed by

registry key as defined by NM SM concerned about prototype sharing among

several value types (immutable array and Array) DE would rather stick with NM's

proposal and leave out prototype-sharing and other such features

DE raises intermediate value representation problem.

 let Point = ValueType(Symbol('Point'), {x: Float32, y: Float32});
 let p = Point(1, 2);
 // is p.x a Float32 or a JS number?
 assert Float32(0) !== 0;

Int64 hard case vs. number as well.

x = Float32.[[Cast]](1);
y = Float32.[[Cast]](2);

DG: how about Complex? DE: 3+2i is a "literal" that can be partially evaluated by smart

implementations; the 2i uses literal suffix i to make imaginary-2, and + operator does rest.

In general if number is the intermediate value type, lose precision when demoting (from

64-bits to number) and performance when promoting. Lose-lose!

Could add Float32.add(a, b) and so forth -- and these could be operator multimethods -- to

help people avoid promotion to number from 32-bit value types

DE: Also thinking about [[Serialize]] and [[Deserialize]] internal methods (maybe

Symbol.serialize and Symbol.deserialize one day) for persistence and structured clone

SM: thinking of separate faster-GC heap for value types since acyclic

DE: thinking about discriminated unions as well, which is why symbols might want to be

embedded in value types. SM: serialization raises question how this value types thinking

relates to typed objects BE: typed objects wanted for their reference identity, heap

allocation, mutability

DE: mentions Swift inout handling of structs: p.x = 1 => p = p.replaceX(1) updates whole

struct

26

Fresh realms breakout

MF: Fresh Realms

Programmer want guarantees about how their program will run without worry about what

past scripts have done

• in particular referring to scripts like prototype that monkey patch

original proposal....

global-f-global | var a=0; function f() { "realm"; a --> refers to lexical scope }

new proposal is module based -- want to declare dependencies should be run in a "fresh"

realm

discusssion around how modules might construct graphs and a fine critique of the npm

approach. discussion around the process for splitting an existing module in two in the face

of a "fresh" realm and looking at the problems associated with having those newly split

modules sharing state

DH: Belief is that the dynamic api is sufficient and we need experience before creating

declarative syntax DH: An approach using manifests like System.js to construct the

appropriate realm graph

JHD: Want the abilty to run a module in a fresh global especially in the context of using

shims

MM: Fine but we should go ahead in parallel e.g. keep the discussion going as we gain

experience MM: SES Provides defensability but not defense. Enables use of multiple co-

operative realms while protedting them from one another

Brendan Break-in about literals and operator
overloading

DH, YK: Do these invariants actually hold? Even if they do, do we really need all of them?

Some make sense, but maybe not all. Christian Plesner Hansen's multimethod

27

post: https://mail.mozilla.org/pipermail/es-discuss/2009-June/009603.html Christian's

language? http://h14s.p5r.org/2006/05/neptune.html YK: For operator overloading,

instanceof won't work in Node because Node agressively duplicates prototypes. instanceof

is an antipattern. DH: npm will give you multiple instantiations of the same module.

async await extensibility

sync Iterator:

iterator function* for (x of xs)

async iterator

AsyncIterator async function* async for(x of xs)

sync observable

observable function*> for (x on xs)

async observable

Async Observable async function*> async for (x on xs)

function*>() { var stream = await someObservable; for (let price on stream) { yield

CAN(price); } console.log("done"); } }

vs. (new for* syntax with sugar -- e.g. on

push(function() { var stream = await someObservable; for (let price on stream) { yield

CAN(price); }; console.log("done"); }

vs. (new for* syntax - desugared)

push(function() { var stream = await someObservable; await on(for (let price of stream) {

yield CAN(price); }); console.log("done"); }

https://mail.mozilla.org/pipermail/es-discuss/2009-June/009603.html
http://h14s.p5r.org/2006/05/neptune.html

28

function* d(xs) { yield xs[0]; }

function d ([xs, gen]) { gen.next(xs[0]); }

	Minutes of the: 46th meeting of Ecma TC39
	in: Santa Clara, CA, USA
	on: 27-29 May 2015
	1 Opening, welcome and roll call
	1.1 Opening of the meeting (Mr. Neumann)
	1.2 Introduction of attendees
	1.3 Host facilities, local logistics

	2 Adoption of the agenda (2015/033-Rev2)
	Agenda for the: 46th meeting of Ecma TC39

	3 Approval of minutes from March 2015 (2015/031)
	4 Status of “ES6 Suite” approval at the June 17, 2015 Ecma GA
	4.1 RF “Opt out” for ES6 Release Candidate #1
	4.2 RF “Opt out” for ECMA-402 2nd Edition
	4.3 RF “Opt out” for ECMA-404 1st Edition
	4.4 ECMA-327 (Compact profile) and ECMA-357 (E4X) matters

	5 ES7 and Test262 Discussions
	6 Report from the Secretariat
	7 Date and place of the next meeting
	8 Closure
	Annex 1
	Technical Notes
	May 27 2015 Meeting Notes
	Agenda approval.
	Consensus / Resolution

	Approve minutes from previous meeting
	Consensus / Resolution

	ES6 Updates (AWB presenting)
	Module export-from additions (LB presenting)
	Resolution: move to stage 2 with two accepted forms: "export default from 'mod';" and "export * as ns from 'mod'"

	SIMD.js Stage 2 (PJ, JM presenting)
	Resolution: move to stage 2

	Generator function.next Meta Property (AWB presenting)
	Resolution: advance to stage 2, update proposal to use "sent"

	Test 262 Update (BT presenting)

	May 28 2015 Meeting Notes
	Ecma Update (Istvan)
	Consensus / Resolution

	Function.prototype.toString revision (Michael Ficarra presenting)
	Resolution

	Decorators (Yehuda Katz, Jonathan Turner) (Need slides)
	Observable Nominal Type (JH, KS)
	Resolution

	May 29 2015 Meeting Notes
	Relaxed semantics for Promise.resolve nominal check (MM)
	Resolution: Change Promise.resolve in ES6 specification to use "constructor" property.
	Operator overloading breakout
	Value types breakout

	Fresh realms breakout
	Brendan Break-in about literals and operator overloading

	async await extensibility
	sync Iterator:
	async iterator
	sync observable
	async observable

