Ecma/TC39/2015/016

6™ Edition / Draft February 20, 2015

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 34, February 20, 2015 Draft

11 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

‘ COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2015

oeCha

Contents Page
INEFOAUCTION ..t bbb bbb e bbb e b e se b e bt st e b e e saebe vii
1 1o o] o1 TP OSSOSO 1
2 CONTOIMANCE ...ttt eb et s et n e sfenb et bttt et r et ene e 1
3 NOIMALIVE FEFEIENCES ... et et 1
4 OVEIVIBW .t bt b gt et 2
4.1 Web Scripting. .3
4.2 ECMAScript Overview .3
4.2.1 ODJECTS v 4
4.2.2 The Strict Variant 0f ECMASCIIPTccoviieeieieriesese s aihessassseeeseeseeseesaesaeseessessessessassassinseessessessessessensessens 5
4.3 Terms and defiNitiONS ..o e e 6
4.4 Organization of This SPeCITICALIONcveeeiee s clieiier et essansna b e eneeneeneeneens 10
5 NOtatioNal CONVENTIONScuiiiiiiiiiteiciie ettt sfore st ettt ee bt b et eb st b et 10
5.1 Syntactic and Lexical Grammars. .10
5.1.1 Context-Free Grammars...................10
5.1.2 The Lexical and RegExp Grammars.. .11
5.1.3 The Numeric String Grammar11
5.1.4 The Syntactic Grammar.......... .11
5.1.5 Grammar Notation......... .12
5.2 Algorithm Conventions .17
5.3 Static SEMAaNTIC RUIES ..o i b 19
6 ECMASCcript Data TYPES @nd VAIUESoccccieiiriieiiieci ettt 19
6.1 ECMASCTIPt LANGUAGE TYPES wiiehereuiiriieteisitasheseteseeseesiessestssesesbessese s ete s esessesenaesease e sbessesessesesaesessenesnes 20
6.1.1 The Undefined Type
6.1.2 THE NUI Ty PO ittt st ettt b bbbt e ettt b et b et e et e en e ates
6.1.3 The BOOIEAN TY Ptk criueeisihenteutiueseness et iEiirns et ibes sttt e ete s et s es e nbes s ebe e e b e b e st as e st nees b eb e et e st ebt s et b essebeaeates
6.1.4 The String Type.... .
6.1.5 The Symbol Type.

6.1.6 TheNumber Type

6.1.7 The Object Type...cc.ccooveiiieriiine.

6.2 ECMAScript Specification Types........... .
6.2.1 The List and Record Specification Type. .34
6.2.2 The Completion Record Specification Type.. ...35
6.2.3 The Reference Specification Type........c..........36
6.2.4 The Property Descriptor SPecifiCation TYPE ..ot 38
6.2.5 The Lexical Environment and Environment Record Specification TYpPesS......cccocvveverienienienieeiennnns 40
6.2.6 DAta BIOCKS ... cluiiiiiiiiiii s 40
7 P o 1] A= o A @] 1= o g 41
7.1 TYPE CONVETSION .ottt ettt bttt b et b s e h e bt bt e bt e et et et e b et e bt e bt b et st e e eb e e ese e eben 41
7.1.1 ToPrimitive (input [, Preferr@dTYPE]) .ot 41
7.1.2 ToBoolean (argument)......c.ccccceeunnene.43
7.1.3 ToNumber (argument)....43
7.1.4 Tolnteger (argument)..46
7.1.5 Tolnt32 (argument)......46
7.1.6 ToUint32 (argument)46
% O A o T 1o} o K (= 101U 0=) A U UV SUSORTRORO a7
% < T o 10 110} o K (= Uto [0 44 T=T o | A U T PR RURUTRS 47

© Ecma International 2015 i

&

7.1.9

7.1.10
7.1.11
7.1.12
7.1.13
7.1.14
7.1.15
7.1.16

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.211
7.2.12
7.2.13

731
7.3.2
7.3.3
734
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.3.18
7.3.19
7.3.20
7.3.21
7.3.22

74.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9

recma

oY ok Q- Lo [U 41T | S S a7
ToUint8 (argument).............
ToUint8Clamp (argument).

ToString (argument) 48
ToObject (argument)50
ToPropertyKey (argument) ...50
TOLENGLN (@rQUIMENT)ittt e et b s e e s e sb e s b e s b e e bt e b e e se e b e e s e essens et e b e nbesneanean 51
CanonicalNumericlndexString (@rgUMENT) ..ot 51

Testing and Comparison Operations
RequireObjectCoercible (argument)
ISAITAY (@rQUMENT) oo iee ettt e et seesae e be e se s e e e e eesdheb e e be bt e bt et e ebeeheene e e eneeseeseeseenaenen
IsCallable (argument)
IsConstructor (argument) ..
IsExtensible (O)...........
Isinteger (argument)...........
IsPropertyKey (argument).
IsRegExp (argument)..........
SameValue(X, ¥)..........
SameValueZero(X, ¥)..c.coeerevrrennens
Abstract Relational COMPATISON ..o ittt dinestas ettt b e sae e b e s nbeneas
Abstract EQUAlity COMPATiSON......ciiiiiuirieierieuietiesiassssthine e seeesdhentaseseesessesessesessenessesessessesessesessesessesesseneas
Strict Equality Comparison .
OPEratioNS ON ODJECTSoiviuiitiiiiiiieiit ettt et ar ekt b et b et b et b et s st st et ene e et e s eneanens
GL (O, P) ettt s R ARt b et bbb a et b bbbt eene
GetV (V, P)
Set (O, P, V, Throw)...............
CreateDataProperty (O, P, V)
CreateMethodProperty (O, P, V)
CreateDataPropertyOrThrow. (O, P, V)
DefinePropertyOrThrow (O, P, desc)..

DeletePropertyOrThrow (O, P).........

GetMethod (O, P) .cocvcvveee
HASPIroperty (O, P) ..ot it bbbt
HaSOWNPIOPEITY (O, P) ..o i ettt bbb bbbt et b e e st e e et e seeseeseenbe e
Call(F, V, [argumentsList])...
INVOKE(O;P, [arguUmMENESLIST]) .c.veiviiiiiiieiieiee et bbb nre e 59
Construct (F, [argumentsList], [NEWTarget])......cccoerereererirerieierieiesese et 59
SetintegrityLevel (O, level) ..o ...60
TestIntegrityLevel (O, level)....... ...60
CreateArrayFromList (elements).........cccoeevneienene .61
CreateListFromArrayLike (obj [, elementTypes]) .61
OrdinaryHasInstance (C, O)ccoccovmeniereineiennns .61
SpeciesConstructor (O, defaultCONSIIUCION) ..ottt 62
EnumerableOWNNAMES (O)c.orveuiiiiiiiieiirieiirei ettt bbbt eb e 62
GetFunctionRealm (obj)
Operations 0N ILEratOr ODJECTScciuiiiiiiiieere ettt 63
Getlterator (0B], MELNOT) ..o ettt 63

IteratorNext (iterator, value).
IteratorComplete (iterResult)
IteratorValue (iterResult).
IteratorStep (iterator).......coceeeeeeenene
IteratorClose(iterator, completion) ...

CreatelterResultObject (value, done) ..
CreateListlterator (1St)ccocveniinininininens
CreateCompoundlterator (iteratorl, ITErator2) ... oererererere et nre e 65

© Ecma International 2015

secmd

8.1
8.1.1
8.1.2

8.2.1
8.2.2
8.2.3
8.2.4

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5

84.1
8.4.2

85.1

9.1
911
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13
9.1.14
9.1.15

9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12
9.2.13
9.3
9.3.1
9.3.2
9.3.3

Executable Code and EXECULION CONTEXLS ...ccvvirirereiisesieseereeeeeeeesesaesses e sse s e e e sse e ssessasseessenees 66
Lexical Environments
Environment Records

Lexical ENVIronmMent OPEIatiONSoocirieirieiireieiieee ettt n s 83
Code Realmsc.cccvevinecricrienenn.

CreateRealm ()
CreatelntrinSIiCS (FEAIMREC) ..uiiuiiiiiiiiiee ettt bbb bbbt bttt ne e nes 85
SetRealmGlobalObject (realmRec, globalObj) ..o 86
SetDefaultGlobalBindings (realmRec).............. ...86

Execution Contexts........cceeereevnenennne. ...86
ResolveBinding (name).
GetThisEnvironment () ...

ResolveThisBinding ()88
GetNewTarget ().....c...... ...89
GetGlobalObject ()........ ...89
Jobs and Job QUEUES........cccceeveeveeieeeeeeiee ...89

EnqueueJob (queueName, job, arguments)90
NEXTIOD TESUIT ... an e b e en s 90
LTI AE= L F2=Vo T ST S S ST 91
InitializeHostDefinedRealmM (F€aIM).......ocvir it st 91
Ordinary and Exotic Objects BENAVIOUTS...........io it cilentine ettt 92
Ordinary Object Internal Methods and Internal Slots . .92
[[GetPrototypeOf]] () «cceeeeerernrireeniliine e .92
[[SetPrototypeOf]] (V)92
[[IsExtensible]] () ..ccccoeenne ..93
[[PreventExtensions]] (). ...93
[[GEtOWNPIOPEITY]] (P) .eueeoteeeeruesierierieniesiiesteeeueeseefneasesuasseese s it seeseeseessessessesbesbesbesbesbesnesneeneeneeneeneenes 93
[[DefineOWNPIroperty]] (P, DESC). ..o it eifeniest ettt b e b bt st et 93
[[HasProperty]](P).....ct et .

[[Get]] (P, Receiver)

[[SEL]] (P, V, RECEIVET).....ueieeie ittt ittt sbessbe ettt b ettt b e bbbt bbbt nb e e b e s e b e

[[DIELE]] (P) . eteeueaueeueeureneeteeteeeedetamt ettt es e nme R et b e bbbt st st e st e e e e e e e e e b e e e b e e b e e b e ebeeneeneeneeneeneeneenes

[[Enumerate]] () .cvuenenee. .

[[OwnPropertyKeys]] ()

ObjectCreate(proto, INTErNalSIOtSLIST) i 98
OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalSlotsList) 98
GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)......ccccoovevvvveiveiieiiennns ...98
ECMAScript FUNCEION ODJECES w.....cveviviiiiiiiccecee e .99
[[GetOwnProperty]] (P)........... .100
[[Call]] (thisArgument, argumentsList)....... .100
[[Construct]] (argumentsList, newTarget)cccoceveevcenecinennnee 101
FunctionAllocate (functionPrototype, strict [,functionKind]).... .102
Functioninitialize (F; kind, ParameterList, Body, SCOpe)ccccecvunene .103

FunctionCreate (kind, ParameterList, Body, Scope, Strict, prototype) ..
GeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)....

AddRestrictedFunctionProperties (F, realm)104
MakeConstructor (F, writablePrototype, prototype)104
MakeClassConStructor (F)ccveverierieeieereneene .105
MakeMethod (F, homeObject)105
SetFunctionName (F, NamMe, PrefiX) ... 105
FunctionDeclarationInstantiation(func, argumentSLiSt)ccccviiererienienieieeeeeee e 105
Built-in FUNCLION ODJECESooviieiiiere e

[[Call]] (thisArgument, argumentsList)....
[[Construct]] (argumentsList, newTarget)
CreateBuiltinFunction(realm, steps, prototype, internalSIotSLiSt)......ccccoevrvrrierererienieneseeeeeene 109

© Ecma International 2015 iii

&

9.4

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6

951
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6
9.5.7
9.5.8
9.5.9
9.5.10
95.11
9.5.12
9.5.13
9.5.14
9.5.15

10
10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2

11
111
11.2
11.3
114
115
11.6
11.6.1
11.6:2
11.7
11.8
11.8.1
11.8.2
11.8.3
1184
11.85
11.8.6
11.9
11.9.1
11.9.2

12
12.1
12.1.1
12.1.2

recma

Built-in Exotic Object Internal Methods and SIOtSccvceviviiiecicieeeeee e 110
Bound Function Exotic Objectsc.ccccovevveerinnne.110

Array Exotic Objects.........c.ccceee. 111
String Exotic Objects......... ...114
Arguments Exotic Objects116

Integer Indexed Exotic Objects121
Module Namespace EXOLIC ODJECLSc.uiiiiiiiieierie ettt eneas 125
Proxy Object Internal Methods and Internal SIOtSccccoveiiiiniiiiiinc e 127
[[GetPrototypeOf]] ()
[[SEtPrototyPEOF]] (V) cueeeeeeiieiie ittt sttt sbe bbb saanna s b bt aesbe st e be e neeneeneas
[[ISEXTENSIDIE]] () cveeueeeeeeieeiierie sttt sttt sttt ettt sa e e bbb b s e dhnn e b et e b et e ae b e saesbe s e e e enneneas

[[PreventExtensions]] ()
[[GetOwnProperty]] (P)...cccceeerune

[[DefineOwnProperty]] (P, Desc) ..
[[HasProperty]] (P) ...ccccvervrivnnnns

[[Get]] (P, Receiver)
[[Set]] (P, V, Receiver) ..
[[Delete]] (P) ...ccceeereneene
[[Enumerate]] ().eeeerrerenne
[[OWNPIOPErtYKEYS]] () seeveeeuereeerteiriereeiesteueseestshenessthe et seesesssdhananis e ssestssesesbeseeseseebe e ebeneesesaeseeneeeses
[[Call]] (thisArgument, arguUMENTSLIST)cuoeirueiiiriatie e sfireist et eb e
[[Construct]] (argumentsList, newTarget) ..
ProxyCreate(target, NANGAIET)........cci ittt

ECMASCcript Language: SOUICE COUE ...uiiiinu. it sitste b ettt st
SOUICE TEXL ot e s a bbb b b bbb s
Static Semantics: UTF16Encoding (cp)....
Static Semantics: UTF16Decode(lead, trail).
Types of Source Code
Strict Mode Code.......q.......
NON-ECMASCHPE FUNCEIONS ..ottt ittt sttt b ettt se b ebe e ees 139

ECMAScript Language: LeXical GrammMar ... ettt 140
Unicode FOrmat-Control Char8CLEISc.cc.iiierieereie oo e se e steeteeseea e e e see e ae e sse e seeneesaenens 141
WHITE SP@CE ..ovieiieeiesceeieuees dhieannansansansssseass s Eiiianns e s e stessessessessessesseaseaseaseessensessansensessesansenssessensensensensensensenns

Line Terminators .. .

Names and Keywords
Identifier Names
Reserved Words...
Punctuators........
Literals
Null'Literals
Boolean Literals
Numeric Literals
SEING LITEIAIS wouiee et e et e b e b e b e e b e e bt bt e bt e ne e et e e s
Regular EXPreSSiON LILEIalS ..ottt ss e
Template Literal Lexical Components
Automatic SEMICOION INSEITION ..ot s e s e s e s reesreesneebeeteees
Rules of Automatic SEMICOION INSEITIONcvciiiieece e nees 158
Examples of Automatic SemicoloN INSErTiONcccviii v 160

ECMASCript Language: EXPreSSIONScc.circiiieiiiiieieireiie ettt sttt 161
ldentifiers ..o
Static Semantics: Early Errors
Static Semantics: BOUNANAMEScc.oiiiiiiiiieeee bbb et e

© Ecma International 2015

secmd

12.1.3
12.1.4
12.1.5
12.1.6
12.2

12.2.0
12.21
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9
12.3

12.31
12.3.2
12.3.3
12.3.4
12.35
12.3.6
12.3.7
12.3.8
12.4

1241
12.4.2
12.4.3
12.4.4
12.4.5
125

125.1
125.2
125.3
125.4
125.5
12.5.6
12.5.7
12.5.8
12.5.9

Static Semantics: IsValidSimpleAssignmMeNtTarget.....ccccceverirenesesene e 162
Static Semantics: StringValueccocecvcniiiniinns ..163
Runtime Semantics: Bindinglnitialization
Runtime Semantics: Evaluation . .
Primary EXpression.........ccc...... ..164
Semanticsccoewee. .
THE this KEYWOIT ..ottt bbbt et sa e bbb 166
Lo =T =T g = L= (=T =Y o o] TP 166
Literals .
ATTAY INIETAIIZET ...ttt sfent s ettt nnen
ODJECE INILIAIIZEN ...t b bbbt
Function Defining Expressions .
Regular EXPresSSion LItEIalS ...t fore st s st s et s e s e sne s
TEMPIALE LItEIAlS ...ttt b e s be e st eefh et e e et e e seesbesbesbenbe e
The Grouping Operator
Left-Hand-Side Expressions..
Static Semantics.......
Property Accessors .
THE NEW OPEIAtOF . ..c.eiiiiiiitirieeieeiieieiete e foneann et eiee e se s bbbt et ese st st e st e e e e s aaeabe e beseenbesbenee
FUNCHION CAIS ..o et bbb
The super Keyword .
ATGUIMENT LISTS 1.ttt e et sr e bbbt bbbt eb et n et be st nnen
I Te o [<To B =T 0 T o] =L L= o USROS TP OO PRUROOt
Meta Properties........ .
Postfix Expressions................
Static Semantics: Early Errors....
Static Semantics: IsFunctionDefinition...............c..
Static Semantics: IsValidSimpleAssignmentTarget.
Postfix Increment Operator ..i......c.ccceeeiieeneiddoneannnne.
Postfix Decrement Operator-..
Unary Operators «c.eoeeeeeeeeee
Static Semantics: Early Errors....
Static Semantics:. ISFUNCLIONDETINITIONiiiieiciirecc e
Static Semantics: IsValidSimpleAssignmentTarget. .
B oIS N = TN @] 1= - o PSSP
THE VORA OPEIALOT ... iiutiteietieeieieetet et sttt ettt h bttt b et bt s ek s b et b e eb e e e bt se e b e b e ae st e e eb et ebe e ere s
The typeof Operator........
Prefix Increment Operator ..
Prefix Decrement Operator.
Unary + Operator

12.5.10 Unary - Operator

12.5.11 Bitwise NOT Operator (~)..

12.5.12 LOGICAlI NOT OPEIALOT ([!) .eeviieieeieeirieirieieiere ettt ettt ettt sttt b et e bttt b et b e b e s e nnen

12.6

126.1
12.6.2
12.6.3
12.7

12.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.8

MUIEIPHICATIVE OPEIALOTSeveiiieiieteieie ettt b et b e et bbbt e b et et b e bt e st st st eb et st e e s enan
Static Semantics: IsFunctionDefinition
Static Semantics: IsValidSimpleAssignmentTarget
Runtime SemantiCS: EVAIUALIONcciriiiiiiieitecee ettt
Additive Operatorsc.ccccveevreneneens .
Static Semantics: ISFUNCHONDETINITIONoiiiiiicieece e
Static Semantics: IsValidSimpleAssignmentTarget
The Addition operator (+)
The Subtraction Operator (-)
Applying the Additive Operators to NUMDETScccoiiiireieere e
BitWiSE SHift OPEIAtOrS ..iiuiiiiieieieieie ettt se e st e st e st e see s testeeteesaeseeseenseneensensensessesnesnesnens

© Ecma International 2015 \Y

secmd

12.8.1 Static Semantics: ISFUNCtIONDEfINITIONcoiiiriiricie e
12.8.2 Static Semantics: IsValidSimpleAssignmentTarget .
12.8.3 The Left Shift OPErator (K<) coii ittt b ettt er e bt
12.8.4 The Signed Right Shift OPErator (3>) .ciiiiiiiiieierieresesee e e nens
12.8.5 The Unsigned Right Shift Operator (>>>)..
12.9 REIAUONEAI OPEIALOTS . ..c..eiuieiieieiiet ettt b e bbb bbbt et e e e e e seeseesbeneenbesbenbenbenbeeneeneennens
12.9.1 Static Semantics: ISFUNCLIONDEfINITION........cciiiiiii e
12.9.2 Static Semantics: IsValidSimpleAssignmentTarget .
12.9.3 Runtime SemanticS: EVAIUALIONoccooiiiiiiiieeeeee st
12.9.4 Runtime Semantics: InstanceofOPerator(O, C)coviiiiririnieieieeeesfiesiese e
12.10 Equality Operatorscccceevervenereneseneseesieneens
12.10.1 Static Semantics: IsFunctionDefinition.........c.cccc.....
12.10.2 Static Semantics: IsValidSimpleAssignmentTarget .
12.10.3 Runtime Semantics: Evaluationc.ccccoeevnennine
12.11 Binary Bitwise Operators......c...cc.ceeuvuene
12.11.1 Static Semantics: IsFunctionDefinition
12.11.2 Static Semantics: IsValidSimpleAssignmentTarget«
12.11.3 Runtime Semantics: Evaluationccccveevnniie
12.12 Binary LOGiCal OPEratorsS......coccoiiirieirieiniiinieeesiesiesnceieneesieseres e slbiue ettt ates e nneiea
12.12.1 Static Semantics: ISFUNCIONDEfINITION.......c..oiiiiiibie et
12.12.2 Static Semantics: IsValidSimpleAssignmentTarget .
12.12.3 Runtime Semantics: EVAIUALIONccociiiiiiiiiicr et sias ettt
12.13 Conditional OPEratOr (2 1) coiiicemireiiiiieieie et sbe st ettt sr e bbbt bbb
12.13.1 Static Semantics: IsFunctionDefinition
12.13.2 Static Semantics: IsValidSimpleAssignmentTarget
12.13.3 Runtime SemanticS: EVAlUALION ...ttt s s st see st st be i sesaeeneens
12.14 Assignment Operatorsc.......
12.14.1 Static Semantics: Early Errors
12.14.2 Static Semantics: IsFunctionDefinition.......ccoo.........
12.14.3 Static Semantics: IsValidSimpleAssignmentTarget .
12.14.4 Runtime Semantics: Evaluation..................icecienne
12.14.5 Destructuring Assignment
12.15 Comma Operator(,)
12.15.1 Static Semantics: IsFunctionDefinition...............
12.15.2 Static Semantics: IsValidSimpleAssignmentTarget .
12.15.3 Runtime SemanticS: EVAIUALIONccccoiiiiiiieeeeee e 217

13 ECMAScript Language: Statements and DecClarations........c.ccoovvereeieiieiienenesesese e 217
13.0 < Statement Semantics
13.01 Static Semantics: ContainsSDUPlICALELADEISc.covevecececiereeeee e
13.0.2" Static Semantics: ContainsUndefinedBreakTargetccocveveveeeieeiieieresee e eeseeneens
13.0.3 Static Semantics: ContainsUndefinedContinueTarget .
13.0.4 Static Semantics: DECIArationNPArtccoeiiiiriiiiriii et
13.0.5 Static Semantics: VarDeclar@dNAMES.........ccccouriiriiiiiiieieeee ettt
13.0.6 Static Semantics: VarScopedDeclarations.
13.0.7 Runtime Semantics: LabelledEvaluation...
13.0.8 Runtime Semantics: Evaluation ..
131 BIOCK i
13.1.1 Static Semantics: Early Errorsc.ccce.e..
13.1.2 Static Semantics: ContainsSDUpPliCAtELADEIScouiiiiiiiii e
13.1.3 Static Semantics: ContainsUndefinedBreakTarget ...
13.1.4 Static Semantics: ContainsUndefinedContinueTarget .
13.1.5 Static Semantics: LexicallyDeclaredNAmMES ...t
13.1.6 Static Semantics: LexicallyScopedDeclarations..........cccoeeieirieiieiieieieesie e
13.1.7 Static Semantics: TopLevelLexicallyDeclaredNames

Vi © Ecma International 2015

secmd

13.1.8 Static Semantics: TopLevelLexicallyScopedDeclarationsc.ccocveveieeereereenieseerese e e e seneens 223
13.1.9 Static Semantics: TopLevelVarDeclaredNames 224
13.1.10 Static Semantics: TopLevelVarScopedDeclarations

13.1.11 Static Semantics: VarDeclaredNames..... .225
13.1.12 Static Semantics: VarScopedDeclarations .225
13.1.13 Runtime Semantics: Evaluation ..o, ..225
13.1.14 Runtime Semantics: BlockDeclarationInstantiation(code, NV)ccccoceveiiiinine e 226
13.2 Declarations and the Variable StatemMeENt ..o st 227
13.2.1 Let and Const Declarations .

13.2.2 Variable StatemMENtcoi i bbb b e e ettt

13.2.3 Destructuring BindiNg PAttErNScouiiiiiiieiiiener et ahe sttt et s sae e e see b e 231
13.3 Empty Statementcccocereeneene ..239

13.3.1 Runtime Semantics: Evaluation .

13.4 Expression Statement239
13.4.1 Runtime Semantics: Evaluation . ..239
13,5 The if Statementcccccevvienene ..239
13.5.1 Static Semantics: Early Errors........c.cccc..... ..239
13.5.2 Static Semantics: ContainsDuplicateLabels240

13.5.3 Static Semantics: ContainsUndefinedBreakTarget...
13.5.4 Static Semantics: ContainsUndefinedContinueTarget.

13.5.5 Static Semantics: VarDeclaredNames............ccc.ccceuee. 241
13.5.6 Static Semantics: VarScopedDeclarations 241
13.5.7 Runtime SemantiCS: EVAlUALIONc..cccciiiiiiiiiicccesisessis e e e saesaesaesaeseeseessensenes 241
13.6 [LEration STAEMENTS ...uciiiicieiieceeeeeeadoneseetiias s eseeseessessesseeseesesaneashaessessessesseaseaseeseessaseessensessesaeseessessensense 242
13.6.0 Semantics .
13.6.1 The do-While STAtEMENT....cccciiiiiiis e it cersesnestEienr e etveeareeseesaeasathneeeseeeseesseeseebessesssesaeesssesseesseess 243
13.6.2 The While SEAlEMENT.....ciiiiiiiiieieeiesie it skt e e e esenneaneasa s SRt eeseenseenseeteesseesseenseesaesseesneesnneaneensennsenns 244
13.6.3 The for Statementc..ccceveevvennnne ..246
13.6.4 The for-in and for-of Statements... ..249
13.7 The continue Statement................. ..256
13.7.1 Static SEMANTICS: EATTY EFTOIS .ci. i ittt she ettt ettt nneae 256
13.7.2 Static Semantics: ContainsUndefinedContinUETArget..........ccoeoiveiiincineineeieeseee e 256
13.7.3 Runtime Semantics: Evaluation .
13.8 The break SEAtEMENL.......ciiiiieiiiieeieeireeisees s SiE i e ereeeteeseessesssesseesseeaseesseesteesseesseeaseessesssesssesnsesssesseesseess
13.8.1 Static SEMANTICS: EATIY EFTOISccoiiiiiieiitceie ettt ettt nnen
13.8.2 Static Semantics: ContainsUndefinedBreakTarget .
13.8.3 Runtime Semantics: EVAIUALIONccooiuiiiiiiiiceece ettt n e e ebaenree s
13,9 The return STALEIMENT ...ttt e s s ae e be e s be e teesbeesaeebeebesasesseesanesasesseesseess
13.9.1 Runtime Semantics: Evaluation . .
13,10 THE With STAEMENT cuiiueiiiiiiiciiecteeetee ettt ettt e et e st e e ae e be e be e beesteeeseenseeabesssesasesaseessesseesseess
13.10.1 Static SEMANTICS: EATIY EFTOISccuiiiiiiitiicieiteitee ettt b ettt nnene
13.10.2 Static Semantics: ContainsDuplicateLabels .

13.10.3 Static Semantics: ContainsUndefinedBreakTarget
13.10.4 Static Semantics: ContainsUndefinedContinUETArget..........ccuoeiiiiiineenecseereeereee e 258
13.10.5 Static Semantics: VarDeclaredNames...........ccoceveneene ..259
13.10.6 Static Semantics: VarScopedDeclarations
13.10.7 Runtime Semantics: Evaluation .

13.11 The switch Statement259
13.11.1 Static SEMANLICS: EATTY EFTOISc.ccuiiiiiiiiiieieiteiieee ettt ettt nnea 260
13.11.2 Static Semantics: ContainsDuplicateLabelscoccoiiiiiiiiiii e 260

13.11.3 Static Semantics: ContainsUndefinedBreakTarget...
13.11.4 Static Semantics: ContainsUndefinedContinueTarget. .
13.11.5 Static Semantics: LexicallyDeclaredNames262
13.11.6 Static Semantics: LexicallyScopedDeCIarationscccccceierierieienenese e 263

© Ecma International 2015 vii

secmd

13.11.7 Static Semantics
13.11.8 Static Semantics

13.11.9Runtime Semantics: CaseBlockEvaluation
Runtime Semantics: CaseSelectorEvaluation
Runtime Semantics: Evaluation
13.12 Labelled Statements
13.12.1 Static Semantics:

13.11.10
13.11.11

13.12.2 Static Semantics
13.12.3 Static Semantics
13.12.4 Static Semantics

13.12.5 Static Semantics:
13.12.6 Static Semantics:
13.12.7 Static Semantics:
13.12.8 Static Semantics:
13.12.9 Static Semantics:

13.12.10
13.12.11
13.12.12
13.12.13
13.12.14
13.12.15

13.13.1Runtime Semanti
13.14 The try Stateme

13.14.1 Static Semantics:
13.14.2 Static Semantics:
13.14.3 Static Semantics:

13.14.4 Static Semantics

13.14.5 Static Semantics:
13.14.6 Static Semantics:

13.14.7 Runtime Semanti
13.14.8 Runtime Semanti
13.15 The debugger st
13.15.1 Runtime Semanti

14
14.1
1411
14.1.2
14.1.3
14.1.4
1415
14.1.6
14.1.7
14.1.8
14.1.9

14.1.18 Runtime Semanti

viii

Static Semantics: TopLevelVarDeclaredNames
Static Semantics: TopLevelVarScopedDeclarations ..
Static Semantics: VarDeclaredNames
Static Semantics: VarScopedDeclarations:..
Runtime Semantics: LabelledEvaluation
Runtime Semantics: Evaluation
13.13 The throw Statement

ECMAScript Language: Functions and Classes
Function Definitions
Directive Prologues and the Use Strict Directive.
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
14.1.10 Static Semantics:
14.1.11 Static Semantics:
14.1.12 Static Semantics:
14.1.13 Static Semantics:
14.1.14 Static Semantics:
14.1.15 Static Semantics:
14.1.16 Static Semantics:
14.1.17 Static Semantics:

1 VarDECIar@dNAMEScveieirise et sre e e ne e eneenen
. VarScopedDeclarations.

BE@IIY EITOIS ..ottt et sb e b bbbt be bt e b e beeneens

: ContainsDuplicateLabels ...

: ContainsUndefinedBreakTarget

: ContainsUndefinedContinUeTargetc.coerereeienafinnaitenesese e 268
IsLabelledFuNCtion ([STME) ..o e 269
LexicallyDeclaredNames..... ..269
LexicallyScopedDeclarations....... ..269
TopLevelLexicallyDeclaredNames...... ..269

TopLevelLexicallyScopedDeclarations

cs: Evaluation
nt

Early Errors
ContainsDuplicateLabels
ContainsUndefinedBreakTarget
: ContainsUndefinedContinueTarget .

VarDECIAr8ANAMES ... oottt

VarScopedDeclarations
cs: CatchClauseEvaluation
cs: Evaluation
atement
cs: Evaluation

Early Errors
BoundNames..
Contains
ContainsExpression
ExpectedArgumentCount
Haslnitializer
HASINGIME ... e e
IsAnonymousFunctionDefinition (production) ..
IsConstantDeclaration
ISFUNCEIONDEFINITION ..o
IsSimpleParameterList ..
IsStrict
LexicallyDeclaredNames
LexicallyScopedDeclarations.
VarDeclaredNames
VarScopedDeclarations.
cs: EvaluateBody

© Ecma International 2015

secmd

14.1.19Runtime Semantics: IteratorBindinglnitialization
14.1.20 Runtime Semantics: InstantiateFunctionObject
14.1.21 Runtime Semantics: Evaluation
Arrow Function Definitions....
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
14.2.10 Static Semantics:
14.2.11 Static Semantics:
Static Semantics: VarDeclaredNames..........ccccecvveevnenen.
14.2.12 Static Semantics: VarScopedDeclarations
14.2.13Runtime Semantics: lteratorBindinglnitialization
14.2.14 Runtime Semantics: EvaluateBody
14.2.15 Runtime Semantics: Evaluation
Method Definitions
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Runtime Semantics: DefineMethod
14.3.10 Runtime Semantics: PropertyDefinitionEvaluation .
Generator Function Definitions
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
14.4.10 Static Semantics:
14.4.11 Runtime Semantics:/EvaluateBody
14.4.12 Runtime Semantics: InstantiateFunctionObject
14.4.13 Runtime Semantics: PropertyDefinitionEvaluation .
14.4.14 Runtime Semantics: Evaluation

14.2

1421
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6
14.2.7
14.2.8
14.2.9

143

143.1
14.3.2
14.3.3
143.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9

14.4

1441
14.4.2
14.4.3
14.4.4
14.4.5
14.4.6
14.4.7
14.48
14.4.9

145

145.1
14.5.2
1453
1454
1455
14.5.6
14.5.7
14.5.8

Class Definitions

Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:
Static Semantics:

© Ecma International 2015

Early Errors....
BoundNames.

(010 41 2= 11 4 1SR SRUSRSRPROt
ContainsExpression

CoveredFormalsList .
EXpected ArgumeENTCOUNTcceiiiieieieiese e e 287
[= T L VL= 1.4~ SO SRS USSR 288
HasName288

IsSimpleParameterList..
LexicallyDeclaredNames
LexicallyScopedDeclarations

HasComputedPropertyKey

HasDirectSuperc.......... .291
PropName.............. .291
NeedsSuperBinding .292
SpecialMethod...... .292

EAIIY EFTOIS i ettt
BOUNANGMES ..ol ettt sbese e e e sne e
ComputedPropertyContains ..
CONLAINS ...ttt ettt b et b e b e b n e b e eneenis
HasComputedPropertyKey
HasDirectSuper
HasName
IsConstantDeclaration ..
IsFunctionDefinition ..
PropName.................

Early Errors....
BoundNames
ConstructorMethod
Containscceecveeveeieeieen.

ComputedPropertyContains ..
HasNamecccoccevvieeennen,

IsConstantDeclaration ..
IsFunctionDefinition

&

reCnd

14.5.9 Static SEMANTICS: ISSTALIC .. cuiiiiiiieeseceeieeee st e e e seesaeseeseestesteseestessensensannenns 303
14.5.10 Static Semantics: NonConstructorMethodDefinitions.303
14.5.11 Static Semantics: PrototypePropertyNameList.........303

14.5.12 Static Semantics: PropName...........c........

14.5.13 Static Semantics: StaticPropertyNamelList304
14.5.14 Runtime Semantics: ClassDefinitionEvaluation.............304
14.5.15 Runtime Semantics: BindingClassDeclarationEvaluation ..o 305
14.5.16 Runtime SemanticS: EVAlIUALION ..ottt sttt eneens 306
14.6 Tail Position Calls
14.6.1 Static Semantics: IsInTailPosition(NONtErmMinal) ... 306
14.6.2 Static Semantics: HasProductionINTailPOSItIONcccooiiiiiiiniieee s 307
14.6.3 Runtime Semantics: PrepareForTailCall () ..o 311
15 ECMAScript Language: Scripts and MOUIES..........coivrircer sttt 312
15,1 SCIIPS et ...312
15.1.1 Static Semantics: Early Errors . 312
15.1.2 Static Semantics: ISStrictcccecvvcvrcvrcviennene ..312
15.1.3 Static Semantics: LexicallyDeclaredNames..... 312
15.1.4 Static Semantics: LexicallyScopedDeclarations: ...312
15.1.5 Static Semantics: VarDeclaredNames.............& ...313
15.1.6 Static Semantics: VarScopedDeclarations.

15.1.7 Runtime Semantics: ScriptEvaluation

15.1.8 Runtime Semantics: GlobalDeclarationInstantiation (SCFiPt, €NV)........cccoeviriiiniincinieieneens 313
15.1.9 Runtime Semantics: ScriptEvaluationJob (sourceText)
BT |V o To (1] 1= O SO PP PRURURRI
15.2.1 MOAUIE SEMANTICS . .uiiuiiiiiiiiieiiiertirie it asb e essaesses i Eiae e testessesbeseesaeemefhe e aeeseeeeseeseeseeseeseesbeseesbassenseeneensans
15.2.2 Imports

15.2.3 Exports

16 Error Handling and Language EXtENSIONS ...citiii ittt
16.1 Forbidden Extensions

17 ECMAScript Standard Built-in Objects .

18 The Global Objectccccceeidbininnenne.

18.1 Value Properties of the Global Object

18.1.1 INfiNItY cooeeeeee et
L8.1.2 NN . ccitiiiimman e eeeteneeeiabesestatceteseeteseeteasesesbeseebeseebe e ebe e eseebes £ eb e st eb e s ebentebeeeeE ek eneebe e ebe b e bt e be b e et e Rt ebe e ebe e eneneerea

R T8 T o =1 =T L OO TP PP PR PP PRURORUIN
18.2 Function Properties of the Global Object
L8.2. 17 BV (X) eueeueeeereereeriesmessbeseeueeseessassenstis s sessesseeseeseeseese e s e e s e e e R e R e R e R eR £ e R £ e Re e Re e e e R e R e nRe AR e nRenEenEenEenRenreeneeneennen
18.2:2 ISFINItE (MUMDET) .. ittt bbbt b et bbb et nneben
18.2.3 "isNaN (number).....

18.2.4 parseFloat (string).......

18.2.5 parselnt.(string , radix)..

18.2.6 URI Handling FUunctionscccccvenncnennne

18.3 Constructor Properties of the Global Object .

18.3.1 AITAY (.« .+) eerceresreeereeeeeeeeseeseessesseseessessessesnens

18.3.2 ArrayBuffer (..

18.3.3
18.3.4
18.3.5
18.3.6
18.3.7
18.3.8
18.3.9

Boolean (...)....
DALAVIEW (+ .+ .) ettt ettt bbbttt h et b ek bkt h R st h bbbt r e bt

DIALE ([.+ 4) ettt bbb E R bR bRt h Rkt b b e bt n et et b et 354
Error (...)...
[= 1L = o o (R TR USORRPRO 354
[oo e N ¢ - VA (D TSRS 354
Float64Array (.. .)...

TR KO VT o] A o N (R TP PP PP URTPRUSROPPI

© Ecma International 2015

secmd

BT I A 01 437N = Y (P SRR 355
18.3.12 Int16Array (.. .).. .355
18.3 1B INEB2ATTAY (-« +)eveeererereerenenereseeteseeresteteseseeseebeses et eseteseseseseses e s st ee b eseae e e e b e b ene et e et e b es et es et ebene st s eb et enene e ee 355
ST T8 1V - o T (T OSSOSO 355

18.3.15 Number (. . .355

18.3.16 Object (.. .) .. .355
L8.3.07 PIOXY ((+ +) eeueeeeeereesuesuestestestestestesteeteeseeseasasessesaesaeaaeeseebe e b e e ae e s s e s b e R b et e b e e be b e ebeebeehe e Rt ene et e eeneesaeseeneeneentenee 355
L18.3.18 PrOMISE (. 1 1) ctieiteietietet ittt ettt ettt bbbt b et bt bbbt b et bt et b e b bt bbb et bbbt b bt nnen 355

18.3.19 RangeError (...) ...
18.3.20 ReferenceError (. . .
18.3.21 RegEXpP (. ..) ceerrene .355
18.3.22Set (. ..) e .356
18.3.23 String (.. .)
18.3.24 Symbol (.. .)....
18.3.25 SyntaxError (. .
18.3.26 TypeError (...)
18.3.27 Uint8Array (. ..).cceene. .
18.3.28 UINtBCIAMPEAAITAY (- .+) cueerirerierieiirieierieeeueseeeeseesesdhestesn e eseeiestestsseseseeseeseseeseseesease et snenadhs s eesessenesnens 356
18.3.29 UINTLOATITAY (. .«)ueererererierieseeeeeeseeseeseessessessessessdonsansesessensesssessessessdhineasessesseeseeseessensensesssannsssssessessenense 356
18.3.30 Uint32Array (. ..)...

18.3.31 URIError (...)356
18.3.32 WEAKMAP ([« +) ceereereerierieriesterteeeeseeseeeeseessessessessessessessesananashdonaansensensensensessessesseesesssensessessessessessessensensense 356
18.3.33 WEAKSEL ([. .) weereeeeuireeiirtei ettt ettt ettt ettt e e eR e R SR bk s etk e bt b ekttt bt bt r et nenennene 356
18.4 Other Properties of the Global Object .. .357
18.4.1 JSON ...t seeeanen .

18.4.2 IMALN .ottt R bR AR et b ettt b ettt

18.4.3 REFIECT ..ottt e e et a1t bbbttt bbbttt r ettt nne

19 FUNAAMENTAI ODJECTSuieeeiiiiriiiiieieie et st ait et stem e et st s bt et e s bt e st et e st e e e s e s e s s e snesneeneas

19.1 Object Objects«.. .

19.1.1 The Object Constructor .

19.1.2 Properties of theOBJECt CONSIIUCTONiiitiberiieeirieieeieie ettt bt neen 357
19.1.3 Properties of the Object Prototype ODJECT.....coiiiiiiiiiiiiieieeeeeee e 362
19.1.4 Properties of Object Instances364
19.2 Function Objectsco.......éeueee .364
19.2.1 The FUNCLION CONSITUCTONccciireieiiirerreritee e n s 364
19.2.2 Properties of the FUNCTION CONSIIUCTOTccciuiiiiiiiiirieiiiiee ettt 366
19.2.3 Properties of the Function Prototype Object . .366
19.2.4 FUNCtioNn INSTtANCES iu.....c.cvviiieesbie e .369
19.3.< Boolean Objects370
19.3.1 The Boolean Constructor...........c......... .370
19.3.2 Properties of the Boolean Constructor370

19.3.3 Properties of the Boolean Prototype Object...
19.3.4 Properties of Boolean Instances .
19.4 Symbol Objects..cuuiiiniiinne.
19.4.1 The Symbol Constructorc......
19.4.2 Properties of the Symbol Constructor.........
19.4.3 Properties of the Symbol Prototype Object....
19.4.4 Properties of Symbol Instances..........c........
19.5 Error Objectscccocevevcrcicncnenne .
19.5.1 THE Error CONSTIUCTON ..ottt e
19.5.2 Properties Of the Error CONSIIUCTONcc.iiiiiiiiireieeeeee e e e nre e
19.5.3 Properties of the Error Prototype Object.
19.5.4 Properties of Error Instancesc.c.ccoeuenee. .
19.5.5 Native Error Types Used in ThisS StaANdardc.cccceeeieieiesienenesesese e sae e see e see e ssensenns 377
19.5.6 NatiVEEITOr ODJECT StTUCTUIE ..uiiuieiiciceeices sttt et e st e et e reeseese e e e e e neeseesaeseeseensensanes 378

© Ecma International 2015 Xi

&

20
20.1
20.1.1
20.1.2
20.1.3
20.1.4
20.2
20.2.1
20.2.2
20.3
20.3.1
20.3.2
20.3.3
20.3.4
20.3.5

21
211
2111
21.1.2
21.1.3
2114
21.1.5
21.2
2121
21.2.2
21.2.3
21.2.4
21.25
21.2.6

22
22.1
22.1.1
22.1.2
22.1.3
2214
22.1.5
22.2
22.2.1
2222
22.2.3
2224
2225
22.2.6
22.2.7

23
23.1
23.1.1
23.1.2
23.1.3
23.1.4
23.1.5
23.2
23.2.1
23.2.2

Xii

reCnd

NUMDBDEIS @NG DALESeoueeieieiesiesie ettt e et e st e s e stestesteseesteste st eeseesaessessensensensensessessessessessennennenneen 380
Number Objects..............
The Number Constructorcccc.......

Properties of the Number Constructor..... ..380
Properties of the Number Prototype Object

Properties of Number Instances....................
THE MAEN ODJECT ...ttt b e bbbt ettt e st et e reesbesbesbesbesbeebeeneenseneans
Value Properties of the Math ODJECT ...t
Function Properties of the Math Object
DAt ODJECES ..ottt st s e e st bbbt et esee e sdan et ekttt be s ae st neenean
Overview of Date Objects and Definitions of Abstract Operations... i oo 398
The Date CONSIIUCTONcuiiiiiiiiiice e403
Properties of the Date Constructor..... ..405
Properties of the Date Prototype Object..407
Properties Of Date INSTANCEScciiiiiiieieeeeieeee ettt ame s e ia et see st ebe e se e eneas 418
T Xt PrOCESSING eiiiiieiieiieieieiestesesteseestessessesseeseeeesaesseseadhantassenseeseeseeneensessessensessessassesbinsessensessenseensaneens 418
String Objects418

The String Constructor .
Properties of the String Constructor
Properties of the String Prototype Object
Properties of StriNg INSTANCESccoiiiiiiiicie st ht ettt
SENG HEIAtOr ODJECESuiiiiiitic et er ettt ettt b e
RegExp (Regular Expression) Objects..
PaLIEINS ... T e
Pattern SEMANTICS ..ottt bttt i et ba bbb s bbb e et
The RegExp Constructor ..o
Properties of the RegExp Constructor.....
Properties of the RegExp Prototype Object ...
Properties of REGEXPANSTANCESoicialiiiieieeieieesee sttt 467

INdEX@d COBCLIONSottt 468
Array Objects
The Array CONSTIUCTON ...uviuiedtirieieteeesieseeeeseeeaesashee e ae e s sesseesesseeseeseeseessesseseeseesaestessestessessensenssnssnnenns
Properties of the Array CONSIIUCTOL ...iiiiiicue. e iirereeeereriesesesesesteeseereeaese e ee s e sesaessessessesseeseesansens
Properties of the Array Prototype Object
Properties Of Array INSTANCES ...ttt ettt
ATTAY IEEFALOT ODJECTS ..ttt ittt bbbt b ettt b et e e bt b nnebe s
TypedArray Objects.........ccooatineen...
The %TypedArray% Intrinsic Object...................
Properties of the %TypedArray% Intrinsic Object ..
Properties of the %TypedArrayPrototype% Object
The TypedArray CONSEIUCIOrScccoveveevericrienienienns ...517
Properties of the TypedArray Constructors...

Properties.of TypedArray Prototype Objects.519
Properties of TYPEAATITAY INSTANCEScoiiiiiiiieierie sttt seeneeneas 519
KEY B COIBCIION ...ttt b bbb et b ettt b et nb et ebe e eees
[F=T o @ o] [=Tod £SO OSSOSO PSR PRSPPSO
THE MAP CONSIIUCTON .evietieiieiiiisestese sttt e e e e e st e ae st e reeseeseeseeseeneeneeseesaeseeseestestessensensennsnnenns
Properties of the Map Constructor
Properties of the Map Prototype ODJECT........cciiiiiiiicicre s 521
Properties 0f Map INSTANCEScociiiiiiicce ettt ettt 524
Map Iterator Objects524
Set Objectsccceeveunee.525
The Set Constructor526
Properties Of the SEt CONSIIUCTON ..o it eaeas 526

© Ecma International 2015

secmd

23.2.3
2324
23.2.5
233

23.3.1
23.3.2
23.3.3
2334
23.4

234.1
23.4.2
2343
234.4

24
24.1
241.1
241.2
24.1.3
24.1.4
24.1.5
24.2
242.1
24.2.2
2423
24.2.4
2425
24.3
243.1
24.3.2
24.3.3

25
25.1
25.1.1
25.1.2
25.2
25.2.1
25.2.2
25.2.3
25.2:4
25.3
253.1
25.3.2
25.3.3
254
254.1
254.2
25.4.3
25.4.4
25.4.5
25.4.6

26
26.1
26.1.1
26.1.2

Properties of the Set Prototype ODjJECT......iii i 527
Properties of Set Instances530
Set lterator Objects530
WeakMap Objects................. .531
The WeakMap Constructorc.ccce.e. ..532
Properties of the WeakMap Constructor..... ..533
Properties of the WeakMap Prototype ODjJECTcoiiiiieiiie et 533
Properties of WeakMap INSTANCESccciiiiiiiictrie et 535
WeakSet Objects .
The WeaKSet CONSIIUCTON ..ottt see bbb s b et e ettt e e e seesbeseesbesbeees
Properties of the WeakSet CONSIIUCTONiii e fore st et sa e
Properties of the WeakSet Prototype Object. .
Properties of WeakSet INSTANCES ..o e st et
SETUCTUIEO DALA....c.ecueeeiiiieiierieteee ettt Fane st b e e nn e Bttt ne et eb et sn e nbenes
ArrayBuffer Objectsccocvvvevcevernseceeiene

Abstract Operations For ArrayBuffer Objects.. .
The ArrayBuffer Constructor..........ccceeveeeeneee ..540
Properties of the ArrayBuffer Constructor . .541

Properties of the ArrayBuffer Prototype Object .. .541
Properties of the ArrayBuffer Instances543
DAtaVIiEW ODJECESooviiciiriciiiiciieieieet ettt fh e sttt ar ettt bttt b st b et nn s 543
Abstract Operations For DataView ODBJECTScoiv it 543
The DataView Constructor .
Properties of the DataView CONSIIUCTON it .cvieiiiieiire st 545
Properties of the DataView Prototype ODJECT... ot occiiiiii it 545
Properties of DataView Instances548
The JSON ObjecCtcccecvrrerveeccennns ..549
JSON.parse (text [, reviver])549
JSON.stringify (value| , replacer [, .
JSON [@@UEOSEINGTAG .o-vrvraseestereeereereenesstassaneseseesesessessssssssesssessesssssssssssssssessessssessssassassessesessessssssesns
Control ADSTraCtioN ODJECES ... cucui.iiciiitiiie sttt ettt
L10= 2= 4 ST TTS
Common [teration INTEIrfACES ...t i et
The %lteratorPrototype% Object . .
GeneratorFUNCHION OBJECTSccoiiiiiiiiiiicict ettt
The GeneratorFUNCtioN CONSIIUCTONicuiiiiiii ittt 559

Properties of the GeneratorFunction Constructor
Properties of the GeneratorFunction Prototype Object ..
GeneratorFunction Instances
Generator Objects ...t

Properties of Generator Prototype.
Properties of Generator Instances .
Generator Abstract Operations....

Promise Objectsc.cccovcvverenene ..565
Promise ADSEFAaCt OPErationScoouiieiiiiiiiiteeeeeeet ettt sttt ettt ss e s s sneane e s 566
PromisSe JODS L.

The Promise Constructor .

Properties of the PromiSe CONSTIUCTON ...c..ccuiiiiiiiiiieieieree ettt 571
Properties of the Promise Prototype OBJECT.......ccccireiiiiiiieietrc e 575
Properties Of PromiSe INSTANCEScceieieiieiciee ettt sttt e e s e sesnessesnesnenneas 576
REFIECTION ...ttt b bbbt bbb bbb bbb bt 577
The Reflect Object ... 577
Reflect.apply (target, thisArgument, argumentsList)..... 577
Reflect.construct (target, argumentsList [, NEWTArget]) ..o iereneneneeeeeeeeeeee e 577

© Ecma International 2015 Xiii

secmd

26.1.3 Reflect.defineProperty (target, propertyKey, attributes)ccoovecveieieiine i 578
26.1.4 Reflect.deleteProperty (target, propertyKey)......c.c.......578
26.1.5 Reflect.enumerate (target).....cccocvevmeneccrnennnn. ..578
26.1.6 Reflect.get (target, propertyKey [, receiver]).....cccoeenee. ..578
26.1.7 Reflect.getOwnPropertyDescriptor (target, propertyKey) ..579
26.1.8 Reflect.getPrototypeOf (target)cccoevereneneiesenerieniens579
26.1.9 Reflect.has (target, ProPertyKEY) .ottt st bbb b e eneens 579
26.1.10 RefleCt.iSEXtENSIDIE (TArGEL) . ..ottt 579
26.1.11 Reflect.ownKeys (target)

26.1.12 Reflect.preventEXteNSIONS (TArget) ..o sne st neees 579
26.1.13 Reflect.set (target, propertyKey, V[, FE€CEIVEI]) .o dleniie e 579
26.1.14 Reflect.setPrototypeOf (target, proto).....c.ccoceeueee580
26.2 Proxy ODbJectsccccceveieienenencneeene580
26.2.1 The Proxy Constructorc.cceceeuee... ..580

26.2.2 Properties of the Proxy Constructor ..
26.3 Module Namespace Objects.............581

26.3.1 @@toStringTagcccoevvvervenene581
26.3.2 [@@ITEIAtON] () eereerrereereeessessnssnsesseeesessesssssessssssesseesfanssansenssssssssssssessessessessessassssssessesssasanstiuessssssessessnes 581
Annex A (informative) Grammar SUMMATYc.oeoouiumienreeieineneinesdiaesbin et sresens 582
Al Lexical Grammar
A.2 EXPIESSIONS ..ttt s fa e ah ettt b et a et b et e bbb
A3 ST E= 1 =T 0 T=T 0 £ UV

A4 Functions and Classes..
A5 SCIIPLS ANG MOAUIES ... et it abe st Ea et e b b e b et e b e b e b ebe e bt eae e e e e nes
A.6 [N [U T g] o<1 g @ o T 01V A=T £ o 1= S e USRS
A7 Universal Resource Identifier Character Classes
A8 REQUIAI EXPIrESSIONS ...ciuiiiiiiieiteiteete e sitsitieeeeeeeedhieesnesuassessesd i st eteeteeseessessesessessesseasessessessesseeseennennan
Annex B (normative) Additional ECMAScript Features for Web BrowSers..........coccoveeirennencensenienens 608

B.1 Additional Syntax.

B.1.1 Numeric Literals .«608
B.1.2 String Literals609
B.1.3 HTML-IIKE COMMENTSeeedhinienitenieiieeiee et st bttt s bt se et b et b e eb e se e s bt eb et e st ne b e b e 610
B.1.4 Regular EXPreSSiONS PattEINScieieiiiiiiiieee s eiueeeeeiesiesesessesesessesseeseeseesaesaessessessessessessessesseessesenes 611
B.2 Additional Built-in Properties
B.2.1 Additional Properties of the Global OBJECtccceciiiriiniiic e 614
B.2.2 Additional Properties of the Object.prototype ODJeCtccveiiiiiiniiiicee e 616
B.2.3 Additional Properties of the String.prototype Object ..616
B.2.4 < Additional Properties of the Date.prototype Object....... ..619
B.2.5 Additional Properties of the RegExp.prototype Object. ..620
B.3 Other Additional Featuresc.ccocovevevincineiinciennne ..620
B.3.1 _ proto__ Property Names in Object Initializers.. ..620
B.3.2 Labelled Function DECIArationS........cccceoueieieiieniinineseseee e .621
B.3.3 Block-Level Function Declarations Web Legacy Compatibility Semantics .621
B.3.4 FunctionDeclarations in IfStatement Statement Clausescccccocevenenne623
B.3.5 VariableStatements in CatCh DIOCKSooiiiiiiii s 623
Annex C (informative) The Strict Mode of ECMASCIIPLoviiiiiiiirieeseece e 625
Annex D (informative) Corrections and Clarifications in Edition 6 with Possible Compatibility
IMIP@CT ... bbb 627

Annex E (informative) Additions and Changes That Introduce Incompatibilities with Prior
EITIONS ..o 628

Xiv © Ecma International 2015

INTERNATIONAL

© Ecma International 2015

XV

secmd

Introduction

This is the sixth edition of ECMAScript Language Specification. Since publication of the first edition in 1997,
ECMAScript has grown to be one of the world’s most widely used general purpose programming languages. It
is best known as the language embedded in web browsers but has also been widely adopted for server and
embedded applications. The sixth edition is the most extensive update to ECMAScript since the publication of
the first edition in 1997.

Goals for the sixth edition include providing better support for large applications, library creation, and for use
of ECMAScript as a compilation target for other languages. Some of its major enhancements include modules,
class declarations, lexical block scoping, iterators and generators, promises for asynchronous programming,
destructuring patterns, and proper tail calls. The ECMAScript library of built-ins has been expanded to support
additional data abstractions including maps, sets, and arrays of binary numeric values as well as additional
support for Unicode supplemental characters in strings and regular expressions. The built-ins are now
extensible via subclassing.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for
publication. However, this was preceded by significant experimentation and language enhancement design
efforts dating to the publication of the third edition in 1999. In a very real sense, the completion of the sixth
edition is the culmination of a fifteen year effort. Dozens of individuals representing many organizations have
made very significant contributions within TC39 to the development of this edition and the prior editions. In
additional, a vibrant informal community has emerged supporting TC39’s ECMAScript efforts. This community
has reviewed numerous drafts, filed thousands of bug reports, performed implementation experiments,
contributed test suites, and educate the world-wide developer community. about ECMAScript. Unfortunately, it
is impossible to identify and acknowledge every person . and organization who has contributed to this effort.,

New uses and requirements for ECMAScript continue to emerge. The sixth edition provides the foundation for
regular, incremental language and library enhancements.

Allen Wirfs-Brock
ECMA-262, 6™ Edition Project Editor

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

XVi © Ecma International 2015

{ Deleted: .

oecnd

ECMA-262 Edition History

This Ecma Standard is based on several originating technologies, the most well-known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under-the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation future language growth. The third edition of the ECMAScript standard was adopted by
the Ecma General Assembly of December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive ‘adoption in conjunction with the World
Wide Web where it has become the programming language that is supported by essentially all web browsers.
Significant work was done to develop a fourth edition of ECMASeript. However, that work was not completed
and not published? as the fourth edition of ECMASeript but some of it was incorporated into the development
of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5™ edition). codified de facto interpretations of the
language specification that have become common among browser implementations and added support for
new features that had emerged since the publication of the third edition. Such features include accessor
properties, reflective creation‘and inspection of objects, program control of property attributes, additional array
manipulation functions, support for the JSON object encoding format, and a strict mode that provides
enhanced error checking and program security. The Fifth Edition was adopted by the Ecma General Assembly
of December 1999.

The Fifth Edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved
as international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor
corrections‘and is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General
Assembly of June 2011.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4” as an Ecma International publication does not
exist.

© Ecma International 2015 XVii

secmd

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the‘above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice ‘or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization' phase and will not be revoked by
Ecma International or its successors or assigns during this time

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES. OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

XViii © Ecma International 2015

oecha

ECMAScript 2015 Language Specification

1 Scope

This Standard defines the ECMAScript 2015 general purpose programming language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the
Unicode Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is
not otherwise specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript that provides an application programming interface that
supports programs that need to adapt to the linguistic and cultural conventions used by different human
languages and countries must implement the.interface defined by the most recent edition of ECMA-402
that is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties,
and functions beyond those described in this specification. In particular, a conforming implementation of
ECMAScript may provide properties not described in_ this specification, and values for those properties,
for objects that are describedqin this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not
described in this specification. In particular, a conforming implementation of ECMAScript may support
program syntax that makes use of the “future reserved words” listed in subclause 11.6.2.2 of this
specification.

A conforming implementation of. ECMAScript must not implement any extension that is listed as a
Forbidden Extension in subclause 16.1.

3< Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

IEEE Std 754-2008: IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and Electronic
Engineers, New York (2008)

ISO/IEC 10646:2003: Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda, or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor.
http://www.unicode.org/versions/latest

© Ecma International 2015 1

http://www.unicode.org/versions/latest

oecmad

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor.
http://www.unicode.org/reports/tr15/

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or
successor._http://www.unicode.org/reports/tr31/

ECMA-402, ECMAScript 2015 Internationalization API Specification.
http://www.ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
http://www.ecma-international.org/publications/standards/Ecma-404.htm

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing. computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external
data or output of computed results. Instead, it is expected that the computational environment of an
ECMAScript program will provide not only the objects and other facilities described in this specification
but also certain environment-specific objects, whose description and. behaviour are beyond the scope of
this specification except to indicate that they may provide certain properties that can be accessed and
certain functions that can be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as
a general purpose programming language. A scripting language is a programming language that is
used to manipulate, customize, and automate the facilities of an existing system. In such systems, useful
functionality is already available through a user interface, and the scripting language is a mechanism for
exposing that functionality to program control. In this way, the existing system is said to provide a host
environment of objects and facilities, which completes the capabilities of the scripting language. A
scripting language is intended for use by both professional and non-professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven
Web pages in browsers and to perform server computation as part of a Web-based client-server
architecture. ECMAScript is now used to provide core scripting capabilities for a variety of host
environments. Therefore the core language is specified in this document apart from any particular host
environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of
programming tasks in many different environments and scales. As the usage of ECMAScript has
expanded, so has the features and facilities it provides. ECMAScript is now a fully featured general
propose programming language.

Some of the faciliies of ECMAScript are similar to those used in other programming languages; in
particular C, Java™, Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages — C.

Gosling, James, Bill Joy and Guy Steele. The Java™ Language Specification. Addison Wesley Publishing
Co., 1996.

2 © Ecma International 2015

http://www.unicode.org/reports/tr15/
http://www.unicode.org/reports/tr31/
http://www.ecma-international.org/publications/standards/Ecma-402.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

secmd

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.
4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for
instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames,
history, cookies, and input/output. Further, the host environment provides'a means to attach scripting
code to events such as change of focus, page and image loading, unloading, error and abort, selection,
form submission, and mouse actions. Scripting code appears within the HT ML and the displayed page is
a combination of user interface elements and fixed and computed text and images. The scripting code is
reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects
representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side
and server-side scripting together, it is possible to distribute computation between the client and server
while providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing
the ECMAScript execution environment.

4.2 ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard.proper.

ECMAScript is object-based: basic language and host faciliies are provided by objects, and an
ECMAScript program is a cluster of communicating objects. In ECMAScript, an object is a collection of
zero or more properties each with attributes that determine how each property can be used—for
example, when the Writable attribute for a property is set to false, any attempt by executed ECMAScript
code to assign a different value to the property fails. Properties are containers that hold other objects,
primitive values, or functions. A primitive value is a member of one of the following built-in types:
Undefined, Null, Boolean, Number, String, and Symbol; an object is a member of the built-in type
Object; and a function is.a callable object. A function that is associated with an object via a property is
called a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities.
These built-in objects include the global object; objects that are fundamental to the runtime semantics of
the language including Object, Function, Boolean, Symbol, and various Error objects; objects that
represent and manipulate numeric values including Math, Number, and Date; the text processing objects
String and RegExp; objects that are indexed collections of values including Array and nine different
kinds of Typed Arrays whose elements all have a specific numeric data representation; keyed collections
including Map and Set objects; objects supporting structured data including the JSON object,
ArrayBuffer, and DataView; objects supporting control abstractions including generator functions and
Promise objects; and, reflection objects including Proxy and Reflect.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary
operations, multiplicative operators, additive operators, bitwise shift operators, relational operators,
equality operators, binary bitwise operators, binary logical operators, assignment operators, and the
comma operator.

© Ecma International 2015 3

oecnd

Large ECMAScript programs are supported by modules which allow a program to be divided into multiple
sequences of statements and declarations. Each module explicitly identifies declarations it uses that need
to be provided by other modules and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to
serve as an easy-to-use scripting language. For example, a variable is not required to have its type
declared nor are types associated with properties, and defined functions are not required to have their
declarations appear textually before calls to them.

42.1 Objects

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally
class-based such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways
including via a literal notation or via constructors which create objects and then execute code that
initializes all or part of them by assigning initial values to their-properties. Each constructor is a function
that has a property named “prototype” that is used to implement prototype-based inheritance and
shared properties. Objects are created by using constructors in new expressions; for example, new
Date (2009,11) creates a new Date object. Invoking a constructor without using new has consequences
that depend on the constructor. For example, Date () produces a string representation of the current date
and time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value
of its constructor's “prototype” property. Furthermore, a prototype may have a non-null implicit
reference to its prototype, and so on; this is called the prototype chain. When a reference is made to a
property in an object, that reference is to the property of that name in the first object in the prototype chain
that contains a property of that name. In other words, first the object. mentioned directly is examined for
such a property; if that object contains the named property, that is the property to which the reference
refers; if that object does not contain the named property, the prototype for that object is examined next;
and so on.

4 © Ecma International 2015

oecha

CF implicit prototypelink
prototype CFP .

o explicit prototype property
P2 CFP1 plicitp PEprop

LR Cfl rawea [:fz [:f3 Cfl‘ veaasd l:fs o b
ol gl gl ol ol
- e o2 a2 a2

Figure 1 — Object/Prototype Relationships

In a class-based object-oriented language; in general, state is carried by instances, methods are carried
by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are
carried by objects, while structure, behaviour, and state are all.inherited.

All objects that do not directly contain a particular property that their prototype contains share that
property and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf;,
cf,, cfs, cfs, and cfsi Each of these/objects contains properties named g1 and g2. The dashed lines
represent the implicit prototype relationship; so, for example, cfs’s prototype is CF,. The constructor, CF,
has two properties itself, named P1 and P2, which are not visible to CF, cf;, cf;, cfs, cfy, or cfs. The
property named CFP1 in CF, is shared by cf;, cf, cfs, cfy, and cfs (but not by CF), as are any properties
found in CF,’s implicit.prototype chain that are not named q1, g2, or CFP1. Notice that there is no implicit
prototype link between CF and CF,,.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning
values to them. That is, constructors are not required to name or assign values to all or any of the
constructed. object’s properties. In the above diagram, one could add a new shared property for cfy, cf,,
cf, cfs4, and cfs by assigning a new value to the property in CF,.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like
abstractions based upon a common pattern of constructor functions, prototype objects, and methods. The
ECMAScript built-in ‘abjects themselves follow such a class-like pattern. Beginning with the sixth edition,
the ECMAScript language includes syntactic class definitions that permit programmers to concisely define
objects that conform to the same class-like abstraction pattern used by the built-in objects.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to
restrict their usage of some features available in the language. They might do so in the interests of

© Ecma International 2015 5

oecmad

security, to avoid what they consider to be error-prone features, to get enhanced error checking, or for
other reasons of their choosing. In support of this possibility, ECMAScript defines a strict variant of the
language. The strict variant of the language excludes some specific syntactic and semantic features of
the regular ECMAScript language and modifies the detailed semantics of some features. The strict variant
also specifies additional error conditions that must be reported by throwing error exceptions in situations
that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit,
strict mode only imposes restrictions that have local effect within such a.code unit. Strict mode does not
restrict or modify any aspect of the ECMAScript semantics that must operate consistently across multiple
code units. A complete ECMAScript program may be composed for.both strict mode and non-strict mode
ECMAScript code units. In this case, strict mode only applies when actually executing code that is defined
within a strict mode code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by
this specification. In addition, an implementation must support the combination of unrestricted and strict
mode code units into a single composite program.

4.3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

431

type
set of data values as defined in clause 6 of this specification

43.2
primitive value
member of one of the types Undefined, Null; Boolean, Number, Symbol, or String as defined in clause 6

NOTE A primitive value is a datum that is represented directly at the lowest level of the language
implementation.

4.3.3
object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null
value.

434
constructor
function object that creates and initializes objects

NOTE The value of a constructor’'s “prototype” property is a prototype object that is used to implement
inheritance and shared properties.

6 © Ecma International 2015

secmd

4.3.5

prototype

object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor's “prototype”
property for the purpose of resolving property references. The constructor’s “prototype” property can be referenced
by the program expression constructor.prototype, and properties added to an object's prototype are shared,
through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly
specified prototype by using the Object . create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all
objects.

4.3.7

exotic object

object that does not have the default behaviour for one or more of the essential internal methods that
must be supported by all objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification

4.3.9
built-in object
object specified and supplied by an ECMAScript implementation

NOTE Standard built-in objects are defined in this specification. An ECMAScript implementation may specify
and supply additional kinds of built-in objects. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4341
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14

Boolean value
member of the Boolean type

© Ecma International 2015 7

oecmad

NOTE There are only two Boolean values, true and false

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or. more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a
single 16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values
except that they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value
as an argument. The resulting object has an internal slot whose value is the String value. A String object can be
coerced to a String value by calling the' String constructor as a function (21.1.1.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is @ member of the Number type and is a direct representation of a number.

43.21

Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number
value as an argument. The resulting object has an internal slot whose value is the Number value. A Number object
can be coerced to a Number value by calling the Number constructor as a function (20.1.1.1).

8 © Ecma International 2015

secmd

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24
NaN
number value that is an IEEE 754 “Not-a-Number” value

4.3.25
Symbol value
primitive value that represents a unique, non-String Object property key

4.3.26
Symbol type
set of all possible Symbol values

4.3.27
Symbol object
member of the Object type that is an instance of the standard built-in Symbol constructor

4.3.28
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves
when invoked. A function’s code may or may not be written in ECMAScript.

4.3.29
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.30

property

association between a key and a value that is a part of an object. The key be either a String value or a
Symbol value

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.31
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.
4.3.32

built-in method
method that is a built-in function

© Ecma International 2015 9

oecnd

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may
specify and provide other additional built-in methods.

4.3.33
attribute
internal value that defines some characteristic of a property

4.3.34

own property

property that is directly contained by its object
4.3.35

inherited property

property of an object that is not an own property but is a property.(either own or inherited) of the object’s
prototype

4.4 Organization of This Specification

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 10-16 define the actual ECMAScript programming language including its syntactic encoding and
the execution semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. It includes the definitions of all of the standard
objects that are available for use by ECMAScript programs as they execute.

5 Notational Conventions

5.1 Syntactic and Lexical.Grammars
5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal
symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified
alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along
with zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-
hand side of a production for which the nonterminal is the left-hand side.

10 © Ecma International 2015

oecha

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 11. This grammar has as its terminal symbols
Unicode code points that conform to the rules for SourceCharacter defined in 10.1. It defines a set of
productions, starting from the goal symbol InputElementDiv, InputElementTemplateTail, or
InputElementRegExp, that describe how sequences of such code points are translated into a sequence of
input elements.

Input elements other than white space and comments form the terminal Symbols for the syntactic
grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although not
considered to be tokens, also become part of the stream of input elements and guide the process of
automatic semicolon insertion (11.9). Simple white space and single:line comments. are discarded and do
not appear in the stream of input elements for the syntactic grammar. A MultiLineComment (that is, a
comment of the form “/*...*/” regardless of whether it spans more than one line) is. likewise simply
discarded if it contains no line terminator; but if a MultiLineComment contains one or more line terminators,
then it is replaced by a single line terminator, which becomes part of the stream of input elements for the
syntactic grammar.

A RegExp grammar for ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the
code points as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol
Pattern, that describe how sequences of code points are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as
separating punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of
the lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter.
This grammar appears in 7.1.3.1.

Productions of the numeric string'grammar are distinguished by having three colons “:::” as punctuation.
5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13, 14, and 15. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of
productions, starting from two alternative goal symbols Script and Module, that describe how sequences of
tokens form syntactically correct independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScript Script or Module, it is first converted to a
stream of input elements by repeated application of the lexical grammar; this stream of input elements is
then parsed by a single application of the syntactic grammar. The input stream is syntactically in error if
the tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal
(Script or Module), with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.
The syntactic grammar as presented in clauses 12, 13, 14 and 15 is not a complete account of which

token sequences are accepted as a correct ECMAScript Script or Module. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons

© Ecma International 2015 11

oecnd

were added to the sequence in certain places (such as before line terminator characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if a line
terminator character appears in certain “awkward” places.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalized productions that
permit token sequences that do not form a valid ECMAScript Script or Module. For example, this technique
is used for object literals and object destructuring patterns. In such cases a more restrictive supplemental
grammar is provided that further restricts the acceptable token sequences. In<certain contexts, when
explicitly specific, the input elements corresponding to such a production areparsed again using a goal
symbol of a supplemental grammar. The input stream is syntactically in error'if the tokens in the stream of
input elements parsed by a cover grammar cannot be parsed as a single instance of the corresponding
supplemental goal symbol, with no tokens left over.

5.1.5 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric stringigrammars_are shown in fixed width font,

both in the productions of the grammars and throughout this specification whenever the text directly refers
to such a terminal symbol. These are to appear in a.script exactly as-written. All terminal symbol code
points specified in this way are to be understood as the appropriate Unicode code points from the Basic
Latin range, as opposed to any similar-looking code points from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”)
is introduced by the name of the nonterminal being defined followed by one or more colons. (The number
of colons indicates to which grammar the production belongs.) One or more alternative right-hand sides
for the nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic
definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed
by a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is
defined in terms of itself./ The result is that an ArgumentList may contain any positive number of
arguments, separated by.commas, where each argument expression is an AssignmentExpression. Such
recursive definitions of nonterminals are common.

The subscripted suffix “,”, which may appear after a terminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration :
Bindingldentifier Initializeroy

is a convenient abbreviation for:

12 © Ecma International 2015

(

Deleted: ,

)

|

Deleted: and some of the terminal symbols of
the other grammars,

|

=

recCma

VariableDeclaration :
Bindingldentifier

Bindingldentifier Initializer

and that:

IterationStatement :

for (LexicalDeclaration

is a convenient abbreviation for:

IterationStatement :

for (LexicalDeclaration
for (LexicalDeclaration

which in turn is an abbreviation for:

IterationStatement :

for (LexicalDeclaration
for (LexicalDeclaration
for (LexicalDeclaration
for (LexicalDeclaration

Expressiongy ; Expressiongy) Statement

; Expressiongy) Statement
Expression ; Expressiong,) Statement

;) Statement

; Expression) Statement
Expression ;) Statement
Expression ; Expression’) Statement

so, in this example, the nonterminal IterationStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “arameters)’, Which may appear
as a suffix to the nonterminal symbol defined by the production. “saameters” May be either a single name or
a comma separated list of-names. A parameterized production is shorthand for a set of productions
defining all combinations of the parameter names, preceded by an underscore, appended to the
parameterized nonterminal symbol. This means that:

StatementListjreturn =
ReturnStatement
ExpressionStatement

is a convenient abbreviation for:
StatementList :
ReturnStatement
ExpressionStatement
StatementList_Return<:
ReturnStatement
ExpressionStatement
and that:
StatementLiStireturn, inj :
ReturnStatement
ExpressionStatement

is an abbreviation for:

© Ecma International 2015

13

oecnd

StatementL.ist :
ReturnStatement
ExpressionStatement

StatementList_Return :
ReturnStatement
ExpressionStatement

StatementList_In :
ReturnStatement
ExpressionStatement

StatementList_Return_In :
ReturnStatement
ExpressionStatement

Multiple parameters produce a combinatory number of jproductions, not all of which are necessarily
referenced in a complete grammar.

References to nonterminals on the right-hand side of a production can also be parameterized. For
example:

StatementList :
ReturnStatement
ExpressionStatementyy,

is equivalent to saying:

StatementList :
ReturnStatement
ExpressionStatement_In

A nonterminal reference may have both a parameter list and an “,,” suffix. For example:

VariableDeclaration :
Bindingldentifier Initializer(op

is an abbreviation for:
VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer_In
Prefixing a parameter-name with “,” on a right-hand side nonterminal reference makes that parameter
value dependent upon the occurrence of the parameter name on the reference to the current production’s
left-hand side symbol. For example:

VariableDeclarationyy; :
Bindingldentifier Initializery

is an abbreviation for:

14 © Ecma International 2015

secmd

VariableDeclaration :
Bindingldentifier Initializer

VariableDeclaration_lIn :
Bindingldentifier Initializer_In

If a right-hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named
parameter was used in referencing the production’s nonterminal symbol. If a right-hand side alternative is
prefixed with “[~parameter]” that alternative is only available if the named parameter was not used in
referencing the production’s nonterminal symbol. This means that:

StatementListireturr -
[+Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ExpressionStatement

StatementList_Return :
ReturnStatement
ExpressionStatement

and that

StatementListireturr

[~Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList_Return:
ExpressionStatement

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

© Ecma International 2015 15

oecnd

NonZeroDigit ::

CoOoJdJoaUlbd WNR

If the phrase “lempty]” appears as the right-hand side of a production, ‘it indicates that the production's
right-hand side contains no terminals or nonterminals.

If the phrase “[lookahead « set]” appears in the right-hand side of aproduction, it indicates that the production
may not be used if the immediately following input token is‘a member of the given set. The set can be
written as a list of terminals enclosed in curly brackets. For convenience, the set can also be written as a
nonterminal, in which case it represents the set of all terminals to which that nonterminal could expand. If
the set consists of a single terminal the phrase “[lookahead # terminal]” may be used.

For example, given the definitions

DecimalDigit :: one of
01 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7,'9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal
digit not followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic
grammar, it indicates that the production is a restricted production: it may not be used if a LineTerminator
occurs in the input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw
token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of

occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the script.

16 © Ecma International 2015

oecha

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a | Deleted: The lexical grammar has multiple
multi-code point token, it represents the sequence of code points that would make up such a token. goal symbols and the appropriate goal symbol
to use depends upon the syntactic grammar
. context. If a phrase of the form “[Lexical goal
The rlght-hand ?Ide of a p_rod_uct!on may spemf_y that certain expansions are not permitted by using the ,_exica|Goa|sy',)nbo|]u appears on “[]e,igm_ﬁand_
phrase “but not” and then indicating the expansions to be excluded. For example, the production: side of a syntactic production then the next

token must be lexically recognized using the
indicated goal symbol. In the absence of such a

Identifier :: : ;
- hrase the default lexical goal symbol is used.
IdentifierName but not ReservedWord ? gos sy

means that the nonterminal Identifier may be replaced by any sequence of code points that could replace
IdentifierName provided that the same sequence of code points could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases
where it would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used
to precisely specify the required semantics.of ECMAScript language constructs. The algorithms are not
intended to imply the use of any specific implementation technique. In practice, there may be more
efficient algorithms available to implement a given feature.

Algorithms may be explicitly parameterized, in'which case the names and usage of the parameters must
be provided as part of the algorithm’s definition. In order to facilitate their use in multiple parts of this
specification, some algorithms, called abstract operations, are named and written in parameterized
functional form so that they may be referenced by name from within other algorithms. Abstract operations
are typically referenced using a functional application style such as operationName(argl, arg2). Some
abstract operations <are treated as’' polymorphically dispatched methods of class-like specification

abstractions. Such method-like abstract operations are typically referenced using a method application | [Deleted: ion

style such as someValue.operationName(argl, arg2).

Algorithms-may be associated with productions of one of the ECMAScript grammars. A production that
has multiple alternative definitions will typically have a distinct algorithm for each alternative. When an
algorithm is associated with a grammar production, it may reference the terminal and nonterminal
symbols of the production alternative as if they were parameters of the algorithm. When used in this
manner, nonterminal symbols refer to the actual alternative definition that is matched when parsing the
source text.

When an algorithm is associated with a production alternative, the alternative is typically shown without
any “[] grammar. annotations. Such annotations should only affect the syntactic recognition of the
alternative and have no effect on the associated semantics for the alternative.

Unless explicitly specified otherwise, all chain productions have an implicit definition for every algorithm
that might be applied to that production’s left-hand side nonterminal. The implicit definition simply
reapplies the same algorithm name with the same parameters, if any, to the chain production’s sole right-
hand side nonterminal and then returns the result. For example, assume there is a production:

Block :
{ StatementList }

© Ecma International 2015 17

oecnd

but there is no corresponding Evaluation algorithm that is explicitly specified for that production. If in some
algorithm there is a statement of the form: “Return the result of evaluating Block” it is implicit that an
Evaluation algorithm exists of the form:

Runtime Semantics: Evaluation

Block : { StatementList }

1. Return the result of evaluating StatementList.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are
indented and may themselves be further divided into indented substeps. Outline numbering conventions
are used to identify substeps with the first level of substeps labelled with lower case alphabetic characters
and the second level of substeps labelled with lower case roman numerals. If more than three levels are
required these rules repeat with the fourth level using numeric labels. For example:

1. Top-level step

a. Substep.
b. Substep.
i. Subsubstep.

1. Subsubsubstep
a. Subsubsubsubstep
i. Subsubsubsubsubstep

A step or substep may be written as an *if* predicate that conditions its substeps. In this case, the
substeps are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a
predicate that is the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step that begins with“Assert.” asserts an invariant condition of its algorithm. Such assertions are used
to make explicit algorithmic invariants that would otherwise be implicit. Such assertions add no additional
semantic requirements and hence need not-be checked by an implementation. They are used simply to
clarify algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the
mathematical functions defined later in this clause should always be understood as computing exact
mathematical results on mathematical real numbers, which_unless otherwise noted do not include
infinities and do not include a negative zero that is distinguished from positive zero. Algorithms in this
standard. that model floating-point arithmetic include explicit steps, where necessary, to handle infinities
and signed. zero and to perform rounding. If a mathematical operation or function is applied to a floating-
point number; it should be understood as being applied to the exact mathematical value represented by
that floating-point number; such a floating-point number must be finite, and if it is +0 or —0 then the
corresponding mathematical value is simply 0.

The mathematical function abs(x) produces the absolute value of x, which is —x if x is negative (less than
zero) and otherwise is x itself.

The mathematical function sign(x) produces 1 if x is positive and -1 if x is negative. The sign function is not
used in this standard for cases when x is zero.

18 © Ecma International 2015

secmd

The mathematical function min(xy, X, ..., X,) produces the mathematically smallest of x; through x,. The
mathematical function max(xy, Xy, ..., X,) produces the mathematically largest of x; through x,._ The domains

and range of theses mathematical functions include e and —oo,

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or
zero) such that abs(k) < abs(y) and x—k = q x y for some integer q.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not
larger than x.

NOTE floor(x) = x—(x modulo 1).
5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream
of input elements form a valid ECMAScript Script or Module that may be evaluated. In some situations
additional rules are needed that may be expressed using either ECMAScript algorithm conventions or
prose requirements. Such rules are always associated‘with a production of a grammar and are called the
static semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions
will typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a
definition for a static semantic rule named Contains which takes an argument named symbol whose value
is a terminal or nonterminal of the.grammar that includes the associated production. The default definition
of Contains is:

1. For each terminal and nonterminal grammar symbol, sym, in the definition of this production do
a. If sym is the same grammar symbol as symbol, return true.
b. If sym isa nonterminal, then
i. Let contained be the result of sym Contains symbol.
ii. If contained is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions
(see clause 16) that are associated with specific grammar productions. Evaluation of most early error
rules are not explicitly invoked within the algorithms of this specification. A conforming implementation
must, prior to the first evaluation of a Script, validate all of the early error rules of the productions used to
parse that Script. If any of the early error rules are violated the Script is invalid and cannot be evaluated.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript
language types and specification types.

© Ecma International 2015 19

[Formatted: Font: Not Bold

. [Formatted: Font: Not Bold

k [Formatted: Font: Not Bold

p-S

oecnd

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to
the ECMAScript language and specification types defined in this clause. When the term “empty” is used
as if it was naming a value, it is equivalent to saying “no value of any type”.

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null,
Boolean, String, Symbol, Number, and Object. An ECMAScript language value is a value that is
characterized by an ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a
value has the value undefined.

6.1.2 The Null Type

The Null type has exactly one value, called null.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.
6.1.4 The String Type

The String type is the set of all-finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript
program, in which case each element in the String is treated as a UTF-16 code unit value. Each element
is regarded as occupying a position within the sequence. These positions are indexed with nonnegative
integers. The first element (if any) is at index O, the next element (if any) at index 1, and so on. The length
of a String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and
therefore contains no elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16
code unit. However, ECMAScript does not place any restrictions or requirements on the sequence of
code‘units in a String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences.
Operations that do not interpret String contents treat them as sequences of undifferentiated 16-bit
unsigned. integers. The function String.prototype.normalize (see 21.1.3.12) can be used to

normalize a string value, but o other operations pormalized the strings upon which they operate. Only

operations that are explicitly specified to be language or locale sensitive produce language-sensitive

results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-
performing as possible. If ECMAScript source text is in Normalized Form C, string literals are guaranteed to also be
normalized, as long as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:
e A code unit in the range 0 to 0XxD7FF or in the range 0xE000 to OxFFFF is interpreted as a code
point with the same value.

20 © Ecma International 2015

Formatted: Font: (Default) Courier New, Bold

Deleted: No

Deleted: ensure that Strings are in a

[
[
(
[

[Deleted: form

J
)
)
)

oecha

e A sequence of two code units, where the first code unit cl is in the range 0xD800 to OxXDBFF and
the second code unit c2 is in the range 0xDC00 to OXDFFF, is a surrogate pair and is interpreted
as a code point with the value (c1 - 0xD800) x 0x400 + (c2 — 0xDC00) + 0x10000.

e Acode unit that is in the range 0xD800 to OXDFFF, but is not part of a surrogate pair, is interpreted
as a code point with the same value.

6.1.5 The Symbol Type

The Symbol type is the set of all non-String values that may be used as the key of an Object property
(6.1.7).

Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined or a
String value.

6.1.5.1 Well-Known Symbols

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this
specification. They are typically used as the keys of properties whose values serve as extension points of
a specification algorithm. Unless otherwise specified, well-known symbols values are shared by all Code
Realms (8.2).

Within this specification a well-known symbol is referred.to by using a notation of the form @ @name,
where “name” is one of the values listed in Table 1.

© Ecma International 2015 21

oecmd

Table 1— Well-known Symbols

Specification Name

[[Description]]

Value and Purpose

@@haslnstance "Symbol .hasInstance" A method that determines if a constructor
object recognizes an object as one of the
constructor's instances. Called by the
semantics of the instanceof operator.

@@isConcatSpreadable | "Symbol.isConcatSpreadable" | A Boolean valued property that if true indicates

that an object should be flattened to its array
elements by Array.prototype.concat.

@@iterator

"Symbol.

iterator"

A method that returns the default Iterator for
an object. Called by the semantics of the for-of
statement.

@@match

"Symbol.

match "

A regular expression method that matches the
regular expression against a string. Called by
the String.prototype.match method.

@Q@replace

"Symbol.

replace "

A regular expression method that replaces
matched substrings of a string. Called by the
String.prototype.replace method.

@@search

"Symbol.

search"

A'regular expression method that returns the
index within a string that matches the regular
expression. Called by the
String.prototype.search method.

@@species

"Symbol.

species"

A function valued property that is the
constructor function that is used to create
derived objects.

@@split

"Symbol.

split"

A regular expression method that splits a
string at the indices that match the regular
expression. Called by the
String.prototype.split method.

@@toPrimitive

"Symbol.

toPrimitive"

A method that converts an object to a
corresponding primitive value. Called by the
ToPrimitive abstract operation.

@@toStringTag

"Symbol .

toStringTag"

A String valued property that is used in the
creation of the default string description of an
object. Accessed by the built-in method
Object.prototype. toString.

[Deleted: n

@@unscopables

"Symbol .

unscopables"

An object valued property whose pwn property
names are property names that are excluded
from the with environment bindings of the
associated object.

6.1.6 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2°*~2°*+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the |IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that is, 2°°-2) distinct “Not-a-Number” values of the IEEE

22

© Ecma International 2015

[Deleted: whose

oecha

Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value is
produced by the program expression NaN.) In some implementations, external code might be able to
detect a difference between various Not-a-Number values, but such behaviour is implementation-
dependent; to ECMAScript code, all NaN values are indistinguishable from each other.

NOTE The bit pattern that might be observed in an ArrayBuffer (see 24.1) after a Number value has been stored
into it is not necessarily the same as the internal representation of that Number value used by the ECMAScript
implementation.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these
values are also referred to for expository purposes by the symbols +o and —wo, respectively. (Note that
these two infinite Number values are produced by the program expressions. +Infinity (or simply
Infinity) and -Infinity.)

The other 18437736874454810624 (that is, 2°*~2%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to
for expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero
Number values are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2°~2%~2) finite honzero values are of two kinds:
18428729675200069632 (that is, 2°*—2°“) of them are normalized, having the form

sxmx2°

where s is +1 or —1, m is a'positive integer less than 2°° but not less than 2%, and e is an integer ranging
from —1074 to 971, inclusive.

The remaining 9007199254740990 (that is; 2°*=2).values are denormalized, having the form

sxm x2°

where si§ +1 or —1, m is'a positive integer less than 2%, and e is —~1074.

Note that all the positive and negative integers whose magnitude is no greater than 2> are representable
in the Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the
two forms shown above) is‘odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational humber such as ©) means a Number value
chosen in the following manner. Consider the set of all finite values of the Number type, with —0 removed
and with two additional values added to it that are not representable in the Number type, namely 2%
(which is +1 x 2% x 2°™) and —2'%% (which is —1 x 2°° x 2°™). Choose the member of this set that is closest
in value to x. If two values of the set are equally close, then the one with an even significand is chosen;
for this purpose, the two extra values 2'%* and —2'°* are considered to have even significands. Finally, if
2'%% was chosen, replace it with +o; if —21%* was chosen, replace it with —o; if +0 was chosen, replace it
with —0 if and only if x is less than zero; any other chosen value is used unchanged. The result is the

© Ecma International 2015 23

oecnd

Number value for x. (This procedure corresponds exactly to the behaviour of the IEEE 754 “round to
nearest, ties to even” mode.)

Some ECMAScript operators deal only with integers in specific ranges such as —2* through 2%-1,
inclusive, or in the range 0 through 2°-1, inclusive. These operators accept any value of the Number type
but first convert each such value to an integer value in the expected range. See the descriptions of the
numeric conversion operations in 7.1.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either.a data property, or an accessor
property:

e A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

e An accessor property associates a key value with<one or two accessor functions; and a set of
Boolean attributes. The accessor functions are used to store or retrieve an ECMAScript language
value that is associated with the property.

Properties are identified using key values. A property key value is either an ECMAScript String value or a
Symbol value. All String and Symbol values, including the empty string, are valid as property keys. A
property name is a property key that is a String.value.

An integer index is a String-valued property key that is a canonical numeric String (see 7.1.16) and whose
numeric value is either +0 or a positive integer £2°°-1. An array.index is an integer index whose numeric
value i is in the range +0 < i < 2%-1.

Property keys are used to' access properties and their values. There are two kinds of access for
properties: get and set, corresponding to value retrieval and assignment, respectively. The properties
accessible via get and set access includes both own properties that are a direct part of an object and
inherited properties: which are provided by another associated object via a property inheritance
relationship. Inherited properties may be either-own or inherited properties of the associated object. Each
own property of an object must each have a key value that is distinct from the key values of the other own
properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form of
objects and have the default object semantics. An exotic object is any form of object whose property
semantics differ in any way from the default semantics.

6.1.7.1 Property Attributes

Attributes are used. in<this specification to define and explain the state of Object properties. A data
property associates a key value with the attributes listed in Table 2.

24 © Ecma International 2015

secmd

Table 2 — Attributes of a Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript | The value retrieved by a get access of the property.
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the
property’s [[Value]] attribute using [[Set]] will not succeed.
[[Enumerable]] Boolean If true, the property will be enumerated by a for-in

enumeration (see 13.6.4).-Otherwise, the property is said|
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other<than [[Value]], or changing [[Writable]] to
false) will fail

An accessor property associates a key value with the attributes listed in Table 3.

Table 3 — Attributes of an Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or | If the value is an Object it must be a function Object. The
Undefined function’s [[Call]] internal method (Table 6) is called with an

empty-arguments list to retrieve the property value each
time a get access of the property is performed.

[[Set]] Object or | If the value is an -Object it must be a function Object. The
Undefined function’s [[Call]] internal method (Table 6) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 13.6.4). Otherwise, the property is said to|
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be a data property, or change its attributes will
fail.

If the initial values of a property’s attributes are not explicitly specified by this specification, the default
value defined'in Table 4 is used.

© Ecma International 2015 25

oecmad

Table 4 — Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specifiedvia algorithms called. internal methods.
Each object in an ECMAScript engine is associated with a set.of internal methods that defines its runtime
behaviour. These internal methods are not part of the ECMAScript language. They are defined by this
specification purely for expository purposes. However, each object within an implementation of
ECMAScript must behave as specified by the internal‘'methods associated with it. The exact manner in
which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different
algorithms when a common internal method ' name is invoked upon them. That actual object upon which
an internal method is invoked is the “target” of the invocaton. If, at runtime, the implementation of an
algorithm attempts to use an internal method of an object that the object does not support, a TypeError
exception is thrown.

Internal slots correspond to internal state that is ‘associated with objects and used by various ECMAScript
specification algorithms. Internal slots are not object properties and they are not inherited. Depending
upon the specific internal slot specification, such state may consist of values of any ECMAScript language
type or of specific ECMAScript specification type values. Unless explicitly specified otherwise, internal
slots are allocated as part of the process of creating an object and may not be dynamically added to an
object. Unless specified otherwise; the-initial. value of an internal slot is the value undefined. Various
algorithms within this specification create objects that have internal slots. However, the ECMAScript
language provides no direct way to associate internal slots with an object.

Internal‘methods and internal slots are identified within this specification using names enclosed in double
square brackets [[]].

Table 5 summarizes the essential internal methods used by this specification that are applicable to all
objects created or manipulated by ECMAScript code. Every object must have algorithms for all of the
essential internal methods. 'However, all objects do not necessarily use the same algorithms for those
methods.

The “Signature” column of Table 5 and other similar tables describes the invocation pattern for each
internal method. The invocation pattern always includes a parenthesized list of descriptive parameter
names. If a parameter name is the same as an ECMAScript type name then the name describes the
required type of the parameter value. If an internal method explicitly returns a value, its parameter list is
followed by the symbol “—” and the type name of the returned value. The type names used in signatures
refer to the types defined in clause 6 augmented by the following additional names. “any” means the
value may be any ECMAScript language type. An internal method implicitly returns a Completion Record
as described in 6.2.2. In addition to its parameters, an internal method always has access to the object
that is the target of the method invocation.

26 © Ecma International 2015

[Deleted: upon which it is invoked as a method]

oecmad

Table 5 — Essential Internal Methods

Internal Method

Signature

Description

[[GetPrototypeOf]]

()—Object or Null

Determine the object that provides inherited properties
for this object. A null value indicates that there are no
inherited properties.

[[SetPrototypeOf]]

(Object or Null)—Boolean

Associate with this object another object that provides
inherited properties. Passing null indicates that there
are no inherited properties. Returns true indicating
that the operation was completed successfully or
false indicating that the operation was not successful.

[[IsExtensible]]

()—Boolean

Determine. whether it is permitted to add additional
properties to this object.

[[PreventExtensions]]

()—Boolean

Control whether new properties may be added to this
object. Returns true if the operation was successful or
false if the operation was unsuccessful.

[[GetOwnProperty]]

(propertyKey) —
Undefined or Property
Descriptor

Return a Property Descriptor for the own property of
this object whose key is propertyKey, or undefined if
no such property exists.

[[HasProperty]]

(propertyKey) — Boolean

Return a Boolean value indicating whether this object
already has either an own or inherited property whose
key is propertyKey.

[[Get]]

(propertyKey, Receiver) — any

Return._the value of the property whose key is
propertyKey-from this object. If any ECMAScript code
must be executed to retrieve the property value,
Receiver is used as the this value when evaluating
the code.

[[Set]]

(propertyKey,value, Receiver)
— Boolean

Set the value of this object property whose key is
propertyKey to value. If any ECMAScript code must
be executed to set the property value, Receiver is
used as the this value when evaluating the code.
Returns true if that the property value was set or false
if that it could not be set.

[[Delete]]

(propertyKey) — Boolean

Remove the own property whose key is propertyKey
from this object . Return false if the property was not
deleted and is still present. Return true if the property
was deleted or is not present.

[[DefineOwnProperty]]

(propertyKey,
PropertyDescriptor)
Boolean

Create or alter the own property, whose key is
propertyKey, to have the state described by
PropertyDescriptor. Return true if that the property
was successfully created/updated or false if the
property could not be created or updated.

[[Enumerate]]

()—Object

Return an iterator object that produces the keys of the
string-keyed enumerable properties of the object.

[[OwnPropertyKeysl]]

()—List of propertyKey

Return a List whose elements are all of the own
property keys for the object.

Table 6 summarizes additional essential internal methods that are supported by objects that may be

called as functions.

© Ecma International 2015

27

secma

Table 6 — Additional Essential Internal Methods of Function Objects

Internal Method Signature

Description

[[Call]] (any, a List of any) — | Executes code associated with this object. Invoked via a
any function call expression. The arguments to the internal
method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that

implement this internal method are callable.
[[Construct]] (a List of any, Object) — | Creates an object. Invoked via the new or super operators.
Object The first arguments to the internal method is a list containing

the arguments of the operator. The second argument is the
object to which the new operator was initially applied.
Objects that implement this internal method are called
constructors. A Function object is. not necessarily a
constructor and.such non-constructor Function objects do

not have a [[Construct]] internal method.

The semantics of the essential internal methods for ordinary objects-and standard exotic objects are
specified in clause 9. If any specified use of an internal method of an-exotic object is not supported by an
implementation, that usage must throw a TypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified
below. Ordinary ECMAScript Objects as well as all standard exotic objects in this specification maintain
these invariants. ECMAScript Proxy objects maintain these invariants by means of runtime checks on the
result of traps invoked on the [[ProxyHandler]] object.

Any implementation provided exotic objects must also maintain these invariants for those objects.
Violation of these invariants may cause ECMAScript code to have unpredictable behaviour and create
security issues. However, violation of these invariants must never compromise the memory safety of an
implementation.

An_implementation must ‘not-allow these invariants to be circumvented in _any manner such as by
providing altérnativesinterfaces that implement the functionality of the essential internal methods without
enforcing their invariants.

Definitions:

e The target of an internal method is the object upon which the internal method is called,

e A target is non-extensible if it has been observed to return false from its [[IsExtensible]] internal
method, or true from its [[PreventExtensions]] internal method.

e A non-existent property is a property that does not exist as an own property on a non-extensible
target.

e All references to SameValue are according to the definition of SameValue algorithm specified in
7.2.9.

[[GetPrototypeOf]] ()

e The Type of the return value must be either Object or Null.
e If target is non-extensible, and [[GetPrototypeOf]] returns a value v, then any future calls to
[[GetPrototypeOf]] should return the SameValue as v.

28 © Ecma International 2015

[Deleted: upon

oecha

NOTE An object’s prototype chain should have finite length (that is, starting from any object, recursively applying
the [[GetPrototypeOf]] internal method to its result should eventually lead to the value null). However, this
requirement is not enforceable as an object level invariant if the prototype chain includes any exotic objects that do
not use the ordinary object definition of [[GetPrototypeOf]]. Such a circular prototype chain may result in infinite loops
when accessing object properties.

[[SetPrototypeOf]] (V)

e The Type of the return value must be Boolean.
e |f target is non-extensible, [[SetPrototypeOf]] must return false, unless.V is the SameValue as the
target's observed [[GetPrototypeOf]] value.

[[PreventExtensions]] ()

e The Type of the return value must be Boolean.
e |f [[PreventExtensions]] returns true, all future calls to [[ISExtensible]] on the target must return
false and the target is now considered non-extensible:

[[GetOwnProperty]] (P)

e The Type of the return value must be either Property Descriptor or Undefined.

e |f the Type of the return value is Property Descriptor, .the return value must be a complete
property descriptor (see 6.2.4.6).

e |f a property P is described as a data property with Desc.[[Value]] equal to v and Desc.[[Writable]]
and Desc.[[Configurable]] are both false; then the SameValue must be returned for the
Desc.[[Value]] attribute of the property on all future calls to [[GetOwnProperty]] (P).

e |f P’s attributes other than [[Writable]] may change over time or if the property might disappear,
then P’s [[Configurable]] attribute must be true.

e |f the [[Writable]] attribute.may change from false to true, then the [[Configurable]] attribute must
be true.

e If the target is non-<extensible and P is non-existent, then all future calls to [[GetOwnProperty]] (P)
on the target must describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return undefined).

NOTE As a consequence of the third invariant, if a property is described as a data property and it may return
different values over time, then either or both of the Desc.[[Writable]] and Desc.[[Configurable]] attributes must be
true even if no mechanism to change the value is exposed via the other internal methods.

[[DefineOwnProperty]] (P, Desc)

e The Type of the return value must be Boolean.

e [[DefineOwnProperty]] must return false if P has previously been observed as a non-configurable
own property of the target, unless either:
1. P is a non-configurable writable own data property. A non-configurable writable data property

can be changed into a non-configurable non-writable data property.

2. All attributes in Desc are the SameValue as P’s attributes.

e [[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-
existent own property. That is, a non-extensible target object cannot be extended with new
properties.

[[HasProperty]] (P)

e The Type of the return value must be Boolean.
e |f P was previously observed as a non-configurable data or accessor own property of the target,
[[HasProperty]] must return true.

© Ecma International 2015 29

oecnd

[[Get]] (P, Receiver)

e |f P was previously observed as a non-configurable, non-writable own data property of the target
with value v, then [[Get]] must return the SameValue.

e |f P was previously observed as a non-configurable own accessor property of the target whose
[[Get]] attribute is undefined, the [[Get]] operation must return undefined.

[[Set]] (P, V, Receiver)

e The Type of the return value must be Boolean.

e |f P was previously observed as a non-configurable, non-writable own data property of the target,
then [[Set]] must return false unless V is the SameValue as P’s [[Value]] attribute.

e If P was previously observed as a non-configurable own accessor property of the target whose
[[Set]] attribute is undefined, the [[Set]] operation must return false.

[[Delete]] (P)

e The Type of the return value must be Boolean.
e |f P was previously observed to be a non-configurable own data or accessor property of the
target, [[Delete]] must return false.

[[Enumerate]] ()

e The Type of the return value must be Object.

[[OwnPropertyKeys]] ()

e The return value must be a List.

e The Type of each element of the returned List is either String or Symbol.

e The returned List mustcontain at least the keys of all non-configurable own properties that have
previously been observed.

e |f the object is non-extensible, the returned List must contain only the keys of all own properties of
the object that‘are observable using [[GetOwnProperty]].

[[Construct]] ()
e The Type of the return value must be Object.

6.1.7.4 < Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this
specification and which usually have Realm specific identities. Unless otherwise specified each intrinsic
object actually corresponds to a set of similar objects, one per Realm.

Within this specification a‘reference such as %name% means the intrinsic object, associated with the
current Realm, corresponding to the name. Determination of the current Realm and its intrinsics is
described in 8.1.2.5, The well-known intrinsics are listed in Table 7.

30 © Ecma International 2015

Deleted: 8.1.2.58.1.2.58.1.2.58.1.2.58.1.2.58.1
.2.58.2

oecha

Table 7 — Well-known Intrinsic Objects

Intrinsic Name

Global Name

ECMAScript Language Association

%Array%

Array

The Array constructor (22.1.1) -

[Formatted: Keep with next

%ArrayBuffer%

ArrayBuffer

The ArrayBuffer constructor «
(24.1.2)

%ArrayBufferPrototype%

ArrayBuffer.prototype

The initial value of the prototype
data property of %ArrayBuffer%.

%ArraylteratorPrototype%

The prototype of Array iterator objects
(224.5)

%ArrayPrototype%

Array.prototype

The initial value of the prototype
data property of %Array% (22.1.3)

%ArrayProto_values%

Array.prototype.values

The initial value of the values data
property of %ArrayPrototype%
(22.1.3.29)

%Boolean%

Boolean

The Boolean constructor (19.3.1)

[Formatted: Keep with next

%BooleanPrototype% Boolean.prototype The initial value of the prototype [Deleted: "
data property of %Boolean% (19.3.3) [Deleted- N

%DataView% DataView The DataView constructor (24.2.2)

%DataViewPrototype% DataView.prototype The initial value of the prototype [Demed:a

data property of %DataView%.

%Date% Date The Date constructor (20.3.2)

%DatePrototype% Date.prototype The initial value of the prototype
data property of %Date%.

%Error% Error The Error constructor (19.5.1) |

%ErrorPrototype% Error.prototype The initial value of the prototype
data property of %Error%.

%eval% eval The eval function (18.2.1). |

%EvalError% EvalError The EvalError constructor

(19.5.5.1)

%EvalErrorPrototype%

EvalError.prototype

The initial value of the prototype
property of %EvalError%

%Float32Array%

Float32Array

The Float32Array constructor

(22.2)

[Formatted: Font: (Default) Courier New, Bold

%Float32ArrayPrototype%

Float32Array.prototype

The initial value of the prototype

data property of %Float32Array%.

[Formatted: Font: (Default) Courier New, Bold

%Float64Array%

Float64Array

The Float64Array constructor

(22.2)

[Formatted: Font: (Default) Courier New, Bold

%Float64ArrayPrototype%

Float64Array.prototype

The initial value of the prototype

data property of %Float64Array%.

%Function%

Function

The Function constructor (19.2.1)

%FunctionPrototype%

Function.prototype

The initial value of the prototype
data property of %Function%.

© Ecma International 2015

31

[Formatted: Font: (Default) Courier New, Bold

oecmad

Intrinsic Name

Global Name

ECMAScript Language Association

%Generator%

The initial value of the prototype
property of %GeneratorFunction%

%GeneratorFunction% The constructor of generator « [Formatted: Keep with next
objects(25.2.1)
%GeneratorPrototype% The initial value of the prototype R} [Deleted: %GeneratorFunctionPrototype% [ﬂ
property of %Generator% { Formatted: Tab stops: 2.1", Right + Not at
|%Int8Array% Int8Array The Int8Array constructor (22.2) 1.63"+ 2.56"
%Int8ArrayPrototype% Int8Array.prototype The<initial. value of the prototype [Formatted: Font: (Default) Courier New, Bold }

data property of %Int8Array%.

|%Int16Array% Intl6Array TheAIntl 6Array constructor (22.2) [Formatted: Font: (Default) Courier New, Bold
6In rrayPrototype% n rray.prototype e initial value of the prototype
%Int16ArrayPrototype% Intl6A tot Th tial val f th
data property of %Int16Array%.
|%Int32Array% Int32Array The Int32Array constructor (22.2) [Formatted: Font: (Default) Courier New, Bold

%Int32ArrayPrototype%

Int32Array.prototype

The initial value of the prototype
data property of %Int32Array%.

%lteratorPrototype%

An object that all standard built-in
iterator objects indirectly inherit from.

%JSON%

JSON
A4

The JSON object (24.3)

[Deleted: %

%Map%

Map

The Map constructor (23.1.1)

%MaplteratorPrototype%

The prototype of Map iterator objects
(23.1.5)

[Formatted:

Font: (Default) Courier New, Bold

%MapPrototype% Map . prototype The initial value of the prototype
data property of %Map%.
%Math% Math The Math object (20.2) [Deleted: %
%Number% Number The Number constructor (20.1.1) [Formatted: Font: (Default) Courier New, Bold

data property of %0bject%. (19.1.3)

%NumberPrototype% Number .prototype The initial value of the prototype [Formatted: Font: (Default) Courier New, Bold
property of %Number%

%Object% Object The Object constructor (19.1.1) [Formatted: Font: (Default) Courier New, Bold

%ObjectPrototype% Object.prototype The initial value of the prototype [Formatted: Font: (Default) Courier New, Bold

%0ObjProto_joString%

Object.prototype.

The initial value of the toString data

toString

property of %ObjectPrototype%
(19.1.3.6)

%Promise%

Promise

The Promise constructor (25.4.3)

%PromisePrototype%

Promise.prototype

The initial value of the prototype
data property of %Promise%.

| %Proxy%

Proxy

The Proxy constructor (26.2.1)

%RangeError%

RangeError

The RangeError constructor
(19.5.5.2)

%RangeErrorPrototype%

RangeError.prototype

The initial value of the prototype
property of %RangeError%

32

© Ecma International 2015

[Deleted: values

secmd

Intrinsic Name

Global Name

ECMAScript Language Association

%ReferenceError% ReferenceError The ReferenceError constructor
(19.5.5.3) |
%ReferenceErrorPrototype% ReferenceError. The initial value of the prototype
prototype property of %ReferenceError%
%Reflect% Reflect, The Reflect object (26.1) (Deleted: +)
%RegExp% RegExp The RegExp constructor (21.2.3)
%RegEXxpPrototype% RegExp.prototype The initial value of the prototype
data property of %RegExp%.
%Set% Set The Set constructor (23.2.1) |
%SetlteratorPrototype% The prototype of Set iterator objects
(23.2.5)
%SetPrototype% Set.prototype The initial value of the prototype| [Deleted:s]
data property of %Set%.
%String% String The String constructor (21.1.1) |

%StringlteratorPrototype%

The prototype of String iterator objects
(21.1.5)

%StringPrototype% String.prototype The initial value of the prototype
data property of %String%.
%Symbol% Symbol The Symbol constructor (19.4.1) [Formatted: Font: (Default) Courier New, Bold J
%SymbolPrototype% Symbol.prototype The initial value of the prototype [Formatted: Font: (Default) Courier New, Bold J
data property of %Symbol%. (19.4.3) [Deleted: p }
%SyntaxError% SyntaxError The SyntaxError constructor []

(19.5.5.4) |

%SyntaxErrorPrototype%

SyntaxError.prototype

The initial value of the prototype
property of %SyntaxError%

%ThrowTypeError% A function object that unconditionally
throws a new instance of
%TypeError%.

%TypedArray% The super class of all typed Array

constructors (22.2.1)

%TypedArrayPrototype%

The initial value of the prototype
property of %TypedArray%

%TypeError%

TypeError

The TypeError constructor
(19.5.5.5) |

%TypeErrorPrototype%

TypeError.prototype

The initial value of the prototype
property of %TypeError%

'| Formatted: Font: (Default) Courier New, Bold

%Uint8Array%

Uint8Array

The Uint8Array constructor (22.2) |

%Uint8ArrayPrototype%

Uint8Array.prototype

The initial value of the prototype
data property of %Uint8Array%.

[Formatted: Font: (Default) Courier New, Bold J

%Uint8ClampedArray%

Uint8ClampedArray

The Uint8ClampedArray

constructor (22.2)

© Ecma International 2015

33

[Formatted: Font: (Default) Courier New, Bold J
[Formatted: Font: (Default) Courier New, Bold J

oecmd

Intrinsic Name

Global Name

ECMAScript Language Association

|%Uint8CIampedArrayPrototype% Uint8ClampedArray. The initial value of the prototype <« [Formatted: Keep with next J
prototype data_l property of [Formatted: Font: (Default) Courier New, Bold J

%Uint8ClampedArray%.
|%Uint16Array% Uintl6Array The Uintl6Array constructor (22.2) Formatted: Font: (Default) Courier New, Bold |

%Uint16ArrayPrototype%

Uintl6Array.prototype

The initial value of the prototype
data property of %Uint16Array%.

| %Uint32Array%

Uint32Array

The Uint32Array constructor (22.2)

%Uint32ArrayPrototype%

Uint32Array.prototype

The initial. value of the prototype
data property. of %Uint32Array%.

|%URIError%

URIError

The URIError constructor (19.5.5.6)

%URIErrorPrototype%

URIError.prototype

The initial value of the prototype
property of %URIError%

| %W eakMap%

WeakMap

The WeakMap constructor (23.3.1)

%W eakMapPrototype%

WeakMap.prototype

The initial value of the prototype
data property of %W eakMap%.

| %W eakSet%

WeakSet

The WeakSet constructor (23.4.1)

%W eakSetPrototype%

WeakSet.prototype

The initial value of the prototype
data property of %W eakSet%.

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics
of ECMAScript language constructs and ECMAScript language types. The specification types are
Reference, List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data
Block. Specification type values are'specification artefacts that do not necessarily correspond to any
specific entity within an ECMAScript implementation. Specification type values may be used to describe
intermediate results of ECMAScript expression evaluation but such values cannot be stored as properties
of objects or values of ECMAScript language variables.

6.2.1 TheList and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 12.3.6) in new expressions, in
function calls, and in other algorithms where a simple ordered list of values is needed. Values of the List
type are simply ordered sequences of list elements containing the individual values. These sequences
may be of any length. The elements of a list may be randomly accessed using 0-origin indices. For
notational convenience an array-like syntax can be used to access List elements. For example,
arguments[2] is shorthand for saying the 3" element of the List arguments.

For notational convenience within this specification, a literal syntax can be used to express a new List
value. For example, «1, 2» defines a List value that has two elements each of which is initialized to a
specific value. A new empty List can be expressed as «».

The Record type is used to describe data aggregations within the algorithms of this specification. A
Record type value consists of one or more named fields. The value of each field is either an ECMAScript
value or an abstract value represented by a name associated with the Record type. Field names are
always enclosed in double brackets, for example [[value]].

34 © Ecma International 2015

[Formatted: Font: (Default) Courier New, Bold J

secmd

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that
has three fields, each of which is initialized to a specific value. Field name order is not significant. Any
fields that are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value.
For example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthand for “the field
of R named [[field2]]".

Schema for commonly used Record field combinations may be named, and-that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: PropertyDescriptor{[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

6.2.2 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such
as the behaviour of statements (break, continue, return and throw) that perform nonlocal transfers
of control.

Values of the Completion type are Record values whose fields are defined as by Table 8.

Table 8 —Completion Record Fields

Field Name | Value Meaning
[[typell One of normal, break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript string or empty The target label for directed control transfers.

The term “abrupt completion” refers'to any completion with a [[type]] value other than normal.
6.2.2.1 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:
1. Return NormalCompletion(argument).
Is a shorthand that is defined as follows:
1. Return Completion{[[type]]: normal, [[value]]: argument, [[target]]:empty}.

6.2.2.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.
Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

1. Return "Infinity".
Generally means the same thing as:
1. Return NormalCompletion("Infinity").

© Ecma International 2015 35

oecnd

A “return” statement without a value in an algorithm step means the same thing as:

1. Return NormalCompletion(undefined).

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the
Completion Record value unless the Completion Record is an abrupt completion.

6.2.2.3 Throw an Exception

Algorithms steps that say to throw an exception, such as
1. Throw a TypeError exception.
mean the same things as:

1. Return Completion{[[type]]: throw, [[value]]: a newly created TypeError object,
[[target]]:empty}.

6.2.2.4 ReturnlfAbrupt

Algorithms steps that say
1. ReturnifAbrupt(argument).
mean the same thing as:

1. If argument is an abrupt completion, return argument:
2. Else if argument is a Completion Record, let argument be argument.[[value]].

6.2.3 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof, the assignment
operators, the super keyword and other language features. For example, the left-hand operand of an assignment is
expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the base
value, the referenced.name and the Boolean valued strict reference flag. The base value is either undefined,
an Object, a Boolean, a String, a Symbol, a Number, or an environment record (8.1.1). A base value of
undefined indicates that the Reference could not be resolved to a binding. The referenced name is a String
or Symbol value.

A Super Reference is a Reference that is used to represents a name binding that was expressed using
the super keyword. A Super Reference has an additional thisValue component and its base value will
never be an environment record.

The following abstract.operations are used in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.

GetReferencedName(V). Returns the referenced name component of the reference V.
IsStrictReference(V). Returns the strict reference flag component of the reference V.
HasPrimitiveBase(V). Returns true if Type(base) is Boolean, String, Symbol, or Number.
IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V)
is true; otherwise returns false.

IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.
IsSuperReference(V). Returns true if this reference has a thisValue component.

36 © Ecma International 2015

secmd

The following abstract operations are used in this specification to operate on references:

6.2.3.1

arwNE

NOTE

GetValue (V)

ReturnlfAbrupt(V).
If Type(V) is not Reference, return V.
Let base be GetBase(V).
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be null or undefined.
ii. Letbase be ToObject(base).
b. Return base.[[Get]](GetReferencedName(V), GetThisValue(V)).
Else base must be an environment record,
a. Return base.GetBindingValue(GetReferencedName(V), IsStrictReference(V)) (see 8.1.1).

The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and

the ordinary object [[Get]] internal method. An implementation‘might choose to avoid the actual creation of the object.

6.2.3.2 PutValue (V, W)

garwn e

NOTE

ReturnlfAbrupt(V).
ReturnlfAbrupt(W).
If Type(V) is not Reference, throw a ReferenceError exception.
Let base be GetBase(V).
If IsUnresolvableReference(V), then
a. If IsStrictReference(V) is true, then
i. Throw ReferenceError exception.
b. Let globalObj be GetGlobalObject().

c. Return Set(globalObj,GetReferencedName(V), W, false). | [Deleted: Put(

Else if IsPropertyReference(V), then

a. If HasPrimitiveBase(V) is true, then
i. Assert:In this case, base will never-be null or undefined.
ii. Setbase to ToObject(base).

b. et succeeded be base.[[Set]](GetReferencedName(V), W, GetThisValue(V)).

c. ReturnlfAbrupt(succeeded).

d. If succeeded is false and IsStrictReference(V) is true, throw a TypeError exception.

e. Return.

Else base must be an environment record.

a.. Return base.SetMutableBinding(GetReferencedName(V), W, IsStrictReference(V)) (see 8.1.1).

The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the

ordinary object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.3.3 GetThisValue (V)

1.
2.

3.

Assert: IsPropertyReference(V) is true.

If IsSuperReference(V), then

a. Return the value of the thisValue component of the reference V.
Return GetBase(V).

© Ecma International 2015 37

oecnd

6.2.3.4 InitializeReferencedBinding (V, W)

ReturnIfAbrupt(V).

ReturnIfAbrupt(W).

Assert: Type(V) is Reference.

Assert: IsUnresolvableReference(V) is false.

Let base be GetBase(V).

Assert: base is an Environment Record.

Return base.InitializeBinding(GetReferencedName(V), W).

NookrwnE

6.2.4 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property
attributes. Values of the Property Descriptor type are Records. Each field’s name is an attribute name and
its value is a corresponding attribute value as specified in 6.1.7.1. In addition, any field may be present or
absent. The schema name used within this specification to.tag literal descriptions of Property Descriptor
records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property
Descriptors based upon the existence or use of certain fields. A" data Property Descriptor is one that
includes any fields named either [[Value]] or [[Writable]]. An accessor Property Descriptor is one that
includes any fields named either [[Get]] or. [[Set]]. Any Property. Descriptor may have fields named
[[Enumerable]] and [[Configurable]]. A Property Descriptor value may not be both a data Property
Descriptor and an accessor Property Descriptor; however, it may be neither. A generic Property
Descriptor is a Property Descriptor value that is neither a data Property Descriptor nor an accessor
Property Descriptor. A fully populated Property Descriptor is one.that is either an accessor Property
Descriptor or a data Property Descriptor and that has all of the fields that correspond to the property
attributes defined in either Table 2 or Table 3.

The following abstract operations are used in this specification to operate upon Property Descriptor
values:

6.2.4.1 IsAccessorDescriptor{(Desc)
When the abstract operation IsAccessorDescriptor is called with Property Descriptor Desc, the following

steps are taken:

1. If Desc is undefined, return false.
2. . If both Desc.[[Get]] and Desc.[[Set]] are absent, return false.
3. Return true.

6.2.4.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with Property Descriptor Desc, the following steps
are taken:

1. If Desc is undefined, return false.
2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, return false.
3. Return true.

38 © Ecma International 2015

oecha

6.2.4.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with Property Descriptor Desc, the following
steps are taken:

1. If Desc is undefined, return false.
2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, return true.
3. Return false.

6.2.4.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with Property Descriptor Desc, the following
steps are taken:

1. If Desc is undefined, return undefined.
2. Let obj be ObjectCreate(%ObjectPrototype%).
3. Assert: obj is an extensible ordinary object with no own properties.
4. If Desc has a [[Value]] field, then
a. Call CreateDataProperty(obj, "value", Desc.[[Value]]).
5. If Desc has a [[Writable]] field, then
a. Call CreateDataProperty(obj, "writable", Desc.[[Writable]]).
6. If Desc has a [[Get]] field, then
a. Call CreateDataProperty(obj, "get" , Desc.[[Get]]).
7. If Desc has a [[Set]] field, then
a. Call CreateDataProperty(obj, "set", Desc.[[Set]])
8. If Desc has an [[Enumerable]] field, then
a. Call CreateDataProperty(obj, "enumerable, Desc.[[Enumerable]]).
9. If Desc has a [[Configurable]] field, then
a. Call CreateDataProperty(obj , "configurable", Desc.[[Configurable]]).
10. Assert: all of the above CreateDataProperty operations return true.
11. Return obj.

6.2.4.5 ToPropertyDescriptor (-Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. _ReturnifAbrupt(Obj).
24 If Type(Obj) is not Object throw a TypeError exception.
3. Let desc be a new Property Descriptor that initially has no fields.
4. If HasProperty(Obj, "enumerable") is true, then

a. . Let enum be Get(Obj, "enumerable").

b. ReturnlfAbrupt(enum).

c. Setthe [[Enumerable]] field of desc to ToBoolean(enum).
5. If HasProperty(Obj, "configurable") is true, then

a. Letconf be Get(Obj, "configurable").

b. ReturnlfAbrupt(conf).

c. Set the [[Configurable]] field of desc to ToBoolean(conf).
6. If HasProperty(Obj, "value") is true, then

a. Letvalue be Get(Obj, "value").

b. ReturnlfAbrupt(value).

c. Setthe [[Value]] field of desc to value.
7. If HasProperty(Obj, "writable") is true, then

a. Letwritable be Get(Obj, "writable").

© Ecma International 2015 39

oecnd

b. ReturnifAbrupt(writable).
c. Set the [[Writable]] field of desc to ToBoolean(writable).
8. If HasProperty(Obj, "get") is true, then
a. Let getter be Get(Obj, "get").
b. ReturnlfAbrupt(getter).
c. If IsCallable(getter) is false and getter is not undefined, throw a TypeError exception.
d. Setthe [[Get]] field of desc to getter.
9. If HasProperty(Obj, "set") is true, then
a. Let setter be Get(Obj, "set").
b. ReturnlfAbrupt(setter).
c. If IsCallable(setter) is false and setter is not undefined, throwa TypeError exception.
d. Set the [[Set]] field of desc to setter.
10. If either desc.[[Get]] or desc.[[Set]] are present, then
a. |If either desc.[[Value]] or desc.[[Writable]] are present, throw a TypeError exception.
11. Return desc.

6.2.4.6 CompletePropertyDescriptor (Desc)

When the abstract operation CompletePropertyDescriptor. is called with Property Descriptor Desc the
following steps are taken:

1. ReturnifAbrupt(Desc).
2. Assert: Desc is a Property Descriptor
3. Let like be Record{[[Value]]: undefined, [[Writable]]: false, [[Get]]: undefined, [[Set]]:
undefined, [[Enumerable]]: false, [[Configurable]]: false}.
4. If either IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, set Desc.[[Value]] to like.[[Value]].
b. If Desc does not havea [[Writable]] field, set Desc.[[Writable]] to like.[[Writable]].
5. Else,
a. If Desc does not have a [[Get]] field, set Desc.[[Get]] to like.[[Get]].
b. If Desc does not have a [[Set]] field, set Desc.[[Set]] to like.[[Set]].
6. If Desc does.not have an [[Enumerable]] field, set Desc.[[Enumerable]] to like.[[Enumerable]].
7. 1f Desc does not have a [[Configurable]] field, set Desc.[[Configurable]] to like.[[Configurable]].
8. Return Desc.
.5

6.2 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name
resolution in nested functions and blocks. These types and the operations upon them are defined in 8.1.

6.2.6 Data Blocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8
bit) numeric values. A Data Block value is created with a fixed number of bytes that each have the initial
value 0.

For notational convenience within this specification, an array-like syntax can be used to express to the
individual bytes of a Data Block value. This notation presents a Data Block value as a 0-origined integer
indexed sequence of bg/’(es. For example, if db is a 5 byte Data Block value then db[2] can be used to
express access to its 3" byte.

The following abstract operations are used in this specification to operate upon Data Block values:

40 © Ecma International 2015

oecha

6.2.6.1 CreateByteDataBlock(size)

When the abstract operation CreateByteDataBlock is called with integer argument size, the following steps
are taken:

1. Assert: size>0.

2. Letdb be a new Data Block value consisting of size bytes. If it is impossible to create such a Data
Block, throw a RangeError exception.

3. Setall of the bytes of db to 0.

4. Return db.

6.2.6.2 CopyDataBlockBytes(toBlock, tolndex, fromBlock, fromIndex, count)

When the abstract operation CopyDataBlockBytes is called the following steps are taken:

Assert: fromBlock and toBlock are distinct Data Block values.
Assert: fromlIndex, tolndex, and count are positive integer values.
Let fromSize be the number of bytes in fromBlock.

Assert: fromIndex+count < fromSize.

Let toSize be the number of bytes in toBlock.

Assert: tolndex+count < toSize.

Repeat, while count>0

a. Set toBlock[toIndex] to the value.of fromBlock[fromIndex].
b. Increment tolndex and fromIndex each by 1.

c. Decrement count by 1.

8. Return NormalCompletion(empty)

NoukrwhE

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript language. Other, more specialized abstract operations
are defined throughaut this specification.

7.1 Type Conversion

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the
semantics of certain constructs it is useful to define a set of conversion abstract operations. The
conversion abstract operations are polymorphic; they can accept a value of any ECMAScript language
type or of a Completion Record value. But no other specification types are used with these operations.

7.1.1 ToPrimitive (input [, PreferredType])
The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of

converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to Table 9:

© Ecma International 2015 41

&

reCma

Table 9 — ToPrimitive Conversions

Input Type Result

Completion Record | If input is an abrupt completion, return input. Otherwise return

ToPrimitive(input.[[value]]) also passing the optional hint PreferredType.

Undefined Return input.
Null Return input.
Boolean Return input.
Number Return input.
String Return input.
Symbol Return input.
Object Perform the steps following this table,

When Type(input) is Object, the following steps are taken:

1. If PreferredType was not passed, let hint be "default".
2. Else if PreferredType is hint String, let hint be "string".
3. Else PreferredType is hint Number, let hint be "numbezr".
4. LetexoticToPrim be GetMethod(input, @ @toPrimitive).
5. ReturnlfAbrupt(exoticToPrim).
6. If exoticToPrim is not undefined, then
a. Let result be Call(exoticToPrim, input, «hint»).
b. ReturnifAbrupt(result).
c. If Type(result) is not Object, returnresult.
d. Throw a TypeError exception.
7. Ifhintis "default", let hint be "number".
8. Return OrdinaryToPrimitive(input,hint).
When the abstract operation OrdinaryToPrimitive is called with arguments O and hint, the following steps
are taken:
1. Assert: Type(O) is Object
2. Assert: Type(hint) is String and its value is either "string" or "number".
3. Af hintis "string", then
a. Let methodNames be «"toString”, "valueOf"»,
4. Else,
a. Let methodNames be «'valueOf", "toString",
5. For.each name in methodNames in List order, do
a. Let method be Get(O, name).
b. "ReturnlifAbrupt(method).
c. IflIsCallable(method) is true, then
i. Letresult be Call(method, O).
ii. ReturnlfAbrupt(result).
iii. If Type(result) is not Object, return result.
6. Throw a TypeError exception.
NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However,

objects may over-ride this behaviour by defining a @@toPrimitive method. Of the objects defined in this specification
only Date objects (see 20.3.4.45) and Symbol objects (see 19.4.3.4) over-ride the default ToPrimitive behaviour. Date
objects treat no hint as if the hint were String.

42

© Ecma International 2015

Deleted: the List (

Deleted:)

Deleted: the List (

Deleted:)

Formatted: Font: Not Italic

) WU I JU

{ Deleted: 19.4.3.419.4.3.419.4.3.519.4.3.4

oecha

7.1.2 ToBoolean (argument)
The abstract operation ToBoolean converts argument to a value of type Boolean according to Table 10:

Table 10 — ToBoolean Conversions

Argument Type

Result

Completion Record

If argument is an abrupt completion, return argument.. Otherwise return
ToBoolean(argument.[[value]]).

Undefined Return false.

Null Return false.

Boolean Return argument.

Number Return false if argument is +0, —0, or NaN; otherwise return true.

String Return false if argument is the empty String (its length is zero); otherwise
return true.

Symbol Return true.

Object Return true.

7.1.3 ToNumber (argument)

The abstract operation ToNumber converts argument to a value.of type Number according to Table 11:

Table 11 — ToNumber Conversions

Argument Type

Result

Completion Record

If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]]).

Undefined Return NaN.

Null Return +0.

Boolean Return 1 if argument is true. Return +0 if argument is false.
Number Return argument (no conversion).

String See grammar.and conversion algorithm below.

Symbol Throw a TypeError exception.

Object Apply the following steps:

1. Let primValue be ToPrimitive(argument, hint Number).
2. Return ToNumber(primValue).

7.1.3.1 ToNumber Applied to the String Type
ToNumber applied to Strings applies the following grammar to the input String interpreted as a sequence

of UTF-16 encoded code points (6.1.4). If the grammar cannot interpret the String as an expansion of
StringNumericLiteral, then the result of ToNumber is NaN.

© Ecma International 2015 43

oecmad

NOTE The terminal symbols of this grammar are all composed of Unicode BMP code points so the result will be
NaN if the string contains the UTF-16 encoding of any supplementary code points or any unpaired surrogate code
points

Syntax

StringNumericLiteral :::
StrWhiteSpacep
StrWhiteSpace, StrNumericLiteral StrWhiteSpacey

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpace

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
BinarylIntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigits,p ExponentPart,
. DecimalDigits ExponentParto
DecimalDigits ExponentPart,y;

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
01 2 3 4 5 6 7 8 9

ExponentPart :::
Exponentindicator SignedInteger

ExponentIndicator ::: one of
e E

SignedInteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

44 © Ecma International 2015

oecha

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for
numeric literals (11.8.3)

NOTE Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see
11.8.3):
e AStringNumericLiteral may include leading and/or trailing white space and/or line terminators.
A StringNumericLiteral that is decimal may have any number of leading 0 digits.
A StringNumericLiteral that is decimal may include a + or - to indicate its sign.
A StringNumericLiteral that is empty or contains only white space is converted to +0.
Infinity and -Infinity arerecognized as a StringNumericLiteral but notas a NumericLiteral.

e o o o

7.1.3.1.1 Runtime Semantics: MV’s

The conversion of a String to a Number value is similar overall to.the determination of the Number value
for a numeric literal (see 11.8.3), but some of the details are.different, so the process. for converting a
String numeric literal to a value of Number type is given here: This value is determined in two steps: first,
a mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is
rounded as described below. The MV on any grammar symbol, not provided below, is the MV for that
symbol defined in 11.8.3.1.

e The MV of StringNumericLiteral ::: Jempty] is O. [Formatted: Font: (Default) Arial

e The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

The MV of StringNumericLiteral ::: StrWhiteSpace,, StrNumericLiteral StrWhiteSpace,y is the MV of

StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The MV of StrNumericLiteral ::: BinarylntegerLiteral is.the MV of BinaryIntegerLiteral.

The MV of StrNumericLiteral :::.OctallntegerLiteral is the MV of OctalintegerLiteral.

The MV of StrNumericLiteral ::: HexintegerLiteral is the MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of

StrUnsignedDecimalLiteral. (Note that if the MV.of StrUnsignedDecimalLiteral is O, the negative of this

MV is also 0. The rounding rule described below handles the conversion of this signless mathematical

zero to afloating-point +0 or —0 as appropriate.)

e The MV of StrUnsignedDecimalLiteral ::: Infinity is 10'% (a value so large that it will round to +c).

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits. is the MV of DecimalDigits.

e <The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits is the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™), where n is the number of code
points in the second DecimalDigits.

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits. ExponentPart is the MV of DecimalDigits times
10°, where e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the
first DecimalDigits plus (the MV of the second DecimalDigits times 10™")) times 10°, where n is the
number of code points in the second DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits is the MV of DecimalDigits times 107", where n
is the number of code points in DecimalDigits.

e The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits ExponentPart is the MV of DecimalDigits times
10°™", where n is the number of code points in DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits is the MV of DecimalDigits.

© Ecma International 2015 45

oecmad

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits ExponentPart is the MV of DecimalDigits times
10°, where e is the MV of ExponentPart.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space code point in
the String numeric literal is ‘-, in which case the rounded value is —0. Otherwise, the rounded value must
be the Number value for the MV (in the sense defined in 6.1.6), unless the literal includes a
StrUnsignedDecimalLiteral and the literal has more than 20 significant digits, in which case the Number
value may be either the Number value for the MV of a literal produced by replacing each significant digit
after the 20th with a O digit or the Number value for the MV of a literal produced by replacing each
significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A
digit is significant if it is not part of an ExponentPart and

e jtisnotO;or
e there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.1.4 Tolnteger (argument)

The abstract operation Tolnteger converts argument to'an integral numeric value. This abstract operation
functions as follows:

1. Let number be ToNumber(argument).

2. ReturnlfAbrupt(number).

3. If number is NaN, return +0.

4. If number is +0, —0, +c0, Or —oo, return number.

5. Return the number value that is the same sign as number and whase magnitude is
floor(abs(number)).

7.1.5 Tolnt32 (argument),

The abstract operationTolnt32 converts argument to one of 2*? integer values in the range —2* through
21, inclusive. Thisabstract operation functions as follows:

1. Let number be ToNumber(argument).

2. ReturnIfAbrupt(number).

3. If numberis NaN, +0, =0, +oo, or —co, return +0.

4. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(numbery)).

5. Let int32bit be int modulo 2%,

6. . If int32bit > 2%, return int32bit — 2%, otherwise return int32bit.

NOTE Given the above definition of Tolnt32:

e The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second application
leaves that value unchanged.

e ToInt32(ToUint32(x)) is equal to TolInt32(x) for all values of x. (It is to preserve this latter property that +e and
—o are mapped to +0.)

e ToInt32 maps —O0 to +0.

7.1.6 ToUint32 (argument),

The abstract operation ToUint32 converts argument to one of 2% integer values in the range 0 through
2%_1, inclusive. This abstract operation functions as follows:

1. Let number be ToNumber(argument).

46 © Ecma International 2015

[Deleted: — (Signed 32 Bit Integer

[Deleted: — : (Unsigned 32 Bit Integer

secmd

2. ReturnlfAbrupt(number).

If number is NaN, +0, -0, +o0, or —co, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(number)).

5. Let int32bit be int modulo 2%,

6. Return int32bit.

»w

NOTE Given the above definition of ToUint32:

e Step 6 is the only difference between ToUint32 and TolInt32.

e The ToUint32 abstract operation is idempotent: if applied to a result that it/produced, the second application
leaves that value unchanged.

e ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is-to preserve this latter property that +oo
and —o are mapped to +0.)

e ToUint32 maps -0 to +0.

7.1.7 Tolnt16 (argument), (Deleted: —: (Signed 16 Bit Integer

The abstract operation Tolnt16 converts argument to one of 2'° integer values in the range —32768 through
32767, inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).

ReturnIfAbrupt(number).

If number is NaN, +0, —0, +o, or —oo, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(numbery)).

5. Let int16bit be int modulo 2°.

6. Ifintl6hit > 2'5, return.inti6bit — 2'°, otherwise return int16bit.

rwnE

7.1.8 ToUintl16 (argument), [Deleted: — : (Unsigned 16 Bit Integer

The abstract operation ToUint16 converts argument to one of 2* integer values in the range 0 through
2_1, inclusive. This abstract operation functions as follows:

1. Let number be ToNumber(argument).

2. ReturnlfAbrupt(number).

3. Af number is NaN, +0, =0, +o0, or —oo, return +0.

4. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(number)).

Let int16bit be int modulo 2'°.

Return int16bit.

oo

NOTE Given the above definition of ToUint16:

e The substitution of 2 for 2% in step 5 is the only difference between ToUint32 and ToUint16.
e ToUintl6 maps —0 to +0.

7.1.9 Tolnt8 (argument), [Deleted: — : (Signed 8 Bit Integer

The abstract operation Tolnt8 converts argument to one of 28 integer values in the range —128 through
127, inclusive. This abstract operation functions as follows:

1. Let number be ToNumber(argument).
2. ReturnlfAbrupt(number).

© Ecma International 2015 47

oecnd

3. If number is NaN, +0, =0, +o0, or —o, return +0.

4. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(number)).

5. Let int8bit be int modulo 28,

6. If int8bit > 27, return int8hit — 2, otherwise return int8bit.

7.1.10 ToUint8 (argument),

The abstract operation ToUint8 converts argument to one of 2 integer values.in the range 0 through 255,
inclusive. This abstract operation functions as follows:

Let number be ToNumber(argument).

ReturnIfAbrupt(number).

If number is NaN, +0, —0, +o, or —oo, return +0.

Let int be the mathematical value that is the same sign as-number and whose magnitude is
floor(abs(numbery)).

Let int8bit be int modulo 28,

Return int8bit.

rwnE

o a

7.1.11 ToUint8Clamp (argument),

The abstract operation ToUint8Clamp converts argument to one.of 2° integer values in the range 0
through 255, inclusive. This abstract operation functions as follows:

1. Let number be ToNumber(argument).
2. ReturnIfAbrupt(number).

3. If number is NaN, return +0.

4. If number <0, return +0.

5. If number > 255, return 255.

6. Let f be floor(number).

7. If f+ 0.5 < number, return f + 1.
8. If number <f+ 0.5, return f.

9. |Iffisodd, returnf+ 1.

10. Return f.

NOTE Note that unlike the other ECMAScript integer conversion abstract operation, ToUint8Clamp rounds
rather than truncates non-integer values and does not convert +oo to 0. ToUint8Clamp does “round half to even” tie-
breaking. This differs from Math . round which does “round half up” tie-breaking.

7.1.12 ToString (argument)

The abstract operation ToString converts argument to a value of type String according to Table 12:

48 © Ecma International 2015

[Deleted: —:

(Unsigned 8 Bit Integer

Deleted: —:

Clamped

(Unsigned 8 Bit Integer,

fecma

Table 12 — ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return

ToString(argument.[[value]]).

Undefined Return "undefined".
Null Return "null".
Boolean If argument is true, return "true".
If argument is false, return "false".
Number See 7.1.12.1.
String Return argument.
Symbol Throw a TypeError exception.
Object Apply the following steps:
1. Let primValue be ToPrimitive(argument, hint String). [Deleted: points
2. Return ToString(primValue): [Deleted: point
7.1.12.1 ToString Applied to the Number Type [Deleted: U+
The abstract operation ToString converts a Number m to String format as follows: _Deteted: points
1. If mis NaN, return the String "NaN". { Deleted: point
2. If mis +0 or =0, return the String " 0™, (_ Deleted: U+
3. If mis less than zero, return the String concatenation of the String "-" and ToString(-m). [Deleted: points
4. If mis +oo, return the String "Infinity". [Deleted: point
5. Otherwise, let n, k, and-s'berintegers such thatk> 1, 10 <'s'< 10% the Number value for s x 10"™* (" Deleted: U
ism, and k is as small as possible. Note that k is the number of digits in the decimal representation =
of s, that s is not divisible by 10, and that the least significant digit of s is not necessarily uniquely (__Deleted: point
determined by these criteria. [Deleted: U+
6. If k <n <21 return the String consisting of the code units of the k digits of the decimal [Deleted: point U+
representation of s (in order, with no leading zeroes), followed by n—k occurrences of the code unit { Deleted: points
0x0030 (DIGIT ZERO). e
7. 1f0.<n=<21, return the String consisting of the code nits of the most significant n digits of the (_ Deleted: point
decimal representation of s, followed by the code units 0x002E (FULL STOP), followed by the code | [Deleted: point U+
units of the remaining k—n digits of the decimal representation of s. { Deleted: point
8. If—6 <n <0, return the String consisting of the code unit 0x0030 (DIGIT ZERO), followed by the { Deleted:
code unit 0x002E (FULL STOP), followed by —n occurrences of the code unit 0x0030 (DIGIT eleted: U+
ZERO), followed by the code units of the k digits of the decimal representation of s. { Deleted: point
9. Otherwise, if k = 1, return the String consisting of the code unit of the single digit of s, followed by [Deleted: U+
code unit 0x0065 (LATIN SMALL LETTER E), followed by the code unit 0x002B (PLUS SIGN) or N/ g [Deleted: points
the code unit 0x002D (HYPHEN-MINUS) according to whether n—1 is positive or negative, 1 ‘P -
followed by the code units pf the decimal representation of the integer abs(n—1) (with no leading i [Deleted: point
zeroes). [Deleted: point U+
10. Return the String consisting of the code units pf the most significant digit of the decimal [Deleted: points
representation of s, followed by code unit 0x002E (FULL STOP), followed by the code units pf the | -
remaining k-1 digits of the decimal representation of s, followed by code unit 0x0065 (LATIN [__Deteted: point U+
SMALL LETTER E), followed by code unit 0x002B (PLUS SIGN) or the code unit 9x002D [Deleted: point U+
(HYPHEN-MINUS) according to whether n-1 is positive or negative, followed by the code units pf | [Deleted: point
the decimal representation of the integer abs(n—1) (with no leading zeroes). O [Deleted: U+
[Deleted: points

© Ecma International 2015 49

o JC JU JC U JU JUC JC JU JC JC JC JU JC JU JU U JC U L JU JU L

oecnd

NOTE1 The following observations may be useful as guidelines for implementations, but are not part of the
normative requirements of this Standard:

e If xis any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as x.
e The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k > 1, 10! <'s < 10X, the Number value for s x 10" is m, and k is as
small as possible. If there are multiple possibilities for s, choose the value of s for which s x 10™* is closest in value to
m. If there are two such possible values of s, choose the one that is even. Note that k is the number of digits in the
decimal representation of s and that s is not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-
decimal conversion of floating-point numbers:
Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as
http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

7.1.13 ToObject (argument)

The abstract operation ToObject converts argument to a value of type Object according to Table 13:
Table 13'— ToObject. Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]]).

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a'new Boolean object whose [[BooleanData]] internal slot is set to
the value of argument. See19.3 for a description of Boolean objects.

Number Return a new Number object whose [[NumberData]] internal slot is set to
the value of argument. See 20.1 for a description of Number objects.

String Return'a new String object whose [[StringData]] internal slot is set to the
value of argument. See 21.1 for a description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to
the value of argument. See 19.4 for a description of Symbol objects.

Object Return argument.

7.1.14 ToPropertyKey (argument)

The abstract operation ToPropertyKey converts argument to a value that can be used as a property key by
performing the following steps:

1. Let key be ToPrimitive(argument, hint String).
2. ReturnIfAbrupt(key).
3. If Type(key) is Symbol, then
a. Return key.
4. Return ToString(key).

50 © Ecma International 2015

oecha

7.1.15 TolLength (argument)

The abstract operation ToLength converts argument to an integer suitable for use as the length of an
array-like object. It performs the following steps:

ReturnlfAbrupt(argument).

Let len be Tolnteger(argument).
ReturnifAbrupt(len).

If len < +0, return +0.

If len is +oo, return 2°3-1.

|01~ W

Return min(len, 2%-1).

7.1.16 CanonicalNumericlndexString (argument)

The abstract operation CanonicalNumericlndexString returns argument converted to a numeric value if it is
a String representation of a Number that would be produced by ToString, or the string "-0". Otherwise, it
returns undefined. This abstract operation functions as follows:

1.

2
3.
4.
5

Assert: Type(argument) is String.

If argument is "-0", return —0.

Let n be ToNumber(argument).

If SameValue(ToString(n), argument) is false, return undefined.
Return n.

A canonical numeric string is any String value for which the CanonicalNumericindexString abstract
operation does not return undefined.

7.2 Testing and Comparison-Operations

721

RequireObjectCoercible (argument)

The abstract operation RequireObjectCoercible throws an error if argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 14:

Table 14 — RequireObjectCoercible Results

Argument Type Result
Completion Record | If argument is an abrupt completion, return argument. Otherwise return
RequireObjectCoercible(argument.[[value]]).
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument.
Number Return argument.
String Return argument.
Symbol Return argument.
Object Return argument.
7.2.2 IsArray (argument)

The abstract operation IsArray takes one argument argument, and performs the following steps:

© Ecma International 2015 51

oecnd

Lo

If Type(argument) is not Object, return false.
If argument is an Array exotic object, return true.
3. If argument is a Proxy exotic object, then
a. If the value of the [[ProxyHandler]] internal slot of argument is null, throw a TypeError
exception.
b. Let target be the value of the [[ProxyTarget]] internal slot of argument.
c. Return IsArray(target).
4. Return false.

N

7.2.3 IsCallable (argument)

The abstract operation IsCallable determines if argument, which must.be an ECMAScript language value
or a Completion Record, is a callable function with a [[Call]] internal method.

ReturnIfAbrupt(argument).

If Type(argument) is not Object, return false.

If argument has a [[Call]] internal method, return true.
Return false.

ArwnNpE

7.2.4 IsConstructor (argument)

The abstract operation IsConstructor determines. if argument, which.-must be an ECMAScript language
value or a Completion Record, is a function object with.a [[Construct]] internal method.

1. ReturnifAbrupt(argument).

2. If Type(argument) is not Object, return false.

3. If argument has a [[Construct]] internal method, return true.
4. Return false.

7.2.5 |IsExtensible (O)

The abstract operation IsExtensible is used to-determine whether additional properties can be added to the
object that is O. A Boolean valueis returned. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Return O,[[IsExtensible]]():

7.2:6 Isinteger (argument)

The abstract operation IsInteger determines if argument is a finite integer numeric value.

ReturnIfAbrupt(argument).

If Type(argument) s not Number, return false.

If argument is NaN, +oo, or —oo, return false.

If floor(abs(argument)) # abs(argument), return false.
Return true.

LR

7.2.7 IsPropertyKey (argument)

The abstract operation IsPropertyKey determines if argument, which must be an ECMAScript language
value or a Completion Record, is a value that may be used as a property key.

1. ReturnifAbrupt(argument).

52 © Ecma International 2015

[Deleted: ,

secmd

2.
3.
4.

7.2.8

If Type(argument) is String, return true.
If Type(argument) is Symbol, return true.
Return false.

IsRegExp (argument)

The abstract operation IsRegExp with argument argument performs the following steps:

Sk~ wnE

7.2.9

If Type(argument) is not Object, return false.

Let isRegExp be Get(argument, @ @match).
ReturnlfAbrupt(isRegExp).

If isRegExp is not undefined, return ToBoolean(isRegExp).

If argument has a [[RegExpMatcher]] internal slot, return true.
Return false.

SameValue(x, y)

The internal comparison abstract operation SameValue(x, y), where x.and y are ECMAScript language
values, produces true or false. Such a comparison is performed as follows:

Sk wnE

8.

9.

ReturnlfAbrupt(x).

ReturnlfAbrupt(y).

If Type(x) is different from Type(y),return false.

If Type(x) is Undefined, return true.

If Type(x) is Null, return true.

If Type(x) is Number, then

If x is NaN and y is NaN, return true.

If x is +0 and y is -0, return false.

If x is -0 and y is'+0, return false.

If x is the same Number value as y, return true.

. Return false.

f Type(x) is:String, then

If x and y are exactly the same sequence of code units (same length and same code units at
corresponding indices) return true; otherwise, return false.

If Type(x) is Boolean, then

a. If x and y-are both true or both false, return true; otherwise, return false.

If Type(x) is Symbol, then

a. If xandy are both the same Symbol value, return true; otherwise, return false.

PaooTw

o =

10. Return true if x and y are the same Object value. Otherwise, return false.

7.2.10 SameValueZero(x, Y)

The internal comparisonabstract operation SameValueZero(x, y), where x and y are ECMAScript
language values, produces true or false. Such a comparison is performed as follows:

gk wnE

ReturnIfAbrupt(x).

ReturnlfAbrupt(y).

If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.

If Type(x) is Null, return true.

If Type(x) is Number, then

a. IfxisNaN andy is NaN, return true.

b. Ifxis+0andy is -0, return true.

© Ecma International 2015 53

oecnd

c. Ifxis-0andy is +0, return true.
d. If x is the same Number value as y, return true.
e. Return false.
7. If Type(x) is String, then
a. If xandy are exactly the same sequence of code units (same length and same code units at
corresponding indices) return true; otherwise, return false.
8. If Type(x) is Boolean, then
a. If xandy are both true or both false, return true; otherwise, return false.
9. If Type(x) is Symbol, then
a. If xandy are both the same Symbol value, return true; otherwise,return false.
10. Return true if x and y are the same Object value. Otherwise, return false.

NOTE SameValueZero differs from SameValue only in its treatment of +0 and -0.
7.2.11 Abstract Relational Comparison

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that
at least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as
a parameter. The flag is used to control the order in which operations with potentially visible side-effects
are performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of
expressions. The default value of LeftFirst is true and indicates that the x parameter corresponds to an
expression that occurs to the left of the y parameter’s corresponding expression. If LeftFirst is false, the
reverse is the case and operations must be ‘performed upon y before x. Such a comparison is performed
as follows:

1. ReturnlfAbrupt(x).
2. ReturnIfAbrupt(y).
3. If the LeftFirst flag is true, then

a. Let px be ToPrimitive(x, hint Number).

b. ReturnifAbrupt(px).

c. Let py be ToPrimitive(y, hint Number).

d. ReturnlfAbrupt(py).

4. Else the order of evaluation needs.to be reversed to preserve left to right evaluation

a. Let py be ToPrimitive(y, hint Number).

b. ReturnifAbrupt(py):

c. et px-be ToPrimitive(x, hint Number).

d. ReturnlfAbrupt(px).

5.« If both px and py are Strings, then

a. |If pyis a prefix of px, return false. (A String value p is a prefix of String value q if g can be the
result of concatenating p and some other String r. Note that any String is a prefix of itself,
because r may be the empty String.)

b. If px is a prefix of py, return true.

c. Let k be the smallest nonnegative integer such that the code unit at index k within px is different
from the code unit at index k within py. (There must be such a k, for neither String is a prefix of
the other.)

d. Let m be the integer that is the code unit value at index k within px.

e. Let n be the integer that is the code unit value at index k within py.

f. If m <n, return true. Otherwise, return false.
E

a

Let nx be ToNumber(px). Because px and py are primitive values evaluation order is not
important.

b. ReturnifAbrupt(nx).

c. Let ny be ToNumber(py).

d. ReturnlfAbrupt(ny).

54 © Ecma International 2015

secmd

If nx is NaN, return undefined.

If ny is NaN, return undefined.

If nx and ny are the same Number value, return false.

If nx is +0 and ny is =0, return false.

If nx is —0 and ny is +0, return false.

If nx is +eo, return false.

If ny is +oo, return true.

If ny is —c0, return false.

If nx is —oo, return true.

If the mathematical value of nx is less than the mathematical value of ny —note that these
mathematical values are both finite and not both zero—return.true. Otherwise, return false.

S3—FT o SQoo

NOTE1 Step 5 differs from step 11 in the algorithm for the addition operator + (12.7.3) in using “and” instead of

or.

NOTE2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There
is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating
order defined in the Unicode specification. Therefore String values that are canonically equal according to the
Unicode standard could test as unequal. In effect this algorithm assumes that both Strings are already in normalized
form. Also, note that for strings containing supplementary characters, lexicographic ordering on sequences of UTF-16
code unit values differs from that on sequences of code point values.

7.2.12 Abstract Equality Comparison

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is
performed as follows:

1. ReturnlfAbrupt(x).

2. ReturnlfAbrupt(y).

3. If Type(x) is the same as Type(y), then
a. Return the result of performing Strict Equality Comparison x ===y.

4. Ifxis null and y is undefined, return true.

If x is undefined and y is null, return true.

If Type(x) is Number.and Type(y) is String,

return the result of the comparison x == ToNumber(y).

7. 1f Type(x) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) ==y.

8. If Type(x) is Boolean, return the result of the comparison ToNumber(x) ==y.

9. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).

10. If Type(x) is either String, Number, or Symbol and Type(y) is Object, then
return the result of the comparison x == ToPrimitive(y).

11. If Type(x) is Object and Type(y) is either String, Number, or Symbol, then
return the result of the comparison ToPrimitive(x) ==y.

12. Return false.

oo

7.2.13 Strict Equality Comparison

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is
performed as follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. If Type(x) is Number, then

© Ecma International 2015 55

oecmad

a. If xis NaN, return false.

b. Ifyis NaN, return false.

c. If x is the same Number value as y, return true.

d. Ifxis+0andy is -0, return true.

e. Ifxis—0andy is +0, return true.

f. Return false.

If Type(x) is String, then

a. If xandy are exactly the same sequence of code units (same length and'same code units at
corresponding indices), return true.

b. Else, return false.

6. If Type(x) is Boolean, then
a. If xandy are both true or both false, return true.
b. Else, return false.

7. If x and y are the same Symbol value, return true.

8. If x and y are the same Object value, return true.

9. Return false.

NOTE This algorithm differs from the SameValue Algorithm (7.2.9) in its treatment of signed zeroes and NaNs.
7.3 Operations on Objects
7.3.1 Get (O, P)

The abstract operation Get is used to retrieve the value of a specific property of an object. The operation
is called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return O.[[Get]](P, O).

732 GetV (V,P)

The abstract operation GetV is used to retrieve the value of a specific property of an ECMAScript
language value: If-the value is not an object, the property lookup is performed using a wrapper object
appropriate for the type of the value. The operation is called with arguments V and P where V is the value
and P.is the property key. This abstract operation performs the following steps:

1. Assert: IsPropertyKey(P) is true.
2. Let O be ToObject(V).

3. ReturnlfAbrupt(O).

4. Return O.[[Get]](P, V).

7.33 Set (O, P,V, Throw)

The abstract operation Set is used to set the value of a specific property of an object. The operation is

called with arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value
for the property and Throw is a Boolean flag. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Assert: Type(Throw) is Boolean.

4. Let success be O.[[Set]](P, V, O).

5. ReturnlfAbrupt(success).

56 © Ecma International 2015

[Deleted: Put

[Deleted: Put

oecmad

6. If success is false and Throw is true, throw a TypeError exception.
7. Return success.

7.3.4 CreateDataProperty (O, P, V)

The abstract operation CreateDataProperty is used to create a new own property of an object. The
operation is called with arguments O, P, and V where O is the object, P is the property key, and V is the
value for the property. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor{[[Value]]: V, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

4. Return O.[[DefineOwnProperty]](P, newDesc).

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for
properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If
it does exist and is not configurable or if O is not extensible, [[DefineOwnProperty]] will return false.

7.3.5 CreateMethodProperty (O, P, V)

The abstract operation CreateMethodProperty is used to createx@ new own property of an object. The
operation is called with arguments O, P, and V where O is the object, P is the property key, and V is the
value for the property. This abstract operation performs the following steps:

5. Assert: Type(O) is Object.

6. Assert: IsPropertyKey(P) is true.

7. Let newDesc be the PropertyDescriptor{[[Value]l:«V, [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: true}.

8. Return O.[[DefineOwnProperty]] (P, newDesc).

NOTE This abstract.operation creates a property whose attributes are set to the same defaults used for built-in
methods and methods defined using class declaration syntax. Normally, the property will not already exist. If it does
exist and is not configurable.or if O is not extensible, [[DefineOwnProperty]] will return false.

7.3.6 CreateDataPropertyOrThrow (O, P, V)

The abstract operation CreateDataPropertyOrThrow is used to create a new own property of an object. It
throws a TypeError exception if the requested property update cannot be performed. The operation is
called with arguments O, P, and V where O is the object, P is the property key, and V is the value for the
property. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be CreateDataProperty(O, P, V).
ReturnlfAbrupt(success).

If successis false, throw a TypeError exception.
Return success.

onprLNE

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for
properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If
it does exist and is not configurable or if O is not extensible, [[DefineOwnProperty]] will return false causing this
operation to throw a TypeError exception.

© Ecma International 2015 57

oecnd

7.3.7 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperty]] internal method of
an object in a manner that will throw a TypeError exception if the requested property update cannot be
performed. The operation is called with arguments O, P, and desc where O is the object, P is the property
key, and desc is the Property Descriptor for the property. This abstract operation performs the following
steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be O.[[DefineOwnProperty]](P, desc).
ReturnlfAbrupt(success).

If success is false, throw a TypeError exception.
Return success.

ook wN e

7.3.8 DeletePropertyOrThrow (O, P)

The abstract operation DeletePropertyOrThrow is used to remove a specific own property of an object. It
throws an exception if the property is not configurable. The operation«is called with arguments O and P
where O is the object and P is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be O.[[Delete]](P).
ReturnIfAbrupt(success).

If success is false, throw a TypeError exception.
Return success.

S~ wNE

7.3.9 GetMethod (O, P)

The abstract operation-GetMethod is used to get the value of a specific property of an object when the
value of the property s expected to be a function. The operation is called with arguments O and P where
O is the object, P is the property key. This abstract operation performs the following steps:

Assert: IsPropertyKey(P) is true.

Let func be GetV(O, P).

ReturnIfAbrupt(func).

If func is either undefined or null, return undefined.

If IsCallable(func) is false, throw a TypeError exception.
Return func.

CUCIRD W N =

7.3.10 HasProperty (O, P)

The abstract operation HasProperty is used to determine whether an object has a property with the
specified property key. The property may be either an own or inherited. A Boolean value is returned. The
operation is called with arguments O and P where O is the object and P is the property key. This abstract
operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return O.[[HasProperty]](P).

58 © Ecma International 2015

oecha

7.3.11 HasOwnProperty (O, P)

The abstract operation HasOwnProperty is used to determine whether an object has an own property with
the specified property key. A Boolean value is returned. The operation is called with arguments O and P
where O is the object and P is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let desc be O.[[GetOwnProperty]](P).
ReturnIfAbrupt(desc).

If desc is undefined, return false.
Return true.

QarwNE

7.3.12 Call(F, V, [argumentsList])

The abstract operation Call is used to call the [[Call]] internal method of a function object. The operation is
called with arguments F, V , and optionally argumentsList where F is the function object, V is an
ECMAScript language value that is the this value of the'[[Call]], and argumentsList is the value passed to
the corresponding argument of the internal method. If'argumentsList is‘not present, an empty List is used
as its value. This abstract operation performs the following steps:

1. ReturnifAbrupt(F).

2. If argumentsList was not passed, let argumentsList be a new empty List.
3. If IsCallable(F) is false, throw a TypeError exception.

4. Return F.[[Call]](V, argumentsList).

7.3.13 Invoke(O,P, [argumentsList])

The abstract operation Invoke is used to call a method property of an object. The operation is called with
arguments O, P, and optionally argumentsList where O serves as both the lookup point for the property
and the this value of the call, P is the property key, and argumentsList is the list of arguments values
passed to the method. If argumentsList is not present, an empty List is used as its value. This abstract
operation performs the following steps:

1. Assert: P is a valid property key.

2. If argumentsList was not passed, let argumentsList be a new empty List.
3. Let func be GetV(O, P).

4. < Return Call(func, O, argumentsList).

7.3.14 Construct (F, [argumentsList], [newTarget])

The abstract operation Construct is used to call the [[Construct]] internal method of a function object. The
operation is called with arguments F, and optionally argumentsList, and newTarget where F is the function
object. argumentsList and-newTarget are the values to be passed as the corresponding arguments of the
internal method. If argumentsList is not present, an empty List is used as its value. If newTarget is not
present, F is used as its value. This abstract operation performs the following steps:

If newTarget was not passed, let newTarget be F.

If argumentsList was not passed, let argumentsList be a new empty List.
Assert: IsConstructor (F) is true.

Assert: IsConstructor (newTarget) is true.

Return F.[[Construct]](argumentsList, newTarget).

arwpE

NOTE If newTarget is not passed, this operation is equivalent to: new F(...argumentsList)

© Ecma International 2015 59

reCma

7.3.15 SetintegrityLevel (O, level)

The abstract operation SetintegrityLevel is used to fix the set of own properties of an object. This abstract
operation performs the following steps:

1.

NG~ wWN

Assert: Type(O) is Object.
Assert: level is either "sealed" or "frozen".
Let status be O.[[PreventExtensions]]().
ReturnIfAbrupt(status).
If status is false, return false.
Let keys be O.[[OwnPropertyKeys]]().
ReturnIfAbrupt(keys).
If level is "sealed", then
a. Repeat for each element k of keys,
i. Let status be DefinePropertyOrThrow(O, k, PropertyDescriptor{ [[Configurable]]: false}).
ii. ReturnlfAbrupt(status).
Else level is "frozen",
a. Repeat for each element k of keys,
i. LetcurrentDesc be O.[[GetOwnProperty]](k).
ii. ReturnlfAbrupt(currentDesc).
iii. If currentDesc is not undefined, then
1. If IsAccessorDescriptor(currentDesc) is true, then
a. Letdesc be the PropertyDescriptor{[[Configurable]]: false}.
2. Else,
a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }.
3. Let status be DefinePropertyOrThrow(0O, k, desc).
4. ReturnlfAbrupt(status).

10. Return true.

7.3.16 TestintegrityLevel (O, level)

The abstract operation TestIntegrityLevel is used to determine if the set of own properties of an object are
fixed. This abstract operation performs the following steps:

1.

2.

3.

4.

5.

6.

7.

8.

9.
a.
b.
C.

Assert: Type(O) is Object.

Assertilevel is either "sealed" or "frozen".

Let-status be IsExtensible(O).

ReturnIfAbrupt(status).

If status is true, return false

NOTE If the object is extensible, none of its properties are examined.
Let keys be O.[[OwnPropertyKeys]]().

ReturnlfAbrupt(keys).

Repeat for each element k of keys,

Let currentDescbe O.[[GetOwnProperty]](k).

ReturnIfAbrupt(currentDesc).

If currentDesc is not undefined, then

i. If currentDesc.[[Configurable]] is true, return false.

ii. Iflevel is "frozen" and IsDataDescriptor(currentDesc) is true, then
1. If currentDesc.[[Writable]] is true, return false.

10. Return true.

60

© Ecma International 2015

secmd

7.3.17 CreateArrayFromList (elements)

The abstract operation CreateArrayFromList is used to create an Array object whose elements are
provided by a List. This abstract operation performs the following steps:

1
2.
3.
4

5.

Assert: elements is a List whose elements are all ECMAScript language values.
Let array be ArrayCreate(0) (see 9.4.2.2).

Let n be 0.

For each element e of elements

a. Let status be CreateDataProperty(array, ToString(n), e).

b. Assert: status is true.

c. Incrementn by 1.

Return array.

7.3.18 CreateListFromArrayLike (obj [, elementTypes])

The abstract operation CreatelistFromArrayLike is used to create a List value whose elements are
provided by the indexed properties of an array-like object, obj. The optional argument elementTypes is a
List containing the names of ECMAScript Language Types that are allowed for element values of the List
that is created. This abstract operation performs the following steps:

1.
2.

©®NO G~ W

9.

ReturnlfAbrupt(obyj).

If elementTypes was not passed, let elementTypes be (Undefined, Null, Boolean, String, Symbol,
Number, Object).

If Type(obj) is not Object, throw a TypeError exception.

Let len be ToLength(Get(obj, "length")).

ReturnIfAbrupt(len).

Let list be an empty List.

Let index be 0.

Repeat while index < len

Let indexName be ToString(index).

Let next be Get(obj, indexName).

ReturnIfAbrupt(next).

If Type(next) is not an'element of elementTypes, throw a TypeError exception.
Append next as the last element of list.

. ~Set index.to index + 1.

eturn list.

O+"®a0 o

7.3:19 OrdinaryHaslinstance (C, O)

The abstract operation OrdinaryHaslInstance implements the default algorithm for determining if an object
O inherits from the instance object inheritance path provided by constructor C. This abstract operation
performs the following steps:

1.
2.

No ok w

If IsCallable(C) is false, return false.

If C has a [[BoundTargetFunction]] internal slot, then

a. Let BC bethe value of C’s [[BoundTargetFunction]] internal slot.
b. Return InstanceofOperator(O,BC) (see 12.9.4).

If Type(O) is not Object, return false.

Let P be Get(C, "prototype").

ReturnIfAbrupt(P).

If Type(P) is not Object, throw a TypeError exception.

Repeat

a. Let O be O.[[GetPrototypeOf]]().

© Ecma International 2015 61

{

»ecnd

b. ReturnlfAbrupt(O).

c. IfOisnull, return false.

d. If SameValue(P, O) is true, return true.

7.3.20 SpeciesConstructor (O, defaultConstructor)

The abstract operation SpeciesConstructor is used to retrieve the constructor that should be used to
create new objects that are derived from the argument object O. The defaultConstructor argument is the
constructor to use if O does not have a @@species property. This abstract operation performs the
following steps:

la

BOoo~NoO~WDN

0.

Assert: Type(O) is Object.

Let C be Get(O, "constructor").

ReturnIfAbrupt(C).

If C is undefined, return defaultConstructor.

If Type(C) is not Object, throw a TypeError exception.
Let S be Get(C, @ @species).

ReturnlfAbrupt(S).

If S is either undefined or null, return defaultConstructor.
If IsConstructor(S) is true, return S.

Throw a TypeError exception.

7.3.21 EnumerableOwnNames (O)

When the abstract operation EnumerableOwnNames is called with Object O the following steps are

taken:
1. Assert: Type(O) is Object.
2. Let ownKeys be O.[[OwnPropertyKeys]]().
3. ReturnIfAbrupt(ownKeys).
4. Let names be a.new empty List.
5. Repeat, for each element key of ownKeys in List order
a. If Type(key) is String, then
i. Let desc be O.[[GetOwnProperty]](key).
ii. ReturnlfAbrupt(desc).
ili. If desc is not undefined, then
1. If desc.[[Enumerable]] is true, append key to names.
6. Order the elements of names so they are in the same relative order as would be produced by the
Iterator that would be returned if the [[Enumerate]] internal method was invoked on O.
7. Return names.
NOTE The order of elements is returned list is the same as the enumeration order that used by a for-in
statement.
7.3.22 GetFunctionRealm (obj), [Deleted: Abstract Operation

The abstract operation GetFunctionRealm with argument obj performs the following steps:

1.
2.

3.

62

Assert: obj is a callable object.

If obj has a [[Realm]] internal slot, then

a. Return obj’s [[Realm]] internal slot.

If obj is a Bound Function exotic object, then

a. Lettarget be obj’s [[BoundTargetFunction]] internal slot.
b. Return GetFunctionRealm(target).

© Ecma International 2015

secmd

4. If obj is a Proxy exotic object, then
a. If the value of the [[ProxyHandler]] internal slot of obj is null, throw a TypeError exception.
b. Let proxyTarget be the value of obj’s [[ProxyTarget]] internal slot.

¢. [Return GetFunctionRealm(proxyTarget). | [Deleted: If proxyTarget is not null, Rr

5. Return the running execution context’s Realm.

NOTE Step 5 will only be reached if target is @ non-standard exotic function object that does not have a [[Realm]] | [Deleted: a revoked proxy functions or

internal slot.

7.4 Operations on Iterator Objects
See Common lteration Interfaces (25.1).
7.4.1 Getlterator (obj, method)

The abstract operation Getlterator with argument obj and optional argument method performs. the following
steps:

1. ReturnIfAbrupt(obj).

2. If method was not passed, then

a. Let method be GetMethod(obj, @ @iterator).

b. ReturnlfAbrupt(method).

Let iterator be Call(method,obj).

ReturnlfAbrupt(iterator).

If Type(iterator) is not Object, throw a TypeError exception.
Return iterator.

o 0k w

7.4.2 lteratorNext (iterator; value)
The abstract operationIteratorNext with argument iterator and optional argument value performs the
following steps:

1. If value was not passed, then
a. Let result be Invoke(iterator, "next", « »).
2. Else,
a. Let result be Invoke(iterator, "next", «value»).
3. <ReturnIfAbrupt(result).
4. If Type(result) is not Object, throw a TypeError exception.
5. Return result.

7.4.3 lteratorComplete (iterResult)

The abstract operation IteratorComplete with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return ToBoolean(Get(iterResult, "done™")).

7.4.4 lteratorValue (iterResult)

The abstract operation IteratorValue with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return Get(iterResult, "value").

© Ecma International 2015 63

oecmad

7.4.5 lteratorStep (iterator)

The abstract operation lteratorStep with argument iterator requests the next value from iterator and
returns either false indicating that the iterator has reached its end or the IteratorResult object if a next
value is available. IteratorStep performs the following steps:

Let result be IteratorNext(iterator).
ReturnIfAbrupt(result).

Let done be IteratorComplete(result).
ReturnIfAbrupt(done).

If done is true, return false.

Return result.

QarwNE

7.4.6 lIteratorClose(iterator, completion)

The abstract operation IteratorClose with arguments iterator<and completion is used to notify an iterator
that it should perform any actions it would normally perform‘when it has reached its completed state:

1. Assert: Type(iterator) is Object.

2. Assert: completion is a Completion Record.

3. Letreturn be GetMethod(iterator, "return").

4. ReturnlfAbrupt(return).

5. If return is undefined, return completion.

6. Let innerResult be Call(return, iterator, « »).

7. If completion.[[type]] is throw, return completion:

8. If innerResult.[[type]] is throw, return innerResult.

9. If Type(innerResult.[[value]]) is not Object, throw-a TypeError exception.
10. Return completion.

7.4.7 CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject with arguments value and done creates an object that
supports the IteratorResult interface by performing the following steps:

1. Assert: Type(done) is Boolean.

2. Let objbe ObjectCreate(%ObjectPrototype%).

3. Perform CreateDataProperty(obj, "value", value).
4. Perform CreateDataProperty(obj, "done™", done).
5. Return obj.

7.4.8 Createlistlterator (list)

The abstract operation CreateListlterator with argument list creates an Iterator (25.1.1.2) object whose
next method returns the successive elements of list. It performs the following steps:

1. Letiterator be ObjectCreate(%lteratorPrototype%, «[[IteratorNext]], [[IteratedList]],
[[ListlteratorNextIndex]]»).

Set iterator’s [[IteratedList]] internal slot to list.

Set iterator’s [[ListlteratorNextIndex]] internal slot to O.

Let next be a new built-in function object as defined in Listlterator next (7.4.8.1).
Set iterator’s [[IteratorNext]] internal slot to next.

Perform CreateMethodProperty(iterator, "next", next).

No o kwd

Return iterator.

64 © Ecma International 2015

[Deleted: 25.1.1.225.1.1.225.1.1.225.1.2

[Deleted: 7.4.8.17.4.8.11.1.1.1

[Deleted: Let status be

[Deleted: Data

secmd

7.4.8.1 Listlterator next()

The Listlterator next method is a standard built-in function object (clause 17) that performs the following
steps:

1. Let O be the this value.
2. Let f be the active function object.
3. If O does not have a [[IteratorNext]] internal slot, throw a TypeError exception.
4. Let next be the value of the [[IteratorNext]] internal slot of O.
5. If SameValue(f, next) is false, throw a TypeError exception.
6. If O does not have a [[IteratedList]] internal slot, throw a TypeError exception.
7. Let list be the value of the [[IteratedList]] internal slot of O.
8. Let index be the value of the [[ListlteratorNextIndex]] internal slot of O.
9. Let len be the number of elements of list.
10. If index > len, then
a. Return CreatelterResultObject(undefined, true).
11. Set the value of the [[ListlteratorNextIndex]] internal slot of O to index+1.
12. Return CreatelterResultObject(list[index], false).

NOTE A Listlterator next method will throw an exception if applied to.any object other than the one with which it
was originally associated.

7.4.9 CreateCompoundlterator (iteratorl, iterator2)

The abstract operation CreateCompoundlterator with arguments iteratorl and iterator2 creates an lterator
(25.1.1.2) object whose next method returns the successive.elements of iteratorl followed by the |
successive elements of iterator2. It performs the following steps:

1. Let iterator be ObjectCreate(%IlteratorPrototype%, «[[Iterator1]], [[Iterator2]], [[State]],
[[IteratorNext]]»).

Set iterator’s [[Iteratorl]] internal slot to iteratorl.

Set iterator’s/[[Iterator2]] internal slot to iterator2.

Set iterator’s [[State]] internal slot-to. 1.

Let next be a new built-infunction object as defined in Compoundlterator next (7.4.9.1).
Set iterator’s [[IteratorNext]] internal slot to next.

Perform CreateMethodProperty(iterator, "next", next). | [Deleted: Let status be

© N OA~WN

Return iterator. [Deleted: Data

7.49.1 Compoundlterator next()

The Compoundlterator next method is a standard built-in function object that performs the following
steps:

Let O be the this.value.

Let f be the active function object.

If O does not have a [[IteratorNext]] internal slot, throw a TypeError exception.
Let next be the value of the [[IteratorNext]] internal slot of O.

If SameValue(f, next) is false, throw a TypeError exception.

If O does not have a [[Iteratorl]] internal slot, throw a TypeError exception.
Assert: O is an object created and initialized by CreateCompoundIterator.
Let state be the value of O’s [[State]] internal slot.

If state = 1, then

a. Letiteratorl be the value of O’s [[Iteratorl1]] internal slot.

b. Letresultl be IteratorStep(iteratorl).

©ONTrWNE

© Ecma International 2015 65

oecnd

c. If resultl is not false, then
i. Return resultl.
d. Set O’s [[State]] internal slot to 2.
10. Let iterator2 be the value of O’s [[lterator2]] internal slot.
11. Return IteratorNext(iterator2).

NOTE A Compoundlterator next method will throw an exception if applied to any object other than the one with
which it was originally associated.

8 Executable Code and Execution Contexts

8.1 Lexical Environments

A Lexical Environment is a specification type used to define.the association of Identifiers to specific
variables and functions based upon the lexical nesting structure of ECMAScript code. A Lexical
Environment consists of an Environment Record and a- possibly null reference to an outer Lexical
Environment. Usually a Lexical Environment is associated with some specific syntactic structure of
ECMAScript code such as a FunctionDeclaration, a BlockStatement, or aCatch clause of a TryStatement and
a new Lexical Environment is created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own
outer Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner
Lexical Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then
the Lexical Environments of each of the nested functions will have as their outer Lexical Environment the
Lexical Environment of the current evaluation of the 'surrounding function.

A global environment'is a Lexical-Environment.which does not have an outer environment. The global
environment’s outer environment reference is null. A global environment’'s environment record may be
prepopulated with identifier bindings and includes an associated global object whose properties provide
some of .the global environment’s identifier bindings. This global object is the value of a global
environment’s this binding. As ECMAScript code is executed, additional properties may be added to the
global object and the initial properties may be modified.

A module environment is a Lexical Environment that contains the bindings for the top level declarations of
a Module. It also contains the bindings that are explicitly imported by the Module. The outer environment of
a module environment is a global environment.

A function environment is a Lexical Environment that corresponds to the invocation of an ECMAScript
function object. A function environment may establish a new this binding. A function environment also
captures the state necessary to support super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not

correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

66 © Ecma International 2015

oecha

8.1.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative
environment records and object environment records. Declarative environment records are used to define
the effect of ECMAScript language syntactic elements such as FunctionDeclarations, VariableDeclarations,
and Catch clauses that directly associate identifier bindings with ECMAScript language values. Object
environment records are used to define the effect of ECMAScript elements such as WithStatement that
associate identifier bindings with the properties of some object. Global Environment Records and
Function Environment Records are specializations that are used for specifically for Script global
declarations and for top-level declarations within functions.

For specification purposes Environment Record values are values of the Record specification type and
can be thought of as existing in a simple object-oriented hierarchy where Environment Record is an
abstract class with three concrete subclasses, declarative environment record, object environment record,
and global environment record. Function environment records and module environment records are
subclasses of declarative environment record. The abstract class includes the abstract specification
methods defined in Table 15. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

© Ecma International 2015 67

oecmad

Table 15 — Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an environment record has a binding for the String
value N. Return true if it does and false if it does not

CreateMutableBinding(N, D)

Create a new but uninitialized mutable binding in an environment
record. The String value N is the text of the bound name. If the
optional Boolean argument D is true<the binding is may be
subsequently deleted.

CreatelmmutableBinding(N, S)

Create a new but uninitialized immutable binding in an
environment record. The String<value N is the text of the bound
name. If S is true then attempts to access the value of the binding
before it is initialized or set.t after it has been initialized will always
throw an exception, regardless of the strict mode setting of
operations that reference that binding. S is an optional parameter
that defaults to false.

InitializeBinding(N,V)

Set the value of an already existing but uninitialized binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and is a value of any
ECMAScript language type.

SetMutableBinding(N,V, S)

Set(the value of an already. existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type: S is a Boolean flag. If Sis true and the
binding cannot be set throw a TypeError exception.

GetBindingValue(N,S)

Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. S is used to identify references originating in_strict mode
code or_that otherwise require strict mode binding reference

semantics. If S is true and the binding does not exist throw a
ReferenceError exception. [f the binding exists but is uninitialized
a ReferenceError is thrown, regardless of the value of S|

DeleteBinding(N)

Delete a binding from an environment record. The String value N is
the text of the bound name. If a binding for N exists, remove the
binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

8.1.11

HasThisBinding() Determine if an environment record establishes a this binding.
Return true if it does and false if it does not.
HasSuperBinding() Determine if an environment record establishes a super method
binding. Return true if it does and false if it does not.
WithBaseObiject () If this environment record is associated with a with statement,
return the with object. Otherwise, return undefined.
Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing
variable, constant, let, class, module, import, and/or function declarations. A declarative environment
record binds the set of identifiers defined by the declarations contained within its scope.

© Ecma International 2015

[Deleted: references

Comment [AWB241]: Note that this isn’'t a
breaking change from ES5 because in ES5 all
immutable bindings were immediately initializd.

oecha

The behaviour of the concrete specification methods for Declarative Environment Records is defined by
the following algorithms.

8.1.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply
determines if the argument identifier is one of the identifiers bound by the record:

1. Let envRec be the declarative environment record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.
3. Return false.

8.1.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding: for declarative environment records
creates a new mutable binding for the name N that is uninitialized. A binding must not already exist in this
Environment Record for N. If Boolean argument D is provided and has the value true the new binding is
marked as being subject to deletion.

1. LetenvRec be the declarative environment record for which the'method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create a mutable binding in envRec for N and record that it is uninitialized. If D is true record that
the newly created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletion(empty).

8.1.1.1.3 CreatelmmutableBinding (N, S)

The concrete Environment Record-method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is uninitialized. A binding must not already exist in
this environment record for N. If Boolean argument S is provided and has the value true the new binding
is marked as a strict binding.

1. LetenvRec be the declarative environment record for which the method was invoked.

2. Assert: envRec does not already have a binding.for N.

3. Create an immutable binding in envRec for N and record that it is uninitialized. If S is true record
that-the newly created binding is a strict binding.

4. Return NormalCompletion(empty).

8.1.1.1.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for declarative environment records is used to
set the bound. value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. An uninitialized binding for N must already exist.

1. Let envRec be the declarative environment record for which the method was invoked.
2. Assert: envRec must have an uninitialized binding for N.

3. Set the bound value for N in envRec to V.

4. Record that the binding for N in envRec has been initialized.

5. Return NormalCompletion(empty).

© Ecma International 2015 69

oecnd

8.1.1.1.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records
attempts to change the bound value of the current binding of the identifier whose name is the value of the
argument N to the value of argument V. A binding for N normally already exist, but in rare cases it may
not. If the binding is an immutable binding, a TypeError is thrown if S is true.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. If envRec does not have a binding for N, then

a. If Sis true throw a ReferenceError exception.

b. Perform envRec.CreateMutableBinding(N,, true).

c. [Perform envRec.InitializeBinding(N, V).

d. Return NormalCompletion(empty).

Deleted: Call the

Deleted: concrete method of envRec with

arguments
3. If the binding for N in envRec is a strict binding, let S be true.]
4. If the binding for N in envRec has not yet been initialized.throw a ReferenceError exception. Deleted:
5. Else if the binding for N in envRec is a mutable binding; change its bound value to V. Deleted: and
6. Else this must be an attempt to change the value of an immutable binding so if S is true throw a Deleted: Call the

TypeError exception.

7. Return NormalCompletion(empty). Deleted: concrete method of envRec with

arguments
Deleted: and

e U U .)

NOTE An example of ECMAScript code that results in a missing binding at step 2 is:

function f() {eval("var x; x = (delete x, 0);")}
8.1.1.1.6 GetBindingValue(N,S)
The concrete Environment Record method GetBindingValue for. declarative environment records simply

returns the value of its bound identifier whose name is the value of the argument N. |f the binding exists
but is uninitialized a ReferenceError is thrown, regardless of the value of Sﬁ

Comment [AWB242]: Note that this isn’'t a

o . . . breaking change from ES5 because in ES5 all
1. LetenvRec be the declarative environment record for which the method was invoked. immutakgﬂe bmgmgs were immediately initializd.

2. Assert: envRec has a binding for N.
3. If the bindingfor N in envRec is an uninitialized binding, throw a ReferenceError exception.
4. Return the value currently bound to.N in envRec.

8.1.1.1.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only
delete’bindings that have been explicitly designated as being subject to deletion.

1. Let envRec be the declarative environment record for which the method was invoked.

2. Assert: envRec has a binding for the name that is the value of N, [Deleted: If)
3. “If the binding for N in envRec cannot be deleted, return false. [Deleted: does not have]
4. Remove the bindingfor N from envRec. “

5. Return true. { Deleted: , return true]

8.1.1.1.8 HasThisBinding ()

Regular Declarative Environment Records do not provide a this binding.

1. Return false.

8.1.1.1.9 HasSuperBinding ()

Regular Declarative Environment Records do not provide a super binding.

70 © Ecma International 2015

oecha

1. Return false.

8.1.1.1.10 WithBaseObiject()

Declarative Environment Records always return undefined as their WithBaseObject.
1. Return undefined.

8.1.1.2 Object Environment Records

Each object environment record is associated with an object called<its binding object. An object
environment record binds the set of string identifier names that directly.correspond to the property names
of its binding object. Property keys that are not strings in the form of ‘an IdentifierName are not included in
the set of bound identifiers. Both own and inherited properties are included in the set regardless of the
setting of their [[Enumerable]] attribute. Because properties can be dynamically added and deleted from
objects, the set of identifiers bound by an object environment record may potentially change as a side-
effect of any operation that adds or deletes properties. Any bindings that are created as a result of such a
side-effect are considered to be a mutable binding even if the Writable attribute of the corresponding
property has the value false. Immutable bindings do not exist for object environment records.

Object environment records created for with statements (13.10) can provide their binding object as an
implicit this value for use in function calls. The capability is controlled by a withEnvironment Boolean value

that is associated with each object environment record. By default, the value of withEnvironment is false
for any object environment record.

The behaviour of the concrete specification methods for-Object Environment Records is defined by the
following algorithms.

8.1.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property-whose name is the value of the argument N:

Let envRec be the objectenvironment record for which the method was invoked.
Let bindings be the binding object for envRec.

Let foundBinding be HasProperty(bindings, N)
ReturnifAbrupt(foundBinding).

If foundBinding is false, return false.

If the withEnvironment flag of envRec is false, return true.
Let unscopables be Get(bindings, @@unscopables).
ReturnIfAbrupt(unscopables).

If Type(unscopables) is Object, then

a. Let blocked be Get(unscopables, N).

b. ReturnifAbrupt(blocked).

c. If ToBoolean(blocked) is true, return false.

10. Return true.

© oA G W

8.1.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates
in an environment record’s associated binding object a property whose name is the String value and
initializes it to the value undefined. If Boolean argument D is provided and has the value true the new
property’s [[Configurable]] attribute is set to true, otherwise it is set to false.

© Ecma International 2015 71

[Formatted: Font: Bold

cecmd

Let envRec be the object environment record for which the method was invoked.

Let bindings be the binding object for envRec.

If D is true then let configValue be true otherwise let configValue be false.

Return DefinePropertyOrThrow(bindings, N, PropertyDescriptor{[[Value]]:undefined, [[Writable]]:
true, [[Enumerable]]: true , [[Configurable]]: configValue}).

ArwnNE

NOTE Normally envRec will not have a binding for N but if it does, the semantics of DefinePropertyOrThrow may
result in an existing binding being replaced or shadowed or cause an abrupt completion to be returned.

8.1.1.2.3 CreatelmmutableBinding (N, S)

The concrete Environment Record method CreatelmmutableBinding is never used within this
specification in association with Object environment records.

8.1.1.2.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for object environment records is.used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the
value of argument V. An uninitialized binding for N must already exist.

1. LetenvRec be the object environment record for which the method was invoked.

2. Assert: envRec must have an uninitialized binding for N.
3. Record that the binding for N in envRec has been initialized.
4. _Return envRec.SetMutableBinding(N, V, false).
NOTE In_this specification, all uses of CreateMutableBinding and CreatelmmutableBinding for object

environment records are immediately followed by a callto InitializeBinding for the same name. Hence,
implementations do not need to expligitly track the initialization state of individual object environment record bindings.

8.1.1.25 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to
set the value of the environment record’s associated binding object’s property whose name is the value of
the argument N to the value of argument V. A property named N normally already exists but if it does not
or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. Let envRec be the object environment record for which the method was invoked.
2.« Let bindings be the binding object for envRec.
3. Return Set(bindings, N, V, and S).

8.1.1.2.6. GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the
value of its associated binding object’s property whose name is the String value of the argument identifier
N. The property should already exist but if it does not the result depends upon the value of the S
argument:

Let envRec be the object environment record for which the method was invoked.

Let bindings be the binding object for envRec.

Let value be HasProperty(bindings, N).

ReturnIfAbrupt(value).

If value is false, then

a. If Sis false, return the value undefined, otherwise throw a ReferenceError exception.
6. Return Get(bindings, N).

arowneE

2 © Ecma International 2015

[Deleted: Put(

oecha

8.1.1.2.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

1. LetenvRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return bindings.[[Delete]](N).

8.1.1.2.8 HasThisBinding ()

Regular Object Environment Records do not provide a this binding.
1. Return false.
8.1.1.2.9 HasSuperBinding ()

Regular Object Environment Records do not provide a super binding.

1. Return false.
8.1.1.2.10 WithBaseObject()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag
is true.

1. LetenvRec be the object environment record for which the method was invoked.
2. If the withEnvironment flag of envRec is true, return the binding object for envRec.
3. Otherwise, return undefined.

8.1.1.3 Function Environment Records

A function environment record is a declarative environment record that is used to represent the top-level
scope of a function and, if the function is not an ArrowFunction, provides a this binding. If a function is
not an ArrowFunction function-and references super, its function environment record also contains the
state that is'used to perform super method invocations from within the function.

Function environment records have the additional state fields listed in Table 16.

© Ecma International 2015 73

cecmd

Table 16 — Additional Fields of Function Environment Records

Field Name Value Meaning
| [[thisValue]] Any, Jhis is the this value used for this invocation of
. the function.
thisBindingStatus "lexical" | If the value is "lexical", this is an
"initialized" ArrowFunction and does not have a local this
"uninitialized" value.
| [[FunctionObject]] Object The Function Object whose invocation caused
this environment record to be created.
[[HomeODbject]] Object | undefined If the associated function has super property

accesses and'is not an ArrowFunction,
[[HomeObject]] is the object that the function is
bound to as a method. The default value for
[[HomeODbiject]] is undefined.

[[NewTarget]] Object | undefined If this environmentrecord was created by the
[[Construct]] internal method, [[NewTarget]] is
the value of the [[Construct]] newTarget
parameter. Otherwise, its value is undefined.

Function environment records support all of Declarative Environment Record methods listed in Table 15
and share the same specifications for all of those methods except for HasThisBinding and
HasSuperBinding. In addition, Function Environment Records support the methods listed in Table 17:

Table 17 — Additional Methods of Function Environment Records

Method Purpose
BindThisValue(V) Set the [[thisValue]] and record that it has been initialized.
GetThisBinding() Return the value of this environment record’s this binding._Throws a

ReférenceErrorifithe this binding has not been initialized.

GetSuperBase() Return the object that is the base for super property accesses bound
in this environment record. The object is derived from this environment
record’s [[HomeObject]] field. The value undefined indicates that
super property accesses will produce runtime errors.

The behaviour of the additional concrete specification methods for Function Environment Records
defined by the following algorithms:

S

8.1.1.3.1 BindThisValue(V)

Let envRec be the function environment record for which the method was invoked.
Assert: envRec.[[thisBindingStatus]] is not "lexical".
If envRec.[[thisBindingStatus]] is "initialized", throw a ReferenceError exception.

Set envRec.[[thisValue]] to V.
Set envRec.[[thisBindingStatus]] to "initialized",

@ gk win e

Return V.

74 © Ecma International 2015

J

[Deleted: |empty

Deleted: If the value is empty, this is an
ArrowFunction and does not have a local this
value. Otherwise, t

[eleted: [fthishitializationstate]])
k [Formatted: Font: (Default) Courier New, Bold J

Bold

{ Formatted: Font: (Default) Times New Roman, }

) [Formatted: Font: (Default) Courier New, Bold

Deleted: InitializationState

Deleted: true

Deleted: InitializationState

o U

Deleted: true

@

o

ecma

8.1.1.3.2 HasThisBinding ()

1. LetenvRec be the function environment record for which the method was invoked.

2. If envRec.[[thisBindingStatus]] is "lexical", return false; otherwise, return true. [Deleted: Value

[Deleted: has the value empty

8.1.1.3.3 HasSuperBinding ()

1. LetenvRec be the function environment record for which the method was invoked.

2. If envRec.[[thisBindingStatug]] is "lexical™", return false. | (Deleted: value

3. If envRec.[[HomeObject]] has the value undefined, return false, otherwise, return true. [Deleted: has the value empty

8.1.1.3.4 GetThisBinding ()

1. LetenvRec be the function environment record for which the method was invoked.

2. Assert: envRec.[[thisBindingStatus]] is not "lexical".

3. If envRec.[[thisBindingStatus]] is "uninitialized", throw a ReferenceError exception. [Deleted: InitializationState
4. Return envRec.[[thisValue]]. { Deleted: false

8.1.1.3.5 GetSuperBase ()

1. Let envRec be the function environment record for which the method was invoked.

2. Let home be the value of envRec.[[HomeObject]].

3. If home has the value undefined, return undefined.

4. Assert: Type(home) is Object.

5. Return home,[[GetPrototypeOf]](). | [Deleted: the result of calling
- [Deleted: s

8.1.1.4 Global Environment-Records

[Deleted: internal method

A global environment record is used to represent the outer most scope that is shared by all of the
ECMAScript Script elements that are processed in a common Realm (8.2). A global environment record
provides the bindings for built-in globals (clause '18), properties of the global object, and for all
declarations that are not function code and that.occur within Script productions.

A global environment record is logically a single record but it is specified as a composite encapsulating an
object environment record and a declarative environment record. The object environment record has as
its base object the global object of the associated Realm. This global object is the value returned by the
global environment record’s GetThisBinding concrete method. The object environment record component
of‘a global environment record contains the bindings for all built-in globals (clause 18) and all bindings
introduced by a FunctionDeclaration, GeneratorDeclaration, or VariableStatement contained in global code.
The bindings for all other ECMAScript declarations in global code are contained in the declarative
environment record component of the global environment record.

Properties may be created directly on a global object. Hence, the object environment record component
of a global environment record may contain both bindings created explicitly by FunctionDeclaration,
GeneratorDeclaration, or VariableDeclaration declarations and binding created implicitly as properties of the
global object. In order to identify which bindings were explicitly created using declarations, a global
environment record maintains a list of the names bound using its CreateGlobalVarBindings and
CreateGlobalFunctionBindings concrete methods.

Global environment records have the additional fields listed in Table 18 and the additional methods listed
in Table 19.

© Ecma International 2015 75

oecmd

Table 18 — Additional Fields of Global Environment Records

Field Name Value Meaning
[[ObjectRecord]] Object Environment | Binding object is the global object. It contains global
Record built-in bindings as well as FunctionDeclaration,

GeneratorDeclaration, and VariableDeclaration
bindings in global code for the associated Realm.

[[DeclarativeRecord]] | Declarative Contains bindings for all declarations in global code
Environment Record | for the associated Realm code except for
FunctionDeclaration, GeneratorDeclaration, and
VariableDeclaration bindings.

[[VarNames]] List of String The string names bound by FunctionDeclaration,
GeneratorDeclaration, and VariableDeclaration
declarations in global code for the associated Realm.

Table 19 — Additional Methods of Global Environment Records

Method Purpose
GetThisBinding() Return the value of this environment record’s this binding.
HasVarDeclaration (N) Determines if the argument identifier has a binding in this

environment record that was created using a
VariableDeclaration, FunctionDeclaration, or GeneratorDeclaration.

HasLexicalDeclaration (N) Determines if the ‘argument identifier has a binding in this
environment record that was created using a lexical declaration
such as a LexicalDeclaration or a ClassDeclaration.

HasRestrictedGlobalProperty (N) Determines if the argument is the name of a global object
property that may not be shadowed by a global lexically binding.

CanDeclareGlobalVar(N) Determines if a corresponding CreateGlobalVarBinding call
would succeed if called for the same argument N.

CanDeclareGlobalFunction (N) Determines..if a corresponding CreateGlobalFunctionBinding
call would succeed if called for the same argument N.

| CreateGlobalVarBinding(N, D) Used to create and initialize to undefined a global var binding,
in the [[ObjectRecord]] component of a global environment
record. The binding will be a mutable binding. The
corresponding global object property will have attribute values
appropriate for a var. The String value N is the bound name. If
D is true the binding may be deleted. Logically equivalent to
CreateMutableBinding followed by a SetMutableBinding but it
allows var declarations to receive special treatment.

{ Deleted: s

| CreateGlobalFunctionBinding(N, V, D) | Create and initialize a global function binding, in the
[[ObjectRecord]] component of a global environment record.
The binding will be a mutable binding. The corresponding global
object property will have attribute values appropriate for a
function. The String value N is the bound name. V is the
initialization value. If the optional Boolean argument D is true
the binding is may be deleted. Logically equivalent to
CreateMutableBinding followed by a SetMutableBinding but it
allows function declarations to receive special treatment.

76 © Ecma International 2015

[Deleted: s

@

o

ecma

The behaviour of the concrete specification methods for Global Environment Records is defined by the
following algorithms.

8.1.14.1 HasBinding(N)

The concrete environment record method HasBinding for global environment records simply determines if
the argument identifier is one of the identifiers bound by the record:

1. Let envRec be the global environment record for which the method was invoked.

2. Let DclRec be envRec.[[DeclarativeRecord]].

3. If PclRec, HasBinding(N) is true, return true. |
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ObjRec,HasBinding(N). | ‘

Deleted: the result of calling

Deleted: s

Deleted: concrete method with argument

8.1.14.2 CreateMutableBinding (N, D) Deleted: the result of calling

Deleted: s

The concrete environment record method CreateMutableBinding for global environment records creates a
new mutable binding for the name N that is uninitialized. The binding is created in the associated
DeclarativeRecord. A binding for N must not already exist in the DeclarativeRecord. If Boolean argument
D is provided and has the value true the new binding is marked as being subject to deletion.

o L U L

Deleted: concrete method with argument

1. Let envRec be the global environment record for which the method was invoked.

2. Let DclRec be envRec.[[DeclarativeRecord]].

3. Jf DclRec.HasBinding(N),is true, throw a TypeError exception. Deleted: <#>Assert: DclRec does not already
4. Return DclRec.CreateMutableBinding(N, D). \ have a binding for NLet alreadyThere be

DclRec.the result of calling the HasBinding(

R concrete method of of DclRec with argument N)..{
8.1.14.3 CreatelmmutableBinding (N, S) <#>ReturnifAbrupt(alreadyThere).|

{ Deleted: alreadyThere J

The concrete Environment-Record method CreatelmmutableBinding for global environment records
creates a new immutable binding for the name N that is uninitialized. A binding must not already exist in
this environment record for N. If Boolean argument 'S is provided and has the value true the new binding
is marked as a strict.binding.

1. LetenvRec be the global environment record.for which the method was invoked.

2. Let DclRec be envRec.[[DeclarativeRecord]].
3. Jf DelRee.HasBinding(N), is true, throw a TypeError exception. | Deleted: <#>Let alreadyThere be DcIRec.the
4. Return DclRec:CreatelmmutableBinding(N, S). \ result of calling the HasBinding concrete method

of of DclRec with argument (N).{
<#>ReturnIfAbrupt(alreadyThere).{

{ Deleted: alreadyThere]

8.1.1.4.4 |InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for global environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the
value of argument V. An uninitialized binding for N must already exist.

1. LetenvRec be the global environment record for which the method was invoked.

2. Let DclRec be envRec.[[DeclarativeRecord]].

3. If DclRec.HasBinding(N) is true, then

a. Return DclRec.InitializeBinding(N, V).

Assert: If the binding exists it must be in the object environment record.

Let ObjRec be envRec.[[ObjectRecord]].

Return ObjRec, InitializeBinding(N, V). '

o o~

Deleted: the result of calling

Deleted: ’s

Deleted: concrete method with arguments
Deleted: and

o

© Ecma International 2015 7

oecnd

8.1.145 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for global environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N
to the value of argument V. If the binding is an immutable binding, a TypeError is thrown if S is true. A
property named N normally already exists but if it does not or is not currently writable, error handling is
determined by the value of the Boolean argument S.

1. LetenvRec be the global environment record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].

3. If PcIRec.HasBinding(N) is true, then [Deleted: the result of calling

a. Return DclRec.SetMutableBinding(N, V, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ObjRec.SetMutableBinding(N, V, S).

8.1.14.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for global environment records returns the
value of its bound identifier whose name is the value of the argument‘N. If the binding is an uninitialized
binding throw a ReferenceError exception. A property named N normally already exists but if it does not
or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. LetenvRec be the global environmentrecord for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then
a. Return DclRec.GetBindingValue(N, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ObjRec.GetBindingValue(N, S).

8.1.1.4.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for global environment records can only delete
bindings that have been explicitly designated.as being subject to deletion.

1. Let envRec be the global'environment record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].

3. If DclRec.HasBinding(N) is true, then

a. Return DclRec.DeleteBinding(N).

Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding ebject for ObjRec.

Let existingProp be globalObject.[[GetOwnProperty]]J(N).
ReturnlfAbrupt(existingProp).

0 |N OB

If existingProp, is true, then Deleted: ObjRec s .HasBinding concrete
a. Let status be ObjRec.DeleteBinding(N). method with argument (N)

b. ReturnlfAbrupt(status).
c. |If status is true, then
i. LetvarNames be envRec.[[VarNames]].
ii. If N is an element of varNames, remove that element from the varNames.
d. Return status.
9. Return true.

8.1.1.4.8 HasThisBinding ()

Global Environment Records always provide a this binding whose value is the associated global object.

78 © Ecma International 2015

oecha

1. Return true.

8.1.14.9 HasSuperBinding ()
1. Return false.

8.1.1.4.10 WithBaseObiject()

Global Environment Records always return undefined as their WithBaseObject.
1. Return undefined.

8.1.1.4.11 GetThisBinding ()

Let envRec be the global environment record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let bindings be the binding object for ObjRec.

Return bindings.

HwN e

8.1.1.4.12 HasVarDeclaration (N)

The concrete environment record method HasVarDeclaration for global environment records determines
if the argument identifier has a binding in this record that was created using a VariableStatement or a
FunctionDeclaration:

1. LetenvRec be the global environment record for which the method was invoked.
2. LetvarDeclaredNames be envRec.[[VarNames]].

3. If varDeclaredNames contains the value of N, return true.

4. Return false.

8.1.1.4.13 HasLexicalDeclaration (N)

The concrete environment record method HasLexicalDeclaration for global environment records
determines if the argument. identifier has a binding in this record that was created using a lexical
declaration such as a LexicalDeclaration or a ClassDeclaration:

1. Let envRec be the global environment record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. Return DclRec.HasBinding(N).

8.1.1.4.14 HasRestrictedGlobalProperty (N)

The concrete environment record method HasRestrictedGlobalProperty for global environment records
determines if the argument identifier is the name of a property of the global object that must not be
shadowed by a global lexically binding:

Let envRec be the global environment record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let existingProp be globalObject.[[GetOwnProperty]](N).
ReturnIfAbrupt(existingProp).

If existingProp is undefined, return false.

If existingProp.[[Configurable]] is true, return false.

Return true.

N~ wWNE

© Ecma International 2015 79

secma

NOTE Properties may exist upon a global object that were directly created rather than being declared using a
var or function declaration. A global lexical binding may not be created that has the same name as a non-configurable
property of the global object. The global property undefined is an example of such a property.

8.1.1.4.15 CanDeclareGlobalVar (N)

The concrete environment record method CanDeclareGlobalVar for global environment records
determines if a corresponding CreateGlobalVarBinding call would succeed .if called for the same
argument N. Redundant var declarations and var declarations for pre-existing global object properties are
allowed.

Let envRec be the global environment record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].
JLet globalObject pe the binding object for ObjRec.

Let hasProperty be HasOwnProperty(globalObject, N).
ReturnlfAbrupt(hasProperty).

If hasProperty is true, return true.

Let extensible be IsExtensible(globalObject).

ReturnlfAbrupt(extensible).
Return extensible.

©|0 N[@|TT|R» w =

8.1.1.4.16 CanDeclareGlobalFunction (N)

| The concrete environment record method CanDeclareGlobalFunction for global environment records

determines if a corresponding CreateGlobalFunctionBinding call would succeed if called for the same
argument N.

1. LetenvRec be the global environment record for-which the method was invoked.
2. Let ObjRec be envRec:[[ObjectRecord]].
3. Let globalObject be'the binding object for ObjRec.

| 4. et existingProp-be globalObject.[[GetOwnProperty]](N).

5. ReturnifAbrupt(existingProp).
6. If existingProp is undefined, return IsExtensible(globalObject).
7. Jf existingProp.[[Configurablel] is true, return true.

8. If IsDataDescriptor(existingProp) is true and existingProp has attribute values {.[[Writable]]: true,
[[Enumerable]]: true}, return true.
9. Return false.

8.11.4.17 CreateGlobalVarBinding (N, D)

The concrete Environment Record method CreateGlobalVarBinding for global environment records
creates and initializes a mutable binding in the associated object environment record and records the
bound name in the associated [[VarNames]] List. If a binding already exists, it is reused and assumed to
be initialized.

Let envRec be the global environment record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let hasProperty be HasOwnProperty(globalObject, N).
ReturnlfAbrupt(hasProperty).

Let extensible be IsExtensible(globalObject).

ReturnlfAbrupt(extensible).

If hasProperty, is false and extensible is true, then

RN G A (W N =

a. Let status be ObjRec.CreateMutableBinding(N, D).

80 © Ecma International 2015

Deleted: <#>If the result of calling ObjRec s
.HasBinding(concrete method with argument N)
is true, return true.y

Deleted: bindings]

Deleted: bindings)

Deleted: <#> CanDeclareGlobalFunctio
n (N)1

Deleted: <#>Let extensible be
IsExtensible(globalObject).
<#>ReturnIfAbrupt(extensible).|

<#>If the result of calling ObjRec s .HasBinding(
concrete method with argument N) is false, then
return, return extensible.f

Deleted: <#>return extensible.q]

Deleted: ObjRec s .HasBinding(concrete
method with argument N)

b. ReturnifAbrupt(status).
c. Let status be ObjRec.InitializeBinding(N, undefined).
d. ReturnlfAbrupt(status).

9. LetvarDeclaredNames be envRec.[[VarNames]].

10. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.

11. Return NormalCompletion(empty).

8.1.1.4.18 CreateGlobalFunctionBinding (N, V, D)

The concrete Environment Record method CreateGlobalFunctionBinding for global environment records
creates and initializes a mutable binding in the associated object environment record and records the
bound name in the associated [[VarNames]] List. If a binding already exists, it is replaced.

1. LetenvRec be the global environment record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].
Let globalObject be the binding object for ObjRec.
Let existingProp be globalObject.[[GetOwnProperty]](N).
ReturnIfAbrupt(existingProp).
If existingProp is undefined or existingProp.[[Configurable]] s true, then
a. Let desc be the PropertyDescriptor{[[Value]]:V, [[Writable]]: true, [[Enumerable]]: true ,
[[Configurable]]: D}.
7. Else,
a. Let desc be the PropertyDescriptor{[[Value]]:V }.
8. Let status be DefinePropertyOrThrow(globalObject; N, desc).
9. ReturnlfAbrupt(status).
10. Let status be Put(globalObject, V).
11. Record that the bindingfor N.in ObjRec has been initialized.
12. ReturnlfAbrupt(status).
13. Let varDeclaredNames be envRec.[[VarNames]].
14. If varDeclaredNames does not contain the value of N, then
a. Append-N to varDeclaredNames.
15. Return NormalCompletion(empty).

gk wn

NOTE Global function declarations are always represented as own properties of the global object. If possible, an
existing own property is reconfigured to have a standard set of attribute values._Steps 10-12 are equivalent to what

calling the InitializeBinding econcrete method would do and if globalObject is a Proxy will produce the same sequence

of Proxy trap calls.

8.1.1.5 = Module Environment Records

A module environment record is a declarative environment record that is used to represent the outer
scope of an ECMAScript: Module. In additional to normal mutable and immutable bindings, module
environment records also provide immutable import bindings which are bindings that provide indirect
access to a target binding that exists in another environment record.

Module environment records support all of the Declarative Environment Record methods listed in Table
15 and share the same specifications for all of those methods except for GetBindingValue, DeleteBinding,
HasThisBinding and GetThisBinding. In addition, module environment records support the methods listed
in Table 20:

© Ecma International 2015 81

[Formatted: Font: Times New Roman

oecmad

Table 20 — Additional Methods of Module Environment Records

Method Purpose

CreatelmportBinding(N, M, N2) | Create an immutable indirect binding in a module environment
record. The String value N is the text of the bound name. M is a
Module Record (see 15.2.1.15), and N2 is a binding that exists
in M’s module environment record.

GetThisBinding() Return the value of this environment record’s this binding.

The behaviour of the additional concrete specification methods for Module Environment Records is

defined by the following algorithms:
8.1.1.5.1 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for module environment records returns the
value of its bound identifier whose name is the value of the argument N. However, if the binding is an
indirect binding the value of the target binding is returned. If the binding exists but is uninitialized a
ReferenceError is thrown, regardless of the value of S.

1. LetenvRec be the module environment record for which the'method was invoked.
2. Assert: envRec has a binding for N.
3. If the binding for N is an indirect binding, then
a. Let M and N2 be the indirection values provided when this binding for N was created.
b. If M is undefined, throw a ReferenceError exception.
c. LettargetER be M.[[Environment]]’s environment record.
d. Return targetER.GetBindingValue(N2, S).
4. If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.
5. Return the value currently bound to N in envRec.

NOTE Because a Module is always strict mode code, calls to GetBindingValue should always pass true as the
value of S.

8.1.1.5.2 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for module environment records refuses to
delete bindings.

1. Let envRec be the module environment record for which the method was invoked.
2. If envRec does not have a binding for the name that is the value of N, return true.
3. Return false.

NOTE Because the bindings of a module environment record are not deletable.

8.1.1.5.3 HasThisBinding ()

Module Environment Records provide a this binding.
1. Return true.
8.1.1.5.4 GetThisBinding ()

1. Return undefined.

82 © Ecma International 2015

secmd

8.1.15.5 CreatelmportBinding (N, M, N2)

The concrete Environment Record method CreatelmportBinding for module environment records creates

a new initialized immutable indirect binding for the name N. A binding must not already exist in this
environment record for N. M is a Module Record (see 15.2.1.15), and N2 is the name of a binding that |
exists in M’'s module environment record. Accesses to the value of the new binding will indirectly access
the bound value of value of the target binding.

1. LetenvRec be the module environment record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Assert: M is a Module Record.

4. Assert: When M.[[Environment]] is instantiated it will have a direct binding for N2.

5. Create an immutable indirect binding in envRec for N that references M and N2 as its target binding
and record that the binding is initialized.

6. Return NormalCompletion(empty).

8.1.2 Lexical Environment Operations

The following abstract operations are used in this specification to operate upon lexical environments:

8.1.2.1 GetldentifierReference (lex, name, strict), [Deleted: Abstract Operation

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and
a Boolean flag strict. The value of lex may be null.- When.called, the following steps are performed:

1. If lex is the value null, then

a. Return a value of type Reference whose base value is undefined, whose referenced name is
name, and whose strict-reference flag is strict.

Let envRec be lex’s environment record.

Let exists be envRec.HasBinding(name).

ReturnlfAbrupt(exists).

If exists is true, then

a. Return a value of type Reference whose base value is envRec, whose referenced name is name,
and whose strict reference flag is strict.

6. Else
a.~ Let outer be the value of /ex’s outer environment reference.
b. Return GetldentifierReference(outer, name, strict).

gk wn

8.1.2.2 NewDeclarativeEnvironment (E), [Deleted: Abstract Operation

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or
null as argument E the following steps are performed:

Let env be a new Lexical Environment.

Let envRec bea new declarative environment record containing no bindings.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

arwNE

8.1.2.3 NewObjectEnvironment (O, E), [Deleted: Abstract Operation

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical
Environment E (or null) as arguments, the following steps are performed:

© Ecma International 2015 83

8.1.2.4 NewFunctionEnvironment (F, newTarget),

@

»eCnad

arwpE

Let env be a new Lexical Environment.

Let envRec be a new object environment record containing O as the binding object.
Set env’s environment record to envRec.

Set the outer lexical environment reference of env to E.

Return env.

When the abstract operation NewFunctionEnvironment is called with arguments F and newTarget the
following steps are performed:

8.1.25 NewGlobalEnvironment (G),

1. Assert: F is an ECMAScript function.

2. Assert: Type(newTarget) is Undefined or Object.

3. Letenv be a new Lexical Environment.

4. LetenvRec be a new Function environment record containing.no bindings.

5. Set envRec.[[FunctionObject]] to F.

6. Jf F’s [[ThisMode]] internal slot is lexical, set envRec.[[thisBindingStatus]] to "lexical",
7. Else, Set envRec.[[thisBindingStatus]] to "uninitialized".

8. Let home be the value of F’s [[HomeObject]] internal slot.

9. Set envRec.[[HomeObject]] to home.

10. Set envRec.[[NewTarget]] to newTarget.

11. Set env’s environment record to be envRec.

12. Set the outer lexical environment reference of env to the value of F’s [[Environment]] internal slot.
13. Return env.

[

Deleted: Abstract Operation

Deleted: <#>Set
envRec.[[thisInitializationState]] to false.|

Deleted: thisValue

Deleted: empty

Deleted: <#>If F’s [[NeedsSuper]] internal slot
is true, then{

Formatted

Deleted: <#>If home is undefined, then throw a
ReferenceError exception.{

When the abstract operation-NewGlobalEnvironment is called with an ECMAScript Object G as its
argument, the following steps are performed:

8.1.2.6 NewModuleEnvironment (E),

1
2
3
4
5.
6.
7
8
9
1

0.

Let env be a new Lexical Environment.

Let objRec he a new object environment record containing G as the binding object.
Let dcIRec be a new declarative environment record containing no bindings.

Let globalRec be a new global environment record.

Set globalRec.[[ObjectRecord]] to objRec.

Set'globalRec.[[DeclarativeRecord]] to dcIRec.

Set globalRec.[[VarNames]] to a new empty List.

Set env’s environment record to.globalRec.

Set the outer lexical environment reference of env to null

Return env.

Y SN S N

When the abstract operation NewModuleEnvironment is called with a Lexical Environment argument E
the following steps are performed:

84

1
2.
3.
4
5

Let env be a new Lexical Environment.

Let envRec be a new module environment record containing no bindings.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

© Ecma International 2015

Deleted: <#>Else,{
<#>Set envRec.[['s HomeObject]] to
undefinedEmpty.{

Deleted: Abstract Operation

|
|
|
|
)
|
|

[

Deleted: Abstract Operation

secma

8.2 Code Realms

Before it is evaluated, all ECMAScript code must be associated with a Realm. Conceptually, a realm
consists of a set of intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that
is loaded within the scope of that global environment, and other associated state and resources.

A Realm is specified as a Record with the fields specified in Table 21:

Table 21 — Realm Record Fields

Field Name

Value

Meaning

[[intrinsics]]

Record whose field

These are the intrinsic values used by. code associated with

names are intrinsic | this Realm
keys and whose
values are objects
[[globalThis]] Object The global object for this Realm

[[globalEnv]]

Lexical Environment

The global environment for this Realm

[[templateMap]]

A List of Record{
[[strings]]: List,
[[array]]: Object}.

Template objects. are canonicalized separately for each
Realm using its [[templateMap]]. Each [[strings]] value is a
List containing, in source text order, the raw string values of
a TemplateLiteral that has been evaluated. The associated
[[array]] value is the corresponding template object that is
passed to a tag function.

An implementation may define other, implementation specific fields.

8.2.1 CreateRealm (),

[Formatted: Normal, Space Before: 12 pt

[Deleted: Abstract Operation

The abstract operation CreateRealm with no arguments performs the following steps:

QA wN e

8.2.2° Createlntrinsics (realmRec),

Let realmRec be a new Record.
Perform Createlntrinsics(realmRec).

Set realmRec.[[globalThis]] to undefined.

Set realmRec.[[globalEnv]] to undefined.

Set realmRec.[[templateMap]] to a new empty List.
Return realmRec.

[Deleted: Abstract Operation

When the abstract operation Createlntrinsics with argument realmRec performs the following steps:

Let intrinsics be@a new Record.
Set realmRec:[[intrinsics]] to intrinsics.

Let objProto be ObjectCreate(null).

Set intrinsics.[[%ObjectPrototype%]] to objProto.

Let thrower be CreateBuiltinFunction(realmRec, throwerSteps, null).
Set intrinsics.[[%ThrowTypeError%]] to thrower.

Let noSteps be an empty sequence of algorithm steps.

Let funcProto be CreateBuiltinFunction(realmRec, noSteps, objProto).

1
2
3
4.
5. Let throwerSteps be the algorithm steps specifed in 9.2.8.1 for the % ThrowTypeError% function.
6
7
8
9.
1

0. Set intrinsics.[[%FunctionPrototype%]] to funcProto.

© Ecma International 2015

85

[Deleted: s

oecmad

11. Call thrower.[[SetPrototypeOf]](funcProto).

12. Perform AddRestrictedFunctionProperties(funcProto, realmRec).

13. Set fields of intrinsics with the values listed in Table 7 that have not already been handled above.
The field names are the names listed in column one of the table. The value of each field is a new
object value fully and recursively populated with property values as defined by the specification of
each object in clauses 18-26. All object property values are newly created object values. All values
that are built-in function objects are created by performing CreateBuiltinFunction(realmRec,
<steps>, <prototype>, <slots>) where <steps> is the definition of that function provided by this
specification, <prototype> is the specified value of the function’s [[Prototype]] internal slot and
<slots> is a list of the names, if any, of the functions specified internal'slots. The creation of the
intrinsics and their properties must be ordered to avoid any dependencies upon objects that have not
yet been created.

14. Return intrinsics.

8.2.3 SetRealmGlobalObject (realmRec, globalObj),

[Deleted: the

Deleted: internal method of thrower with
argument

[Deleted: Abstract Operation

The abstract operation SetRealmGlobalObject with arguments realmRec and globalObj performs the
following steps:

1. If globalObj is undefined, then

a. Letintrinsics be realmRec.[[intrinsics]].

b. Let globalObj be ObjectCreate(intrinsics.[[%ObjectPrototype%l]]).
Assert: Type(globalObj) is Object.

Set realmRec.[[globalThis]] to globalObyj.

Let newGlobalEnv be NewGlobalEnvironment(globalObj).

Set realmRec.[[globalEnv]] to newGlobalEnv.

Return realmRec.

gk wn

8.2.4 SetDefaultGlobalBindings (‘realmRec),

[Deleted: Abstract Operation

The abstract operation SetDefaultGlobalBindings with argument realmRec performs the following steps:

1. Let global be realmRec.[[globalThis]].
2. For each property of the Global Object specified in clause 18, do
a. Letname be the string value of the property name.
bs Let desc be the fully populated data property descriptor for the property containing the
specified attributes for the property. For properties whose values are functions, the value of the
[[Value]] attribute is the corresponding intrinsic function object from realmRec.
c. Let status be DefinePropertyOrThrow(global, name, desc).
d. ReturnIfAbrupt(status).
3. "Return global.

8.3 Execution Contexts

An execution context is a specification device that is used to track the runtime evaluation of code by an
ECMAScript implementation. At any point in time, there is at most one execution context that is actually
executing code. This is known as the running execution context. A stack is used to track execution
contexts. The running execution context is always the top element of this stack. A new execution context
is created whenever control is transferred from the executable code associated with the currently running
execution context to executable code that is not associated with that execution context. The newly
created execution context is pushed onto the stack and becomes the running execution context.

86 © Ecma International 2015

secmd

An execution context contains whatever implementation specific state is necessary to track the execution
progress of its associated code. Each execution context has at least the state components listed in Table
22.

Table 22 —State Components for All Execution Contexts

Component Purpose

code evaluation state Any state needed to perform, suspend, and resume evaluation of the
code associated with this execution context.

Function If this execution context is evaluating the code of a function object, then
the value of this component is that function object. If the context is
evaluating the code of a Script or Module, the value is null.

Realm The Realm from which associated code accesses ECMAScript
resources.

Evaluation of code by the running execution context may be suspended at various points defined within
this specification. Once the running execution contextsas been suspended a different execution context
may become the running execution context and commence evaluating its code. At some later time a
suspended execution context may again become the running execution context and continue evaluating
its code at the point where it had previously been suspended. Transition of the running execution context
status among execution contexts usually occurs in stack-like last-inffirst-out manner. However, some
ECMAScript features require non-LIFO transitions of the running execution context.

The value of the Realm component of the running execution context is also called the current Realm. The
value of the Function component of the running execution context is also called the active function object.

Execution contexts for ECMAScript code have the additional state components listed in Table 23.

Table 23 — Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds
bindings. created by VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always
Lexical Environments. When an execution context is created its LexicalEnvironment and
VariableEnvironment components initially have the same value.

Execution contexts representing the evaluation of generator objects have the additional state components
listed in Table 24.

© Ecma International 2015 87

oecnd

Table 24 — Additional State Components for Generator Execution Contexts

Component Purpose

Generator The GeneratorObject that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and
“VariableEnvironment” are used without qualification they are in reference to.those components of the
running execution context.

An execution context is purely a specification mechanism and need.not correspond to any particular
artefact of an ECMAScript implementation. It is impossible for ECMAScript code to directly access or
observe an execution context.

8.3.1 ResolveBinding (name),

The ResolveBinding abstract operation is used to determine the binding.of name passed as a string value
using the LexicalEnvironment of the running execution context. During execution of ECMAScript code,
ResolveBinding is performed using the following algorithm:

1. Letenv be the running execution context’s LexicalEnvironment.

2. If the code matching the syntactic production that is being evaluated is contained in strict mode
code, let strict be true, else let strict be false.

3. Return GetldentifierReference(env, name, strict).

NOTE The result of ResolveBinding is always a Reference value with-its referenced name component equal to
the name argument.

8.3.2 GetThisEnvironment (),

The abstract operation GetThisEnvironment finds the environment record that currently supplies the
binding of the keyword this. GetThisEnvironment performs the following steps:

1. Let lex be the running execution context’s LexicalEnvironment.
2. Repeat
a. LetenvRec be lex’s environment record.
b. Let exists be envRec.HasThisBinding().
c. If exists is true, return envRec.
d. Let outer be the value of /ex’s outer environment reference.
e. Let lex be outer.

NOTE The loop in step 2 will always terminate because the list of environments always ends with the global
environment which has a this binding.

8.3.3 ResolveThisBinding (),

The abstract operation ResolveThisBinding determines the binding of the keyword this using the
LexicalEnvironment of the running execution context. ResolveThisBinding performs the following steps:

1. LetenvRec be GetThisEnvironment().
2. Return envRec.GetThisBinding().

88 © Ecma International 2015

[Deleted: Abstract Operation

{ Deleted: Abstract Operation

[Deleted: Abstract Operation

secmd

8.3.4 GetNewTarget (),

The abstract operation GetNewTarget determines the NewTarget value using the LexicalEnvironment of
the running execution context. GetNewTarget performs the following steps:

1. LetenvRec be GetThisEnvironment().
2. Assert: envRec has a [[NewTarget]] field.
3. Return envRec.[[NewTarget]].

8.3.5 GetGlobalObject (),

The abstract operation GetGlobalObject returns the global object used by the currently running execution
context. GetGlobalObject performs the following steps:

1. Let ctx be the running execution context.
2. LetcurrentRealm be czx’s Realm.
3. Return currentRealm.[[global This]].

8.4 Jobs and Job Queues

A Job is an abstract operation that initiates an ECMAScript computation when no other ECMAScript
computation is currently in progress. A Job abstract operation may be defined to accept an arbitrary set of
job parameters.

Execution of a Job can be initiated only when. there is no running execution context and the execution
context stack is empty. A PendingJob is a request for the future execution of a Job. A PendingJob is an
internal Record whose fields are specified in Table 25: Once execution of a Job is initiated, the Job
always executes to completion.-No.other Job may be‘initiated until the currently running Job completes.
However, the currently running Job. or external events may cause the enqueuing of additional
PendingJobs that may be initiated sometime after completion of the currently running Job.

Table 25 — PendingJob Record Fields

Field Name Value Meaning
[[Job]] The name of a Job | This is the abstract operation that is performed when execution
abstract operation of this PendingJob is initiated. Jobs are abstract operations that
use NextJob rather than Return to indicate that they have
completed.
[[Arguments]] | A List The List of argument values that are to be passed to [[Job]]
when it is activated.
[[Realm]] A Realm Record The Realm for the initial execution context when this Pending
Job is initiated.
[[HostDefined]] | Any, default value is Field reserved for use by host environments that need to
undefined. associate additional information with a pending Job.

A Job Queue is a FIFO queue of PendingJab records. Each Job Queue has a name and the full set of
available Job Queues are defined by an ECMAScript implementation. Every ECMAScript implementation
has at least the Job Queues defined in Table 26.

© Ecma International 2015 89

[Deleted: Abstract Operation

{ Deleted: Abstract Operation

oecnd

Table 26 — Required Job Queues

Name Purpose

ScriptJobs Jobs that validate and evaluate ECMAScript Script and Module source
text. See clauses 10 and 15.

PromiseJobs Jobs that are responses to the settlement of a Promise (see 25.4).

A request for the future execution of a Job is made by enqueueing, on a Job Queue, a PendingJob record
that includes a Job abstract operation name and any necessary argument values. When there is no
running execution context and the execution context stack is empty, the ECMAScript implementation
removes the first PendingJob from a Job Queue and uses the information contained in it to create an
execution context and starts execution of the associated Job abstract operation.

The PendingJob records from a single Job Queue are always-initiated in FIFO order. This specification
does not define the order in which multiple Job Queues are serviced. An ECMAScript implementation
may interweave the FIFO evaluation of the PendingJob records of a Job Queue with the evaluation of the
PendingJob records of one or more other Job Queues.An implementation must define what occurs when
there are no running execution context and all Job Queues are empty:

NOTE Typically an ECMAScript implementation will have its Job Queues pre-initialized with at least one
PendingJob and one of those Jobs will be the first to be executed. An.implementation might choose to free all
resources and terminate if the current Job completes and all Job Queues are empty. Alternatively, it might choose to
wait for a some implementation specific agent or mechanism.to enqueue new PendingJob requests.

The following abstract operations are used to create and manage Jobs and Job Queues:

8.4.1 Enqueuedob (queueName;job, arguments),

The EnqueueJdob abstract operation requires three arguments: queueName, job, and arguments. It performs
the following steps:

1. Assert: Type(queueName) is'String-and.its value is the name of a Job Queue recognized by this
implementation.

2. Assert: job is the name of a Job.

3. Assert: arguments is a List that has the same number of elements as the number of parameters
required by job.

4. Let callerContext be the running execution context.

5. Let callerRealm be callerContext’s Realm.

6. Let pending be PendingJob{ [[Job]]: job, [[Arguments]]: arguments, [[Realm]]: callerRealm,
[[HostDefined]]: undefined }.

7. Perform any implementation or host environment defined processing of pending. This may include
modifying the [[HostDefined]] field or any other field of pending.

8. Add pending at the back of the Job Queue named by queueName.

9. Return NormalCompletion(empty).

8.4.2 NextJob result

An algorithm step such as:
1. NextJob result.

is used in Job abstract operations in place of:

90 © Ecma International 2015

[Deleted: Abstract Operation

oecnd

1.

Return result.

Job abstract operations must not contain a Return step or a ReturnlfAbrupt step. The NextJob result
operation is equivalent to the following steps:

1
2.
3.
4

If result is an abrupt completion, perform implementation defined unhandled exception processing.
Suspend the running execution context and remove it from the execution context stack.

Assert: The execution context stack is now empty.

Let nextQueue be a non-empty Job Queue chosen in an implementation defined manner. If all Job
Queues are empty, the result is implementation defined.

Let nextPending be the PendingJob record at the front of nextQueue..Remove that record from
nextQueue.

Let newContext be a new execution context.

Set newContext’s Realm to nextPending.[[Realm]].

Push newContext onto the execution context stack; newContext is now the running execution
context.

Perform any implementation or host environment defined job initialization using nextPending.

. Perform the abstract operation named by nextPending.[[Job]] using the elements of

nextPending.[[Arguments]] as its arguments.

8.5 Initialization()

An ECMAScript implementation performs the following steps prior to the execution of any Jobs or the
evaluation of any ECMAScript code:

garwnE

~No

9.

85.1

The abstract operation InitializeFirstRealm with parameter realm performs the following steps:

1.

Hwn

Let realm be CreateRealm().

Let newContext be a new execution context.

Set the Function of newContext to null.

Set the Realm of newContext to realm.

Push newContext-onto the execution context stack; newContext is now the running execution
context.

Let status be InitializeHostDefinedRealm(realm). | [Deleted: First

If status is an abrupt completion, then
a. Assert: The first realm could not be created.
b. Terminate ECMAScript execution.
In‘an implementation dependent manner, obtain the ECMAScript source text strings (see clause 10) |
for zero or more ECMAScript scripts and/or ECMAScript modules. For each such sourceText do,
a. If sourceText is the source code of a script, then
i. Perform EnqueueJob("ScriptJobs", ScriptEvaluationJob, « sourceText »).

b. Else sourceText is the source code of a module, [Deleted: the module
i. Perform EnqueueJob("ScriptJobs", TopLevelModuleEvaluationJob, « sourceText »).
NextJob NormalCompletion(undefined).

InitializeHostDéfinedRealm (realm), | [Deleted: First
[Deleted: Abstract Operation

If this implementation requires use of an exotic object to serve as realm’s global object, let global
be such an object created in an implementation defined manner. Otherwise, let global be undefined
indicating that an ordinary object should be created as the global object.

Perform SetRealmGlobalObject(realm, global).

Let globalObj be SetDefaultGlobalBindings(realm).

ReturnIfAbrupt(globalObj).

© Ecma International 2015 91

oecmad

5. Create any implementation defined global object properties on globalObj.
6. Return NormalCompletion(undefined).

9 Ordinary and Exotic Objects Behaviours
9.1 Ordinary Object Internal Methods and Internal Slots

All ordinary objects have an internal slot called [[Prototype]]. The value of this internal slot is either null or
an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are
inherited (are visible as properties of the child object) for the purposes of get access, but not for set
access. Accessor properties are inherited for both get access and set access.

Every ordinary object has a Boolean-valued [[Extensible]] internal slot that controls whether or not
properties may be added to the object. If the value of the [[Extensible]] internal slot is false then additional
properties may not be added to the object. In addition, .if [[Extensible]] is false the value of the
[[Prototype]] internal slot of the object may not be modified. Once the value of an object’s [[Extensible]]
internal slot has been set to false it may not be subsequently changed to.true.

In the following algorithm descriptions, assume O is an ordinary object, P is a property key value, V is any
ECMAScript language value, and Desc is a Property Descriptor record.

9.1.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of O is called the following steps are taken:
1. Return the value of the [[Prototype]] internal slot of O.

9.1.2 [[SetPrototypeOf]] (V)
When the [[SetPrototypeOf]] internal method of O is'called with argument V the following steps are taken:

Assert: Either Type(V) is Object or Type(V) is Null.
Let extensible be the value of the [[Extensible]]} internal slot of O.
Let current be the value of the [[Prototype]] internal slot of O.
If SameValue(V, current), return true.
If extensible is false, return false.
Letp be V.
Let done be false.
Repeat while done is false,
a. . If p is null, let done be true.
b. Else, if SameValue(p, O) is true, return false.
c. Else,
i. If the [[GetPrototypeOf]] internal method of p is not the ordinary object internal method
defined in 9.1.1, let done be true.
ii. Else, let p be the value of p’s [[Prototype]] internal slot.
9. Set the value of the [[Prototype]] internal slot of O to V.
10. Return true.

O N>~ wWN

NOTE The loop in step 8 guarantees that there will be no circularities in any prototype chain that only includes
objects that use the ordinary object definitions for_[[GetPrototypeOf]] and [[SetPrototypeOf]].

92 © Ecma International 2015

[Deleted: of the

oecha

9.1.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of O is called the following steps are taken:

1. Return the value of the [[Extensible]] internal slot of O.
9.1.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of O is called the following steps are taken:

1. Set the value of the [[Extensible]] internal slot of O to false.
2. Return true.

9.1.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are
taken:

1. Return OrdinaryGetOwnProperty (O, P).
9.1.5.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P,
the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. 1If O does not have an own property with key P, return undefined.
3. Let D be a newly created Property Descriptor with‘no fields.
4. Let X be O’s own property-whose key is P.
5. If X is a data property, then

a. Set D.[[Value]] to the value of X’s [[Value]] attribute.

b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
6. Else X is an accessor property, so

a. Set D.[[Get]] to the value of X’s[[Get]] attribute.

b. Set D.[[Set]] to the value of X’s [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attribute.
8. SetD.[[Configurable]] to the value of X’s [[Configurable]] attribute.
9. <Return D.

9.1.6 [[DefineOwnProperty]] (P, Desc)
When the [[DefineOwnProperty]] internal method of O is called with property key P and Property

Descriptor Desc, the following steps are taken:
1. Return OrdinaryDefineOwnProperty(O, P, Desc).

9.1.6.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and
Property Descriptor Desc the following steps are taken:

1. Let current be O.[[GetOwnProperty]](P).

2. ReturnlfAbrupt(current).

3. Letextensible be the value of the [[Extensible]] internal slot of O.

4. Return ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current).

© Ecma International 2015 93

oecnd

9.1.6.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and
Property Descriptors Desc, and Current the following steps are taken:

1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, Extensible, Desc, Current).
9.1.6.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P,
Boolean value extensible, and Property Descriptors Desc, and current the following steps are taken:

This algorithm contains steps that test various fields of the Property‘Descriptor Desc for specific values.
The fields that are tested in this manner need not actually exist in Desc. If a field is absent then its value is
considered to be false.

NOTE If undefined is passed as the O argument only validation is performed and no object updates are
performed.

1. Assert: If O is not undefined then P is a valid property key.
2. If current is undefined, then
a. If extensible is false, return false.
b. Assert: extensible is true.
c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
i. If O is not undefined, create an own data property named P.of object O whose [[Value]],
[[Writable]], [[Enumerable]] and [[Configurable]].attribute values are described by Desc. If
the value of an attribute field of Desc is absent, the attribute of the newly created property
is set to its default-value.
d. Else Desc must be anaccessor Property Descriptor,
i. If O is not undefined, create an own accessor property named P of object O whose [[Get]],
[[Set]]; [[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the
value of an attribute field of Desc is absent, the attribute of the newly created property is
set to its default value.
e. Return true.
3. Return true, if every field in Desc is absent.
4. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the
same value as the corresponding field in current when compared using the SameValue algorithm.
5. If the [[Configurable]] field of current is false, then
a. Return false, if the [[Configurable]] field of Desc is true.
b. Return false, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of
current and Desc are the Boolean negation of each other.
6. IfIsGenericDescriptor(Desc) is true, no further validation is required.
7. Else'if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Return false, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then
i. If Olis not undefined, convert the property named P of object O from a data property to an
accessor property. Preserve the existing values of the converted property’s [[Configurable]]
and [[Enumerable]] attributes and set the rest of the property’s attributes to their default
values.
c. Else,
i. If O is not undefined, convert the property named P of object O from an accessor property
to a data property. Preserve the existing values of the converted property’s [[Configurable]]

94 © Ecma International 2015

oecha

and [[Enumerable]] attributes and set the rest of the property’s attributes to their default
values.
8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. If the [[Configurable]] field of current is false, then
i. Return false, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is
true.
ii. If the [[Writable]] field of current is false, then
1. Return false, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]],
current.[[Value]]) is false.
b. Else the [[Configurable]] field of current is true, so any change is‘acceptable.
9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,
a. If the [[Configurable]] field of current is false, then
i. Return false, if the [[Set]] field of Desc is present and‘SameValue(Desc.[[Set]],
current.[[Set]]) is false.
ii. Return false, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]],
current.[[Get]]) is false.
10. If O is not undefined, then
a. For each field of Desc that is present, set the«corresponding attribute of the property named P of
object O to the value of the field.
11. Return true.

NOTE Step 8.b allows any field of Desc to be different from the corresponding field of current if current’s
[[Configurable]] field is true. This even permits changing. the [[Value]] of a property whose [[Writable]] attribute is false.
This is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where
[[Writable]] is first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

9.1.7 [[HasProperty]](P)

When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:
1. Return OrdinaryHasProperty(O, P).

9.1.7.1 OrdinaryHasProperty (O; P)

When the abstract operation OrdinaryHasProperty is called with Object O and with property key P, the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let hasOwn be OrdinaryGetOwnProperty(O, P).
If hasOwn is not undefined, return true.

Let parent be O.[[GetPrototypeOf]]().
ReturnIfAbrupt(parent).

If parent is not null; then

a. Return parent:[[HasProperty]](P).

7. Return false.

o O SR -

9.1.8 [[Get]] (P, Receiver)
When the [[Get]] internal method of O is called with property key P and ECMAScript language value
Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let desc be O.[[GetOwnProperty]](P).
3. ReturnlfAbrupt(desc).

© Ecma International 2015 95

oecmad

4. If desc is undefined, then

a. Let parent be O.[[GetPrototypeOf]]().

b. ReturnifAbrupt(parent).

c. If parent is null, return undefined.

d. Return parent.[[Get]](P, Receiver).

If IsDataDescriptor(desc) is true, return desc.[[Value]].

Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].
If getter is undefined, return undefined.

Return Call(getter, Receiver).

© NG

9.1.9 [[Set]] (P,V, Receiver)

When the [[Set]] internal method of O is called with property key P; value V, and ECMAScript language
value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let ownDesc be O.[[GetOwnProperty]](P).
3. ReturnlfAbrupt(ownDesc).
4. If ownDesc is undefined, then

a. Let parent be O.[[GetPrototypeOf]]().

b. ReturnlfAbrupt(parent).

c. If parent is not null, then

i. Return parent.[[Set]](P, V, Receiver).
d. Else,
i. Let ownDesc be the PropertyDescriptor{[[Value]]: undefined, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}.

5. If IsDataDescriptor(ownDesc) is true, then
If ownDesc.[[Writable]].is false, return false.
If Type(Receiver) is not Object, return false.
Let existingDescriptor be Receiver.[[GetOwnProperty]](P).
ReturnlfAbrupt(existingDescriptor).
If existingDescriptor is not undefined, then
i. LetvalueDesc be the PropertyDescriptor{[[Value]]: V}.
il. Return Receiver[[DefineOwnProperty]](P, valueDesc).
f. Else Receiver does not currently have a property P,

i. Return CreateDataProperty(Receiver, P, V).
Assert: IsAccessorDescriptor(ownDesc) is true.
Let setter be ownDesc.[[Set]].
If setter is undefined, return false.
. Let setterResult be Call(setter, Receiver, «V»).
10. ReturnIfAbrupt(setterResult).
11. Return true.

®Poo0o

©oNo

9.1.10 [[Delete]] (P)

When the [[Delete]] internal method of O is called with property key P the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let desc be O.[[GetOwnProperty]](P).
3. ReturnlfAbrupt(desc).
4. |If desc is undefined, return true.
5. If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.

96 © Ecma International 2015

secma

b. Return true.
6. Return false.

9.1.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of O is called the following steps are taken:
1. Return an Iterator object (25.1.1.2) whose next method iterates over all the String-valued keys of

enumerable properties of O. The Iterator object must inherit from %IteratorPrototype% (25.1.2).
The mechanics and order of enumerating the properties is not specified-but must conform to the
rules specified below.

The iterator's next method processes object properties to determine ' whether the property key should be
returned as an iterator value. Processed properties do not include properties whose property key is a
Symbol. Properties of the object being enumerated may be deleted during enumeration. A property that is
deleted before it is processed by the iterator’'s next method is ignored. If new properties are added to the
object being enumerated during enumeration, the newly added properties are not guaranteed to be
processed in the active enumeration. A property name will be returned by the iterator's next method at
most once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the
prototype of the prototype, and so on, recursively; but a property of a prototype is not processed if it has
the same name as a property that has already been processed by the iterator's next method. The values
of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has
already been processed. The enumerable properties of prototype objects must be accessed by invoking
the prototype object’s [[Enumerate]] internal method.

The following is an informative definition of an ECMAScript generator function that conforms to these rules:

function* enumerate (obj) {
let visited=new Set;

| [Deleted: 25.1.1.225.1.1.225.1.1.225.1.2

[Deleted: processing

Deleted: if (Object(obj)!== obj)

return undefined;q

Deleted: - let visited = new Set;{
while (obj !== null) {1

Deleted: -

- J

|
|
|
|
|
|
)

. for (let name of Object.getOwnPropertyNames (obj)) { Moved down [1]: . //any new
A . . . properties added to obj by visitor
. Jet desc = Object.getOwnPropertyDescriptor (obj, name) ; are ignored.q
if (desc) { 1
'l'visited,add(name) P | { Deleted: . .if (!visited.has (name))
if (desc.enumerable) yield name; 1§
,') . { Deleted: .
'let proto = Object.getPrototypeOf (obj) . [Deleted: .
if (proto === null) return; [Deleted: .
. for (let protoName of Reflect.enumerate (proto) {
if (!'visited.has(protoName)) yield protoName; { Deleted: .
'}—} (Deleted: .
' Deleted: .
9.1.12 [[OwnPropertyKeys]] () [
Deleted: .}1
When the [[OwnPropertyKeys]] internal method of O is called the following steps are taken: ox;jfzzjt Zetpmtotypeof(obj) -q
1. Letkeys be a new empty List.))))) o [Deleted: }1
2. For each own property key P of O that is an integer index, in ascending numeric index order [M d (inserti 1
a. Add P as the last element of keys. oved (insertion) [1]
3. For each own property key P of O that is a String but is not an integer index, in property creation Deleted: . //any new properties

order
a. Add P as the last element of keys.

© Ecma International 2015 97

added to obj by visitor are
ignored.q

oecnd

4. For each own property key P of O that is a Symbol, in property creation order
a. Add P as the last element of keys.
5. Return keys.

9.1.13 ObjectCreate(proto, internalSlotsList),

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime
creation of new ordinary objects. The optional argument internalSlotsList is_a List of the names of
additional internal slots that must be defined as part of the object. If the list is_not provided, an empty List
is used. This abstract operation performs the following steps:

If internalSlotsList was not provided, let internalSlotsList be an empty List.

Let obj be a newly created object with an internal slot for each.name in internalSlotsList.

Set obj’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[Prototype]] internal slot of obj to proto.

Set the [[Extensible]] internal slot of obj to true.

Return obj.

S~ wNE

9.1.14 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalSlotsList)

The abstract operation OrdinaryCreateFromConstructor creates an ordinary object whose [[Prototype]]
value is retrieved from a constructor’'s prototype property, ifit exists. Otherwise the intrinsic named by
intrinsicDefaultProto is used for [[Prototype]]. The optional internalSlotsList is a List of the names of
additional internal slots that must be defined as part of the object. If the list is not provided, an empty List
is used. This abstract operation performs the following steps:

1. Assert: intrinsicDefaultProto is a string value thats this specification’s name of an intrinsic object.
The corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value
of an object.

2. Let proto be GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).

3. ReturnlfAbrupt(proto).

4. Return ObjectCreate(proto, internalSlotsList).

9.1.15 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFromConstructor determines the [[Prototype]] value that should be
used to create an object corresponding to a specific constructor. The value is retrieved from the
constructor's prototype property, if it exists. Otherwise the intrinsic named by intrinsicDefaultProto is
used for [[Prototype]]. This abstract operation performs the following steps:

1. Assert: intrinsicDefaultProto is a string value that is this specification’s name of an intrinsic object.
The corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value
of an object.

Assert: IsConstructor (constructor) is true.

Let proto be Get(constructor, "prototype").

ReturnlfAbrupt(proto).

If Type(proto) is not Object, then

a. Letrealm be GetFunctionRealm(constructor).

b. ReturnlfAbrupt(realm).

c. Let proto be realm’s intrinsic object named intrinsicDefaultProto.

6. Return proto.

gk wn

NOTE If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from the
Code Realm of the constructor function rather than from the running execution context.

98 © Ecma International 2015

[Deleted: Abstract Operation

fecma

9.2 ECMAScript Function Objects

ECMAScript function objects encapsulate parameterized ECMAScript code closed over a lexical
environment and support the dynamic evaluation of that code. An ECMAScript function object is an
ordinary object and has the same internal slots and (except as noted below) and the same internal
methods as other ordinary objects. The code of an ECMAScript function object may be either strict mode
code (10.2.1) or non-strict mode code.

ECMAScript function objects have the additional internal slots listed in Table 27.

ECMAScript function objects whose code is not strict mode code (10.2.1) provide an alternative definition
for the [[GetOwnProperty]] internal method. This alternative prevents the value of strict mode function
from being revealed as the value of a function object property named "caller". The alternative definition
exist solely to preclude a non-standard legacy feature of some ECMAScript implementations from
revealing information about strict mode callers. If an implementation does not provide such a feature, it
need not implement this alternative internal method for ECMAScript function objects.. ECMAScript
function objects are considered to be ordinary objects even though they may use the alternative definition
of [[GetOwnProperty]].

Table 27 — Internal Slots of ECMAScript Function Objects

All ECMAScript function objects have the [[Call]] internal method defined here. ECMAScript functions that
are also constructors in addition have the [[Construct]] internal method. ECMAScript function objects
whose code is not strict mode code have the [[GetOwnProperty]] internal method defined here.

© Ecma International 2015 99

Internal Slot Type Description
[[Environment]] Lexical The Lexical Environment that the function was closed over.
Environment Used as the outer environment when evaluating the code
of the function.

[[FormalParameters]] Parse Node The root parse node. of the source text that defines the
function’s formal parameter list.

[[FunctionKind]] String Either "normal", "classConstructor" or "generator".

[[ECMAScriptCodel]] Parse Node The root parse node of the source text that defines the
function’s body.

[[ConstructorKind]] String Either "base" or "derived".

[[Realm]] Realm Record | The Code Realm in which the function was created and
which provides any intrinsic objects that are accessed
when evaluating the function.

[[ThisMode]] (lexical, strict, Defines how this references are interpreted within the

global) formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically
enclosing function. strict means that the this value is used
exactly as provided by an invocation of the function. global
means that a this value of undefined is interpreted as a
reference to the global object.

[[Strict]] Boolean true if this is a strict mode function, false if this is not a strict

Y mode function.

[[HomeObject]] Object If the function uses super, this is the object whose [Deleted: [[NeedsSuper]]
[[GetPrototypeOf]] provides the object where super
property lookups begin.

9.2.1

recma

[[GetOwnProperty]] (P)

| When the [[GetOwnProperty]] internal method of a non-strict mode ECMAScript function object F is called
with property key P, the following steps are taken:

1.
2.

3.

Let v be OrdinaryGetOwnProperty(F, P).
If IsDataDescriptor(v) is true, then
a. IfPis"caller", then
i. LetcallerValue be v.[[Value]].
ii. If callerValue is an ECMAScript Function object, then
1. If callerValue’s [[Strict]] internal slot is true, set v.[[Value]] to null.

iii. Else if IsCallable(callerValue) is true, set v.[[Value]] to null. «

Return v.

| If an implementation extends non-strict mode ECMAScript function or built-in function objects with a built-
in caller own property then it must use this definition of [[GetOwnProperty]]. If an implementation does
not provide such an extension, the ordinary object [[GetOwnProperty]] internal method must be used.

9.2.2

[[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for an ECMAScript function object F is called with parameters thisArgument
and argumentsList, a List of ECMAScript language values. The following steps are taken:

1.

Noohkwn

8.
9.

Assert: F is an ECMAScript function object.

If F’s [[FunctionKind]] internal slot is "classConstructor", throw a TypeError exception.

Let callerContext be the running execution context.

Let calleeContext be PrepareForOrdinaryCall(F, null).

ReturnlfAbrupt(calleeContext).

Let status be OrdinaryCallBindThis(F, calleeContext, thisArgument).

If status is an abrupt completion, then

a. Remove calleeContext from the execution context stack and restore callerContext as the
running execution context:

b. Return status.

Let result be OrdinaryCallEvaluateBody(F, argumentsList).

Remove calleeContext from the execution context stack and restore callerContext as the running

execution context.

10./If result.[[type]] is return, return NormalCompletion(result.[[value]]).
11. ReturnifAbrupt(result).
12. Return NormalCompletion(undefined).

NOTE

When calleeContext is removed from the execution context stack in step 9 it must not be destroyed if it is

suspended and. retained for later resumption by an accessible generator object.

9.2.21

PrepareForOrdinaryCall(F, newTarget)

When the abstract operation PrepareForOrdinaryCall is called with function object F and ECMAScript
language value newTarget, the following steps are taken:

100

gk wNE

Assert: Type(newTarget) is Undefined or Object.
Let callerContext be the running execution context.
Let calleeContext be a new ECMAScript code execution context.

Set the Function of calleeContext to F.
Let calleeRealm be the value of F’s [[Realm]] internal slot.
Set the Realm of calleeContext to calleeRealm.

© Ecma International 2015

[Formatted

[Deleted: Code

secmd

7. Let localEnv be NewFunctionEnvironment(F, newTarget).
8. ReturnlfAbrupt(localEnv).

9. NOTE Any exception objects produced by NewFunctionEnvironment are associated with callerRealm. | Deleted: <#>Let localER be localEnv’s
10. Set the LexicalEnvironment of calleeContext to localEnv. environment record.{

11. Set the VariableEnvironment of calleeContext to localEnv.
12. If callerContext is not already suspended, Suspend callerContext.

13. Push calleeContext onto the execution context stack; calleeContext is now the running execution | Deleted: <#>Let calleeContext be a new
context. ECMAScript Code execution context.{

14. Return calleeContext.
9.2.2.2 OrdinaryCallBindThis (F, calleeContext, thisArgument)

When the abstract operation OrdinaryCallBindThis is called with function object F, execution context
calleeContext, and ECMAScript value thisArgument the following steps are taken:

1. Let thisMode be the value of F’s [[ThisMode]] internalslot.
If thisMode is lexical, return NormalCompletion(undefined).
Let calleeRealm be the value of F’s [[Realm]] internal slot.
Let localEnv be the LexicalEnvironment of calleeContext.
If thisMode is strict, let thisValue be thisArgument.
Else
a. if thisArgument is null or undefined, then

i. LetthisValue be calleeRealm.[[globalThis]].
b. Else

i. LetthisValue be ToObject(thisArgument).

ii. Assert: thisValue is not an abrupt.completion.

iii. NOTE ToObject produces wrapper objects using calleeRealm.
7. LetenvRec be localEny’s'environment record.
8. Return envRec.BindThisValue(thisValue).

ook~ wn

9.2.2.3 OrdinaryCallEvaluateBody (F, argumentsList)
When the abstract operation OrdinaryCallEvaluateBody is called with function object F and List
argumentsList the following steps-are taken:

1. Letstatus be FunctionDeclarationlnstantiation(F, argumentsList).
2. _ReturnIfAbrupt(status)

3. Return the result of EvaluateBody of the parsed code that is the value of F's [[ECMAScriptCode]] | [Deleted: production

internal slot passing F as the argument.
9.2.3 " [[Construct]] (argumentsList, newTarget)

The [[Construct]] internal method for an ECMAScript Function object F is called with parameters
argumentsList and newTarget. argumentsList is a possibly empty List of ECMAScript language values. The
following steps are taken:

1. Assert: F is an ECMAScript function object.

2. Assert: Type(newTarget) is Object.

3. Let callerContext be the running execution context.

4. Letkind be F’s [[ConstructorKind]] internal slot.

5. Ifkind is "base", then
a. Let thisArgument be OrdinaryCreateFromConstructor(newTarget, "$ObjectPrototype%").
b. ReturnifAbrupt(thisArgument).

6. Let calleeContext be PrepareForOrdinaryCall(F, newTarget).

© Ecma International 2015 101

© ~

15.
16.

9.2.4

reCma

ReturnIfAbrupt(calleeContext).
Assert: calleeContext is now the running execution context.
If kind is "base", then
a. Let status be OrdinaryCallBindThis(F, calleeContext, thisArgument).
b. If status is an abrupt completion, then
i. Remove calleeContext from the execution context stack and restore callerContext as the
running execution context.
ii. Return status.

. Let constructorEnv be the LexicalEnvironment of calleeContext.

. Let envRec be constructorEnv’s environment record.

. Let result be OrdinaryCallEvaluateBody(F, argumentsList).

. Remove calleeContext from the execution context stack and restore callerContext as the running

execution context.

. If result.[[type]] is return, then

a. |If Type(result.[[value]]) is Object, return NormalCompletion(result.[[value]]).
b. If kind is "base™", return NormalCompletion(thisArgument).
c. If result.[[value]] is not undefined, throw a TypeError exception.

Else, ReturnifAbrupt(result). [Deleted: r

Return envRec.GetThisBinding().

FunctionAllocate (functionPrototype, strict [,functionKind]), [Deleted: Abstract Operation

The abstract operation FunctionAllocate requires the two arguments. functionPrototype and strict. It also
accepts one optional argument, functionKind. FunctionAllocate performs the following steps:

102

1.
2.

3.

Assert: Type(functionPrototype) is Object.

Assert: If functionKind is present, its value is either "normal", “non-constructor" or
"generator".

If functionKind is not present, let functionKind be "normal".

If functionKind is "non-constructor", then

a. Let functionKind be "normal".

b. Let needsConstruct be false.

Else let needsConstruct be‘true.

Let F be a newly created ECMAScript function object with the internal slots listed in Table 27. All
of those internal slots are initialized to undefined.

Set F’s essential internal methods except for [[GetOwnProperty]] to the default ordinary object
definitions specified in 9.1.

If strict is true, set F’s [[GetOwnProperty]] internal method to the default ordinary object definition
specified in 9.1.5.

Else, set F’s [[GetOwnProperty]] internal method as specified in 9.2.1.

. Set F’s [[Call]] internal method to the definition specified in 9.2.2.
. If needsConstruct is true, then

a. Set F’s [[Construct]] internal method to the definition specified in 9.2.3.

b. If functionKind is "generator", set the [[ConstructorKind]] internal slot of F to "derived".

c. Else, set the [[ConstructorKind]] internal slot of F to "base".

d. NOTE Generator functions are tagged as "derived" constructors to prevent [[Construct]] from
preallocating a generator instance. Generator instance objects are allocated when EvaluateBody
is applied to the GeneratorBody of a generator function.

. Set the [[Strict]] internal slot of F to strict.

. Set the [[FunctionKind]] internal slot of F to functionKind.
. Set the [[Prototype]] internal slot of F to functionPrototype.
. Set the [[Extensible]] internal slot of F to true.

© Ecma International 2015

secmd

16. Set the [[Realm]] internal slot of F to the running execution context’s Realm.
17. Return F.

9.2.5 Functionlinitialize (F, kind, ParameterList, Body, Scope), [Deleted: Abstract Operation

The abstract operation Functioninitialize requires the arguments: a function object F, kind which is one of
(Normal, Method, Arrow), a parameter list production specified by ParameterList, a body production
specified by Body, a Lexical Environment specified by Scope. Functioninitialize: performs the following
steps:

1. Assert: F is an extensible object that does not have a 1length own property.
Let len be the ExpectedArgumentCount of ParameterList.

Let realm be the value of F’s [[Realm]] internal slot.

Let status be DefinePropertyOrThrow(F, "length", PropertyDescriptor{[[Value]]: len,
[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true}).

Assert: status is not an abrupt completion.

Let Strict be the value of the [[Strict]] internal slot of F.

Set the [[Environment]] internal slot of F to the value of Scope.

Set the [[FormalParameters]] internal slot of F to ParameterList".

Set the [[ECMAScriptCode]] internal slot of F to Body:.

10. If kind is Arrow, set the [[ThisMode]] internal slot of F to.dexical.

11. Else if Strict is true, set the [[ThisMode]] internal slot of F to strict.

12. Else set the [[ThisMode]] internal slot of F to global.

13. Return F.

Hown

© NG

9.2.6 FunctionCreate (kind, ParameterList, Body, Scope, Strict, prototype), [Deleted: Abstract Operation

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method,
Arrow), a parameter list production specified by ParameterList, a body production specified by Body, a
Lexical Environment specified by Scope, a Boolean flag Strict, and optionally, an object prototype.
FunctionCreate performs the following steps:

1. If the prototype argument was not-passed, then
a. Let prototype be the intrinsic object %FunctionPrototype%.

2. If kind is not Normal, let allocKind be "non-constructor".
3. Else let allocKind be “normal".
4. <LetF be FunctionAllocate(prototype, Strict, allocKind).
5. Return Functionlnitialize (F, kind, ParameterList, Body, Scope).
9.2.7 GeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict), [Deleted: Abstract Operation

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal,
Method), a parameter list‘production specified by ParameterList, a body production specified by Body, a
Lexical Environment specified by Scope, and a Boolean flag Strict. GeneratorFunctionCreate performs the
following steps:

1. Let functionPrototype be the intrinsic object %Generator%.
2. Let F be FunctionAllocate(functionPrototype, Strict, "generator").
3. Return Functionlnitialize(F, kind, ParameterList, Body, Scope).

© Ecma International 2015 103

oecnd

‘ 9.2.8 AddRestrictedFunctionProperties (F, realm),

The abstract operation AddRestrictedFunctionProperties is called with a function object F and Realm
Record realm as its argument. It performs the following steps:

1. Assert: realm.[[intrinsics]].[[%ThrowTypeError%]] exists and has been initialized.

2. Let thrower be realm.[[intrinsics]].[[%ThrowTypeError%]].

3. Let status be DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: true}).

4. Assert: status is not an abrupt completion.

5. Return DefinePropertyOrThrow(F , "arguments™", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: true}).

6. Assert: The above returned value is not an abrupt completion.

9.2.8.1 %ThrowTypeError% ()

The %ThrowTypeError% intrinsic is an anonymous built-in function object that is defined once for each
Realm. When %ThrowTypeError% is called it performs the following steps:

1. Throw a TypeError exception.
The value of the [[Extensible]] internal slot of a % ThrowTypeError% function is false.

The length property of a %ThrowTypeError%. function has the attributes {[[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

9.2.9 MakeConstructor (F, writablePrototype, prototype),

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean
writablePrototype and an<object prototype. If prototype is provided it is assumed to already contain, if
needed, a "constructor" property whose value is F. This operation converts F into a constructor by
performing the following steps:

1. Assert: F is an ECMAScript function object.
2. Assert: F has a [[Construct]] internal method.
3. Assert: F isan extensible object that does not have a prototype own property.
4. et installNeeded be false.
5. If the prototype argument was not provided, then
a. LetinstallNeeded be true.
b. Let prototype be ObjectCreate(%ObjectPrototype%).
6. If the writablePrototype argument was not provided, then
a. Let writablePrototype be true.
7. If instaliNeeded, then
a. Let status be'DefinePropertyOrThrow(prototype, "constructor",
PropertyDescriptor{[[Value]]: F, [[Writable]]: writablePrototype, [[Enumerable]]: false,
[[Configurable]]: writablePrototype }).
b. Assert: status is not an abrupt completion.
8. Let status be DefinePropertyOrThrow(F, "prototype", PropertyDescriptor{[[Value]]: prototype,
[[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]: kalse[}).
9. Assert: status is not an abrupt completion.
10. Return NormalCompletion(undefined).

104 © Ecma International 2015

[Deleted: Abstract Operation

[Deleted: Abstract Operation

[Comment [AWB193]: Same as ES5

oecnd

9.2.10 MakeClassConstructor (F), [Deleted: Abstract Operation

The abstract operation MakeClassConstructor with argument F performs the following steps:

1. Assert: F is an ECMAScript function object.
2. Assert: F’s [[FunctionKind]] internal slot is "normal".
3. Set F’s [[FunctionKind]] internal slot to "classConstructor".
4. Return NormalCompletion(undefined).
9.2.11 MakeMethod (F, homeObject), [Deleted: Abstract Operation

The abstract operation MakeMethod with arguments F and homeObiject configures F as a method by
performing the following steps:

1. Assert: F is an ECMAScript function object.

2. Assert: Type(homeObject) is Object. [Deleted: either Undefined or
3. Set the [[HomeObject]] internal slot of F to homeObiject. -

: : Deleted: <#>Set the [[N I
4. Return NormalCompletion(undefined). { S,;s:iioir:(f;“ © [[NeedsSuper]] intem

9.2.12 SetFunctionName (F, name, prefix), [Deleted: Abstract Operation

The abstract operation SetFunctionName requires a Function argument F, a String or Symbol argument
name and optionally a String argument prefix. This.operation adds a name property to F by performing the
following steps:

1. Assert: F is an extensible object that does not have a name own property.
2. Assert: Type(name) is either Symbol or String.
3. Assert: If prefix was passed-then Type(prefix) is String.
4. If Type(name) is Symbol, then
a. Let description be name’s [[Description]] value.
b. If description is undefined, let name be the empty String.
c. Else, lettname be the concatenation of " [", description, and "]".
5. If prefix was passed, then

a. Let name be the concatenation of prefix, Unicode code unit 0x0020 (Space) , and name. | [Deleted: point

6. Return DefinePropertyOrThrow(F, "name", PropertyDescriptor{[[Value]]: name, [[Writable]]: [Deleted: Ut

false, [[Enumerable]]: false, [[Configurable]]: true}).
7. Assert: the result is neveran abrupt completion.

9.2.13 FunctionDeclarationinstantiation(func, argumentsList), | [Deleted: Abstract Operation

NOTE When an execution context is established for evaluating an ECMAScript function a new Function
Environment Record is created and bindings for each formal parameter are instantiated in that environment record.
Each declaration in the function body is also instantiated. If the function’s formal parameters do not include any
default value initializers then the body declarations are instantiated in the same environment record as the
parameters. If default value parameter initializers exist, a second environment record is created for the body
declarations. Formal parameters and functions are initialized as part of FunctionDeclarationInstantiation. All other
bindings are initialized during evaluation of the function body.

FunctionDeclarationInstantiation is performed as follows using arguments func and argumentsList. func is

the function object for which the execution context is being established. | [Deleted: that

1. Let calleeContext be the running execution context.
2. Letenv be the LexicalEnvironment of calleeContext.

© Ecma International 2015 105

106

17.
18.

19.

20.

21.

22.

reCma

Let envRec be env’s environment record.

Let code be the value of the [[ECMAScriptCode]] internal slot of func.

Let strict be the value of the [[Strict]] internal slot of func.

Let formals be the value of the [[FormalParameters]] internal slot of func.

Let parameterNames be the BoundNames of formals.

If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let
hasDuplicates be false.

Let simpleParameterList be IsSimpleParameterList of formals.

. Let hasParameterExpressions be ContainsExpression of formals.
. Let varNames be the VarDeclaredNames of code.

. Let varDeclarations be the VVarScopedDeclarations of code.

. Let lexicalNames be the LexicallyDeclaredNames of code.

. Let functionNames be an empty List.

. Let functionsTolnitialize be an empty List.

. For each d in varDeclarations, in reverse list order do

a. If dis neither a VariableDeclaration or a ForBinding, then
i. Assert: d is either a FunctionDeclaration or a GeneratorDeclaration.
ii. Let fn be the sole element of the BoundNames of d.
iii. If fn is not an element of functionNames, then
1. Insert fn as the first element of functionNames.
2. NOTE If there are multiple FunctionDeclarations or GeneratorDeclarations for the same
name, the last declaration is used.
3. Insert d as the first element of functionsTolnitialize.

Let argumentsObjectNeeded be true.

If the value of the [[ThisMode]] internal slot of func is.lexical, then

a. NOTE Arrow functions never have an arguments objects.

b. LetargumentsObjectNeeded be false.

Else if "arguments'is an element of parameterNames, then

a. LetargumentsObjectNeeded be false.

Else if hasParameterExpressions is false, then

a. If"arguments" is an element of functionNames or if "arguments" is an element of
lexicalNames, then
i. LetargumentsObjectNeeded be false.

For each String paramName in parameterNames, do

a. letalreadyDeclared be envRec.HasBinding(paramName).

b. NOTE Early errors ensure that duplicate parameter names can only occur in non-strict mode
functions that do not have parameter default values or rest parameters.

c. If alreadyDeclared is false, then
i. Let status be envRec.CreateMutableBinding(paramName).

ii. If hasDuplicates is true, then
1. Let status be envRec.InitializeBinding(paramName, undefined).
ili.. Assert: status is never an abrupt completion for either of the above operations.

If argumentsObjectNeeded is true, then

a. If strictis true or if simpleParameterList is false, then
i. Letao be CreateUnmappedArgumentsObject(argumentsList).

b. Else,

i. NOTE mapped argument object is only provided for non-strict mode functions that don’t
have a rest parameter, any parameter default value initializers, or any destructured
parameters .

ii. Letao be CreateMappedArgumentsObject(func, formals, argumentsList, env).

ReturnlfAbrupt(ao).

d. |If strict is true, then
i. Letstatus be envRec.CreatelmmutableBinding("arguments").

o

© Ecma International 2015

secmd

e. Else,

i. Let status be envRec.CreateMutableBinding("arguments").

f. Assert: status is never an abrupt completion.

g. Call envRec.InitializeBinding("arguments", ao).

h. Append "arguments" to parameterNames.

23. Let iteratorRecord be Record {[[iterator]]: CreateListlterator(argumentsList), [[done]]: false}.
24. If hasDuplicates is true, then

a. Let formalStatus be IteratorBindinglnitialization for formals with iteratorRecord and

undefined as arguments.
25. Else,

a. Let formalStatus be IteratorBindinglnitialization for formals with iteratorRecord and envRec as

arguments.
26. ReturnlfAbrupt(formalStatus).
27. If hasParameterExpressions is false, then

a. NOTE Only a single lexical environment is needed for the parameters and top-level vars.

b. Let instantiatedVarNames be a copy of the List parameterNames.

c. For each n in varNames, do
i. If nis notan element of instantiatedVarNames, then

1. Append n to instantiatedVarNames.

2. Let status be envRec.CreateMutableBinding(n).
3. Assert: status is never an abrupt completion.

4. Call envRec.InitializeBinding(n, undefined).

d. LetvarEnv be env.

e. LetvarEnvRec be envRec.

28. Else,

a. NOTE A separate environment record is needed to ensure that closures created by expressions
in the formal parameter list do not have visibility of declarations in the function body.

b. LetvarEnv be NewDeclarativeEnvironment(env).

c. LetvarEnvRecbe varEnv’s environment record.

d. Set the VariableEnvironment of calleeContext to varEnv.

e. Let instantiatedVarNames be a new empty List.

f. For eachn in.varNames,do
i. If nis not an element of instantiatedVarNames, then

1. Append n to instantiatedVarNames.
2. Let status be varEnvRec.CreateMutableBinding(n).
3. Assert: status is.never an abrupt completion.
4. Ifnisnot an element of parameterNames or if n is an element of functionNames, let
initialValue be undefined.
5. else,
a. LetinitialValue be envRec.GetBindingValue(n, false).
b. ReturnlfAbrupt(initialValue).
6. Call varEnvRec.InitializeBinding(n, initialValue).
7.. NOTE vars whose names are the same as a formal parameter, initially have the same
value as the corresponding initialized parameter.
29. NOTE: Annex B.3.3 adds additional steps at this point. |
30. If strict is false, then

a. Let lexEnv be NewDeclarativeEnvironment(varEnv).

b. NOTE: Non-strict mode functions use a separate lexical environment record for top-
level lexical declarations so that a direct eval (see 12.3.4.1) can determine whether
any var scoped declarations introduced by the eval code conflict with pre-existing top-
level lexically scoped declarations. This is not needed for strict mode functions because |
a strict direct eval always places all declarations into a new environment record.

31. Else, let lexEnv be varEnv.

© Ecma International 2015 107

oecmad

32. Let lexEnvRec be lexEnv’s environment record.
33. Set the LexicalEnvironment of calleeContext to lexEnv.
34. Let lexDeclarations be the LexicallyScopedDeclarations of code.
35. For each element d in lexDeclarations do
a. NOTE Alexically declared name cannot be the same as a function/generator declaration, formal
parameter, or a var name. Lexically declared names are only instantiated here but not initialized.
b. For each element dn of the BoundNames of d do
i. If IsConstantDeclaration of d is true, then
1. Let status be lexEnvRec.CreatelmmutableBinding(dn, true).
ii. Else,
1. Let status be lexEnvRec.CreateMutableBinding(dn, false).
c. Assert: status is never an abrupt completion.
36. For each parsed grammar phase f in functionsTolnitialize, do

a. Letfn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument lexEnv.
c. Let status be varEnvRec.SetMutableBinding(fn, fo; false).
d. Assert: status is never an abrupt completion.
37. Return NormalCompletion(empty).

NOTE1 B.3.3 provides an extension to the above algorithm that is necessary for backwards compatibility with
web browser implementations of ECMAScript that predate the sixth edition of ECMA-262.

NOTE 2 Parameter Initializers may contain direct eval expressions (12.3.4.1). Any top level declarations of such
evals are only visible to the eval code (10.2). The creation.of the environment for such declarations is described in
14.1.19,

9.3 Built-in Function Objects

The built-in function objects defined in this specification may be implemented as either ECMAScript
function objects (9.2) whose behaviour is provided using ECMAScript code or as implementation provided
exotic function objects‘'whose behaviour is provided in. some other manner. In either case, the effect of
calling such functions must conform to their specifications. An implementation may also provide additional
built-in function objects that are not defined in this.specification.

If a built-in funetion object is implemented as an exotic object it must have the ordinary object behaviour
specified«in 9.1 except.[[GetOwnProperty]] which must be as specified in 9.2.1, All such exotic function

objects also have [[Pratotype]], [[Extensible]], and [[Realm]] internal slots.

Unless. otherwise specified every built-in function object initially has the %FunctionPrototype% object
(19.2.3) as the initial value of its [[Prototype]] internal slot.

The behaviour specified for/each built-in function via algorithm steps or other means is the specification of
the function body behaviour for both [[Call]] and [[Construct]] invocations of the function. However
[[Construct]] invocation‘is not supported by all built-in functions. For each built-in function, when invoked
with [[Call]], the [[Call]] thisArgument provides the this value, the [[Call]] argumentsList provides the named
parameters, and the NewTarget value is undefined. When invoked with [[Construct]], the this value is
uninitialized, the [[Construct]] argumentsList provides the named parameters, and the [[Construct]]
newTarget parameter provides the NewTarget value. If the built-in function is implemented as an
ECMAScript function object then this specified behaviour must be implemented by the ECMAScript code
that is the body of the function. Built-in functions that are ECMAScript function objects must be strict
mode functions. If a built-in constructor has any [[Call]] behaviour other than throwing a TypeError
exception, an ECMAScript implementation of the function must be done in a manner that does not cause
the function’s [[FunctionKind]] internal slot to have the value "classConstructor".

108 © Ecma International 2015

[Deleted: production

[Deleted: 14.1.21

[Deleted: 9.2.19.2.19.2.19.2.19.2.19.2.2

oecha

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal
method unless otherwise specified in the description of a particular function. When a built-in constructor is
called as part of a new expression the argumentsList parameter of the invoked [[Construct]] internal
method provides the values for the built-in constructor's named parameters.

Built-in functions that are not constructors do not have a prototype property unless otherwise specified
in the description of a particular function.

If a built-in function object is not implemented as an ECMAScript function it must provide [[Call]] and
[[Construct]] internal methods that conform to the following definitions:

9.3.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for a built-in function object F is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

Let callerContext be the running execution context.

If callerContext is not already suspended, Suspend callerContext.

Let calleeContext be a new ECMAScript code execution context.

Set the Function of calleeContext to F.

Let calleeRealm be the value of F’s [[Realm]] internal slot:

Set the Realm of calleeContext to calleeRealm.

Perform any necessary implementation defined initialization of calleeContext.

Push calleeContext onto the execution context stack; calleeContext is now the running execution

context.

9. Let result be the Completion Record that is the result of evaluating F in an implementation defined
manner that conforms to the specification of F. thisArgument is the this value, argumentsList
provides the named parameters, and the NewTarget value is undefined.

10. Remove calleeContext from the execution context stack and restore callerContext as the running
execution context.

11. Return result.

@®NOG~ WM

NOTE1 When calleeContext is removed from the execution context stack it must not be destroyed if it has been
suspended and retained by an accessible generator object for later resumption.

9.3.2 [[Construct]] (argumentsList, newTarget)

The[[Construct]] internal method for built-in function object F is called with parameters argumentsList and
newTarget. The steps performed are the same as [[Call]] (see 9.3.1) except that step 9 is replaced by:

9. Let result be the Completion Record that is the result of evaluating F in an implementation defined
manner that conforms to the specification of F. The this value is uninitialized, argumentsList
provides the named parameters, and newTarget provides the NewTarget value.

9.3.3 CreateBuiltinFunction(realm, steps, prototype, internalSlotsList),

The abstract operation CreateBuiltinFunction takes arguments realm, prototype, and steps. The optional
argument internalSlotsList is a List of the names of additional internal slots that must be defined as part of
the object. If the listis not provided, an empty List is used. CreateBuiltinFunction returns a built-in function
object created by the following steps:

1. Assert: realm is a Realm Record.
2. Assert: steps is either a set of algorithm steps or other definition of a functions behaviour provided
in this specification.

© Ecma International 2015 109

| { Deleted: Abstract Operation

oecmad

3. Let func be a new built-in function object that when called performs the action described by steps.
The new function object has internal slots whose names are the elements of internalSlotsList. The
initial value of each of those internal slots is undefined.

4. Set the [[Realm]] internal slot of func to realm.

5. Set the [[Prototype]] internal slot of func to prototype.

6. Return func.

9.4 Built-in Exotic Object Internal Methods and Slots

This specification defines several kinds of built-in exotic objects. These objects generally behave similar
to ordinary objects except for a few specific situations. The following_exotic objects use the ordinary
object internal methods except where it is explicitly specified otherwise below:

9.4.1 Bound Function Exotic Objects

A bound function is an exotic object that wraps another function object. A bound function is callable (it has
a [[Call]] internal method and may have a [[Construct]] internal method). Calling a bound function

generally results in a call of its wrapped function.

Bound function objects do not have the internal slots of ECMAScript function objects defined in Table 27.
Instead they have the internal slots defined in Table 28.

Table 28 — Internal Slots of Exotic Bound Function Objects

Internal Slot Type Description

[[BoundTargetFunction]] | Callable Object | The wrapped function.object.

[[BoundThis]] Any The value that is always passed as the this value when
calling the wrapped function.

[[BoundArguments]] List of Any A list of values whose elements are used as the first
arguments to any call to the wrapped function.

Unlike ECMAScript function objects, bound-function objects do not use an alternative definition of the
[[GetOwnProperty]] internal methods. Bound function objects provide all of the essential internal methods
as specified in 9.1. However, they use the following definitions for the essential internal methods of
function objects.

9.4.11 [[Call]] (thisArgument, argumentsList)

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind
function is called with parameters thisArgument and argumentsList, a List of ECMAScript language values,
the following steps are taken:

1. Let target be the value of F’s [[BoundTargetFunction]] internal slot.

2. Let boundThis.be the value of F’s [[BoundThis]] internal slot.

3. Let boundArgs be the value of F’s [[BoundArguments]] internal slot.

4. Let args be a new list containing the same values as the list boundArgs in the same order followed
by the same values as the list argumentsList in the same order.

5. Return Call(target, boundThis, args).

9.4.1.2 [[Construct]] (argumentsList, newTarget)

When the [[Construct]] internal method of an exotic bound function object, F that was created using the
bind function is called with a list of arguments argumentsList and newTarget, the following steps are taken:

110 © Ecma International 2015

oecha

1. Let target be the value of F’s [[BoundTargetFunction]] internal slot.
2. Assert: target has a [[Construct]] internal method.
3. Let boundArgs be the value of F’s [[BoundArguments]] internal slot.
4. Let args be a new list containing the same values as the list boundArgs in the same order followed
by the same values as the list argumentsList in the same order.
5. If SameValue(F, newTarget) is true, let newTarget be target.
6. Return Construct(target, args, newTarget).
9.4.1.3 BoundFunctionCreate (targetFunction, boundThis, boundArgs), [Deleted: Abstract Operation

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is
used to specify the creation of new Bound Function exotic objects. It performs the following steps:

Assert: Type(targetFunction) is Object.

Let proto be targetFunction.[[GetPrototypeOf]]().
ReturnIfAbrupt(proto).

Let obj be a newly created object.

Set obj’s essential internal methods to the default.ordinary object definitions specified in 9.1.
Set the [[Call]] internal method of obj as described in 9.4.1.1.

If targetFunction has a [[Construct]] internal method, then

a. Set the [[Construct]] internal method of obj as described in 9.4.1.2.
8. Set the [[Prototype]] internal slot of obj to proto.

9. Set the [[Extensible]] internal slot of ‘obj.to true.

10. Set the [[BoundTargetFunction]] internal slot of obj to targetFunction.
11. Set the [[BoundThis]] internal slot of obj to the value of boundThis.
12. Set the [[BoundArguments]] internal slot of obj to boundArgs.

13. Return obj.

NoukrwhpkE

9.4.2 Array Exotic Objects

An Array object is an exotic object that gives special treatment to array index property keys (see 6.1.7). A |
property whose property name is an array index is also called an element. Every Array object has a
length property whose value is always a nonnegative integer less than 2%. The value of the length
property is numerically greater-.than the name of every own property whose name is an array index;
whenever an.-own property of an Array object is created or changed, other properties are adjusted as
necessary to maintain this invariant. Specifically, whenever an own property is added whose name is an
array index, the value of the length property is changed, if necessary, to be one more than the numeric
value of that array index; and whenever the value of the 1ength property is changed, every own property
whaose name is an array index whose value is not smaller than the new length is deleted. This constraint
applies only to own properties of an Array object and is unaffected by length or array index properties
that may be inherited from its prototypes.

NOTE A String property name P is an array index if and only if ToString(ToUint32(P)) is equal to P and
ToUint32(P) is not equal to 2%%-1.

Array exotic objects always have a non-configurable property named "length".
Array exotic objects provide an alternative definition for the [[DefineOwnProperty]] internal method.

Except for that internal method, Array exotic objects provide all of the other essential internal methods as
specified in 9.1.

© Ecma International 2015 111

oecmad

9.4.2.1 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an Array exotic object A is called with property key P,
and Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. IfPis"length", then
a. Return ArraySetLength(A, Desc).
3. Else if P is an array index, then
a. LetoldLenDesc be OrdinaryGetOwnProperty(A, "length").
b. Assert: oldLenDesc will never be undefined or an accessor descriptor because Array objects are
created with a length data property that cannot be deleted or reconfigured.
Let oldLen be oldLenDesc.[[Value]].
Let index be ToUint32(P).
Assert: index will never be an abrupt completion.
If index > oldLen and oldLenDesc.[[Writable]] is false, return false.
Let succeeded be OrdinaryDefineOwnProperty(A, P, Desc).
Assert: succeeded is not an abrupt completion.
If succeeded is false, return false.
If index > oldLen
i. SetoldLenDesc.[[Value]] to index + 1.
il. Letsucceeded be OrdinaryDefineOwnProperty(A, “*1ength", oldLenDesc).
iii. Assert: succeeded is true.
k. Return true.
4. Return OrdinaryDefineOwnProperty (A, P, Desc).

e Ta o 0o

9.4.2.2 ArrayCreate(length, proto), [Deleted: Abstract Operation

The abstract operation ArrayCreate with. argument length (a positive integer) and optional argument proto
is used to specify the creation of new Array exotic objects. It performs the following steps:

Assert: length is an integer Number > 0.

If length is —0, let.length be+0.

If length>232-1, throw a RangeError exception:

If the proto argument was not passed, let proto be the intrinsic object %ArrayPrototype%.

Let'A be a newly created Array exotic object.

Set A’s essential internal methods except for [[DefineOwnProperty]] to the default ordinary object

definitions specified. in 9.1.

Set the [[DefineOwnProperty]] internal method of A as specified in 9.4.2.1.

Set the [[Prototype]] internal slot of A to proto.

Set the [[Extensible]] internal slot of A to true.

0. Call OrdinaryDefineOwnProperty with arguments A, "length" and PropertyDescriptor{[[Value]]:
length, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false}.

11. Return'A.

SgakrwnE

5 ©

9.4.23 ArraySpeciesCreate(originalArray, length), [Deleted: Abstract Operation

The abstract operation ArraySpeciesCreate with arguments originalArray and length is used to specify
the creation of a new Array object using a constructor function that is derived from originalArray. It
performs the following steps:

1. Assert: length is an integer Number > 0.
2. If length is -0, let length be +0.

112 © Ecma International 2015

oecnd

Let C be undefined.
Let isArray be IsArray(originalArray).

ReturnlfAbrupt(isArray).

|91~ w

7.
8.
9

NOTE
Realm

If isArray. is true, then

a. Let C be Get(originalArray, "constructor").
b. ReturnifAbrupt(C).
c. If IsConstructor(C) is true, then
i. Let thisRealm be the running execution context’s Realm.
ii. LetrealmC be GetFunctionRealm(C).
ili. ReturnlfAbrupt(realmC).
iv. If thisRealm and realmC are not the same Realm Record, then
1. If SameValue(C, realmC.[[intrinsics]].[[%Array%]]) is true, let C be undefined.
d. If Type(C) is Object, then
i. LetC be Get(C, @@species).
ii. ReturnlfAbrupt(C).
iii. If Cis null, let C be undefined.
If C is undefined, return ArrayCreate(length).
If IsConstructor(C) is false, throw a TypeError.exception.
Return Construct(C, «length»).

If originalArray was created using the standard built-in Array constructor for a Realm that is not the
of the running execution context, then a new Array is created using the Realm of the running execution

context. This maintains compatibility with Web browsers that have historically had that behaviour for the
Array.prototype methods that now are defined using ArraySpeciesCreate.

9.4.2.4 ArraySetLength(A, Desc),

When the abstract operation ArraySetLength is called with an Array exotic object A, and Property
Descriptor Desc the following steps are taken:

1.

2SR O 1 P W N

16.
17.

If the [[Value]] field of Desc is absent, then

a. Return OrdinaryDefineOwnProperty(A, "length", Desc).
Let newLenDesc be a copy of Desc.

Let newLen be ToUint32(Desc.[[Value]]).
ReturnlfAbrupt(newLen).

Let numberLen be ToNumber(Desc.[[Value]]).
ReturnIfAbrupt(newLen).

If newLen # numberLen, throw a RangeError exception.

Set newLenDesc.[[Value]] to newLen.

Let oldLenDesc be OrdinaryGetOwnProperty(A, "length™").

. Assert: oldLenDesc will never be undefined or an accessor descriptor because Array objects are

created with a length data property that cannot be deleted or reconfigured.

. Let oldLen be oldLenDesc.[[Value]].
. If newLen >oldLen, then

a. Return OrdinaryDefineOwnProperty(A, "length", newLenDesc).

. If oldLenDesc.[[Writable]] is false, return false.
. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
. Else,

a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
b. Let newWritable be false.

c. Set newLenDesc.[[Writable]] to true.

Let succeeded be OrdinaryDefineOwnProperty(A, "length", newLenDesc).

Assert:succeeded is not an abrupt completion.

© Ecma International 2015 113

{ Deleted: IsArray(originalArray)

[

Deleted: Abstract Operation

oecnd

18. If succeeded is false, return false.
19. While newLen < oldLen repeat,
a. SetoldLen to oldLen — 1.
b. Let deleteSucceeded be A.[[Delete]](ToString(oldLen)).
c. Assert: deleteSucceeded is not an abrupt completion.
d. If deleteSucceeded is false, then
i. Set newLenDesc.[[Value]] to oldLen+1.
il. If newWritable is false, set newLenDesc.[[Writable]] to false.
iii. Let succeeded be OrdinaryDefineOwnProperty(A, "length", newLenDesc).
iv. Assert:succeeded is not an abrupt completion.
v. Return false.
20. If newWritable is false, then
a. Return OrdinaryDefineOwnProperty(A, "length", PropertyDescriptor{[[Writable]]: false}).
This call will always return true.
21. Return true.

NOTE In steps 3 and 4, if Desc.[[Value]] is an object then its valueOf method is called twice. This is
legacy behaviour that was specified with this effect starting with the 2™ Edition of this specification.

9.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes virtual integer indexed
data properties corresponding to the individual code unit elements of the string value. Exotic String
objects always have a data property named "length" whose value is the number of code unit elements
in the encapsulated String value. Both the code unit data properties and the "length" property are non-
writable and non-configurable.

Exotic String objects have the same internal slots as ordinary objects. They also have a [[StringData]]
internal slot.

Exotic String objects provide alternative definitions for the following internal methods. All of the other
exotic String object essential internal methods that are not defined below are as specified in 9.1.

9.4.31 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic String object S is called with property key P the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.

2.° Let desc be OrdinaryGetOwnProperty(S, P).
3. If desc is not undefined return desc.

4. Return StringGetindexProperty(S, P).

9.4.3.1.1 StringGetindexProperty (S, P)

When the abstract operation StringGetindexProperty is called with an exotic String object S and with
property key P, the following steps are taken:

1. If Type(P) is not String, return undefined.

2. Letindex be CanonicalNumericindexString (P).
3. Assert: index is not an abrupt completion.

4. If index is undefined, return undefined.

5. If IsInteger(index) is false, return undefined.

114 © Ecma International 2015

secmd

If index = -0, return undefined.

Let str be the String value of the [[StringData]] internal slot of S.

Let len be the number of elements in str.

If index < 0 or len < index, return undefined.

0. Let resultStr be a String value of length 1, containing one code unit from str, specifically the code
unit at index index.

11. Return a PropertyDescriptor{ [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,

[[Configurable]]: false }.

BoOo N

9.4.3.2 [[HasProperty]](P)

When the [[HasProperty]] internal method of an exotic String object S'is called with property key P, the
following steps are taken:

1. LethasOrdinary be OrdinaryHasProperty(S, P).

2. If hasOrdinary is true, return true.

3. Let desc be StringGetindexProperty(S, P).

4. If desc is undefined, return false; otherwise, return true.

9.4.3.3 [[Enumerate]] () [Deleted: Emumerate

When the [[Enumerate]] internal method of an exotic String object O is called the following steps are

1. LetindexKeys be a new empty List.

2. Let str be the String value of the [[StringData]] internal slot of O.

3. Let len be the number of elements in str.

4. For each integer i starting with 0 such that i <.en, in ascending order,
a. Add ToString(i)as the last element of indexKeys

5. Let ordinary be the result of calling the default ordinary object [[Enumerate]] internal method
(9.1.11) on O.

6. ReturnlfAbrupt(ordinary).

7. Return CreateCompoundlterator(CreateListlterator(indexKeys), ordinary).

9.4.34 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a String exotic object O is called the following steps are
taken:

1. Letkeys be a new empty List.

2. Let str be the String value of the [[StringData]] internal slot of O.

3. Let len be the number of elements in str.

4. For each integer i starting with 0 such that i < len, in ascending order,
a. Add ToString(i) as the last element of keys

5. For each own property key P of O such that P is an integer index and Tolnteger(P) > len, in
ascending numeric index order,
a. Add P as the last element of keys.

6. For each own property key P of O such that Type(P) is String and P is not an integer index, in
property creation order,
a. Add P as the last element of keys.

7. For each own property key P of O such that Type(P) is Symbol, in property creation order,
a. Add P as the last element of keys.

8. Return keys.

© Ecma International 2015 115

oecmad

‘ 9.4.35 StringCreate(value, prototype),

The abstract operation StringCreate with arguments value and prototype is used to specify the creation of
new exotic String objects. It performs the following steps:

ReturnlfAbrupt(prototype).

Assert: Type(value) is String.

Let S be a newly created String exotic object.

Set the [[StringData]] internal slot of S to value.

Set S’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[GetOwnProperty]] internal method of S as specified in 9.4.3.1.

Set the [[HasProperty]] internal method of S as specified in 9.4.3.2.

Set the [[Enumerate]] internal method of S as specified in 9.4.3:3

CoNO>TORWNE

Set the [[OwnPropertyKeys]] internal method of S as specified in 9.4.3.4.

10. Set the [[Prototype]] internal slot of S to prototype.

11. Set the [[Extensible]] internal slot of S to true.

12. Let length be the number of code unit elements in value.

13. Let status be DefinePropertyOrThrow(S, "length", PropertyDescriptor{[[Value]]: length,
[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }).

14. Assert: status is not an abrupt completion.

15. Return S.

9.4.4 Arguments Exotic Objects

Most ECMAScript functions make an arguments objects available to their code. Depending upon the
characteristics of the function definition, its argument object is either an ordinary object or an arguments
exotic object. An arguments exotic object is an exotic-object whose array index properties map to the
formal parameters bindings of an invocation of its associated ECMAScript function.

Arguments exotic objects have the same internal slots as ordinary objects. They also have a
[[ParameterMap]] internal slot. Ordinary arguments objects also have a [[ParameterMap]] internal slot
whose value is always undefined. For ordinary argument objects the [[ParameterMap]] internal slot is only
used by Object.prototype. toString (19.1.3.6) to identify them as such.

Arguments_exotic-objects provide alternative definitions for the following internal methods. All of the other
exotic arguments object essential internal methods that are not defined below are as specified in 9.1

NOTE 1 For non-strict mode functions the integer indexed data properties of an arguments object whose numeric
name values are less than the number of formal parameters of the corresponding function object initially share their
values with the corresponding argument bindings in the function’s execution context. This means that changing the
property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if
such a property.is deleted and then redefined or if the property is changed into an accessor property. For strict mode
functions, the values of the arguments object’s properties are simply a copy of the arguments passed to the function
and there is no dynamic linkage between the property values and the formal parameter values.

NOTE2 The ParameterMap object and its property values are used as a device for specifying the arguments
object correspondence to argument bindings. The ParameterMap object and the objects that are the values of its
properties are not directly observable from ECMAScript code. An ECMAScript implementation does not need to
actually create or use such objects to implement the specified semantics.

NOTE3 Arguments objects for strict mode functions define non-configurable accessor properties named

"caller" and "callee" which throw a TypeError exception on access. The "callee" property has a more specific
meaning for non-strict mode functions and a "caller" property has historically been provided as an implementation-

116 © Ecma International 2015

[Deleted: Abstract Operation

[Deleted: s

[Deleted: .

oecnd

defined extension by some ECMAScript implementations. The strict mode definition of these properties exists to
ensure that neither of them is defined in any other manner by conforming ECMAScript implementations.

9.44.1 [[GetOwnProperty]] (P)

The [[GetOwnProperty]] internal method of an arguments exotic object when called with a property key P | [Deleted: name

performs the following steps:

Let args be the arguments object.

Let desc be OrdinaryGetOwnProperty(args, P).

If desc is undefined, return desc.

Let map be the value of the [[ParameterMap]] internal slot of the-arguments object.

Let isMapped be HasOwnProperty(map, P).

Assert: isMapped is never an abrupt completion.

If the value of isMapped is true, then

a. Setdesc.[[Value]] to Get(map, P).

8. If IsDataDescriptor(desc) is true and P is "callex" and desc.[[Value]] is a strict mode Function
object, throw a TypeError exception.

9. Return desc.

NoohkrwnpeE

If an implementation does not provide a built-in caller property for argument exotic objects then step 8
of this algorithm is must be skipped.

9.4.42 [[DefineOwnProperty]] (P, Desc) [Deleted:

The [[DefineOwnProperty]] internal method of an arguments exotic object when called with a property key [De|eted: name

P and Property Descriptor Desc performs the following steps:

Let args be the arguments object.
Let map be the value of the [[ParameterMap]] internal slot of the arguments object.
Let isMapped be HasOwnProperty(map, P).
Let allowed be OrdinaryDefineOwnProperty(args, P, Desc).
ReturnIfAbrupt(allowed).
If allowed is false, return false.
If the value of isMapped is true, then
a. If IsAccessorDescriptor(Desc) is true, then
i. Call the [[Delete]] internal method of map passing P as the argument.

Nooh~whE

b. Else
i. If Desc.[[Value]] is present, then
1. LetgetStatus be Set(map, P, Desc.[[Value]], false). | [Deleted: putStatus
2. Assert: setStatus is true because formal parameters mapped by argument objects are [Deleted: Put(
always writable.
ii.If Desc.[[Writable]] is present and its value is false, then (Deleted: putStatus

1. Call the [[Delete]] internal method of map passing P as the argument.
8. Return true.

9.4.43 [[Get]] (P, Receiver)

The [[Get]] internal method of an arguments exotic object when called with a property key P and | [Deleted: name

ECMAScript language value Receiver performs the following steps:

1. Letargs be the arguments object.
2. Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

© Ecma International 2015 117

oecmad

3. Let isMapped be HasOwnProperty(map, P).

Assert: isMapped is not an abrupt completion.

If the value of isMapped is false, then

a. Letv be the result of calling the default ordinary object [[Get]] internal method (9.1.8) on args
passing P and Receiver as the arguments.

6. Else map contains a formal parameter mapping for P,
a. Letvbe Get(map, P).

7. ReturnlfAbrupt(v).

8. Returnv.

o~

9.4.44 [[Set]] (P, V, Receiver)

The [[Set]] internal method of an arguments exotic object when called with property key P, value V, and
ECMAScript language value Receiver performs the following steps:

1. Letargs be the arguments object.
2. If SameValue(args, Receiver) is false, then
a. LetisMapped be false.
3. Else,
a. Let map be the value of the [[ParameterMap]] internal slot of the arguments object.
b. LetisMapped be HasOwnProperty(map, P).
c. Assert: isMapped is not an abrupt.completion.
4. If the value of isMapped is false, then
a. Return the result of calling the default ordinary object [[Set]] internal method (9.1.9) on args
passing P, V and Receiver as the arguments.
5. Else map contains a formal parameter mapping for.P,
a. Return Set(map, P, V, false).

9.4.45 [[Delete]] (P)

The [[Delete]] internal method of an arguments exotic object when called with a property key P performs
the following steps:

Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

LetiisMapped. be HasOwnProperty(map, P).

Assert: isMapped. is not an abrupt completion.

Let result be the result of calling the default [[Delete]] internal method for ordinary objects (9.1.10)
on the arguments object passing P as the argument.

ReturnIfAbrupt(result).

If result is true and the value of isMapped is true, then

a. Call the [[Delete]] internal method of map passing P as the argument.

7. Return result.

D wn e

oo

9.4.46 CreateUnmappedArgumentsObject(argumentsList),

The abstract operation CreateUnmappedArgumentsObject called with an argument argumentsList performs
the following steps:

1. Let len be the number of elements in argumentsList.

2. Let obj be ObjectCreate(%ObjectPrototype%, «[[ParameterMap]]»).

3. Set obj’s [[ParameterMap]] internal slot to undefined.

4. Perform DefinePropertyOrThrow(obj, ""1ength", PropertyDescriptor{[[Value]]: len, [[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}).

118 © Ecma International 2015

[

Deleted: Put(

[

Deleted: Abstract Operation

secmd

5. Letindex be 0.

6. Repeat while index < len,
a. Letval be argumentsList[index].
b. Perform CreateDataProperty(obj, ToString(index), val).
c. Letindex be index + 1

7. Perform DefinePropertyOrThrow(obj, @ @iterator, PropertyDescriptor
{[[\Value]]:%ArrayProto_values%, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]:
true}).

8. Perform DefinePropertyOrThrow(obj, "callexr", PropertyDescriptor {[[Get]]:
%ThrowTypeError%, [[Set]]: % ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]:
false}).

9. Perform DefinePropertyOrThrow(obj, "callee", PropertyDescriptor {[[Get]]:
%ThrowTypeError%, [[Set]]: % ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]:
false}).

10. Assert: the above property definitions will not produce an abrupt completion.

11. Return obj

9.4.4.7 CreateMappedArgumentsObject (func, formals, argumentsList, env), [Deleted: Abstract Operation
The abstract operation CreateMappedArgumentsObject is called with<object func, parsed grammar phrase [Ddeted: production

formals, List argumentsList, and environment record env. The following steps are performed:

1. Assert: formals does not contain a rest.parameter, any binding patterns, or any initializers. It may
contain duplicate identifiers.
Let len be the number of elements in‘argumentsList.
Let obj be a newly created arguments exotic object with.a [[ParameterMap]] internal slot.
Set the [[GetOwnProperty]] internal method of objas specified in 9.4.4.1.
Set the [[DefineOwnProperty]] internal method.of obj as specified in 9.4.4.2.
Set the [[Get]] internal method of obj as specified in 9.4.4.3.
Set the [[Set]] internal method of obj as specified in 9.4.4.4.
Set the [[Delete]] internal method of obj as specified in 9.4.4.5.
Set the remainder of obj’s essential internal methods to the default ordinary object definitions
specified in 9.1.
10. Set the [[Prototype]] internal slot of obj to %ObjectPrototype%.
11. Set the [[Extensible]] internal slot of obj to true.
12. LetparameterNames be the BoundNames of formals.
13. Let numberOfParameters be the number of elements in parameterNames
14. Let index be 0.
15. Repeat while index <'len ,

a. Letval be argumentsList[index].

b.. Perform CreateDataProperty(obj, ToString(index), val).

c. Letindex be index + 1
16. Perform DefinePropertyOrThrow(obj, "1ength™, PropertyDescriptor{[[Value]]: len, [[Writable]]:

true, [[Enumerable]]: false, [[Configurable]]: true}).
17. Let map be ObjectCreate(null).
18. Let mappedNames be an empty List.
19. Let index be numberOfParameters — 1.
20. Repeat while index >0,

a. Let name be parameterNames[index].

b. If name is not an element of mappedNames, then

i. Add name as an element of the list mappedNames.
ii. If index < len, then
1. Let g be MakeArgGetter(name, env).

NN

© Ecma International 2015 119

oecmad

2. Let p be MakeArgSetter(name, env).

3. Call the [[DefineOwnProperty]] internal method of map passing ToString(index) and
the PropertyDescriptor{[[Set]]: p, [[Get]]: g, [[Enumerable]]: false, [[Configurable]]:
true} as arguments.

c. Letindex be index — 1

21. Set the [[ParameterMap]] internal slot of obj to map.

22. Perform DefinePropertyOrThrow(obj, @ @iterator, PropertyDescriptor
{[[\Value]]:%ArrayProto_values%, [[Writable]]: true, [[Enumerable]]: false; [[Configurable]]:
true}).

23. Perform DefinePropertyOrThrow(obj, "callee", PropertyDescriptor {[[Value]]: func,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}).

24, Assert: the above property definitions will not produce an abrupt.completion.

25. Return obj

9.4.4.7.1 MakeArgGetter (name, env),

The abstract operation MakeArgGetter called with String name and environment record env creates a built-
in function object that when executed returns the value‘bound for name.in env. It performs the following
steps:

Let realm be the current Realm.

Let steps be the steps of an ArgGetter function as specified below.

Let getter be CreateBuiltinFunction(realm, steps, %FunctionPrototype%, «[[name]], [[env]]»).
Set getter’s [[name]] internal slot to name.

Set getter’s [[env]] internal slot to env.

Return getter.

Sk~ wnE

An ArgGetter function is an anonymous built-in function with [[name]] and [[env]] internal slots. When an
ArgGetter function f that expects no arguments is called it performs the following steps:

1. Let name be the value of /s [[name]] internal slot.
2. Letenv be the value of /s [[env]] internal slot
3. Return env.GetBindingValue(name, false).
NOTE ArgGetter functions are never directly accessible to ECMAScript code.

9.4.4.7.2 MakeArgSetter ((name, env),

The abstract operation MakeArgSetter called with String name and environment record env creates a built-
in‘function object that when executed sets the value bound for name in env. It performs the following steps:

Let realm be the current Realm.

Let steps be the steps of an ArgSetter function as specified below.

Let setter be CreateBuiltinFunction(realm, steps, %FunctionPrototype%, «[[name]], [[env]]»).
Set setter’s [[name]] internal slot to name.

Set setter’s [[env]] internal slot to env.

Return setter.

S~ wNE

An ArgSetter function is an anonymous built-in function with [[name]] and [[env]] internal slots. When an
ArgSetter function fis called with argument value it performs the following steps:

1. Let name be the value of f’s [[name]] internal slot.

2. Letenv be the value of /s [[env]] internal slot
3. Return env.SetMutableBinding(name, value, false).

120 © Ecma International 2015

[

Deleted: Abstract Operation

[

Deleted: Abstract Operation

secmd

NOTE ArgSetter functions are never directly accessible to ECMAScript code.
9.4.5 Integer Indexed Exotic Objects

An Integer Indexed object is an exotic object that performs special handling of integer index property
keys.

Integer Indexed exotic objects have the same internal slots as ordinary objects additionally
[[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]] internal slots.

Integer Indexed Exotic objects provide alternative definitions for the following internal methods. All of the
other Integer Indexed exotic object essential internal methods that are-not defined below are as specified
in9.1.

9.451 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an Integer Indexed exotic object O is called with property
key P the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then
Let numericindex be CanonicalNumericlndexString(P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericindex is not undefined, then
i. Letvalue be IntegerindexedElementGet (O, numericlndex).
il. ReturnlfAbrupt(value).
iii. If value is undefined, return undefined.
iv. Return a PropertyDescriptor{ [[Value]]: value, [[Enumerable]]: true, [[Writable]]: true,
[[Configurable]]: false }.
4. Return OrdinaryGetOwnProperty(O, P).

9.45.2 [[HasProperty]](P)

When the [[HasProperty]] internal method of an Integer Indexed exotic object O is called with property key
P, the following steps are taken:

1¢ Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then
Let numericindex be CanonicalNumericlndexString(P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericindex is not undefined, then
i. . Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.
ii. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
iii. If IsInteger(numericindex) is false, return false
iv. If numericlindex = -0, return false.
v. If numericlndex < 0, return false.
vi. If numericindex > the value of O’s [[ArrayLength]] internal slot, return false.
vii. Return true.
4. Return OrdinaryHasProperty(O, P).

© Ecma International 2015 121

oecnd

9.4.5.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an Integer Indexed exotic object O is called with
property key P, and Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then
a. Let numericlndex be CanonicalNumericlndexString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericindex is not undefined, then
i. If IsInteger(numericlndex) is false, return false
ii. LetintIndex be numericindex.
iii. If intindex = -0, return false.
iv. If intindex <0, return false.
v. Let length be the value of O’s [[ArrayLength]]nternal slot.
vi. If intindex > length, return false.
vii. If IsAccessorDescriptor(Desc) is true, return false.
viii. If Desc has a [[Configurable]] field and"if Desc.[[Configurable]] is true, return false.
ix. If Desc has an [[Enumerable]] field and if Desc.[[Enumerable]] is false, return false.
X. If Desc has a [[Writable]] field and if Desc.[[Writable]] is false, return false.
xi. If Desc has a [[Value]] field, then
1. Letvalue be Desc.[[Value]]:
2. Let status be IntegerIndexedElementSet (O, intIndex; value).
3. ReturnlfAbrupt(status).
xii. Return true.
4. Return OrdinaryDefineOwnProperty(O, P, Desc).

9.45.4 [[Get]] (P, Receiver)

When the [[Get]] internal method of an Integer Indexed exotic object O is called with property key P and
ECMAScript language value Receiver.the following steps are taken:

1. Assert: IsPropertyKey(P).is true.
2. If Type(P) is String and if SameValue(O, Receiver) is true, then
a._~Let numericindex be CanonicalNumericlndexString (P).
b. Assert: numericlndex is-not an abrupt completion.
c. If numericindex is not undefined, then
i. Return IntegerindexedElementGet (O, numericlndex).
3. Return the result of calling the default ordinary object [[Get]] internal method (9.1.8) on O passing
P and Receiver as arguments.

9455 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of an Integer Indexed exotic object O is called with property key P, value
V, and ECMAScript language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is String and if SameValue(O, Receiver) is true, then
a. Let numericlndex be CanonicalNumericlndexString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericindex is not undefined, then
i. Return IntegerIndexedElementSet (O, numericlndex, V).

122 © Ecma International 2015

secmd

3. Return the result of calling the default ordinary object [[Set]] internal method (9.1.8) on O passing
P, V, and Receiver as arguments.

9.4.5.6 [[Enumerate]] ()

When the [[Enumerate]] internal method of an Integer Indexed exotic object O is called the following steps
are taken:

1. Let indexKeys be a new empty List.

2. Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal slots.

3. Let len be the value of O’s [[ArrayLength]] internal slot.

4. For each integer i starting with 0 such that i < len, in ascending order,
a. Add ToString(i) as the last element of indexKeys.

5. Let ordinary be the result of calling the default ordinary.object [[Enumerate]] internal method
(9.1.11) on O.

6. ReturnIfAbrupt(ordinary).

7. Return CreateCompoundlterator(CreateListlterator(indexKeys), ordinary).

9.45.7 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an Integer Indexed exotic object O is called the
following steps are taken:

1. Letkeys be a new empty List.

2. Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal slots.

3. Let len be the value of O’s [[ArrayLength]] internal slot.

4. For each integer i starting with 0 such that i < len, in ascending order,
a. Add ToString(i) as the last element of keys.

5. For each ownproperty key P of O such that Type(P) is String and P is not an integer index, in
property creation order
a. Add P as the last element of keys.

6. For each own property key P of O such that Type(P) is Symbol, in property creation order
a. ~Add P as.the last element of keys.

7. _Return keys.

9.45.8 IntegerindexedObjectCreate (prototype, internalSlotsList), | [Deleted: Abstract Operation

The abstract operation IntegerindexedObjectCreate with arguments prototype and internalSlotsList is
used to specify the creation of new Integer Indexed exotic objects. The argument internalSlotsList is a
List of the names of additional internal slots that must be defined as part of the object.
IntegerindexedObjectCreate performs the following steps:

Let A be a newly created object with an internal slot for each name in internalSlotsList.

Set A’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[GetOwnProperty]] internal method of A as specified in 9.4.5.1.

Set the [[HasProperty]] internal method of A as specified in 9.4.5.2.

Set the [[DefineOwnProperty]] internal method of A as specified in 9.4.5.3.

Set the [[Get]] internal method of A as specified in 9.4.5.4.

Set the [[Set]] internal method of A as specified in 9.4.5.5.

Set the [[Enumerate]] internal method of A as specified in 9.4.5.6.

Set the [[OwnPropertyKeys]] internal method of A as specified in 9.4.5.7.

©INoO~WNE

© Ecma International 2015 123

9.4.59

&

10.
11.
12.

reCma

Set the [[Prototype]] internal slot of A to prototype.
Set the [[Extensible]] internal slot of A to true.
Return A.

IntegerindexedElementGet (O, index),

The abstract operation IntegerindexedElementGet with arguments O and index performs the following
steps:

1.
2.

RPBRBOO~NO O MW

12.
13.
14.

0.
1. Let elementSize be the Number value of the Element Size value specified in Table 49 for

Assert: Type(index) is Number.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal slots.

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

If IsDetachedBuffer(buffer) is true, throw a TypeError exception.

If IsInteger(index) is false, return undefined

If index = —0, return undefined.

Let length be the value of O’s [[ArrayLength]] internal slot.

If index < 0 or index > length, return undefined.

Let offset be the value of O’s [[ByteOffset]] internal slot.

Let arrayTypeName be the string value of O’s [[TypedArrayName]] internal slot.

arrayTypeName.

Let indexedPosition = (index x elementSize) + offset.

Let elementType be the string value of the Element Type value inTable 49 for arrayTypeName.
Return GetValueFromBuffer(buffer, indexedPosition, elementType).

9.4.5.10 IntegerindexedElementSet (O, index, value),

The abstract operation IntegerindexedElementSet with arguments O, index, and value performs the
following steps:

124

Assert: Type(index) is Number.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal slots.

Let numValue be ToNumber(value).

ReturnlfAbrupt(numValue).

LLet buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.
If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
If IsInteger(index) is false, return false

If index = —0, return false.

Let length be the value of O’s [[ArrayLength]] internal slot.

. If index < 0 or index = length, return false.

. Let offset be the value of O’s [[ByteOffset]] internal slot.

. Let arrayTypeName be the string value of O’s [[TypedArrayName]] internal slot.

. Let elementSize be the Number value of the Element Size value specified in Table 49 for

arrayTypeName.

. Let indexedPosition = (index x elementSize) + offset.

. Let elementType be the string value of the Element Type value in Table 49 for arrayTypeName.
. Let status be SetValuelnBuffer(buffer, indexedPosition, elementType, numValue).

. ReturnlfAbrupt(status).

. Return true.

© Ecma International 2015

[Deleted: Abstract Operation

{ Deleted: Abstract Operation

[Formatted: Font: Not Italic

secmd

9.4.6 Module Namespace Exotic Objects

A module namespace object is an exotic object that exposes the bindings exported from an ECMAScript
Module (See 15.2.3). There is a one-to-one correspondence between the String-keyed own properties of a |
module namespace exotic object and the binding names exported by the Module. The exported bindings
include any bindings that are indirectly exported using export * export items. Each String-valued own
property key is the StringValue of the corresponding exported binding name. These are the only String-
keyed properties of a module namespace exotic object. Each such property has the attributes
{[[Configurable]]: false, [[Enumerable]]: true}. Module namespace objects are not extensible.

Module namespace objects have the internal slots defined in Table 29.

Table 29 — Internal Slots of Module Namespace Exotic Objects

Internal Slot Type Description
[[Module]] Module Record The Module Record whose exports this namespace exposes.
[[Exports]] List of String A List containing the String values of the exported names

exposed as own properties of this object. The list is ordered as
if an Array of those string values had been sorted using
Array.prototype. sort using SortCompare as comparefn.

Module namespace exotic objects provide alternative definitions for all of the internal methods.
9.4.6.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of a module namespace exotic object O is called the
following steps are taken:

1. Return null.
9.4.6.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of -a.module namespace exotic object O is called with
argument V the following steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.

2. <Return false.
9.4.6.3 [[IsExtensible]] ()
When the [[IsExtensible]] internal method of a module namespace exotic object O is called the following
steps are taken:

1. Return false.

9.4.6.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of a module namespace exotic object O is called the
following steps are taken:

1. Return true.

© Ecma International 2015 125

secma

9.4.6.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of a module namespace exotic object O is called with
property key P, the following steps are taken:

1. If Type(P) is Symbol, return OrdinaryGetOwnProperty(O, P).
2. Throw a TypeError exception.

9.4.6.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of a module namespace exotic object O is called with
property key P and Property Descriptor Desc, the following steps are taken:

1. Return false.
9.4.6.7 [[HasProperty]] (P)

When the [[HasProperty]] internal method of a module namespace exotic object O is called with property
key P, the following steps are taken:

1. If Type(P) is Symbol, return OrdinaryHasProperty(O, P).
2. Letexports be the value of O’s [[Exports]] internal slot.
3. If P is an element of exports, return true.

4. Return false.

9.4.6.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of a module namespace exotic object O is called with property key P
and ECMAScript language value Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is Symbol, then
a. Return the result of calling the default ordinary object [[Get]] internal method (9.1.8) on O
passing P and Receiver.as arguments.
Let exports be the value of O’s [[Exports]] internal slot.
If P is not an element of exports, return undefined.

Let binding be m:ResolveEXport(P, «», «»).

Deleted: modules, moduleNameld,

ReturnlfAbrupt(binding).

Deleted:

)
)

3
4,
5. Let'm be the value of Q’s [[Module]] internal slot.
6
7
8

. Assert: binding is peither null'nor "ambiguous".
9. LettargetModule be binding.[[module]],
10. Assert: targetModule is not undefined.
11. Let targetEny, be targetModule.[[Environment]],
12. If targetEnv is undefined, throw a ReferenceError exception.
13. Let targetEnvRec be targetEnv’s environment record.

Deleted: <#>If binding is an abrupt completion,
thenf

<#>Assert: The binding for P exported by the

module is ambiguous.{

<#>Throw a ReferenceError exception.{
<#>Let binding be binding.[[value]].{

14. Return targetEnvRec.GetBindingValue(binding.[[bindingName]], true).

Deleted: not

Deleted: Rec

NOTE ResolveExport is idempotent and side-effect free. An implementation might choose to pre-compute or
cache the ResolveExport results for the [[Exports]] of each module namespace exotic object.

e Y Yan |

Deleted: ’s environment record

L J

9.4.6.9 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of a module namespace exotic object O is called with property key P,
value V, and ECMAScript language value Receiver, the following steps are taken:

126 © Ecma International 2015

secmd

1. Return false.
9.4.6.10 [[Delete]] (P)

When the [[Delete]] internal method of a module namespace exotic object O is called with property key P
the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

2. Let exports be the value of O’s [[Exports]] internal slot.
3. If P is an element of exports, return false.

4. Return true.

9.4.6.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of a module namespace exotic object O'is called the following
steps are taken:

1. Let exports be the value of O’s [[Exports]] internal'slot.
2. Return CreateListlterator(exports).

9.4.6.12 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a module namespace exotic object O is called the
following steps are taken:

1. Letexports be a copy of the value of O’s [[Exports]] internal slot.

2. Let symbolKeys be the result of calling the default ordinary object [[OwnPropertyKeys]] internal
method (9.1.12) on O passing no arguments.

3. Append all the entries.of symbolKeys to the end of exports.

4. Return exports.

9.4.6.13 ModuleNamespaceCreate (module, exports)

The abstract operation ModuleNamespaceCreate with arguments module, and exports is used to specify
the creation of new module namespace exotic objects. It performs the following steps:

1. Assert: module is a Module Record (see 15.2.1.15).

2. <Assert: module.[[Namespace]] is undefined.

3. Assert: exports is a List of string values.

4. Let M be a newly created object.

5. Set M’s essential internal methods to the definitions specified in 9.4.6.
6. Set.M’s [[Module]] internal slot to module.

7. Set M’s [[Exports]] internal slot to exports.

8. Create own properties of M corresponding to the definitions in 26.3.
9. Set module.[[Namespace]] to M.

10. Return M.

9.5 Proxy Object Internal Methods and Internal Slots
A proxy object is an exotic object whose essential internal methods are partially implemented using
ECMAScript code. Every proxy objects has an internal slot called [[ProxyHandler]]. The value of

[[ProxyHandler]] is an object, called the proxy’s handler object, or null. Methods (see Table 30) of a
handler object may be used to augment the implementation for one or more of the proxy object’s internal

© Ecma International 2015 127

secma

methods. Every proxy object also has an internal slot called [[ProxyTarget]] whose value is either an
object or the null value. This object is called the proxy’s target object.

Table 30 — Proxy Handler Methods

Internal Method Handler Method
[[GetPrototypeOf]] getPrototypeOf
[[SetPrototypeOf]] setPrototypeOf
[[IsExtensible]] isExtensible
[[PreventExtensions]] preventExtensions
[[GetOwnProperty]] getOwnPropertyDescriptor
[[HasProperty]] has

[Get]] get

[[Set]] set

[[Delete]] deleteProperty
[[DefineOwnProperty]] defineProperty
[[Enumerate]] enumerate
[[OwnPropertyKeys]] ownKeys

[[Calll] apply

[[Construct]] construct

When a handler method is called to provide the implementation of a proxy object internal method, the
handler method is passed the proxy’s target object as a parameter. A proxy’s handler object does not
necessarily have a method corresponding to every essential internal method. Invoking an internal method
on the proxy results in the invocation of the corresponding internal method on the proxy’s target object if
the handler object does not have a method corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal slots of a proxy object are always initialized when the
object is created and-typically may not be modified. Some proxy objects are created in a manner that
permits them to be subsequently’ revoked. When a proxy is revoked, its [[ProxyHander]] and
[[ProxyTarget]] internal slots are set to null causing subsequent invocations of internal methods on that
proxy object to throw a TypeError exception.

Because proxy objects permit the implementation of internal methods to be provided by arbitrary
ECMAScript code, it is possible to define a proxy object whose handler methods violates the invariants
defined in 6.1.7.3. Some of the internal method invariants defined in 6.1.7.3 are essential integrity
invariants. These invariants are explicitly enforced by the proxy object internal methods specified in this
section. An ECMAScript implementation must be robust in the presence of all possible invariant
violations.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key
value, V is any ECMAScript language value and Desc is a Property Descriptor record.

9.5.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of a Proxy exotic object O is called the following steps are
taken:

1. Let handler be the value of the [[ProxyHandler]] internal slot of O.
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.

128 © Ecma International 2015

secmd

9.5.2

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "getPrototypeOf").
ReturnIfAbrupt(trap).

If trap is undefined, then

a. Return target.[[GetPrototypeOf]]().

Let handlerProto be Call(trap, handler, «target»).
ReturnIfAbrupt(handlerProto).

. If Type(handlerProto) is neither Object nor Null, throw a TypeError exception.
. Let extensibleTarget be IsExtensible(target).

. ReturnlfAbrupt(extensibleTarget).

. If extensibleTarget is true, return handlerProto.

. Let targetProto be target.[[GetPrototypeOf]]().

. ReturnlfAbrupt(targetProto).

. If SameValue(handlerProto, targetProto) is false, throw a TypeError exception.
. Return handlerProto.

[[GetPrototypeOf]] for proxy objects enforces the following invariant:
The result of [[GetPrototypeOf]] must be either an Object or null.
If the target object is not extensible, [[GetPrototypeOf]] applied to.the proxy object must return the same
value as [[GetPrototypeOf]] applied to the proxy object’s target object.

[[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of a Proxy exotic object O is called with argument V the
following steps are taken:

®NoOGOA~WNE

Assert: Either Type(V) is Object or Type(V) is Null.

Let handler be the value-of.the [[ProxyHandler]] internal slot of O.

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "setPrototypeO£f").
ReturnIfAbrupt(trap).

If trap is undefined, then

a. Return target.[[SetPrototypeOf]](V).

Let booleanTrapResult be ToBoolean(Call(trap, handler, «target, V»)).

<ReturnIfAbrupt(booleanTrapResult).

. Let extensibleTarget be IsExtensible(target).

. ReturnlfAbrupt(extensibleTarget).

. If extensibleTarget is true, return booleanTrapResult.

. Let targetProto be target.[[GetPrototypeOf]]().

. ReturnlfAbrupt(targetProto).

. If booleanTrapResult is true and SameValue(V, targetProto) is false, throw a TypeError

exception.

. Return booleanTrapResult.

[[SetPrototypeOf]] for proxy objects enforces the following invariant:
The result of [[SetPrototypeOf]] is a Boolean value.
If the target object is not extensible, the argument value must be the same as the result of [[GetPrototypeOf]]
applied to target object.

© Ecma International 2015 129

A

reCind

9.5.3 [[IsExtensible]] ()
When the [[IsExtensible]] internal method of a Proxy exotic object O is called the following steps are
taken:
1. Let handler be the value of the [[ProxyHandler]] internal slot of O.
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.
4. Let target be the value of the [[ProxyTarget]] internal slot of O.
5. Lettrap be GetMethod(handler, "isExtensible").
6. ReturnIfAbrupt(trap).
7. If trap is undefined, then
a. Return target.[[IsExtensible]]().
8. Let booleanTrapResult be ToBoolean(Call(trap, handler, «target»)).
9. ReturnlfAbrupt(booleanTrapResult).
10. Let targetResult be target.[[IsExtensible]]().
11. ReturnifAbrupt(targetResult).
12. If SameValue(booleanTrapResult, targetResult) is false, throw a TypeError exception.
13. Return booleanTrapResult.
NOTE [[IsExtensible]] for proxy objects enforces the following invariant:
e Theresult of [[IsExtensible]] is a Boolean value.
e [[IsExtensible]] applied to the proxy object. must return the same value as [[IsExtensible]] applied to the
proxy object’s target object with the same argument.
9.5.4 [[PreventExtensions]] ()
When the [[PreventExtensions]]-internal method of a‘Proxy exotic object O is called the following steps
are taken:
1. Let handler be the value of the [[ProxyHandler]] internal slot of O.
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.
4. Let target be the value of the [[ProxyTarget]].internal slot of O.
5. Lettrap be GetMethod(handler, "preventExtensions").
6. ReturnlfAbrupt(trap).
7. ftrap is undefined, then

= © ©

11.

NOTE

130

a. Return target.[[PreventExtensions]]().
Let booleanTrapResult be ToBoolean(Call(trap, handler, «target»)).
ReturnlfAbrupt(booleanTrapResult).

. If booleanTrapResult is true, then

a. LettargetlsExtensible be target.[[IsExtensible]]().

b. * ReturnifAbrupt(targetlsExtensible).

c. IftargetisExtensible is true, throw a TypeError exception.
Return booleanTrapResult.

[[PreventExtensions]] for proxy objects enforces the following invariant:
The result of [[PreventExtensions]] is a Boolean value.
[[PreventExtensions]] applied to the proxy object only returns true if [[IsExtensible]] applied to the proxy
object’s target object is false.

© Ecma International 2015

oecha

9.5.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of a Proxy exotic object O is called with property key P, the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "getOwnPropertyDescriptor").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return target.[[GetOwnProperty]](P).

9. Let trapResultObj be Call(trap, handler, «target, P»).

10. ReturnifAbrupt(trapResultObyj).

11. If Type(trapResultObj) is neither Object nor Undefined, throw a TypeError exception:

12. Let targetDesc be target.[[GetOwnProperty]](P).

13. ReturnIfAbrupt(targetDesc).

14. If trapResultObj is undefined, then

If targetDesc is undefined, return undefined.

If targetDesc.[[Configurable]] is false, throw a TypeError exception.

Let extensibleTarget be IsExtensible(target).

ReturnIfAbrupt(extensibleTarget).

If ToBoolean(extensibleTarget) is false, throw a TypeError exception.
f. Return undefined.

15. Let extensibleTarget be ISExtensible(target).

16. ReturnlfAbrupt(extensibleTarget).

17. Let resultDesc be ToPropertyDescriptor(trapResultObj).

18. ReturnifAbrupt(resultDesc).

19. Call CompletePropertyDescriptor(resultDesc).

20. Let valid bedsCompatiblePropertyDescriptor (extensibleTarget, resultDesc, targetDesc).

21. If valid is false, throw a TypeError exception.

22. If resultDesc.[[Configurable]] is false, then
a. |If targetDesc is undefined or targetDesc.[[Configurable]] is true, then

i. Throw.a TypeError exception.
23./Return resultDesc.

O®NoGOR~WNE

a0 oe

NOTE [[GetOwnProperty]] for proxy objects enforces the following invariants:

e The result of [[GetOwnProperty]] must be either an Object or undefined.

e A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target
object.

e A property cannot be reported as non-existent, if it exists as an own property of the target object and the
target object is not extensible.

e A property cannot be reported as existent, if it does not exists as an own property of the target object and
the target object is not extensible.

e A property cannot be reported as non-configurable, if it does not exists as an own property of the target
object or if it exists as a configurable own property of the target object.

9.5.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of a Proxy exotic object O is called with property key P
and Property Descriptor Desc, the following steps are taken:

© Ecma International 2015 131

NG~ WNE

oecmad

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "defineProperty").
ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return target.[[DefineOwnProperty]](P, Desc).

Let descObj be FromPropertyDescriptor(Desc).

10. Let booleanTrapResult be ToBoolean(Call(trap, handler, «target, P, descObj»)).
11. ReturnifAbrupt(booleanTrapResult).

12. If booleanTrapResult is false, return false.

13. Let targetDesc be target.[[GetOwnProperty]](P).

14. ReturnlfAbrupt(targetDesc).

15. Let extensibleTarget be IsExtensible(target).

16. ReturnifAbrupt(extensibleTarget).

17. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then

a. Let settingConfigFalse be true.

18. Else let settingConfigFalse be false.
19. If targetDesc is undefined, then

a. If extensibleTarget is false, throw.a TypeError exception.
b. If settingConfigFalse is true, throw a TypeError exception.

20. Else targetDesc is not undefined,

a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc , targetDesc) is false, throw a
TypeError exception.

b. If settingConfigFalse is true and targetDesc:[[Configurable]] is true, throw a TypeError
exception.

21. Return true.

9.5.7

[[DefineOwnProperty]] for proxy objects enforces the following invariants:
The result of [[DefineOwnProperty]] is.a Boolean value.
A property cannot be added,if the target objectis not extensible.
A property cannot be nen-configurable, unless there exists a corresponding non-configurable own property
of the target object.
If @ property has a corresponding target object property then applying the Property Descriptor of the property
to the target object using [[DefineOwnProperty]] will not throw an exception.

[[HasProperty]] (P)

When the [[HasProperty]] internal method of a Proxy exotic object O is called with property key P, the
following steps are taken:

132

NG~ wWN R

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "has").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return target.[[HasProperty]](P).

Let booleanTrapResult be ToBoolean(Call(trap, handler, «target, P»)).

© Ecma International 2015

secmd

10.
11.

12.

NOTE
L]

9.5.8

ReturnIfAbrupt(booleanTrapResult).
If booleanTrapResult is false, then
a. LettargetDesc be target.[[GetOwnProperty]](P).
b. ReturnlfAbrupt(targetDesc).
c. If targetDesc is not undefined, then
i. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
ii. LetextensibleTarget be IsExtensible(target).
ili. ReturnlfAbrupt(extensibleTarget).
iv. If extensibleTarget is false, throw a TypeError exception.
Return booleanTrapResult.

[[HasProperty]] for proxy objects enforces the following invariants:
The result of [[HasProperty]] is a Boolean value.
A property cannot be reported as non-existent, if it exists as anon-configurable own property of the target
object.
A property cannot be reported as non-existent, if it exists-as an own property of the target object and the
target object is not extensible.

[[Get]] (P, Receiver)

When the [[Get]] internal method of a Proxy exotic object O'is called with property key P and ECMAScript
language value Receiver the following steps are taken:

N A~WNE

14.

NOTE

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "get").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return target.[[Get]](P, Receiver).

Let trapResult be Call(trap, handler; «target, P, Receiver»).

. ReturnIfAbrupt(trapResult).

. Let targetDesc be target.[[GetOwnProperty]](P).
. ReturnlfAbrupt(targetDesc).

.Af targetDesc is not undefined, then

a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i. If SameValue(trapResult, targetDesc.[[Value]]) is false, throw a TypeError exception.
b. . If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Get]] is undefined, then
i. If trapResult is not undefined, throw a TypeError exception.
Return trapResult.

[[Get]] for proxy objects enforces the following invariants:
The value reported for a property must be the same as the value of the corresponding target object property
if the target object property is a non-writable, non-configurable own data property.
The value reported for a property must be undefined if the corresponding target object property is a non-
configurable own accessor property that has undefined as its [[Get]] attribute.

© Ecma International 2015 133

oecmad

9.5.9 [[Set]] (P,V, Receiver)

When the [[Set]] internal method of a Proxy exotic object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "set").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return target.[[Set]](P, V, Receiver).

9. Let booleanTrapResult be ToBoolean(Call(trap, handler, «target, P, V, Receivers)).

10. ReturnlfAbrupt(booleanTrapResult).

11. If booleanTrapResult is false, return false.

12. Let targetDesc be target.[[GetOwnProperty]](P).

13. ReturnIfAbrupt(targetDesc).

14. If targetDesc is not undefined, then

a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i. If SameValue(V, targetDesc:[[Value]]) is false, throw a TypeError exception.
b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false, then

i. If targetDesc.[[Set]] is undefined, throw a TypeError exception.

15. Return true.

®NoOG AWM

NOTE [[Set]] for proxy objects enforces the following invariants:
e Theresult of [[Set]] is.a Boolean value.
e Cannot change the value of a property to be different from the value of the corresponding target object
property if the corresponding target object property is a non-writable, non-configurable own data property.
e Cannot set the value of a property if the corresponding target object property is a non-configurable own
accessor property that has undefined as:its [[Set]] attribute.

9.5.10 [[Delete]] (P)

| When the [[Delete]] intetnal method:of a Proxy exotic object O is called with property key P the following
steps are taken:

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "deleteProperty").
ReturnIfAbrupt(trap).
If trap is undefined, then
a. Return target.[[Delete]](P).
9. Let booleanTrapResult be ToBoolean(Call(trap, handler, «target, P»)).
10. ReturnlfAbrupt(booleanTrapResult).
11. If booleanTrapResult is false, return false.
| 12. Let targetDesc be target.[[GetOwnProperty]](P).
13. ReturnIfAbrupt(targetDesc).
14. If targetDesc is undefined, return true.

®© N oG A w N

134 © Ecma International 2015

[Deleted: name

secmd

15.
16.

NOTE
L]

If targetDesc.[[Configurable]] is false, throw a TypeError exception.
Return true.

[[Delete]] for proxy objects enforces the following invariant:
The result of [[Delete]] is a Boolean value.
A property cannot be reported as deleted, if it exists as a non-configurable own property of the target object.

9.5.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of a Proxy exotic object O is called the following steps are taken:

NookrwnE

NOTE

Let handler be the value of the [[ProxyHandler]] internal slot of O:
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slotof O.
Let trap be GetMethod(handler, "enumerate").
ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return target.[[Enumerate]]().

Let trapResult be Call(trap, handler, «target»).
ReturnIfAbrupt(trapResult).

. If Type(trapResult) is not Object, throw a TypeError exception.
. Return trapResult.

[[Enumerate]] for proxy objects enforces the following.invariants:
The result of [[Enumerate]] must be an Object.

9.5.12 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a Proxy exotic object O is called the following steps are

taken:

No G~ wNE

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.

LLet trap be GetMethod(handler, "ownKeys").

ReturnIfAbrupt(trap).

If trap is undefined, then

a. Return target.[[OwnPropertyKeys]]().

Let trapResultArray be Call(trap, handler, «target»).

Let trapResult be CreateListFromArrayLike(trapResultArray, «String, Symbol»).

. ReturnifAbrupt(trapResult).

. Let extensibleTarget be IsExtensible(target).

. ReturnIfAbrupt(extensibleTarget).

. Let targetKeys be target.[[OwnPropertyKeys]]().

. ReturnlfAbrupt(targetKeys).

. Assert: targetKeys is a List containing only String and Symbol values.
. Let targetConfigurableKeys be an empty List.

. Let targetNonconfigurableKeys be an empty List.

. Repeat, for each element key of targetKeys,

a. Let desc be target.[[GetOwnProperty]](key).
b. ReturnifAbrupt(desc).

© Ecma International 2015 135

&

19.

20.
21.

NOTE

reCma

c. If desc is not undefined and desc.[[Configurable]] is false, then
i. Append key as an element of targetNonconfigurableKeys.
d. Else,
i. Append key as an element of targetConfigurableKeys.
If extensibleTarget is true and targetNonconfigurableKeys is empty, then
a. Return trapResult.
Let uncheckedResultKeys be a new List which is a copy of trapResult.
Repeat, for each key that is an element of targetNonconfigurableKeys,
a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys

. If extensibleTarget is true, return trapResult.
. Repeat, for each key that is an element of targetConfigurableKeys,

a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys

. If uncheckedResultKeys is not empty, throw a TypeError exception.
. Return trapResult.

[[OwnPropertyKeys]] for proxy objects enforces the following invariants:
The result of [[OwnPropertyKeys]] is a List.
The Type of each result List element is either String or Symbol.
The result List must contain the keys of all non-configurable own properties of the target object.
If the target object is not extensible, then the result List must contain all the keys of the own properties of the
target object and no other values.

9.5.13 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method of a Proxy exotic object O is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

NogrONE

8.
O

NOTE

Let handler be thevalue of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethad(handler, "apply").

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return Call(target, thisArgument, argumentsList).

Let argArray be CreateArrayFromList(argumentsList).

Return Call(trap, handler, «target, thisArgument, argArray»).

A Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal

slot is an object that has a [[Call]] internal method.

9.5.14 [[Construct]] (argumentsList, newTarget)

The [[Construct]] internal method of a Proxy exotic object O is called with parameters argumentsList which
is a possibly empty List of ECMAScript language values and newTarget. The following steps are taken:

ok wN e

136

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "construct").
ReturnIfAbrupt(trap).

© Ecma International 2015

oecha

7. If trap is undefined, then
a. Assert: target has a [[Construct]] internal method.
b. Return Construct(target, argumentsList, newTarget).
8. LetargArray be CreateArrayFromList(argumentsList).
9. Let newObj be Call(trap, handler, «target, argArray, newTarget »).
10. ReturnifAbrupt(newObj).
11. If Type(newObj) is not Object, throw a TypeError exception.
12. Return newObj.

NOTE1 A Proxy exotic object only has a [[Construct]] internal method if the initial value of its [[ProxyTarget]]
internal slot is an object that has a [[Construct]] internal method.

NOTE 2 [[Construct]] for proxy objects enforces the following invariants:
e The result of [[Construct]] must be an Object.

9.5.15 ProxyCreate(target, handler),

The abstract operation ProxyCreate with arguments target and handler.is used to specify the creation of
new Proxy exotic objects. It performs the following steps:

1. If Type(target) is not Object, throw a TypeError Exception.

2. If target is a Proxy exotic object and the value of the [[ProxyHandler]] internal slot of target is
null, throw a TypeError exception.

3. If Type(handler) is not Object, throw a TypeError Exception.

4. If handler is a Proxy exotic object and the value of the [[ProxyHandler]] internal slot of handler is
null, throw a TypeError exception.

5. Let P be a newly created object.

6. Set P’s essential internal. methods (except for [[Call]] and [[Construct]]) to the definitions specified
in 9.5.

7. If IsCallable(target) is true, then
a. Set the [[Call]] internal method of P as specified in 9.5.13.
b. If target-has a [[Construct]] internal methad, then

i. Set the [[Construct]] internal-method of P as specified in 9.5.14.

8. Set the [[ProxyTarget]] internal slot of P to target.

9. Set the [[ProxyHandler]] internal slot of P to handler.

10. Return P.

10 ECMAScript Language: Source Code
10.1 Source Text

Syntax

SourceCharacter ::
any Unicode code point

ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a
sequence of code points. All Unicode code point values from U+0000 to U+10FFFF, including surrogate
code points, may occur in source text where permitted by the ECMAScript grammars. The actual
encodings used to store and interchange ECMAScript source text is not relevant to this specification.
Regardless of the external source text encoding, a conforming ECMAScript implementation processes
the source text as if it was an equivalent sequence of SourceCharacter values. Each SourceCharacter being

© Ecma International 2015 137

[Deleted: Abstract Operation

oecnd

a Unicode code point. Conforming ECMAScript implementations are not required to perform any
normalization of source text, or behave as though they were performing normalization of source text.

The components of a combining character sequence are treated as individual Unicode code points even
though a user might think of the whole sequence as a single character.

NOTE In string literals, regular expression literals, template literals and identifiers, any Unicode code point may
also be expressed using Unicode escape sequences that explicitly express a code point's numeric value. Within a
comment, such an escape sequence is effectively ignored as part of the comment.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java
program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it is interpreted
as a line terminator (Unicode code point U+000A is LINE FEED (LF)) and therefore the next code point is not part of
the comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it is
likewise interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of
\u000A to cause a LINE FEED (LF) to be part of the string value.of a string literal. In an ECMAScript program, a
Unicode escape sequence occurring within a comment is never interpreted and therefore cannot contribute to
termination of the comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript
program always contributes to the literal and is never interpreted as a line terminator or as a code point that might
terminate the string literal.

10.1.1 Static Semantics: UTF16Encoding_(cp) [Deleted: -

The UTRK16Encoding of a numeric code point value; cp, is determined as follows: [Deleted: -

Assert: 0 < cp < Ox10FFFF.

If cp < 65535, return cp.

Let cul be floor((cp — 65536) / 1024) + 0xD800:

Let cu2 be ((cp — 65536) modulo 1024) + 0xDCO0.

Return the code unit sequence consisting of cul followed by cu2.

abrwne

10.1.2 Static Semantics: UTF16Decode(lead, trail)

Two code units, lead and trail, that form a UTF-16-surrogate pair are converted to a code point by
performing the following steps:

1. Assert: 0xD800 < lead < 0xDBFF and 0xDCO00 < trail < 0xDFFF.

2. Letcp be (lead = 0xD800) % 1024 + (frail — 0xDC00)_+ 0x10000, [Deleted:
3. Return the code point cp. [Formatted- Font: 10 pt
10.2 Types of Source Code ~i[F°"“a“ed= Font: 10 pt
(Formatted: Font: 10 pt

U

There are four types of ECMAScript code:

e Global code is source text that is treated as an ECMAScript Script. The global code of a
particular Script does not include any source text that is parsed as part of a FunctionDeclaration,
FunctionExpression, GeneratorDeclaration, GeneratorExpression, MethodDefinition, ArrowFunction,
ClassDeclaration, or ClassExpression.

e Eval code is the source text supplied to the built-in eval function. More precisely, if the

parameter to the built-in eval function is a String, it is treated as an ECMAScript Script. The
eval code for a particular invocation of eval is the global code portion of that Script.

138 © Ecma International 2015

oecnd

e Function code is source text that is parsed to supply the value of the [[ECMAScriptCode]]
internal slot (see 9.2) of function and generator objects. It also includes the code that defines
and initializes the formal parameters of the function. The function code of a particular function
or generator does not include any source text that is parsed as the function code of a nested
FunctionDeclaration, FunctionExpression, GeneratorDeclaration, GeneratorExpression,
MethodDefinition, ArrowFunction, ClassDeclaration, or ClassExpression.

e Module code is source text that is code that is provided as a ModuleBody. It is the code that is
directly evaluated when a module is initialized. The module code of a particular module does
not include any source text that is parsed as part of a nested FunctionDeclaration,
FunctionExpression, GeneratorDeclaration, GeneratorExpression, MethodDefinition, ArrowFunction,
ClassDeclaration, or ClassExpression.

NOTE Function code is generally provided as the bodies of Function Definitions (14.1), Arrow Function
Definitions (14.2), Method Definitions (14.3) and Generator Definitions(14.4). Function code is also derived from the
last argument to the Function constructor (19.2.1.1) and the GeneratorFunction constructor (25.2.1.1).

10.2.1 Strict Mode Code

An ECMAScript Script syntactic unit may be processed using either-unrestricted or strict mode syntax and
semantics. Code is interpreted as strict mode code in the following situations:

e Global code is strict mode code if itbegins.with a Directive Prologue that contains a Use Strict

Directive (see 14.1.1).
e Module code is always strict mode code.
e All parts of a ClassDeclaration or a ClassExpression are strict mode code.

e Eval code is strict mode code if it begins with a Directive Prologue that contains a Use Strict Directive

or if the call to eval is a direct call (see 12.3.4.1) to the eval function that is contained in strict mode
code.

e Function code is strict mode code if its FunctionDeclaration, FunctionExpression, GeneratorDeclaration,
GeneratorExpression, MethodDefinition, or ArrowFunction is contained in strict mode code or if it is
within @ FunctionBody.that begins with a Directive Prologue that contains a Use Strict Directive.

e < Function code that is supplied as the last argument to the built-in Function constructor is strict mode

Deleted: When processed using strict mode
the four types of ECMAScript code are referred
to as module code, strict global code, strict eval
code, and strict function code.

[Deleted: global

[Deleted: eval

[Deleted: function

gode if the last argument is a String that when processed as a FunctionBody begins with a Directive

Prologue that contains a Use Strict Directive.
10.2.2 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of exotic function objects whose evaluative
behaviour is expressed in some implementation defined form of executable code other than via
ECMAScript code. Whether a function object is an ECMAScript code function or a non-ECMAScript
function is not semantically observable from the perspective of an ECMAScript code function that calls or
is called by such a non-ECMAScript function.

© Ecma International 2015 139

[Deleted: function

secmad

11 ECMAScript Language: Lexical Grammar

The source text of an ECMAScript Script or Module is first converted into a sequence of input elements,
which are tokens, line terminators, comments, or white space. The source text is scanned from left to
right, repeatedly taking the longest possible sequence of code units as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic
grammar context that is consuming the input elements. This requires multiple goal symbols for the lexical
grammar. The InputElementRegExpOrTemplateTail goal is used in syntactic grammar contexts where a

RegularExpressionLiteral, a TemplateMiddle, or a TemplateTail is permitted.<The InputElementRegExp goal

symbol is used in all syntactic grammar contexts where a RegularExpressionLiteral is permitted_but neither
a TemplateMiddle, nor a TemplateTail is permitted. The InputElementTemplateTail goal is used in all syntactic
grammar contexts where a TemplateMiddle or a TemplateTail is permitted but a RegularExpressionLiteral is

not permitted,_In all other contexts, InputElementDiv is used as thedexical goal symbaol.

NOTE The use of multiple Iexical goals ensures that there arg no lexical ambiguities that would affect automatic
semicolon insertion. For example, there are no syntactic grammar contexts where both a leading division or division-

assignment, and a leading RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see
11.9); in examples such as the following:

a=>b
/hi/g.exec (c) .map(d) ;

where the first non-whitespace, non-comment:code point after a LineTerminator is SOLIDUS (/) and the syntactic
context allows division or division-assignment, no semicolon. is inserted at the LineTerminator. That is, the above
example is interpreted in the same way as:

a=b / hi / g.exec(c) .map(d);
Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator
RightBracePunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
CommonToken
RightBracePunctuator
RegularExpressionLiteral

InputElementRegExpOrTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
RegularExpressionLiteral
TemplateSubstitutionTail

140 © Ecma International 2015

Deleted: The InputElementDiv goal symbol is
the default goal symbol and is used in those
syntactic grammar contexts where a leading
division (/) or division-assignment (/=) operator
is permitted.

Deleted: TemplateLiteral

Deleted: logically continues after a substitution
element

Deleted: There

)
|
)

secmd

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator
TemplateSubstitutionTail

11.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf”.in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control
the formatting of a range of text in the absence of higher-level protocols for this (such as mark-up
languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format
control characters may be used within comments, and within string literals, template literals, ~and regular
expression literals.

U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO.-WIDTH JOINER) are format-control
characters that are used to make necessary distinctions when forming words or phrases in certain
languages. In ECMAScript source text these code points may also be used in an IdentifierName (see
11.6.1) after the first character.

U+FEFF (ZERO WIDTH NO-BREAK SPACE) is a format-control character used primarily at the start of a
text to mark it as Unicode and to allow detection of the text's encoding and byte order. <ZWNBSP>
characters intended for this purpose can sometimes also appear after the start of a text, for example as a
result of concatenating files..In ECMAScript source text <ZWNBSP> code points are treated as white
space characters (see 11.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarized in‘Table 31.

Table 31 — Format-Control Code Point Usage

Code Point Name Abbreviation Usage
U+200C ZERO WIDTH NON-JOINER <ZWNJ> IdentifierPart
U+200D ZERO WIDTH JOINER <ZWJ> IdentifierPart
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP> Whitespace

11.2 White Space

White space code points are used to improve source text readability and to separate tokens (indivisible
lexical units) from each other, but are otherwise insignificant. White space code points may occur
between any two tokens and at the start or end of input. White space code points may occur within a
StringLiteral, a RegularExpressionLiteral, a Template, or a TemplateSubstitutionTail where they are considered
significant code points forming part of a literal value. They may also occur within a Comment, but cannot
appear within any other kind of token.

The ECMAScript white space code points are listed in Table 32.

© Ecma International 2015 141

oecmad

Table 32 — Whitespace Code Points

Code Point Name Abbreviation
U+0009 CHARACTER TABULATION <TAB>
U+000B LINE TABULATION <VT>
U+000C FORM FEED (FF) <FF>
U+0020 SPACE <SP>
U+00A0 NO-BREAK SPACE <NBSP>
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP>
Other category “Zs” Any other Unicode “Separator, <USP>
space” code point

ECMAScript implementations must recognize as Whitespace code points listed in the “Separator, space”
(Zs) category by Unicode 5.1. ECMAScript implementations‘may also recognize as Whitespace additional
category Zs code points from subsequent editions of the Unicode Standard.

NOTE Other than for the code points listed in Table 32, ECMAScript Whitespace intentionally excludes all code
points that have the Unicode “White_Space” property but which are not classified in category “Zs”.

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<Sp>
<NBSP>
<ZWNBSP>
<USP>

11.3 Line Terminators,

Like white space code points, line terminator code points are used to improve source text readability and
to separate tokens (indivisible lexical units) from each other. However, unlike white space code points,
line terminators have some influence over the behaviour of the syntactic grammar. In general, line
terminators may occur between any two tokens, but there are a few places where they are forbidden by
the syntactic grammar. Line terminators also affect the process of automatic semicolon insertion (11.9). A
line terminator cannot occur within any token except a StringLiteral, Template, or TemplateSubstitutionTail.
Line terminators may only occur within a StringLiteral token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (11.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space code points that are matched by the \s class in
regular expressions.

The ECMAScript line terminator code points are listed in Table 33.

142 © Ecma International 2015

Comment [AWB94]: Need to talk about line
terminators in Templates

oecha

Table 33 — Line Terminator Code Points

Code Point Unicode Name Abbreviation
U+000A LINE FEED (LF) <LF>
U+000D CARRIAGE RETURN (CR) <CR>
U+2028 LINE SEPARATOR <LS>
U+2029 PARAGRAPH SEPARATOR <PS>

Only the Unicode code points in Table 33 are treated as line terminators. Other new line or line breaking
Unicode code points are not treated as line terminators but are treated-as white space if they meet the
requirements listed in Table 32. The sequence <CR><LF> is commonly used as a line terminator. It
should be considered a single SourceCharacter for the purpose of reporting line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead # <LF>]
<LS>
<pPS>
<CR> <LF>

11.4 Comments
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode code point except a LineTerminator code point,
and because of the general rule that a token is always as long as possible, a single-line comment always
consists.of all code points from the // marker to the end of the line. However, the LineTerminator at the
end of the line is not considered to be part of the single-line comment; it is recognized separately by the
lexical grammar and becomes part of the stream of input elements for the syntactic grammar. This point is
very important, because it implies that the presence or absence of single-line comments does not affect
the process of automatic semicolon insertion (see 11.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator code point, then the entire comment is considered to be a LineTerminator for purposes of
parsing by the syntactic grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentChars,, * /

© Ecma International 2015 143

oecmad

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentChars,;
* PostAsteriskCommentChars,p

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars,
* PostAsteriskCommentChars,p

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingleLineComment ::
// SingleLineCommentChars,

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsp

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

11.5 Tokens

Syntax

CommonToken ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template

NOTE The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions
define tokens, but are not included in the CommonToken production.

11.6 Names and Keywords

IdentifierName and ReservedWord are tokens that are interpreted according to the Default Identifier Syntax
given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.
ReservedWord is.an enumerated subset of IdentifierName. The syntactic grammar defines Identifier as an
IdentifierName that is not a ReservedWord (see 11.6.2). The Unicode identifier grammar is based on
character properties specified by the Unicode Standard. The Unicode code points in the specified
categories in version 5.1.0 of the Unicode standard must be treated as in those categories by all
conforming ECMAScript implementations. ECMAScript implementations may recognize identifier code
points defined in later editions of the Unicode Standard.

NOTE1 This standard specifies specific code point additions: U+0024 (DOLLAR SIGN) and U+005F (LOW LINE)
are permitted anywhere in an ldentifierName, and the code points U+200C (ZERO-WIDTH NON-JOINER) and

U+200D (ZERO-WIDTH JOINER) are permitted anywhere after the first code point of an IdentifierName.

144 © Ecma International 2015

[Deleted: characters

[Deleted: unit

secmd

Unicode escape sequences are permitted in an ldentifierName, where they contribute a single Unicode
code point to the IdentifierName. The code point is expressed by the HexDigits of the
UnicodeEscapeSequence (see 11.8.4). The \ preceding the UnicodeEscapeSequence and the u and { } code
units, if they appear, do not contribute code points to the IdentifierName. A UnicodeEscapeSequence cannot
be used to put a code point into an ldentifierName that would otherwise be illegal. In other words, if a \
UnicodeEscapeSequence sequence were replaced by the SourceCharacter it contributes, the result must still
be a valid IdentifierName that has the exact same sequence of SourceCharacter elements as the original
IdentifierName. All interpretations of IdentifierName within this specification are based upon their actual
code points regardless of whether or not an escape sequence was used to contribute any particular code
point.

Two IdentifierName that are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code points (in other words, conforming
ECMAScript implementations are only required to do bitwise comparison on IdentifierName values).

Syntax

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodelDStart
$

\ UnicodeEscapeSequence
IdentifierPart ::

UnicodelDContinue

$

\ UnicodeEscapeSequence

<ZWNJ>

<ZWJ>

UnicodelDStart ::
any Unicode code point with the Unicode property “ID_Start” or “Other_ID_Start”

UnicodelDContinue ::

any Unicode code point with the Unicode property “ID_Continue”, “Other_ID_Continue”,, - | Formatted: Indent: Left: 0.34", Hanging:
or “Other_|ID_Start” 0.23"

The definitions of the nonterminal UnicodeEscapeSequence is given in 11.8.4. [Deleted:
11.6.1 Identifier Names
11.6.1.1 Static Semantics: Early Errors
IdentifierStart :: \ UnicodeEscapeSequence
e It is a Syntax Error if SV(UnicodeEscapeSequence) is neither the UTR16Encoding (10.1.1) of a | [Deleted: -

single Unicode code point with the Unicode property “ID_Start” nor "$" or "_".

© Ecma International 2015 145

oecmad

IdentifierPart :: \ UnicodeEscapeSequence

e It is a Syntax Error if SV(UnicodeEscapeSequence) is neither the UTK16Encoding (10.1.1) of a

single Unicode code point with the Unicode property “ID_Continue” nor "$" or "_" nor the
UTFE16Encoding of either <ZWNJ> or <ZWJ>.

11.6.1.2 Static Semantics: StringValue

See also: 11.8.4.2,12.1.4,

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

1. Return the String value consisting of the sequence of codewunits corresponding to.IdentifierName. In
determining the sequence any occurrences of \ UnicodeEscapeSequence are first replaced with the
code point represented by the UnicodeEscapeSequence and then the code points of the entire
IdentifierName are converted to code units by UTE16Encoding (10.1.1) each code point.

11.6.2 Reserved Words
A reserved word is an ldentifierName that cannot be used as an ldentifier.

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

NOTE The ReservedWord definitions are specified as literal sequences of specific SourceCharacter elements. A
code point in a ReservedWord cannot be expressed by a \ UnicodeEscapeSequence.

11.6.2.1 Keywords

The following tokens are ECMAScript keywords and may not be used as ldentifiers in ECMAScript
programs.

Syntax

Keyword :: one of
break do in typeof
case else instanceof var
catch export new void
class extends return while
const finally super with
continue for switch yield
debugger function this
default if throw
delete import try

146 © Ecma International 2015

[Deleted: -

[Deleted: -

Deleted: 12.1.412.1.412.1.312.1.312.1.312.1.3
12.1.4

|

[Deleted: -

secmd

NOTE In some contexts yield is given the semantics of an Identifier. See 12.1.1. In strict mode code, 1et and
static are treated as reserved keywords through static semantic restrictions (see 12.1.1, 13.2.1.1, 13.6.4.1, and
14.5.1) rather than the lexical grammar.
11.6.2.2 Future Reserved Words

The following tokens are reserved for used as keywords in future language extensions.

Syntax

FutureReservedWord ::
enum
await

await is only treated as a FutureReservedWord when Module is the goal symbol of the syntactic grammar.

NOTE Use of the following tokens within strict mode code (see 10.2.1) is also reserved. That usage is restricted
using static semantic restrictions (see 12.1.1) rather than the lexical grammar:

implements package protected

interface private public

11.7 Punctuators

Syntax
Punctuator :: one of
{ () []
; , < > <=
>= == = === l==
+ - * % ++ --
<< >> >>> & | A
! ~ && |1 ?
= += -= *= %= <<=
>>= >>>= &= |= Az =
DivPunctuator :: one of
/ /=
RightBracePunctuator ::
}
11.8 Literals

11.8.1 Null Literals

Syntax

NullLiteral ::
null

© Ecma International 2015 147

oecmad

11.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

11.8.3 Numeric Literals

Syntax

NumericLiteral ::
DecimalLiteral
BinarylIntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

DecimalLiteral ::
DecimalintegerLiteral . DecimalDigits,,; ExponentPartyp
. DecimalDigits ExponentPart,
DecimallntegerLiteral ExponentPart,p

DecimalintegerLiteral ::
0

NonZeroDigit DecimalDigitsop
DecimalDigits ::

DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit :: one of

Comment [AWB75]: From March 29 meeting
notes: Hex floating point literals:

Waldemar: Other languages include these
things. They're rarely used

but when you want one, you really want one.
Use cases are similar to

that of hex literals.

Will explore adding them.

MarkM: 0x3.p1 currently evaluates to undefined.
This would be a

breaking change.

Waldemar: Not clear anyone would notice.
How did other languages

deal with this?

0 1 2 3 4 5 6 7 8._09

NonZeroDigit :: one of
1 2.3 4 5 6 7 8 9

ExponentPart ::
Exponentindicator SignedInteger

ExponentIndicator :: one of
e E

Signedinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinarylIntegerLiteral ::

0b BinaryDigits
0B BinaryDigits

148

© Ecma International 2015

Comment [AWB76]: The various Digit
productions could be refactored to have less
redundency

oecha

BinaryDigits ::
BinaryDigit
BinaryDigits BinaryDigit

BinaryDigit :: one of
01

OctallntegerLiteral ::
0o OctalDigits
00 OctalDigits

OctalDigits ::
OctalDigit
OctalDigits OctalDigit

OctalDigit :: one of
0123 4 567

HexIntegerLiteral ::
0x HexDigits
0X HexDigits

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit :: one of
0 1 2 3 4 5.6 7.8 9 a b ¢ d e £ A B C D E F

The SourceCharacter immediately following a NumericLiteral must not be an ldentifierStart or DecimalDigit.

NOTE For example:
3in

is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code (see 10.2.1), must not extend, as
described in B.1.1, the syntax of NumericLiteral to include LegacyOctallntegerLiteral, nor extend the syntax |
of DecimallntegerLiteral to include NonOctalDecimallntegerLiteral.

11.8.3.1 Static Semantics: MV’s

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as
described below.

. The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

e The MV of NumericLiteral :: BinaryIntegerLiteral is the MV of BinaryIntegerLiteral.

e The MV of NumericLiteral :: OctallntegerLiteral is the MV of OctallntegerLiteral.

e The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral . is the MV of DecimallntegerLiteral.

© Ecma International 2015 149

150

oecnd

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral
plus (the MV of DecimalDigits x 10™), where n is the number of code points in DecimalDigits.

The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of DecimallntegerLiteral x
10°%, where e is the MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral DecimalDigits ExponentPart is (the MV of
DecimalintegerLiteral plus (the MV of DecimalDigits x 10™) x 10°, where n is the number of code
points in DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral :: . DecimalDigits is the MV of DecimalDigits x 10 "; where n is the number of
code points in DecimalDigits.

The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits x 10°", where n is
the number of code points in DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral is the MV of DecimalintegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimalintegerLiteral x 10°,
where e is the MV of ExponentPart.

The MV of DecimalintegerLiteral :: 0 is O.
The MV of DecimallntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

The MV of DecimallintegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit x 10") plus
the MV of DecimalDigits, where n is the number of code points.in DecimalDigits.

The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits :: DecimalDigits.DecimalDigit is (the MV of DecimalDigits x 10) plus the MV
of DecimalDigit.

The MV of ExponentPart ::
The MV of Signedinteger ::
The MV of SignedInteger ::
The MV of SignedInteger ::
The MV of DecimalDigit ::

ExponentIndicator SignedInteger is the MV of Signedinteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.

0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit:: 0 is 0.

The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 or
of BinaryDigit ::1 is 1.

The MV of DecimalDigit :: 2 or'of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.
The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.
The MV of DecimalDigit:: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.
The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit :: 5 is 5.
The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.
The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.
The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.

The MV of HexDigit ::<a or of HexDigit :: Ais 10.

The MV of HexDigit :: b or of HexDigit :: Bis 11.

The MV of HexDigit :: c or of HexDigit :: Cis 12.

The MV of HexDigit :: d or of HexDigit :: D is 13.

The MV of HexDigit :: e or of HexDigit :: E is 14.

The MV of HexDigit :: £ or of HexDigit :: Fis 15.

The MV of BinarylIntegerLiteral :: 0b BinaryDigits is the MV of BinaryDigits.
The MV of BinarylntegerLiteral :: 0B BinaryDigits is the MV of BinaryDigits.
The MV of BinaryDigits :: BinaryDigit is the MV of BinaryDigit.

© Ecma International 2015

oecha

e The MV of BinaryDigits :: BinaryDigits BinaryDigit is (the MV of BinaryDigits x 2) plus the MV of
BinaryDigit.

e The MV of OctallntegerLiteral :: 0o OctalDigits is the MV of OctalDigits.

e The MV of OctallntegerLiteral :: 00 OctalDigits is the MV of OctalDigits.

e The MV of OctalDigits :: OctalDigit is the MV of OctalDigit.

e The MV of OctalDigits :: OctalDigits OctalDigit is (the MV of OctalDigits x 8) plus the MV of OctalDigit.

e The MV of HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.

e The MV of HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.

e The MV of HexDigits :: HexDigit is the MV of HexDigit.

e The MV of HexDigits :: HexDigits HexDigit is (the MV of HexDigits x 16) plus.the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number
type. If the MV is 0, then the rounded value is +0; otherwise,.the rounded value must be the Number
value for the MV (as specified in 6.1.6), unless the literal is a-DecimalLiteral and the literal has more than
20 significant digits, in which case the Number value may be either the Number value for.the MV of a
literal produced by replacing each significant digit after the 20th with a 0_digit or the Number value for the
MV of a literal produced by replacing each significant digit after the 20th with a 0 digit and then
incrementing the literal at the 20th significant digit position. A digit is significant if it is not part of an
ExponentPart and

e itisnot0; or
e there is a nonzero digit to its left and there is:a nonzero digit, not in the ExponentPart, to its right.

11.8.4 String Literals

NOTE A string literal is zero.or more Unicode code points enclosed in single or double quotes. Unicode code
points may also be represented by an escape sequence. All code points may appear literally in a string literal except
for the closing quote code points, REVERSE SOLIDUS (\), CARRIAGE RETURN (CR), LINE SEPARATOR,
PARAGRAPH SEPARATOR, and LINE FEED (LF). Any code points may appear in the form of an escape sequence.
String literals evaluate.to ECMAScript String values. When generating these string values Unicode code points are
UTF-16 encoded as defined.in 10.1.1. Code points belonging to the Basic Multilingual Plane are encoded as a single
code unit element of the string. All other code points are encoded as two code unit elements of the string.

Syntax

StringLiteral ::
" DoubleStringCharacters,p; "
' SingleStringCharactersyp; '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersqp

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersop

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

© Ecma International 2015 151

oecmad

SingleStringCharacter ::
SourceCharacter but not one of ' or \ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.2.1), must not extend the syntax
of EscapeSequence to include LegacyOctalEscapeSequence as described in B.1.2.

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b £f n r t v

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or_LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u Hex4Digits
u{ HexDigits }

Hex4Digits ::
HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigit is given in 11.8.3. SourceCharacter is defined in 10.1.

NOTE A line terminator code point cannot appear in a string literal, except as part of a LineContinuation to
produce the empty code points sequence. The proper way to cause a line terminator code point to be part of the
String value of a string literal is to use an escape sequence such as \n or \u000A.

152 © Ecma International 2015

secmd

11.8.4.1 Static Semantics: Early Errors
UnicodeEscapeSequence :: u{ HexDigits }
e |tis a Syntax Error if the MV of HexDigits > 1114111.

11.8.4.2 Static Semantics: StringValue

See also:11.6.1.2, 12.1.4, ’ [Deleted: 12.1.412.1.412.1.312.1.312.1.312.1.3
12.1.4

StringLiteral ::
" DoubleStringCharactersyp; "
' SingleStringCharactersgp; '

1. Return the String value whose elements are the SV of this StringLiteral.
11.8.4.3 Static Semantics: SV’s

A string literal stands for a value of the String type. The String value (SV) of the literal is described in
terms of code unit values contributed by the various parts of the string literal. As part of this process,
some Unicode code points within the string literal are interpreted as having a mathematical value (MV),
as described below or in 11.8.3.

e The SV of StringLiteral :: "" is the empty code unit sequence.

e The SV of StringLiteral :: ' ' is the empty code unit sequence.

e The SV of StringLiteral :: " DoubleStringCharacters ".is the SV of DoubleStringCharacters.

e The SV of StringLiteral ::_*-SingleStringCharacters ' is the SV of SingleStringCharacters.

e The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one or two code units that
is the SV of DoubleStringCharacter.

e The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of
one or two code units that is the SV.of DoubleStringCharacter followed by all the code units in the SV
of DoubleStringCharacters in order.

e The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one or two code units that
is the SV of SingleStringCharacter.

e The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of one
or two code units that is the SV of SingleStringCharacter followed by all the code units in the SV of
SingleStringCharacters in order.

e The SV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the

UTE16Encoding (10.1.1) of the code point value of SourceCharacter. | [Deleted: -

e The SV of DoubleStringCharacter :: \ EscapeSequence is the SV of the EscapeSequence.
e The SV of DoubleStringCharacter :: LineContinuation is the empty code unit sequence.
e The SV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the

UTF16Encoding (10.1.1) of the code point value of SourceCharacter. | [Deleted: -

e The SV of SingleStringCharacter :: \ EscapeSequence is the SV of the EscapeSequence.

e The SV of SingleStringCharacter :: LineContinuation is the empty code unit sequence.

e The SV of EscapeSequence :: CharacterEscapeSequence is the SV of the CharacterEscapeSequence.
e The SV of EscapeSequence :: 0 is the code unit value 0.

e The SV of EscapeSequence :: HexEscapeSequence is the SV of the HexEscapeSequence.

e The SV of EscapeSequence :: UnicodeEscapeSequence is the SV of the UnicodeEscapeSequence.

© Ecma International 2015 153

oecmad

e The SV of CharacterEscapeSequence :: SingleEscapeCharacter is the code unit whose value is
determined by the SingleEscapeCharacter according to ,Table 34,

Table 34 — String Single Character Escape Sequences

Escape Code Unit Value Unicode Character Name Symbol
Sequence
\b 0x0008 BACKSPACE <BS>
\t 0x0009 CHARACTER TABULATION <HT>
\n 0x000A LINE FEED (LF) <LF>
\v 0x000B LINE TABULATION <VT>
\£ 0x000C FORM FEED (FF) <FF>
\r 0x000D CARRIAGE RETURN (CR) <CR>
\" 0x0022 QUOTATION MARK "
\’ 0x0027 APOSTROPHE !
\\ 0x005C REVERSE SOLIDUS \

e The SV of CharacterEscapeSequence :: NonEscapeCharacter is the SV of the NonEscapeCharacter.

e The SV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is
the UTF16Encoding (10.1.1) of the code point value of SourceCharacter.

e The SV of HexEscapeSequence :: x HexDigit HexDigit'is the code unit value that is (16 times the MV of
the first HexDigit) plus the MV of the second HexDigit.

e The SV of UnicodeEscapeSequence :: u Hex4Digits is the SV of Hex4Digits.

e The SV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the code unit value that is (4096 times
the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus (16 times the MV of
the third HexDigit) plus the MV of the fourth HexDigit.

e The SV of UnicodeEscapeSequence :: u{ HexDigits } is the UTF16Encoding (10.1.1) of the MV of

[Formatted: Font: (Default) Arial

[Deleted: Table 34

[Deleted: -

{ Deleted: -

HexDigits.
11.8.5 Regular Expression Literals

NOTE A regular expression literal is an input element that is converted to a RegExp object (see 21.2) each time
the literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that never
compare as === to each other even if the two literals' contents are identical. A RegExp object may also be created at
runtime by new RegExp or calling the RegExp constructor as a function (see 21.2.3).

The productions below describe the syntax for a regular expression literal and are used by the input
element scanner to find the end of the regular expression literal. The source text comprising the
RegularExpressionBody and the RegularExpressionFlags are subsequently parsed again using the more
stringent ECMAScript Regular Expression grammar (21.2.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 21.2.1, but it
must not extend the RegularExpressionBody and RegularExpressionFlags productions defined below or the
productions used by these productions.

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

154 © Ecma International 2015

secmd

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]])
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty] . N
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal,
the code unit sequence // starts a single-line comment. To specify an empty regular expression, use: / (?:) /.

11.8.5.1 Static Semantics: Early Errors

RegularExpressionFlags ::'RegularExpressionFlags IdentifierPart

e |tis a Syntax Error if IdentifierPart contains a Unicode escape sequence.
11.8.5.2 Static Semantics: BodyText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source text that was recognized as RegularExpressionBody.

© Ecma International 2015 155

oecmad

11.8.5.3 Static Semantics: FlagText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source text that was recognized as RegularExpressionFlags.
11.8.6 Template Literal Lexical Components

Syntax

Template ::
NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::
* TemplateCharactersop;

TemplateHead :
* TemplateCharactersyp $ {

TemplateSubstitutionTail ::
TemplateMiddle
TemplateTail

TemplateMiddle ::
} TemplateCharactersyp: $ {

TemplateTail ::
} TemplateCharactersqps ™

TemplateCharacters ::
TemplateCharacter TemplateCharactersop

TemplateCharacter ::
$ [lookahead # {]
\ EscapeSequence
LineContinuation
LineTerminatorSequence
SourceCharacter but not one of * or \ or $ or LineTerminator

A confarming implementation must not use the extended definition of EscapeSequence described in B.1.2
when parsing a TemplateCharacter.

NOTE TemplateSubstitutionTail is used by the InputElementTemplateTail alternative lexical goal.

11.8.6.1 Static Semantics: TV’s and TRV’s

A template literal component is interpreted as a sequence of Unicode code points. The Template Value
(TV) of a literal component is described in terms of code unit values (SV, 11.8.4) contributed by the
various parts of the template literal component. As part of this process, some Unicode code points within

the template component are interpreted as having a mathematical value (MV, 11.8.3). In determining a
TV, escape sequences are replaced by the UTF-16 code unit(s) of the Unicode code point represented by

156 © Ecma International 2015

secmd

the escape sequence. The Template Raw Value (TRV) is similar to a Template Value with the difference
that in TRVs escape sequences are interpreted literally.

e The TV and TRV of NoSubstitutionTemplate :: * " is the empty code unit sequence.

e TheTVand TRV of TemplateHead :: “${ is the empty code unit sequence.

e TheTVand TRV of TemplateMiddle :: }${ is the empty code unit sequence.

e TheTVand TRV of TemplateTail :: } * is the empty code unit sequence.

e The TV of NoSubstitutionTemplate :: * TemplateCharacters " is the TV of TemplateCharacters.
e TheTV of TemplateHead :: * TemplateCharacters ${ is the TV of TemplateCharacters.

e The TV of TemplateMiddle :: } TemplateCharacters ${ is the TV of TemplateCharacters.

e The TV of TemplateTail :: } TemplateCharacters " is the TV of TemplateCharacters.

e The TV of TemplateCharacters :: TemplateCharacter is the TV of TemplateCharacter.

e The TV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the
code units in the TV of TemplateCharacter followed by all the code units in the TV of
TemplateCharacters in order.

e The TV of TemplateCharacter :: SourceCharacter but not one of *_or .\ or $ or LineTerminator is the

UTR16Encoding (10.1.1) of the code point value of SourceCharacter. | [Deleted: -

e The TV of TemplateCharacter :: $ is the code unit value 0x0024.

e The TV of TemplateCharacter :: \ EscapeSequence is the SV of EscapeSequence.

e The TV of TemplateCharacter :: LineContinuation is the TV of LineContinuation.

e The TV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.

e The TV of LineContinuation :: \ LineTerminatorSequence is'the empty code unit sequence.

e The TRV of NoSubstitutionTemplate :: * TemplateCharacters is'the TRV of TemplateCharacters.
e The TRV of TemplateHead ::~ TemplateCharacters<${ is the TRV of TemplateCharacters.

e The TRV of TemplateMiddle :: } TemplateCharacters ${ is the TRV of TemplateCharacters.

e The TRV of TemplateTail :: } TemplateCharacters is the TRV of TemplateCharacters.

e The TRV of TemplateCharacters :: TemplateCharacter. is the TRV of TemplateCharacter.

e The TRV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of
the code units in the TRV of TemplateCharacter followed by all the code units in the TRV of
TemplateCharacters, in order.

e The TRV of TemplateCharacter :: SourceCharacter but not one of * or \ or $ or LineTerminator is the

UTE16Encoding (10.1.1) of the code point value of SourceCharacter. | [Deleted: -

e _The TRV of TemplateCharacter :: $. is the code unit value 0x0024.

e ° The TRV of TemplateCharacter :: \ EscapeSequence is the sequence consisting of the code unit value
0x005C followed by the code units of TRV of EscapeSequence.

e The TRV of TemplateCharacter :: LineContinuation is the TRV of LineContinuation.

e The TRV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.

e The TRV of EscapeSequence :: CharacterEscapeSequence is the TRV of the CharacterEscapeSequence.

e The TRV of EscapeSequence :: 0 is the code unit value 0x0030.

e The TRV of EscapeSequence :: HexEscapeSequence is the TRV of the HexEscapeSequence.

e The TRV of EscapeSequence :: UnicodeEscapeSequence is the TRV of the UnicodeEscapeSequence.

e The TRV of CharacterEscapeSequence :: SingleEscapeCharacter is the TRV of the SingleEscapeCharacter.

e The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the SV of the NonEscapeCharacter.

e The TRV of SingleEscapeCharacter :: oneof ' "™ \ b £ n r t v istheSVofthe
SourceCharacter that is that single code point.

© Ecma International 2015 157

oecnd

e The TRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of code unit value
0x0078 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit.

e The TRV of UnicodeEscapeSequence :: u Hex4Digits is the sequence consisting of code unit value
0x0075 followed by TRV of Hex4Digits.

e The TRV of UnicodeEscapeSequence :: u{ HexDigits } is the sequence consisting of code unit value
0x0075 followed by code unit value 0x007B followed by TRV of HexDigits followed by code unit value
0x007D.

e The TRV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the sequence consisting of the TRV
of the first HexDigit followed by the TRV of the second HexDigit followed by the TRV of the third
HexDigit followed by the TRV of the fourth HexDigit.

e The TRV of HexDigits :: HexDigit is the TRV of HexDigit.

e The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed
by TRV of HexDigit.

e The TRV of a HexDigit is the SV of the SourceCharacter that is that HexDigit.

e The TRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit
value 0x005C followed by the code units of TRV of LineTerminatorSequence.

e The TRV of LineTerminatorSequence :: <LF> is the'code unit value OX000A.

e The TRV of LineTerminatorSequence :: <CR> is the code unit value 0x000A.

e The TRV of LineTerminatorSequence :: <LS> is the code unitvalue 0x2028.

e The TRV of LineTerminatorSequence :: <PS> is the code unit value 0x2029.

e The TRV of LineTerminatorSequence :::/<CR><LF> is the sequence consisting of the code unit value
0x000A.

NOTE TV excludes the code units of LineContinuation while TRV includes them. <CR><LF> and <CR>
LineTerminatorSequences are normalized to <LF> for both TV and TRV. An explicit EscapeSequence is needed to include
a <CR> or <CR><LF> sequence.

11.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, let, const, import, and export declarations,
variable statement, expression statement, debugger statement, continue statement, break statement,
return statement, and throw Statement) must be terminated with semicolons. Such semicolons may
always appear explicitly in the source text. For convenience, however, such semicolons may be omitted
from the source text in certain situations. These situations are described by saying that semicolons are
automatically inserted into the source code token stream in those situations.

11.9.1 Rules of Automatic Semicolon Insertion

In_the following rules, “token” means the actual recognized lexical token determined using the current
lexical goal symbol is described in clause 11.

There are three basic rules of semicolon insertion:

1. When, as a Script or Module is parsed from left to right, a token (called the offending token) is
encountered that is not allowed by any production of the grammar, then a semicolon is automatically
inserted before the offending token if one or more of the following conditions is true:

e The offending token is separated from the previous token by at least one LineTerminator.
e The offending token is }.

158 © Ecma International 2015

o

»eCmd

When, as the Script or Module is parsed from left to right, the end of the input stream of tokens is
encountered and the parser is unable to parse the input token stream as a single complete
ECMAScript Script or Module, then a semicolon is automatically inserted at the end of the input
stream.

When, as the Script or Module is parsed from left to right, a token is encountered that is allowed by
some production of the grammar, but the production is a restricted production and the token would
be the first token for a terminal or nonterminal immediately following the annotation “[no LineTerminator
here]” within the restricted production (and therefore such a token is called a restricted token), and
the restricted token is separated from the previous token by at least one LineTerminator, then a
semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would
become one of the two semicolons in the header of a for statement (see 13.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpressionyyieid :
LeftHandSideExpression(zyieiq; [no LineTerminator here] ++
LeftHandSideExpressionyiei) [no LineTerminator here] —-

ContinueStatementpyieid;
continue;
continue [no LineTerminator here] Labelldentifierfavieia). ;

BreakStatementpyieid) :
break ;
break [no LineTerminator here] Labelldentifierpyieid ;

ReturnStatementyyiela) =
return |no LineTerminator here] EXpression ;
return [no LineTerminator here] Expression[m, ?Yield] 7

ThrowStatementyyield) :
thxow [no LineTerminator here] Expression[m, ?Yield] 7

ArrowFunctionn, vield =
ArrowParameterspyield) [no LineTerminator here] => ConciseBodyzin

YieldExpressiongn :
yield [no LineTerminator here] * AssignmentEXpression;ain, vield)

yield [no LineTerminator here] AssignmentEXpressionpin, vied)

The practical effect of these restricted productions is as follows:

When a ++ or -= token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is
automatically inserted before the ++ or -- token.

When a continue, break, return, throw, or yield token is encountered and a LineTerminator is
encountered before the next token, a semicolon is automatically inserted after the continue, break, return,
throw, or yield token.

© Ecma International 2015 159

(

Deleted: [Lexical goal InputElementRegExp] J

[

Deleted: [Lexical goal InputElementRegExp]]

oecmad

The resulting practical advice to ECMAScript programmers is:
A postfix ++ or -- operator should appear on the same line as its operand.

An Expression in a return or throw statement or an AssignmentExpression in a yield expression should
start on the same line as the return, throw, or yield token.

An ldentifierReference in a break or continue statement should be on the same line as the break or
continue token.

11.9.2 Examples of Automatic Semicolon Insertion

The source

{121} 3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2} 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

72 ;) 35
which is a valid ECMAScript sentence.

The source

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one
of the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a + b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminator separates it from the token return.

The source
a=>b
++c
is transformed by automatic semicolon insertion into the following:
a =b;
++c;

160 © Ecma International 2015

secmd

NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator
occurs between b and ++.

The source

if (a > b)
else c =d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else
token, even though no production of the grammar applies at that point, because an automatically inserted
semicolon would then be parsed as an empty statement.

The source

a=>b+c

(d + e) .print()
is not transformed by automatic semicolon insertion, because the parenthesized expression that begins
the second line can be interpreted as an argument list for a function call:

a=>b + c(d + e) .print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for

the programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely
on automatic semicolon insertion.

12 ECMAScript Language: Expressions
12.1 Identifiers
Syntax
IdentifierReferenceyyieiq) -
Identifier
[~Yield] yield
Bindingldentifierjyjei :
Identifier

[~Yield] yield

Labe“dentifier[yiekﬂ .
Identifier
[~Yield] yield

Identifier :
IdentifierName but not ReservedWord

12.1.1 Static Semantics: Early Errors

Bindingldentifier : Identifier

e Itis a Syntax Error if he code matched by this production is contained in strict code and the | [Deleted: this

StringValue of Identifier is "arguments" or "eval".

© Ecma International 2015 161

oecnd

IdentifierReferencepyieiq) : yield
Bindingldentifieryyieiq : yield
Labelldentifieryyieiq : yield

e Itis a Syntax Error if this production has a (vieiq) parameter.
e Itis a Syntax Error if the code match by this production is contained in strict code. [Deleted: this

e |t is a Syntax Error if the code match by this production is within the GeneratorBody of a
GeneratorMethod, GeneratorDeclaration, or GeneratorExpression.

IdentifierReferencepyieiq; - Identifier
Bindingldentifier(yieiq : Identifier
Labelldentifieryieiq - Identifier

e It is a Syntax Error if this production has a [viq; parameter and StringValue of Identifier is
"yield".
Identifier :: IdentifierName but not ReservedWord

e |tis a Syntax Error if this phrase is contained.in strict code and the StringValue of IdentifierName
is: "implements", "interface", "let", '"package'", "private", "protected",
"public", "static", or "yield".

e |tis a Syntax Error if StringValue of IdentifierName is the same string value as the StringValue of
any ReservedWord except for yield:

NOTE StringValue of IdentifierName normalizes any Unicode escape sequences in IdentifierName hence such
escapes cannot be used to write an Identifier whose code point sequence is the same as a ReservedWord.

12.1.2 Static Semantics: BoundNames
See also: 13.2.1.2,13.2.211,13.2.3.1,13.6.4.2,14.1.3, 14.2.2,14.4.2,145.2,15.2.2.2,15.2.3.2.

Bindingldentifier : Identifier
1. Return a new List containing the StringValue of Identifier.

Bindingldentifier : yield

1. <Return a new List containing "yield".

12.1.3 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.2.0.4, 12.2.9.3, 12.3.1.5, 12.4.3, 12.5.3, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, [Deleted: 12.3.1.3

12.12.2,12.13.2,12.14.3, 12.15.2.

IdentifierReference : Identifier

1. If this IdentifierReference is contained in strict code and StringValue of Identifier is "eval" or
"arguments", return false.
2. Return true.

IdentifierReference : yield

1. Return true.

162 © Ecma International 2015

oecnd

12.1.4 Static Semantics: StringValue
See also: 11.6.1.2,11.8.4.2.
IdentifierReference : yield

Bindingldentifier : yield
Labelldentifier : yield

1. Return "yield".

Identifier : IdentifierName but not ReservedWord
1. Return the StringValue of IdentifierName.

12.1.5 Runtime Semantics: Bindinglnitialization
With arguments value and environment.

See also: 13.2.3.5, 13.6.4.9.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialization value. This is the case for var statements and formal parameter lists of some non-strict mode functions

(See 9.2.13). In those cases a lexical binding is hoisted and preinitialized prior to evaluation of its initializer.

Bindingldentifier : Identifier

1. Let name be StringValue of Identifier.

2. Return InitializeBoundName(name, value, environment).
Bindingldentifier : yield

1. Return InitializeBoundName("yield", value, environment).

12.1.5.1 Runtime Semantics: InitializeBoundName(name, value, environment)

1. Assert: Type(name) is String.

2. If environment is not undefined, then
a. Letenv be the environment record component of environment.
b. Perform env.InitializeBinding(name, value).

c. Return NormalCompletion(undefined).
3. Else

a. Let Ihs be ResolveBinding(name).

b. " Return PutValue(lhs, value).

12.1.6 Runtime Semantics: Evaluation

IdentifierReference : Identifier
1. Return ResolveBinding(StringValue of Identifier).

IdentifierReference : yield

1. Return ResolveBinding("yield").

© Ecma International 2015

163

o Y Vo (an

Deleted:

Call the

Deleted:

concrete method of env passing

Deleted:

and

Deleted:

as the arguments

U

oecnd

NOTE 1: The result of evaluating an IdentifierReference is always a value of type Reference.

NOTE 2: In non-strict code, the keyword yield may be used as an identifier. Evaluating the IdentifierReference
production resolves the binding of yield as if it was an Identifier. Early Error restriction ensures that such an
evaluation only can occur for non-strict code. See 13.2.1 for the handling of yield in binding creation contexts.

12.2 Primary Expression

Syntax

PrimaryExpression;yieiq) :
this
IdentifierReferencepyieiq;
Literal
Arrayl_iteral[7yie|d]
ObjectLiteraljsyieiq)
FunctionExpression
ClassExpression
GeneratorExpression
RegularExpressionLiteral
TemplateLiteralpviei
CoverParenthesizedExpressionAndArrowParameterListj>yieiq

CoverParenthesizedExpressionAndArrowParameterListyyigiq :
(Expressiongn, »vieid)

()
(... Binding|dentiﬂer[7we|d])
(EXpressiOn[ml 2Yield] 7 s# - BindingIdentifier[?Yiem])

Supplemental Syntax

When processing the production

PrimaryExpressionyyieiq) : CoverParenthesizedExpressionAndArrowParameterList;syieiq)
the interpretation of CoverParenthesizedExpressionAndArrowParameterList is refined using the following
grammar:

ParenthesizedExpressionjyie(q; :
(Expressiongn, »vield))
12.2.0 Semantics

12.2.0.1 Static Semantics: CoveredParenthesizedExpression

CoverParenthesizedExpressionAndArrowParameterList;yieiq) : (EXpressiongn, svieiq))

1. Return the result of parsing the lexical token stream matched by
CoverParenthesizedExpressionAndArrowParameterList;yieiq) using either ParenthesizedExpression
or ParenthesizedExpression yieiq) as the goal symbol depending upon whether the (yieilq grammar
parameter was present when CoverParenthesizedExpressionAndArrowParameterList was matched.

12.2.0.2 Static Semantics: IsFunctionDefinition

See also: 12.2.9.2, 12.3.1.2, 12.4.2, 12.5.2, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,
12.13.1,12.14.2,12.15.1, 14.1.11, 14.4.9, 14.5.8.

164 © Ecma International 2015

[Deleted: 14.1.12

 Deleted: 14.4.914.4.914.4.8

oecnd

PrimaryExpression :
this
IdentifierReference
Literal
ArrayLiteral
ObjectLiteral
RegularExpressionLiteral
TemplateLiteral

1. Return false.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
1. Let expr be CoveredParenthesizedExpression of
CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsFunctionDefinition of expr.
12.2.0.3 Static Semantics: IsldentifierRef

See also: 12.3.1.4,

PrimaryExpression :
IdentifierReference

1. Return true.

PrimaryExpression :
this
Literal
ArrayLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
RegularExpressionLiteral
TemplateLiteral
CoverParenthesizedExpressionAndArrowParameterList

1: Return false.

12.2.0.4 Static Semantics: IsValidSimpleAssignmentTarget

’ Deleted: 12.3.1.3

See also: 12.1.3, 12.2.9.3, 12.3.1.5, 12.4.3, 12.5.3, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, | [Deleted: 12.3.1.3

12.12.2,12.13.2,12.14.3, 12.15.2.

© Ecma International 2015

165

oecmad

PrimaryExpression :
this
Literal
ArrayLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
RegularExpressionLiteral
TemplateLiteral

1. Return false.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
1. Let expr be CoveredParenthesizedExpression of
CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarget of expr.
12.2.1 The this Keyword
12.2.1.1 Runtime Semantics: Evaluation

PrimaryExpression : this

1. Return ResolveThisBinding() .
12.2.2 Identifier Reference
See 12.1 for IdentifierReference.
12.2.3 Literals

Syntax

Literal :
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

12.2.3.1 Runtime Semantics: Evaluation

Literal : NullLiteral
1. Return null.

Literal : BooleanLiteral

1. Return false if BooleanLiteral is the token false.
2. Return true if BooleanLiteral is the token true.

Literal : NumericLiteral

1. Return the number whose value is MV of NumericLiteral as defined in 11.8.3.

166

© Ecma International 2015

secmd

Literal : StringLiteral

1. Return the StringValue of StringLiteral as defined in 11.8.4.2.

12.2.4 Array Initializer

NOTE An ArrayLiteral is an expression describing the initialization of an Array object, using a list, of zero or
more expressions each of which represents an array element, enclosed in square brackets. The elements need not

be literals; they are evaluated each time the array initializer is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element
list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the
missing array element contributes to the length of the Array and increases the index of subsequent elements. Elided
array elements are not defined. If an element is elided at the end of an array, that element does not contribute to the

length of the Array.

Syntax

ArrayLiteralyyieiq :
[Elisiongy 1
[EIementListpYiem]]
[ElementListpyielq , Elisiongy 1

ElementListyieig) :
Elision,p; AssignmentEXpressionyn, »vieid]
Elisiongy; SpreadElementpyieiq)

ElementListpoyieiq; , Elisiongp: AssignmentEXpression;in, svield
ElementListjovieiq) , ElisiongpeSpreadElementpyieiq)

Elision :
’
Elision ,

SpreadElementyyie; :
. AssignmentExpressiongn, >vieiq]

12.2.4.1 Static Semantics: ElisionWidth

Elision : ,

1. Return the numeric value 1.

Elision : Elision ,

1. Let preceding be the ElisionWidth of Elision.
2. Return preceding+1.

12.2.4.2 Runtime Semantics: ArrayAccumulation
With parameters array and nextlndex.

ElementList : Elisionsy AssignmentExpression

1. Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.

© Ecma International 2015

167

Noohkwn

&

ecma

Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnlfAbrupt(initValue).

Let created be CreateDataProperty(array, ToString(ToUint32(nextIndex+padding)), initValue).
Assert: created is true.

Return nextIndex+padding+1.

ElementList : Elisiongp; SpreadElement

1.
2.

Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
Return the result of performing ArrayAccumulation for SpreadElement with arguments array and
nextIndex+padding.

ElementList : ElementList , Elision,y AssignmentExpression

1.

©OND WD

Let postindex be the result of performing ArrayAccumulation for ElementList with.arguments
array and nextIndex.

ReturnlfAbrupt(postindex).

Let padding be the ElisionWidth of Elision; if Elision is not present; use the numeric value zero.
Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnIfAbrupt(initValue).

Let created be CreateDataProperty(array, ToString(ToUint32(postindex+padding)), initValue).
Assert: created is true.

Return postindex+padding+1.

ElementList : ElementList , Elision,,, SpreadElement

1.

2.
3.
4

Let postindex be the result of performing ArrayAccumulation for ElementList with arguments

array and nextIndex:

ReturnIfAbrupt(postindex).
Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
Return the result of performing ArrayAccumulation for SpreadElement with arguments array and

postIndex+padding:

SpreadElement ... AssignmentExpression

Y

Seroooow

NOTE
built-in Array prototype object has been modified in a manner that would preclude the creation of new own properties
using [[Set]].

168

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadObj be GetValue(spreadRef).

Let iterator be Getlterator(spreadObj).
ReturnIfAbrupt(iterator).

Repeat

Let next be IteratorStep(iterator).

ReturnIfAbrupt(next).

If next is false, return nextindex.

Let nextValue be lteratorVValue(next).

ReturnlfAbrupt(nextValue).

Let status be CreateDataProperty(array, ToString(nextlndex), nextValue).
Assert: status is true .

Let nextIndex be nextindex + 1.

CreateDataProperty is used to ensure that own properties are defined for the array even if the standard

© Ecma International 2015

12.2.4.3 Runtime Semantics: Evaluation

ArrayLiteral - [Elisiongy]

1. Letarray be ArrayCreate(0).
Let pad be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.

NOTE: The above Set cannot fail because of the nature of the object returned by ArrayCreate.

2.
3. Perform Set(array, "length", pad, false).
4
5. Return array.

ArrayLiteral : [ElementList 1]
Let array be ArrayCreate(0).

ReturnlfAbrupt(len).
Perform Set(array, "length", len, false).

Let len be the result of performing ArrayAccumulation for ElementList with arguments array and 0.

NOTE: The above Set cannot fail because of the nature of the object returned by ArrayCreate.

S aAwNE

Return array.

ArrayLiteral : [ElementList , Elisiongy 1
Let array be ArrayCreate(0).
ReturnlfAbrupt(len).

Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
Perform Set(array, "length", ToUint32(padding+len), false).

Let len be the result of performing ArrayAccumulation for ElementList with arguments array and 0.

NOTE: The above Set cannot fail because of the nature of the object returned by ArrayCreate.

NoakrwnE

Return array.

12.2.5 Object Initializer

NOTE1 An object initializer is an expression describing the initialization of an Object, written in a form resembling

a literal. It is a list of zero or more pairs of property keys and associated values, enclosed in curly brackets. The |

values need not be literals; they are evaluated each time the object initializer is evaluated.

Syntax
ObjectLiteralfyieig) :
{1

{ PropertyDefinitionListpyie; }
{ PropertyDefinitionListpyieq; , }

PropertyDefinitionListyyiei; :
PropertyDefinitionsyiei
PropertyDefinitionListyyvieqy , PropertyDefinitionpyieiq

PropertyDefinitionyie; :
IdentifierReferencepyieiq;
CoverlnitializedNamepyieiq)
PropertyNamepavieiq : AssignmentEXpression;n, »vieiq)
MethodDefinitionyieig)

© Ecma International 2015

169

{ Deleted: Put(
[Deleted: Put
[Deleted: Put(
[Deleted: Put
[Deleted: Put(
[Deleted: Put

[Deleted: names

oecnd

Pl’Ope rtyName[Yield.GeneratorParameter] :
LiteralPropertyName
[+GeneratorParameter] ComputedPropertyName
[~GeneratorParameter] ComputedPropertyNameyieiq)

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyNameyyieiq) :
[AssignmentExpressiongn, »vieiq 1

CoverlnitializedNameyieiq) :
IdentifierReferencepyieiq) Initializeryn, »vieiq)

Initializeryn, viei; :
= AssignmentExpressionain, 2vieid]

NOTE 2 MethodDefinition is defined in 14.3.

NOTE 3 In certain contexts, ObjectLiteral is used as a cover grammar for a more restricted secondary grammar.
The CoverlnitializedName production is necessary to fully cover these secondary grammars. However, use of this
production results in an early Syntax Error in normal contexts where an actual ObjectLiteral is expected.

12.2.5.1 Static Semantics: Early Errors

PropertyDefinition : MethodDefinition

e Itis a Syntax Error if HasDirectSuper of MethodDefinition is true.
In addition to describing an actual object initializer the ObjectLiteral productions are also used as a cover
grammar for ObjectAssignmentPattern (12.14.5). ‘and may be recognized as part of a
CoverParenthesizedExpressionAndArrowParameterList. When ObjectLiteral appears in a context where
ObjectAssignmentPattern is required the following Early Error rules are not applied. In addition, they are not
applied when initially parsing a CoverParenthesizedExpressionAndArrowParameterList.
PropertyDefinition : CoverlnitializedName

e Always throw a Syntax Error if code matches this production,

NOTE This production exists so that ObjectLiteral can serve as a cover grammar for ObjectAssignmentPattern
(12.14.5). It cannot occur in an actual object initializer.

12.2.5.2 Static Semantics: ComputedPropertyContains
With parameter symbol.
See also: 14.3.2,14.4.3,1455.

PropertyName : LiteralPropertyName
1. Return false.

170 © Ecma International 2015

[Deleted: is present

oecnd

PropertyName : ComputedPropertyName
1. Return the result of ComputedPropertyName Contains symbol.

12.2.5.3 Static Semantics: Contains
With parameter symbol.
See also: 5.3, 12.3.1.1, 14.1.4,14.2.3,14.4.4,145.4.

PropertyDefinition : MethodDefinition

1. If symbol is MethodDefinition, return true.
2. Return the result of ComputedPropertyContains for MethodDefinition with argument symbol.

NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.

LiteralPropertyName : IdentifierName
1. If symbol is a ReservedWord, return false.
2. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of
IdentifierName, return true;
3. Return false.
12.2.5.4 Static Semantics: HasComputedPropertyKey
See also: 14.3.4,14.45

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. If HasComputedPropertyKey of PropertyDefinitionList is true, return true.
2. Return HasComputedPropertyKey of PropertyDefinition.

PropertyDefinition : IdentifierReference
1. Return false.

PropertyDefinition : PropertyName : AssignmentExpression

1. Return IsComputedPropertyKey of PropertyName.
12.2.5.5 Static Semantics: IsComputedPropertyKey

PropertyName :. LiteralPropertyName
1. Return false.

PropertyName : ComputedPropertyName
1. Return true.

12.2.5.6 Static Semantics: PropName

See als0:,14.3.6, 14.4.10, 14.5.12, ; [Deleted: J
[Deleted: 14.3.5 J

[Deleted: 14.5.1214.5.1214.5.1214.5.1214.5.13 J

© Ecma International 2015 171

oecmad

PropertyDefinition : ldentifierReference
1. Return StringValue of IdentifierReference.

PropertyDefinition : PropertyName : AssignmentExpression

1. Return PropName of PropertyName.

LiteralPropertyName : ldentifierName
1. Return StringValue of IdentifierName.

LiteralPropertyName : StringLiteral
1. Return a String value whose code units are the SV of the StringLiteral.

LiteralPropertyName : NumericLiteral
1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ToString(nbr).

ComputedPropertyName : [AssignmentExpression]

1. Return empty.
12.2.5.7 Static Semantics: PropertyNameList

PropertyDefinitionList : PropertyDefinition

1. If PropName of PropertyDefinition is empty, return a new empty List.
2. Return a new List containing PropName of PropertyDefinition.

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Let list be PropertyNameList.of PropertyDefinitionList.

2. If PropName of PropertyDefinition is empty, return list.
3. Append PropName of PropertyDefinition to the end of list.
4. Returnlist.

12.2.5.8 Runtime Semantics: Evaluation

ObjectLiteral : { }
1. Return ObjectCreate(%ObjectPrototype%).

ObjectLiteral :
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

1. Let obj be ObjectCreate(%ObjectPrototype%).

2. Let status be the result of performing PropertyDefinitionEvaluation of PropertyDefinitionList with
arguments obj and true.

3. ReturnlfAbrupt(status).

4. Return obj.

172 © Ecma International 2015

Comment [AWB107]: Issue: static semantic
rules probably should call ToString (a runtime
operation).

oecnd

LiteralPropertyName : ldentifierName
1. Return StringValue of IdentifierName.

LiteralPropertyName : StringLiteral
1. Return a String value whose code units are the SV of the StringLiteral.

LiteralPropertyName : NumericLiteral
1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ToString(nbr).

ComputedPropertyName : [AssignmentExpression]

1. LetexprValue be the result of evaluating AssignmentExpression.
2. Let propName be GetValue(exprValue).

3. ReturnlfAbrupt(propName).

4. Return ToPropertyKey(propName).

12.2.5.9 Runtime Semantics: PropertyDefinitionEvaluation

With parameter object and enumerable.

See also: 14.3.10, 14.4.13, B.3.1 ’ [Deleted: 14.3.1014.3.1014.3.9
[Deleted: 14.4.14

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Let status be the result of performing PropertyDefinitionEvaluation of PropertyDefinitionList with
arguments object and.enumerable.

2. ReturnifAbrupt(status).

3. Return the result'of performing PropertyDefinitionEvaluation of PropertyDefinition with arguments
object and enumerable.

PropertyDefinition : ldentifierReference

1. Let propName be StringValue of IdentifierReference.
2. Let exprValue be the result of evaluating IdentifierReference.
3. <ReturnifAbrupt(exprValue).
4. Let propValue be GetValue(exprValue).
5. ReturnlfAbrupt(propValue).
6. Assert: enumerable is true.
7. “Return CreateDataPropertyOrThrow(object, propName, propValue).
L . . Deleted: <#>Assert: propValue is an
PropertyDefinition.: PropertyName : AssignmentExpression ECMAScript function object.{
. <#>Let referencesSuper be the value of
1. Let propKey be the result of evaluating PropertyName. propValue’s [[NeedsSuper]] internal slot.{|
2. ReturnifAbrupt(propKey). <#>Let thisMode be the value of propValue’s
3. Let exprValueRef be the result of evaluating AssignmentExpression. g:;}f’:ﬂf’de]] intemal slot {
isMode is not lexical and
4. Let propValue be GetValue(exprValueRef). referencesSuper is true, thenf
5. ReturnlfAbrupt(propValue). <#>If propValue’s [[HomeObject]] intemal
6. If IsFunctionDefinition of AssignmentExpression is true, then slot is undefined, thenf o
a. Jf IsAnonymousFunctionDefinition(AssignmentExpression) is true, then <#>Assert: AssignmentExpression is not a
A . - class definition whose constructor references
i. Let hasNameProperty be HasOwnProperty(propValue, "name"). super.{
ii. ReturnlfAbrupt(hasNameProperty). <#>Set propValue’s [[HomeObject]] internal
slot to object.|

© Ecma International 2015 173

oecnd

iii. If hasNameProperty is false, perform SetFunctionName(propValue, propKey).
7. Assert: enumerable is true.
8. Return CreateDataPropertyOrThrow(object, propKey, propValue).
NOTE An alternative semantics for this production is given in B.3.1.
12.2.6 Function Defining Expressions
See 14.1 for PrimaryExpression : FunctionExpression.
See 14.4 for PrimaryExpression : GeneratorExpression.
See 14.5 for PrimaryExpression : ClassExpression.

12.2.7 Regular Expression Literals

Syntax
See 11.8.4.

12.2.7.1 Static Semantics: Early Errors

PrimaryExpression : RegularExpressionLiteral

e |tis a Syntax Error if BodyText of RegularExpressionLiteral cannot be recognized using the goal
symbol Pattern of the ECMAScript RegExp grammar specified in 21.2.1.

e ltis a Syntax Error if FlagText of RegularExpressionLiteral contains any code points other than "g",
"iv, "m", "u", or "y",orifit contains the same code point more than once.

12.2.7.2 Runtime Semantics: Evaluation

PrimaryExpression : RegularExpressionLiteral
1. Let pattern be the string value consisting of the-UTF 16Encoding of each code point of BodyText of

RegularExpressionLiteral.
2. Letflags be the string value consisting of the UTF16Encoding of each code point of FlagText of

RegularExpressionLiteral.
3¢ Return RegExpCreate(pattern, flags).

12.2.8 Template Literals

Syntax

TemplateLiteralpyieiq :
NoSubstitutionTemplate
TemplateHead EXpressiongn, >vie)JemplateSpansyieiq)

TemplateSpansyiei; -
TemplateTail
TemplateMiddleList}>vielqy JemplateTail

TemplateMiddleListyyieq) :
TemplateMiddle Expressiongn, »vieid
TemplateMiddleListpviei JemplateMiddle Expressiongn, »viei;

174 © Ecma International 2015

[Deleted: -

{ Deleted: -

Deleted: [Lexical goal
InputElementTemplateTail]

Deleted: [Lexical goal
InputElementTemplateTail]

Deleted: [Lexical goal
InputElementTemplateTail]

secmd

12.2.8.1 Static Semantics: TemplateStrings

With parameter raw.

TemplateLiteral : NoSubstitutionTemplate

1.

2.

3.

If raw is false, then

a. Letstring be the TV of NoSubstitutionTemplate.
Else,

a. Letstring be the TRV of NoSubstitutionTemplate.
Return a List containing the single element, string.

TemplateLiteral : TemplateHead Expression TemplateSpans

1.

2.

3.
4.

If raw is false, then

a. Let head be the TV of TemplateHead.

Else,

a. Let head be the TRV of TemplateHead.

Let tail be TemplateStrings of TemplateSpans with argument raw:
Return a List containing head followed by the element, in order of tail.

TemplateSpans : TemplateTail

1.

2.

3.

If raw is false, then

a. Lettail be the TV of TemplateTail.

Else,

a. Let tail be the TRV of TemplateTail.
Return a List containing the single element, tail.

TemplateSpans : TemplateMiddleList TemplateTail

1.
2.

3.

4.

Let middle be TemplateStrings of TemplateMiddleList with argument raw.
If raw is false, then

a. Let tail be the TV of TemplateTail.

Else,

a. Let tail be the TRV of TemplateTail.

Return a List.containing the elements, in order, of middle followed by tail.

TemplateMiddleList : TemplateMiddle Expression

1.

2.

3.

If raw is false, then

a. Let string be the TV of TemplateMiddle.

Else,

a. Let string be the TRV of TemplateMiddle.
Return a List containing the single element, string.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

1.
2.

3.

4.
5.

Let front be TemplateStrings of TemplateMiddleList with argument raw.
If raw is false, then

a. Let last be the TV of TemplateMiddle.

Else,

a. Letlast be the TRV of TemplateMiddle.

Append last as the last element of the List front.

Return front.

© Ecma International 2015 175

[Deleted: <#>Static Semantics{

[Formatted: Heading 4

oecmad

12.2.8.2 Runtime Semantics: ArgumentListEvaluation - [Deleted: <#>Runtime Semantics{

[Formatted: Heading 4

See also: 12.3.6.1

TemplateLiteral : NoSubstitutionTemplate

1. Let templateLiteral be this TemplateLiteral.
2. Let siteObj be GetTemplateObject(templateLiteral).
3. Return a List containing the one element which is siteObj.

TemplateLiteral : TemplateHead Expression TemplateSpans

Let templateLiteral be this TemplateLiteral.

Let siteObj be GetTemplateObject(templateLiteral).

Let firstSub be the result of evaluating Expression.

ReturnlfAbrupt(firstSub).

Let restSub be SubstitutionEvaluation of TemplateSpans.

ReturnIfAbrupt(restSub).

Assert: restSub is a List.

Return a List whose first element is siteObj, whose second elements is firstSub, and whose
subsequent elements are the elements of restSub, in order. restSub may contain no elements.

NG~ WNE

12.2.8.3 Runtime Semantics: GetTemplateObject (templateLiteral) « [Formatted: Heading 4

The abstract operation GetTemplateObject is called with a .grammar production, templateLiteral, as an
argument. It performs the following steps:

Let rawStrings be TemplateStrings of templateLiteral with argument true.

Let ctx be the running execution context.

Let realm be the ctx’s Realm.

Let templateRegistry be realm.[[templateMap]].

For each element e of templateRegistry, do

a. If e.[[strings]] and rawStrings-contain the same values in the same order, then
i. Return e.[[array]]:

Let cookedStrings be TemplateStrings of templateLiteral with argument false.

Letcount be the number of elements in the List cookedStrings.

Let template be ArrayCreate(count).

Let rawObj be ArrayCreate(count).

. Let index be 0.
. Repeat while index < count

a. . Let prop be ToString(index).

b. Let cookedValue be the string value cookedStrings[index].

c. Call the [[DefineOwnProperty]] internal method of template with arguments prop and
PropertyDescriptor{[[Value]]: cookedValue, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false}.

d. Let rawValue be the string value rawStrings[index].

e. Call the [[DefineOwnProperty]] internal method of rawObj with arguments prop and
PropertyDescriptor{[[Value]]: rawValue, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false}.

f. Let index be index+1.

12. Perform SetlntegrityLevel(rawObj, "frozen").

agrwNE

SO © ~N &

- O

176 © Ecma International 2015

secmd

13. Call the [[DefineOwnProperty]] internal method of template with arguments ""raw" and
PropertyDescriptor{[[Value]]: rawObj, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:
false}.

14. Perform SetIntegrityLevel(template, "frozen").

15. Append the Record{[[strings]]: rawStrings, [[array]]: template} to templateRegistry.

16. Return template.

NOTE1 The creation of a template object cannot result in an abrupt completion.

NOTE2 Each TemplateLiteral in the program code of a Realm is associated with‘a unique template object that is

used in the evaluation of tagged Templates (12.2.8.5). The template objects are frozen and the same template object | [Deleted: 122824

is used each time a specific tagged Template is evaluated. Whether template objects are created lazily upon first
evaluation of the TemplateLiteral or eagerly prior to first evaluation is an implementation choice that is not observable
to ECMAScript code.

NOTE 3 Future editions of this specification may define additional’'non-enumerable properties of template objects.

12.2.8.4 Runtime Semantics: SubstitutionEvaluation « [Formatted: Heading 4

TemplateSpans : TemplateTail
1. Return an empty List.

TemplateSpans : TemplateMiddleList TemplateTail

1. Return the result of SubstitutionEvaluation of TemplateMiddleList.
TemplateMiddleList : TemplateMiddle Expression

1. Letsub be the result of evaluating Expression.

2. ReturnIfAbrupt(sub).

3. Return a List containing only sub.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

1. Let preceding be the result of SubstitutionEvaluation of TemplateMiddleList .
2. ReturnlfAbrupt(preceding).
3. <Letnext be the result of evaluating Expression.
4. ReturnlfAbrupt(next).
5. Append next as the last element of the List preceding.
6. Return preceding.
12.2.8.5 Runtime Semantics: Evaluation « [Formatted: Heading 4

TemplateLiteral : NoSubstitutionTemplate

1. Return the string value whose code units are the elements of the TV of NoSubstitutionTemplate as
defined in 11.8.6.

TemplateLiteral : TemplateHead Expression TemplateSpans

1. Lethead be the TV of TemplateHead as defined in 11.8.6.
2. Let sub be the result of evaluating Expression.

3. Let middle be ToString(sub).

4. ReturnIfAbrupt(middle).

© Ecma International 2015 177

oecnd

5. Let tail be the result of evaluating TemplateSpans .
6. ReturnlfAbrupt(tail).
7. Return the string value whose code units are the elements of head followed by the elements of
middle followed by the elements of tail.
NOTE The string conversion semantics applied to the Expression value are like String.prototype.concat

rather than the + operator.

TemplateSpans : TemplateTail

1. Let tail be the TV of TemplateTail as defined in 11.8.6.
2. Return the string consisting of the code units of tail.

TemplateSpans : TemplateMiddleList TemplateTail

1. Let head be the result of evaluating TemplateMiddleList:

2. ReturnlfAbrupt(head).

3. Let tail be the TV of TemplateTail as defined in 11:8.6.

4. Return the string whose code units are the elements of head followed by the elements of tail.

TemplateMiddleList : TemplateMiddle Expression

1. Lethead be the TV of TemplateMiddle as defined in 11.8.6.

2. Let sub be the result of evaluating Expression.

3. Let middle be ToString(sub).

4. ReturnlfAbrupt(middle).

5. Return the sequence of code units consisting of the code units of head followed by the elements of
middle.

NOTE The string conversion semantics applied to the Expression value are like String.prototype.concat
rather than the + operator.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

1. Letrest be the result of evaluating TemplateMiddleList .
2. ReturnlfAbrupt(rest).
3. Letmiddle be the TV of TemplateMiddle as defined in 11.8.6.
4. et sub be the result of evaluating Expression.
5 Let last be ToString(sub).
6. ReturnlfAbrupt(last).
7. Return the sequence of code units consisting of the elements of rest followed by the code units of
middle followed by the elements of last.
NOTE The string conversion semantics applied to the Expression value are like String.prototype.concat

rather than the + operator.
12.2.9 The Grouping Operator
12.2.9.1 Static Semantics: Early Errors

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

e Itis a Syntax Error if the lexical token sequence matched by
CoverParenthesizedExpressionAndArrowParameterList cannot be parsed with no tokens left over
using ParenthesizedExpression as the goal symbol.

178 © Ecma International 2015

oecnd

e All Early Errors rules for ParenthesizedExpression and its derived productions also apply to
CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.

12.2.9.2 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.3.1.2, 12.4.2, 125.2, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,

12.13.1,12.14.2,12.15.1,14.1.11, 14.4.9, 14.5.8. [Deleted: 14.1.1214.1.1214.1.1214.1.11

. . . [Deleted: 14.4.914.4.914.4.8
ParenthesizedExpression : (Expression)

1. Return IsFunctionDefinition of Expression.
12.2.9.3 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.3, 12.2.0.3, 12.3.1.5, 12.4.3, 125.3, 12.6.2, 42.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2,
12.12.2,12.13.2,12.14.3,12.15.2.

ParenthesizedExpression : (Expression)

1. Return IsValidSimpleAssignmentTarget of Expression.
12.2.9.4 Runtime Semantics: Evaluation

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of
CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of evaluating expr.

ParenthesizedExpression : ('Expression)

1. Return the result of evaluating Expression. This may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for
this is so that operators such as delete and typeof may be applied to parenthesized expressions.

12.3 Left-Hand-Side Expressions

Syntax

MemberExpressionpyieiq :

PrimaryExpressionpvieid | [Deleted: [Lexical goal InputElementRegExp]

MemberExpressionpyieiqy [EXpressiongn, »vieiqj 1
MemberExpressionpyieq - IdentifierName
MemberExpressionpyie; TemplateLiteralpviei
SuperPropertypyied;

MetaProperty

new MemberEXpressionpyieiy Argumentspyieid;

SuperPropertyyiei; :

super [Expressiongn, »vieiq)]
super . ldentifierName

© Ecma International 2015 179

secma

| MetaProperty :

NewTarget

NewTarget :
new . target

NewEXpressionyieiy -
MemberExpression,viei
new NewEXpressionpyieid)

CallExpressionyyieiq :
MemberExpressionpyie; Argumentspyieig)
SuperCaII[?Yiem]
CallEXpreSSiOn[?yie|d] ArgUmentS[?yie|d]
Ca"EXpI’eSSiOn[?yiem] [EXpreSSiOn[ml 2Yield] 1
CallExpressionpyieq; - IdentifierName
CallExpressionpyieq; TemplateLiteralpyieig)

SuperCaI I[Yield] .
super Argumentspyiei

Argumentsiyiei; -
()
(ArgumentListpovie;)
ArgumentLiSt[Yiem] .
AssignmentExpressiongn, »vieid]
. AssignmentExpressiongy,, »vield]

ArgumentListy>vieiq +* ASSIgnmentEXpressionyn, »vield]
ArgumentListpyieig) , - .- - AssignmentEXpressionqp, 2yiei)

LeftHandSideExpression|yieiq =
NewEXpressionjzvieid
CallExpression;,viei

12.3.1 Static Semantics

12.3.1.1 Static Semantics: Contains

With parameter symbol.

See also0: 5.3,12.2.5.3,14.1.4,14.2.3,14.44,1454

MemberExpression : MemberExpression . ldentifierName

1. If MemberExpression Contains symbol is true, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of

IdentifierName, return true;
4. Return false.

180

© Ecma International 2015

Deleted: NewExpressionyieq : 1
MemberExpressionpyiei
new NewEXpressionpyiey ..
NewSupernew super(

[Deleted: 12.2.5.212.2.5.2

oecnd

SuperProperty : super . ldentifierName

1. If symbol is the ReservedWord super, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of
IdentifierName, return true;

4. Return false.

CallExpression : CallExpression . IdentifierName

1. If CallExpression Contains symbol is true, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same-value as the StringValue of
IdentifierName, return true;

4. Return false.

12.3.1.2 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.9.2, 12.4.2, 125.2, 12.6.1,12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,

12.13.1,12.14.2,12.15.1, 14.1.11, 14.4.9, 14.5.8. [Deleted: 14.1.12

MemberExpression :
MemberExpression [Expression 1]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty
new MemberExpression Arguments

NewExpression :
new NewExpression

CallExpression:
MemberExpression: Arguments
SuperCall
CallExpression Arguments
CallExpression [Expression]
CallExpression . ldentifierName
CallExpression TemplateLiteral

1. Return false.
12.3.1.3 Static Semantics: IsDestructuring
See also: 13.6.4.5.

MemberExpression : PrimaryExpression

1. If PrimaryExpression is either an ObjectLiteral or an ArrayLiteral, return true.
2. Return false.

© Ecma International 2015 181

oecmad

MemberExpression :
MemberExpression [Expression 1]
MemberExpression . ldentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty
new MemberExpression Arguments

NewExpression :
new NewExpression

CallExpression:
MemberExpression Arguments
SuperCall
CallExpression Arguments
CallExpression [Expression]
CallExpression. IdentifierName
CallExpression TemplateLiteral

1. Return false.
12.3.1.4 Static Semantics: IsldentifierRef
See also: 12.2.0.3.

LeftHandSideExpression :
CallExpression

MemberExpression :
MemberExpression [Expression]
MemberExpression < IdentifierName
MemberExpression TemplateL.iteral
SuperProperty
MetaProperty
new MemberExpression - Arguments

NewExpression :
new NewExpression

1. Return false.
12.3.1.5 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.3, 12.2.0.3, 12.2.9.3, 12.4.3, 125.3, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2,
12.12.2,12.13.2,12.14.3; 12.15.2.

CallExpression :
CallExpression [Expression]
CallExpression . IdentifierName

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
SuperProperty

182 © Ecma International 2015

secmd

1. Return true.

CallExpression :
MemberExpression Arguments
SuperCall
CallExpression Arguments
CallExpression TemplateLiteral

NewExpression :
new NewExpression

MemberExpression :
MemberExpression TemplateLiteral
new MemberExpression Arguments

NewTarget :
new . target
1. Return false.

12.3.2 Property Accessors

NOTE Properties are accessed by name, using either the dot notation:

MemberExpression . IdentifierName
CallExpression . ldentifierName

or the bracket notation:

MemberExpression [Expression 1
CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:
MemberExpression . IdentifierName
is identical in its behaviour to
MemberExpression [<identifier-name-string>]
and similarly
CallExpression . IdentifierName
is identical in its behaviour to
CallExpression [<identifier-name-string>]

where <identifier-name-string> is the result of evaluating StringValue of IdentifierName.
12.3.2.1 Runtime Semantics: Evaluation

MemberExpression : MemberExpression [Expression]

Let baseReference be the result of evaluating MemberExpression.
Let baseValue be GetValue(baseReference).
ReturnIfAbrupt(baseValue).

Let propertyNameReference be the result of evaluating Expression.
Let propertyNameValue be GetValue(propertyNameReference).
ReturnIfAbrupt(propertyNameValue).

STk wnE

© Ecma International 2015 183

(

recma

Let bv be RequireObjectCoercible(baseValue).
ReturnIfAbrupt(bv).
Let propertyKey be ToPropertyKey(propertyNameValue).

. ReturnlfAbrupt(propertyKey).
. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict

be true, else let strict be false.

. Return a value of type Reference whose base value is bv and whose referenced name is

propertyKey, and whose strict reference flag is strict.

MemberExpression : MemberExpression . ldentifierName

Nouokown

Let baseReference be the result of evaluating MemberExpression.

Let baseValue be GetValue(baseReference).

ReturnIfAbrupt(baseValue).

Let bv be RequireObjectCoercible(baseValue).

ReturnIfAbrupt(bv).

Let propertyNameString be StringValue of IdentifierName

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict
be true, else let strict be false.

Return a value of type Reference whose base value is bv and whose referenced name is
propertyNameString, and whose strict reference flag is strict.

CallExpression : CallExpression [Expression.]

Is evaluated in exactly the same manner as MemberExpression : MemberExpression [Expression 1 except
that the contained CallExpression is evaluated in step 1.

CallExpression : CallExpression . ldentifierName

Is evaluated in exactly the same manner as MemberExpression : MemberExpression . ldentifierName except
that the contained CallExpression is evaluated in step 1.

12.3.3 The new Operator

12.3.3.1 Runtime Semantics: Evaluation

NewExpression : new NewExpression

1. Return EvaluateNew(NewEXxpression, empty).

MemberExpression : new MemberExpression Arguments

1. Return EvaluateNew(MemberExpression, Arguments).

12.3.3.1.1 Runtime Semantics: EvaluateNew(gconstructProduction, arguments)

The abstract operation EvaluateNew with arguments constructProduction, and arguments performs the
following steps:

1.

ouhrwN

184

Assert: constructProduction is either a NewExpression or a MemberExpression.

Assert: arguments is either empty or an Arguments production.
Let ref be the result of evaluating constructProduction.

Let constructor be GetValue(ref).
ReturnlfAbrupt(constructor).

If arguments is empty, let argList be an empty List.

© Ecma International 2015

Deleted: <#>Let thisCallNewExpression be this
NewExpression.{

Deleted: thisNewExpression,

Deleted: <#>Let thisMemberExpression be this
MemberExpression.{

Deleted: thisMemberExpression,

Deleted: thisCall,

Deleted: thisCall,

|
(
—
|
(
|

Deleted: <#>Assert: thisCall is either a
NewExpression or a MemberExpression.{

|
)
|
|
J
|

oecnd

8.
9.

Else,

a. LetargList be ArgumentListEvaluation of arguments.

b. ReturnifAbrupt(argList).

If IsConstructor (constructor) is false, throw a TypeError exception.
Return Construct(constructor, argList).

12.3.4 Function Calls

12.3.4.1 Runtime Semantics: Evaluation

CallExpression : MemberExpression Arguments

1
2.
3.
4

7.
8.
9

Let ref be the result of evaluating MemberExpression.

Let func be GetValue(ref).

ReturnIfAbrupt(func).

If Type(ref) is Reference and IsPropertyReference(ref).is false and GetReferencedName(ref) is

Deleted: <#>Let tailCall be
IsInTailPosition(thisCall). (See 14.6.1)
<#>{

<#>If tailCall is true, then perform the
PrepareForTailCall abstract operation.{
Let result be

Deleted: <#>Assert: If tailCall is true, the
above call of [[Construct]] will not return here,
but instead evaluation will continue as if the
following return has already occurred.{
<#>Return result.|

"eval", then
a. If SameValue(func, %eval%) is true, then
i. LetargList be ArgumentListEvaluation(Arguments).
ii. ReturnlfAbrupt(argList).
iili. If argList has no elements, return undefined.
iv. Let evalText be the first element of argList.
v. If the source code matching this:CallExpression is strict code, let strictCaller be true.
Otherwise let strictCaller be false.
vi. Let evalRealm be the running execution context’s Realm.
vii. Return PerformEval(evalText, evalRealm, strictCaller, true). .
If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then
i. Let thisValue be GetThisValue(ref).
b. Else, the base of ref is an Environment Record
i. Let refEnv be GetBase(ref).
ii. LetthisValue be refEnv.WithBaseObject().
Else Type(ref) is not Reference,
a. LetthisValue be undefined.
Let thisCall be this CallExpression.
Let tailCall be IsInTailPosition(thisCall). (See 14.6.1)
Return EvaluateDirectCall(func, thisValue, Arguments, tailCall).

A CallExpression whose evaluation executes step 4.a.vii is a direct eval.

CallExpression : CallExpression Arguments

1.

2
3.
4

Let ref be the result of evaluating CallExpression.

Let thisCall be this CallExpression

Let tailCall be IsInTailPosition(thisCall). (See 14.6.1)
Return EvaluateCall(ref, Arguments, tailCall).

12.3.4.2 Runtime Semantics: EvaluateCall(ref, arguments, tailPosition)

The abstract operation EvaluateCall takes as arguments a value ref, a syntactic grammar production

arguments, and a Boolean argument tailPosition. It performs the following steps:

1.
2.

Let func be GetValue(ref).
ReturnlfAbrupt(func).

© Ecma International 2015

[Formatted: Font: Not Italic

oecnd

3. If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then
i. LetthisValue be GetThisValue(ref).
b. Else, the base of ref is an Environment Record
i. LetrefEnv be GetBase(ref).
ii. Let thisValue be refEnv.WithBaseObject().
4. Else Type(ref) is not Reference,
a. LetthisValue be undefined.
5. Return EvaluateDirectCall(func, thisValue, arguments, tailPosition).

12.3.4.3 Runtime Semantics: EvaluateDirectCall(func, thisValue, arguments, tailPosition)

The abstract operation EvaluateDirectCall takes as arguments a value func, a value thisValue, a syntactic
grammar production arguments, and a Boolean argument tailPosition. It performs the following steps:

Let argList be ArgumentListEvaluation(arguments).

ReturnIfAbrupt(argList).

If Type(func) is not Object, throw a TypeError exception.

If I1sCallable(func) is false, throw a TypeError ‘exception.

If tailPosition is true, perform the PrepareForTailCall abstract operation.

Let result be Call(func, thisValue, argList).

Assert: If tailPosition is true, the above call will not return here, but instead evaluation will
continue as if the following return has already occurred.

8. Assert: If result is not an abrupt completion then Type(result) is an ECMAScript language type.
9. Return result.

NoukrwhE

12.3.5 The super Keyword
12.3.5.1 Runtime Semantics: Evaluation

SuperProperty : super [Expression]

1. Let propertyNameReference be the result of evaluating Expression.

2. Let propertyNameValue be GetValue(propertyNameReference).

3. Let propertyKey be ToPropertyKey(propertyNameValue).

4. ReturnlfAbrupt(propertyKey).

5. f the code matched by the syntactic production that is being evaluated is strict mode code, let strict
be true, else let strict be false.

6. Return MakeSuperPropertyReference(propertyKey, strict).

SuperProperty : super . ldentifierName

1. Let propertyKey be StringValue of IdentifierName.

2. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict
be true, else let strict be false.

3. Return MakeSuperPropertyReference(propertyKey, strict).

SuperCall : super Arguments

1. LetnewTarget be GetNewTarget().

2. If newTarget is undefined, throw a ReferenceError exception.
3. Let func be GetSuperConstructor().

4. ReturnlfAbrupt(func).

5. LetargList be ArgumentListEvaluation of Arguments.

186 © Ecma International 2015

secmd

BoOo N

0.

ReturnIfAbrupt(argList).

Let result be Construct(func, argList, newTarget).
ReturnlfAbrupt(result).

Let thisER be GetThisEnvironment().

Return thisER.BindThisValue(result).

12.3.5.2 Runtime Semantics: GetSuperConstructor ()

The abstract operation GetSuperConstructor performs the following steps:

NoohrwnpeE

Let envRec be GetThisEnvironment().

Assert: envRec is a Function environment record.

Let activeFunction be envRec.[[FunctionObject]].

Let superConstructor be activeFunction.[[GetPrototypeOf]]().
ReturnIfAbrupt(superConstructor).

If IsConstructor(superConstructor) is false, throw a TypeError exception.
Return superConstructor.

12.3.5.3 Runtime Semantics: MakeSuperPropertyReference(propertyKey, strict)

The abstract operation MakeSuperPropertyReference with arguments propertyKey and strict performs the
following steps:

NG~ wWNE

Let env be GetThisEnvironment().

If env.HasSuperBinding() is false, throw a ReferenceError exception.

Let actualThis be env.GetThisBinding().

ReturnlfAbrupt(actualThis).

Let baseValue be env.GetSuperBase().

Let bv be RequireObjectCoercible (baseValue).

ReturnIfAbrupt(bv).

Return a value of type Reference that is a Super Reference whose base value is bv, whose
referenced name is propertyKey, whose thisValue is actualThis, and whose strict reference flag is
strict.

12.3.6 Argument Lists

NOTE

The evaluation of an argument list produces a List of values (see 6.2.1).

12:3.6.1 Runtime Semantics: ArgumentListEvaluation

See also: 12.2.8.2,

Arguments : ()

1.

Return an empty List.

ArgumentList : AssignmentExpression

ArwnNpE

Let ref be the result of evaluating AssignmentExpression.
Let arg be GetValue(ref).

ReturnIfAbrupt(arg).

Return a List whose sole item is arg.

© Ecma International 2015 187

| {Deleted: 12.2.8.2.1

oecmad

ArgumentList: . .. AssignmentExpression

Let list be an empty List.

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadObj be GetValue(spreadRef).

Let iterator be Getlterator(spreadObj).
ReturnIfAbrupt(iterator).

Repeat

Let next be lteratorStep(iterator).
ReturnlfAbrupt(next).

If next is false, return list.

Let nextArg be IteratorValue(next).
ReturnlfAbrupt(nextArg).

Append nextArg as the last element of list.

S wNE

HooooTw

ArgumentList : ArgumentList , AssignmentExpression

Let precedingArgs be the result of evaluating ArgumentList.
ReturnifAbrupt(precedingArgs).

Let ref be the result of evaluating AssignmentExpression.
Let arg be GetValue(ref).

ReturnIfAbrupt(arg).

Append arg to the end of precedingArgs.

Return precedingArgs.

NoukrwhpE

ArgumentList : ArgumentList , ... AssignmentExpression

Let precedingArgs be the result of evaluating ArgumentList.
Let spreadRef be the result of evaluating AssignmentExpression.
Let iterator be Getlterator(GetValue(spreadRef)).
ReturnIfAbrupt(iterator).

Repeat

Let next'be IteratorStep(iterator).
ReturnIfAbrupt(next).

If next is false, return precedingArgs.

Let nextArg be IteratorValue(next).
ReturnlfAbrupt(nextArg).

Append nextArg as the last element of precedingArgs.

garwn e

heooow

12.3.7 Tagged Templates

NOTE A tagged template is a function call where the arguments of the call are derived from a TemplateLiteral
(12.2.8). The actual arguments include a template object (12.2.8.3) and the values produced by evaluating the

expressions embedded within the TemplateLiteral.
12.3.7.1 Runtime Semantics: Evaluation

MemberExpression : MemberExpression TemplateLiteral

1. Let tagRef be the result of evaluating MemberExpression.
2. Let thisCall be this MemberExpression.

3. Let tailCall be IsInTailPosition(thisCall). (See 14.6.1)

4. Return EvaluateCall(tagRef, TemplateLiteral, tailCall).

188 © Ecma International 2015

(Deleted: 12.2.8.2.2

oecnd

CallExpression : CallExpression TemplateLiteral

1. Let tagRef be the result of evaluating CallExpression.
2. Let thisCall be this CallExpression.

3. Let tailCall be IsInTailPosition(thisCall). (See 14.6.1)
4. Return EvaluateCall(tagRef, TemplateLiteral, tailCall).

12.3.8 Meta Properties
12.3.8.1 Runtime Semantics: Evaluation

NewTarget: new . target
1. Return GetNewTarget().

12.4 Postfix Expressions

Syntax

PostfixExpression;yieiq :
LeftHandSideExpressionpyiei;
LeftHandSideExpression(syie; [no LineTerminator here] ++
LeftHandSideExpression(yiei; [no LineTerminator here] —-

12.4.1 Static Semantics: Early Errors
PostfixExpression :

LeftHandSideExpression ++
LeftHandSideExpression® --—

e ltis an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.
12.4.2 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.9.2, 12.3.1.2, 12.5.2, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,

12.13.1,12.14.2,12.15.1, 14.1.11, 14.4.9, 14.5.8 [Deleted: 14.1.1214.1.1214.1.11

PostfixExpression :
LeftHandSideExpression. ++
LeftHandSideExpression --

1. Return false.
12.4.3 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.3,12.2.0.3, 12.2.9.3, 12.3.1.5, 12.5.3, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, |
12.12.2,12.13.2,12.14.3, 12.15.2.

PostfixExpression :
LeftHandSideExpression ++
LeftHandSideExpression --

1. Return false.

© Ecma International 2015 189

oecmad

12.4.4 Postfix Increment Operator

12.4.4.1 Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression ++

1
2.
3.
4

5.
6.
7

Let lhs be the result of evaluating LeftHandSideExpression.
Let oldValue be ToNumber(GetValue(lhs)).
ReturnIfAbrupt(oldValue).

Let newValue be the result of adding the value 1 to oldValue, using the'same rules as for the +

operator (see 12.7.5).

Let status be PutValue(lhs, newValue).
ReturnIfAbrupt(status).

Return oldValue.

12.4.5 Postfix Decrement Operator

12.4.5.1 Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression --

1
2.
3.
4

5.
6.
7.

Let lhs be the result of evaluating LeftHandSideExpression.
Let oldValue be ToNumber(GetValue(lhs)).
ReturnlfAbrupt(oldValue).

Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the

- operator (12.7.5).

Let status be PutValue(lhs, newValue).
ReturnIfAbrupt(status).

Return oldValue.

12.5 Unary Operators

Syntax

UnaryExpressionjyie; :

PostfixEXpression;syieiq)

delete UnaryEXpressionpyiei
void UnaryEXpression;svieiq
typeof UnaryEXpressionpyiei;
++ UnaryExpressionpvieid

—= UnaryExpressionpyieiq)

+ UnaryExpressionvieid

- UnaryEXpressionpyieig

~ UnaryEXpressionayie(d

! UnaryExpression;zyieiq

12.5.1 Static Semantics: Early Errors

UnaryExpression :

190

++ UnaryExpression
-- UnaryExpression

It is an early Reference Error if IsValidSimpleAssignmentTarget of UnaryExpression is false.

© Ecma International 2015

oecnd

12.5.2 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.9.2, 12.3.1.2, 12.4.2, 12.6.1, 12.7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,

12.13.1,12.14.2,12.15.1, 14.1.11, 14.4.9, 14.5.8. [Deleted: 14.1.1214.1.1214.1.11

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

1. Return false.

12.5.3 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.3, 12.2.0.3, 12.2.9.3, 12.3.1.5, 12.4.3, 12.6.2, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, | [Deleted: 12.3.1.3
12.12.2,12.13.2,12.14.3,12.15.2.

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

1. Return false.
12.54 The delete Operator
12.5.4.1 Static Semantics: Early Errors

UnaryExpression : delete UnaryExpression

e |tis a Syntax Error if the UnaryExpression is contained in strict code and the derived
UnaryExpression is PrimaryExpression : IdentifierReference.
e Itis a Syntax Error if the derived UnaryExpression is
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
and CoverParenthesizedExpressionAndArrowParameterList ultimately derives a phrase that, if used in

place of UnaryExpression, would produce a Syntax Error according to these rules. This rule is
recursively applied.

© Ecma International 2015 191

oecmad

NOTE The last rule means that expressions such as « [Formatted: Indent: Left: 0", First line: 0"
delete (((foo0)))
produce early errors because of recursive application of the first rule. Deleted:

12.5.4.2 Runtime Semantics: Evaluation
UnaryExpression : delete UnaryExpression

Let ref be the result of evaluating UnaryExpression.
ReturnIfAbrupt(ref).

If Type(ref) is not Reference, return true.

If IsUnresolvableReference(ref) is true, then

a. Assert: IsStrictReference(ref) is false.

b. Return true.

5. If IsPropertyReference(ref) is true, then

If IsSuperReference(ref), throw a ReferenceError exception.

AwnE

Let baseObj be ToObject(GetBase(ref)). [Formatted: Font: Not Italic

a
b
c. Let deleteStatus be baseObj.[[Delete]](GetReferencedName(ref)).

d. ReturnlfAbrupt(deleteStatus).

e. If deleteStatus is false and IsStrictReference(ref) is true; throw a TypeError exception.
f. Return deleteStatus.

E

a.

b.

6. Else ref is a Reference to an Environment Record binding,
Let bindings be GetBase(ref).
Return bindings.DeleteBinding(GetReferencedName(ref)).
NOTE When a delete operator occurs within strict mode code; a SyntaxError exception is thrown if its

UnaryExpression is a direct reference to a variable, function-argument, or function name. In addition, if a delete
operator occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a
TypeError exception is thrown:

12.5.5 The void Operator
12.5.5.1 Runtime Semantics: Evaluation

UnaryExpression :-wvoid UnaryExpression

1. <Letexpr be the result of evaluating UnaryExpression.
2. Let status be GetValue(expr).

3. ReturnIfAbrupt(status).

4. Return undefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.
12.5.6 The typeof Operator
12.5.6.1 Runtime Semantics: Evaluation

UnaryExpression : typeof UnaryExpression

1. Letval be the result of evaluating UnaryExpression.
2. If Type(val) is Reference, then

a. If IsUnresolvableReference(val) is true, return "undefined".
3. Letval be GetValue(val).

192 © Ecma International 2015

oecha

4. ReturnlfAbrupt(val).
5. Return a String according to Table 35.

Table 35 — typeof Operator Results

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean"
Number "number"
String "string"
Symbol "symbol"

Object (ordinary and does | "object"
not implement [[Call]])

Object (standard exotic and | "object"
does not implement [[Call]])

Object (implements [[Call]]) | "function"

Object (non-standard exotic | Implementation-defined. Must not
and does not implement be "undefined"; "boolean",
[[Calll]) "function", "number",
"symbol", or "string".

NOTE Implementations are discouraged from defining‘new typeof result values for non-standard exotic
objects. If possible "object"should be used for such objects.

12.5.7 Prefix Increment Operator
12.5.7.1 Runtime Semantics: Evaluation

UnaryExpression : ++ UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.

2. <LetoldValue be ToNumber(GetValue(expr)).

3. ReturnifAbrupt(oldValue).

4. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the +
operator (see 12.7.5).

5. Let status be PutValue(expr, newValue).

6. ReturnlfAbrupt(status).

7. Return newValue.

12.5.8 Prefix Decrement Operator
12.5.8.1 Runtime Semantics: Evaluation

UnaryExpression : -- UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.
2. LetoldValue be ToNumber(GetValue(expr)).
3. ReturnlfAbrupt(oldValue).

© Ecma International 2015 193

oecmad

4. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the
- operator (see 12.7.5).

5. Let status be PutValue(expr, newValue).

6. ReturnIfAbrupt(status).

7. Return newValue.

12.5.9 Unary + Operator
NOTE The unary + operator converts its operand to Number type.
12.5.9.1 Runtime Semantics: Evaluation

UnaryExpression : + UnaryExpression
1. Let expr be the result of evaluating UnaryExpression.
2. Return ToNumber(GetValue(expr)).

12.5.10 Unary - Operator

NOTE The unary - operator converts its operand to Number type and then negates it. Negating +0 produces -0,
and negating —0 produces +0.

12.5.10.1 Runtime Semantics: Evaluation

UnaryExpression : - UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.

2. LetoldValue be ToNumber(GetValue(expr)).

3. ReturnifAbrupt(oldValue).

4. If oldVvalue is NaN, return NaN.

5. Return the result of negating oldValue; that is, compute a Number with the same magnitude but
opposite sign.

12.5.11 Bitwise NOT Operator(~)
12.5.11.2Runtime Semantics: Evaluation

UnaryExpression : ~ UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.

2. LetoldValue be Tolnt32(GetValue(expr)).

3. ReturnlfAbrupt(oldValue).

4. Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

12.5.12 Logical NOT Operator (!)
12.5.12.1 Runtime Semantics: Evaluation

UnaryExpression : ! UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.
2. LetoldValue be ToBoolean(GetValue(expr)).
3. ReturnifAbrupt(oldValue).

194 © Ecma International 2015

oecnd

4. If oldVvalue is true, return false.
5. Return true.

12.6 Multiplicative Operators

Syntax

MultiplicativeExpressionyyieiq :
UnaryExpressionpyieiq)
MultiplicativeExpressionpyieiqp MultiplicativeOperator UnaryEXpressionjsvieid

MultiplicativeOperator : one of
*x /g

12.6.1 Static Semantics: IsFunctionDefinition

See also: 12.2.0.2, 12.2.9.2, 12.3.1.2, 12.4.2, 125.2, 12:7.1, 12.8.1, 12.9.1, 12.10.1, 12.11.1, 12.12.1,

12.13.1,12.14.2,12.15.1, 14.1.11, 14.4.9, 14.5.8. [Deleted: 14.1.1214.1.1214.1.11

MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator UnaryExpression
1. Return false.

12.6.2 Static Semantics: IsValidSimpleAssignmentTarget

See also: 12.1.3, 12.2.0.3, 12.2.9.3, 12.3.1.5, 12.4.3, 125.3, 12.7.2, 12.8.2, 12.9.2, 12.10.2, 12.11.2, | [Deleted: 12.3.1.3

12.12.2,12.13.2,12.14.3, 12.15.2.

MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator UnaryExpression
1. Return false.

12.6.3 Runtime Semantics: Evaluation

MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator UnaryExpression

Let left be the result of evaluating MultiplicativeExpression.
Let leftValue be GetValue(left).

ReturnlfAbrupt(leftValue).

Let right be the result of evaluating UnaryExpression.

Let rightValue be GetValue(right).

Let Inum be ToNumber(leftvValue).

ReturnlfAbrupt(lnum).

Let rnum be ToNumber(rightValue).

ReturnlfAbrupt(rnum).

0. Return the result of applying the MultiplicativeOperator (*, /, or %) to Inum and rnum as specified
in12.6.3.1, 12.6.3.2, or 12.6.3.3.

BOoxoNouBEwN =

12.6.3.1 Applying the * Operator

The * MultiplicativeOperator performs multiplication, producing the product of its operands. Multiplication
is commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

© Ecma International 2015 195

I

ecima

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision

arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

Multiplication of an infinity by a zero results in NaN.

Multiplication of an infinity by an infinity results in an infinity. The:sign is determined by
the rule already stated above.

Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign
is determined by the rule already stated above.

In the remaining cases, where neither an infinity nor'NaN is involved, the product is
computed and rounded to the nearest representable value using IEEE 754 round-to-
nearest mode. If the magnitude is too large to represent, the result is then an infinity of
appropriate sign. If the magnitude is too small to represent, the result is.then a zero of
appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

12.6.3.2 Applying the / Operator

The / MultiplicativeOperator performs division, producing the quotient of its operands. The left operand is
the dividend and the right operand is the divisor. ECMAScript does not perform integer division. The
operands and result of all division operations are double-precision floating-point numbers. The result of
division is determined by the specification of IEEE 754 arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both‘operands have the same sign, negative if the
operands have different signs.

Division of andinfinity by an infinity results in NaN.

Division of<an infinity by a zero results in an infinity. The sign is determined by the rule
already stated above.

Division of ‘an infinity‘by a nonzero-finite value results in a signed infinity. The sign is
determined by the rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.

Division of ‘a zero by a zero results in NaN; division of zero by any other finite value
results in zero, with the sign-determined by the rule already stated above.

Division of a nonzero finite value by a zero results in a signed infinity. The sign is
determined by the rule already stated above.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
quotient is computed and rounded to the nearest representable value using IEEE 754
round-to-nearest mode. If the magnitude is too large to represent, the operation
overflows; the result is then an infinity of appropriate sign. If the magnitude is too small
to represent, the operation underflows and the result is a zero of the appropriate sign.
The ECMAScript language requires support of gradual underflow as defined by IEEE
754.

12.6.3.3 Applying the % Operator

The % MultiplicativeOperator yields the remainder of its operands from an implied division; the left operand
is the dividend and the right operand is the divisor.

196

© Ecma International 2015

secmd

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts
floating-point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
“remainder” operation defined by IEEE 754. The |IEEE 754 “remainder” operation computes the remainder
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the
usual integer remainder operator. Instead the ECMAScript language defines % on floating-point
operations to behave in a manner analogous to that of the Java integer remainder operator; this may be
compared with the C library function fmod.

The result of an ECMAScript floating-point remainder operation is determi